US20070056842A1 - Process for production of hydrogen from anaerobically deomposed organic materials - Google Patents

Process for production of hydrogen from anaerobically deomposed organic materials Download PDF

Info

Publication number
US20070056842A1
US20070056842A1 US11/595,742 US59574206A US2007056842A1 US 20070056842 A1 US20070056842 A1 US 20070056842A1 US 59574206 A US59574206 A US 59574206A US 2007056842 A1 US2007056842 A1 US 2007056842A1
Authority
US
United States
Prior art keywords
hydrogen
production
materials
carbon dioxide
landfill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/595,742
Inventor
Sukomal Roychowdhury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
World Hydrogen Energy LLC
Original Assignee
World Hydrogen Energy LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/659,644 external-priority patent/US6090266A/en
Application filed by World Hydrogen Energy LLC filed Critical World Hydrogen Energy LLC
Priority to US11/595,742 priority Critical patent/US20070056842A1/en
Publication of US20070056842A1 publication Critical patent/US20070056842A1/en
Priority to US12/772,724 priority patent/US20110083971A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • Hydrogen is a fuel which does not produce pollutants, water being its only combustion product. Hydrogen has many industrial uses in the production of fertilizers, dyes, drugs, plastics, hydrogenated oils and fats and methanol and is used in many industries. It is also used as a rocket fuel and in this invention as a minus-emissions fuel that allows ordinary engines to clean the air.
  • This invention relates to a process for the production of hydrogen from anaerobically decomposed organic materials, including materials such as those found in landfill materials and sewage sludge, by applying an electric potential to and thereby creating a current through the anaerobically decomposed organic material and thereby forming hydrogen.
  • the established processes for producing commercially significant amounts of hydrogen are: (1) steam reforming of hydrocarbons, (2) partial oxidation of coal, (3) electrolysis of water, and (4) direct use of solar radiation (photovoltaic method).
  • the process of the present invention does not depend on fossil fuels or the somewhat random appearance of sunlight to produce hydrogen.
  • the present process converts what are typically waste materials into hydrogen, while simultaneously reducing the mass of said materials and/or reducing the treatment time of such materials by application of a relatively small and/or intermittent electric potential to said materials.
  • the process of this invention uses raw materials typically found in, among other places, municipal waste sites and sewage treatment plants and produces more energy, in the form of the chemically stored potential energy of hydrogen, than the electric energy required to produce the hydrogen.
  • Roychowdhury disclosed that upon inoculation of various sugar solutions with the landfill supernatant or landfill powder, the sugar solution produced hydrogen and carbon dioxide, and no methane or oxygen; indicating the presence of hydrogen-producing bacteria present in the landfill inoculum and/or landfill hydrogen. Hydrogen production decreased with increasing acidity.
  • This invention relates generally to a process which produces hydrogen from anaerobically decomposed organic materials such as anaerobically composted cellulosic materials and anaerobically digested sewage sludge. This process decreases the time required to treat anaerobically composed cellulosic materials and anaerobically digested sewage sludge.
  • the invention relates to an embodiment wherein a relatively low electric potential is applied to anaerobically decomposed organic materials such as anaerobically composted cellulosic waste materials and anaerobically digested sewage sludge which, as a result of anaerobic decomposition, have been fermented into “volatile” carboxylic acids such as acetic acid and bicarbonates of ammonia.
  • the electric current resulting from the application of an electric potential is believed to hydrolyze the acetic acids, other volatile carboxylic acids, and bicarbonates of ammonia within the decomposed materials, thereby producing hydrogen. Formation of methane is suppressed, Organic mass, such as solids contained within sewage sludge is reduced at an increased rate, and the time required to treat waste materials such as sewage sludge is thereby reduced.
  • the time of application of electropotential is intermittent and the duty cycle of voltage application is adaptively adjusted to minimize electric power consumption while maximizing hydrogen production.
  • the activities of microorganisms that produce enzymes that release hydrogen from the ferment is greatly encouraged and that activities of microorganisms that produce enzymes favoring methane production are depressed.
  • FIG. 1 is a flow chart showing both production of hydrogen and suppression of methaneogenesis from anaerobically decomposed organic materials in the presence of an applied electropotential, and methanogenesis from anaerobically decomposed organic materials in the absence of an applied electropotential.
  • FIG. 2 is a flow chart showing a process for production of hydrogen which includes on-site anaerobic decomposition of organic material.
  • FIG. 3 is a bar graph representation of the information in Table 1.
  • FIG. 4 is a bar graph representation of the information in Table 3.
  • FIG. 5 is a bar graph representation of the information in Table 3.
  • FIG. 6 is a bar graph representation of the information in Table 5.
  • FIG. 7 is a bar graph representation of the information in Table 6.
  • FIG. 8 is a bar graph representation of the information in Table 8.
  • FIG. 9 is a bar graph representation of the information in Table 9.
  • FIG. 10 is a bar graph representation of the information in Table 10.
  • FIG. 11 is a schematic illustration of an embodiment that adaptively controls application of intermittently applied voltage to maximize hydrogen production while minimizing methane production.
  • FIG. 12 is a schematically illustrated embodiment showing generation of voltage for practicing the principles of the invention.
  • FIG. 13 is a schematic illustrating the principles of another embodiment of the invention.
  • FIG. 14 is a schematic illustrating the principles of another embodiment of the invention.
  • the process of the present invention may typically be practiced at any large municipal landfill or sewage treatment facility, but can be practiced on a smaller scale wherever anaerobically decomposed organics such as anaerobically composted cellulosic materials or anaerobically digested sewage sludge are found or may be generated.
  • Anaerobically composted cellulosic materials are typically found in landfill materials.
  • Anaerobically digested sewage sludge typically comprises sludge found at municipal sewage treatment plants.
  • Landfill materials generally consist of approximately 70% cellulosic materials and have a moisture content of 36% to 46%. Sewage sludge is primarily liquid, contains volatile acids such as acetic acid, and includes 2-3% solids. Both landfill materials and sewage sludge naturally contain methane-producing abacterial species and hydrogen-producing bacterial species.
  • the invention may be practiced by applying an electric potential of between 1 and 7 volts, preferably between 3 and 6 volts, most preferably between 3.0 and 4.5 volts to, and thereby passing an electric current through, anaerobically decomposed organic materials such as landfill materials or sewage sludge.
  • This electric potential is applied through electrodes which are preferably made from lead, copper, steel, brass or carbon, more preferably from cast iron bars, and most preferable from metal impregnated or otherwise electrically conductive graphite.
  • Anaerobic decomposition specifically anaerobic composting and anaerobic digestion, refers to a process where organic compounds, typically but not limited to compounds of the general formula C n H 2n O n , decompose in the absence of an oxygen-donor environment. Volatile acids such as acetic acid are typically formed by such anaerobic decomposition. Although anaerobic decomposition may in some instances be preceded by aerobic decomposition, aerobic decomposition is not a prerequisite to anaerobic decomposition and electrodes can be placed within the organic materials prior to the commencement of anaerobic decomposition.
  • both landfill materials comprising anaerobically composted cellulosic materials and anaerobically digested sewage sludge contain relatively high amounts of volatile acids such as acetic acid. These acids are known to act as electrolytes.
  • one or more sets of electrodes may be placed within landfill material or sewage sludge in such a way that an electric potential is applied, and according to the principles of the invention resulting in an electrical current with low polarization and ohmic losses. Electrode distance and placement along with the program of voltage control including occasional reversal of polarity may be adjusted to achieve these conditions.
  • Electrode sets may be of any suitable shape, e.g. plates, bars, grids, etc.
  • each individual electrode is placed into landfill materials and is surrounded by an inert “cage” which effectively ensures that the moisture component of the landfill materials, and not a component which might interfere with electrical activity, is immediately adjacent each electrode. Place of the electrodes in a suitable position within the landfill material may require some trial and error.
  • the essence of the electrochemistry of this invention is the enzyme facilitated production and decomposition of low molecular weight volatile acids such as acetic acid produced by bacterial breakdown of carbohydrates and other nutrients. Because oxygen production is not observed, it is believed that electrolysis of water is not a source of hydrogen. It is further believed that hydrogen gas produced by the electrolysis of volatiles present in the sludge and in landfill materials, inhibits the subdivision, growth, and activity of methanogenic species.
  • cellulosic materials and/or sewage sludge are made to decompose “on-site”, i.e. in a localized bin or chamber, rather than at a centralized landfill or sewage treatment facility.
  • the anaerobically composted cellulosic waste materials and/or the anaerobically digested sewage sludge are then optionally taken to a transfer station equipped with electrodes as previously described to produce hydrogen, or alternatively made to produce hydrogen “on-site” by application of electric potential at or near the on-site bin or chamber.
  • hydrogen could then be stored or used on-sites as a energy source to produce useful forms of energy including the relatively minor amount used to practice the principles of the invention.
  • Electrodes were cast iron bars, 300 mm long, 25 mm wide and 2.5 mm thick. Other metallic electrodes were used including lead, copper, steel, brass and others. pair of copper impregnated graphite electrodes of the same size was used. Degradation of the graphite electrode was not very noticeable.
  • Samples of landfill material were obtained from a sanitary landfill at Staten Island N.Y. from a depth of between 30 to 50 feet.
  • the landfill materials naturally produce methane and carbon dioxide as primary gases (in 55:35 proportions) through methanogenesis.
  • Sewage sludge from the primary digester was placed in an 800 ml flask which was then placed in a preheated incubator at 37° C. Methane gas was generated. As soon as optimum production of methane was achieved, a current was passed through the liquid in the flask. The production of methane gas declined gradually and hydrogen and carbon dioxide were produced. Methane was completely suppressed when production of hydrogen reached its peak, as described at Table 2 and depicted at FIG. 4 . TABLE 2 Production of H 2 and Suppression of CH 4 DAYS % CH 4 % CO 2 % H 2 1 60 35 — 2 70 25 — 3* 45 25 20 4 25 28 46 5 5 30 60 6 TR 30 68 *As and when current was passed.
  • landfill materials It is of particular interest to treat landfill materials because these materials present municipalities around the world with ubiquitous problems of vector (rodents, roaches, and communicable disease germs) breeding places along with sources of greenhouse gases and groundwater contamination due to production of poisonous leachate.
  • the present invention provides for carbon sequestration from landfills including those that are depositories for sewage sludge.
  • Landfill materials collected by random borings were provided for determination of the least energy expenditures per energy production. Experiments were set up with landfill materials (composted municipal solid wastes) in two 800 ml flasks, (1) with landfill materials only, (2) with landfill materials where electrodes were dipped in. The results are described at Tables 5 and 6, and depicted at FIGS. 6 and 7 . TABLE 5 Production of Gases From Landfill Materials DAYS % H 2 % CO 2 % N 2 % CH 4 1 — — — — 2 — 3 10 — 3 — 20 8 10 5 — 40 6 50 6 — 30 5 63 7 — 30 5 60 8 — 35 4 60 9 — 35 5 62
  • Example 5 was repeated: (1) with sludge only, (2) with sludge having operating electrodes. The results are described at Tables 7 and 8, and depicted FIG. 8 . TABLE 7 Production of Gases From Sludge in Absence of Applied Voltage DAYS % H 2 % CO 2 % N 2 % CH 4 Total CC 2 — 20 14 65 50 3 — 14 10 70 125 4 — 19 4 72 225 5 — 22 4 66 258 6 — 18 8 70 200
  • Landfill materials in a 6 liter vessel were placed in a preheated incubator at 55° C. After 4 days electrodes were connected to 3.5 volt terminals. The results are described at Table 10, and depicted at FIG. 10 .
  • FIG. 11 shows an embodiment 200 in which suitable electrodes such as concentric electrodes 202 and 204 receive intermittently applied voltage to influence the solvated organic waste between the electrodes to produce hydrogen more or less according to the data shown in Tables 8, 9, and 10.
  • voltage is applied by voltage source 216 according to a duty cycle controlled by relay 212 that is constantly adjusted by controller 210 to facilitate hydrogen generation and to prevent substantial methane production.
  • Feedback information from gas detector 206 / 208 is provided to controller 210 . If trace amounts of methane are detected a voltage is applied between electrodes 202 and 204 for a recorded time period until methane production is depressed. The time until methane traces are detected again is noted by controller 210 and a duty cycle of applying voltage across electrodes 202 and 204 for a time interval slightly longer than the time noted for depressing methane production followed by neutral electrode operation for a time period slightly less than the time noted previously for traces of methane to be detected.
  • This duty cycle is adaptively changed to shorten the time of voltage application and to extend the time between voltage application for purposes of minimizing methane production while maximizing hydrogen production with least application of voltage to electrodes 202 and 204 .
  • Voltage level is reduced to provide another variable and adaptively adjusted with respect to the time of voltage application to minimize energy expenditure.
  • This adaptive control algorithm rapidly adjusts for changes in organic waste composition, moisture content, temperature, and other variables.
  • FIG. 12 shows an embodiment in which the fuel gas produced by the process of the invention in the presence of electrodes 230 and 232 is in part made available for energy conversion in 240 to electricity by a fuel cell or engine-generator set.
  • Adaptively controlled application of voltage to electrodes 230 and 232 is provided by controller 236 and relay 234 as shown for purposes of minimizing energy consumption per therm of hydrogen produced.
  • adaptive controller 236 provides a control algorithm to minimize methane production while facilitating maximum hydrogen production.
  • Solenoid operated valve 238 controls delivery of fuel gas by line 242 to energy conversion unit 240 as needed to meet adaptively adjusted duty cycle and to meet other demands for electricity as delivered by insulated cables 244 .
  • Suitable power for pumping water, providing a heat-pump cycle, or production of electricity at 240 may be by a heat engine and generator, a fuel cell, a thermoelectric generator, or other devices that convert fuel potential energy into electricity.
  • SmartPlug operation is disclosed in U.S. Pat. Nos. 5,394,852 and 5,343,699. This enables the raw mixture of hydrogen and carbon dioxide to be used as a very low grade fuel without further conditioning while producing very high thermal efficiency and full rated power in comparison with engine operation on gasoline or diesel fuel. This is a particularly important advantage for remote operation and to bring fuel and power to depressed economies where it is prohibitive to import fossil-based fuels.
  • thermodynamic advantages based on faster fuel combustion, wider air/fuel ratio combustion limits, and with SmartPlug operation the engine operates essentially without throttle losses. These thermodynamic advantages provide much higher brake mean effective pressure or “BMEP” for the same heat release in comparisons with gasoline or diesel fuel.
  • Substantial amounts of carbon dioxide are produced along with hydrogen by operation of electro-conditioned anaerobic digestion of organic wastes. Economical separation of hydrogen from the carbon dioxide is needed for fuel cell applications, for increasing the storage density of hydrogen, and for increasing the value of hydrogen produced. Such separation is provided by the embodiment of FIG. 13 .
  • This embodiment also serves the purpose of providing for utilization 25 of the carbon dioxide for various purposes including use in greenhouses or hydroponics and is an important aspect of the invention.
  • the solubility of carbon dioxide in water is about 21.6 volumes of gas per volume of water at 25 atmospheres pressure and 12° C. (54° F.). Increasing the pressure or decreasing the temperature increases the amount of carbon dioxide dissolved per volume of water. Lowering the pressure or increasing the temperature releases dissolved carbon dioxide. In most areas of the Earth, the ground water is maintained at a temperature that is equal to the mean annual air temperature plus one degree (F) for each 80′ of overburden to the saturated zone.
  • FIG. 13 shows a system for separating carbon dioxide from hydrogen by differential absorption of carbon dioxide within a suitable medium such as water or a hindered amine.
  • a suitable medium such as water or a hindered amine.
  • mixed gases consisting of hydrogen, carbon dioxide, and lesser amounts of nitrogen and other gases are forced into the bottom of a column of water 302 approximately 1,000′ or higher.
  • a column of water that is developed by placing a well approximately 1000′ below the saturated zone of the local groundwater. This provides the extremely large heat sink benefit of the sub soil including the ground water in the saturated zone where the temperature is generally constant at the desired temperature of 4° C. to 16° C. (40° F. to 60° F.) for most climate zones throughout the year. Water columns that are elevated along mountain slopes are also feasible but may suffer freezing conditions in the winter and unfavorable warming in the summer season.
  • Mixed gases are delivered to the bottom of tube 304 by a suitable pump (not shown).
  • Mixed gases enter into a suitable scrubber zone such as the helical fin 306 that is attached to tube 304 with a higher elevation at the point of attachment than any other point on the element of rotation that describes the helical surface as shown. Gases thus tend to be buoyed towards tube 304 as they are scrubbed by the absorbing fluid.
  • Carbon dioxide readily enters into solution at the pressure and temperature conditions maintained.
  • Hydrogen exits at the top of the helix into tube 308 and is delivered to the surface for various uses.
  • Carbon-dioxide rich water is ducted to the surface by coaxial tube 310 as shown. As the head pressure lessens, carbon dioxide bubbles develop and escape upward and create a lower density mixture that is buoyantly lifted to the gas separator section 312 where denser water 25 that has lost the ability to retain carbon dioxide is returned to annular space 302 and sinks the bottom to replace the upward travelling inventory of water that is lifted within tube 310 . Carbon dioxide is collected at the top of 310 by tube 314 for various useful purposes.
  • FIG. 14 shows an embodiment in which energy used to pressurize the hydrogen and carbon dioxide is regeneratively recovered by an expansion engine.
  • Embodiment 400 shows an extremely rugged and simple energy conversion system that combines various renewable resources such as sewage, garbage, and farm wastes with solar energy to supply electricity, hydrogen, and carbon dioxide.
  • Hydrogen is delivered by conduit 408 for immediate use in an engine or fuel cell or it may be stored for future use as needed.
  • Carbon dioxide saturated water is taken from absorber vessel 402 by tube 410 to valve manifold 426 which provides control valves to time the flow of carbon dioxide rich water into each of a group of heat exchangers such as 414 , 416 , 418 , 420 , 422 , and 424 as shown.
  • Each heat exchanger is provided with an exit a nozzle that is aimed at the blades or buckets of an adjacent fluid motor rotor such as 430 , 432 , 434 , 436 , 438 , and 440 which deliver work to a common output shaft as shown.
  • a suitable solar collector such as a field of heliostats or a parabolic dish 442 as shown.
  • supplemental heat may be applied by combustion from a suitable burner 448 .
  • supplemental heating it is preferred to use mixtures of carbon dioxide and hydrogen and/or other combustible gases released by anaerobic digestion of organic matter.
  • carbon dioxide is collected by tube 458 and taken to a suitable application.
  • Water is condensed and collected in reservoir 450 which is cooled by countercurrent heat exchanger 456 by circulation of a suitable heat exchange fluid from 446 to 456 and then through 448 to a suitable cogeneration application. Cooled water is pressurized by pump 454 and returned to pressure vessel 402 to complete the novel carbon dioxide removal and energy conversion cycle.
  • Method and apparatus for utilization of intermittently applied voltage for depression of methane production while maximizing hydrogen generation from organic landfill and sewage wastes is provided along with a rational control regime for minimizing the energy expenditure to do so.
  • Renewable biomass and solar resources are combined in a unique energy conversion regime.
  • Production of electricity from an engine operated on hydrogen sourced by the invention is integrated in a synergistic combination that provides regenerative separation of carbon dioxide from fuel gas air and cleaning with carbon sequestration.
  • the time to dispose of organic materials is preferably reduced by anaerobically digesting such materials in a reaction zone and applying art electric potential across the zone thereby producing hydrogen and carbon dioxide. It is preferred to apply the electric potential occasionally after periods without application of said electric potential. It is preferred to apply the electric potential at a frequency and for a period to maximize the quantity of hydrogen produced per the amount of electricity consumed.
  • Energy conversion efficiency is increased by adding heat to the fluid after preferential absorption of carbon dioxide for the purpose of increasing the amount of work produced by a motor that expands the pressurized fluid, releasing the carbon dioxide in conjunction with the expanding process, and cooling the fluid before the pressurizing step.
  • the preferred source of such heat is selected from the group including solar energy, heat released by combustion of a portion of the fuel produced, concentrated solar energy, and a combination of solar energy along with heat produced by combustion of a portion of the hydrogen.
  • An energy conversion process is provided by the steps of anaerobically digesting organic materials to produce carbon dioxide and fuel selected from the group including hydrogen, methane, and mixtures of hydrogen and methane, separating the carbon dioxide from the fuel.
  • the preferred method of separation is comprised of pressurizing a fluid to a state that provides preferential absorption of carbon dioxide, mixing the carbon dioxide and fuel with the fluid, collecting the fuel that remains after said preferential absorption of carbon dioxide, adding heat to the fluid after preferential absorption of carbon dioxide for the purpose of increasing the amount of work produced by a motor that expands pressurized fluid, releasing carbon dioxide in conjunction with the expanding process, and cooling the fluid before the pressurizing step.
  • feedstock organic materials are placed in a reaction zone and an electric potential or voltage is applied across the materials thereby producing hydrogen and carbon dioxide. It is preferred to provide application of intermittent voltage for purposes selected from the group including depression of microorganismal activity that produces methane, enhancement of microorganismal activity that produces hydrogen, and creation of an atmosphere within organic materials that is maintained rich in hydrogen.
  • the process intermittent application of voltage is optimized by feedback information from a gas detector as provided to a controller means.
  • the voltage is applied for a recorded time period until methane production is depressed, the time until methane traces are detected again is noted by the controller and a duty cycle is provided for applying voltage for a time interval slightly longer than the time noted for depressing methane production followed by neutral electrode operation for a time period slightly less than the time noted previously for traces of methane to be detected
  • the voltage level is variably reduced to provide an adaptively adjusted control with respect to the time of said voltage application to minimize energy expenditure.

Abstract

A process for the production of hydrogen from anaerobically decomposed organic materials by applying an electric potential to the anaerobically decomposed organic materials, including landfill materials and sewage, to form hydrogen, and for decreasing the time required to treat these anaerobically decomposed organic materials. The organic materials decompose to volatile acids such as acetic acid, which may be hydrolyzed by electric current to form hydrogen. The process may be continuously run in sewage digestion tanks with the continuous feed of sewage, at landfill sites, or at any site having a supply of anaerobically decomposed or decomposable organic materials.

Description

  • This application is a Continuation-In-Part of patent application Ser. No. 08/659,644 now U.S. Pat. No. 6,090,266.
  • BACKGROUND OF THE INVENTION
  • It is recognized that additional sources of energy are needed for sustained industrial growth. There exists an ever present danger in depending too heavily on fossil fuels. Fossil fuels (hydrocarbons) represent a limited supply of stored energy which are typically released during a combustion process. By burning hydrocarbons mankind has spewed billions of tons of toxic pollutants into the atmosphere. It therefore makes sense from both an environmental and economic standpoint to develop alternative sources of renewable fuels.
  • Hydrogen is a fuel which does not produce pollutants, water being its only combustion product. Hydrogen has many industrial uses in the production of fertilizers, dyes, drugs, plastics, hydrogenated oils and fats and methanol and is used in many industries. It is also used as a rocket fuel and in this invention as a minus-emissions fuel that allows ordinary engines to clean the air.
  • 1. Field of the Invention
  • This invention relates to a process for the production of hydrogen from anaerobically decomposed organic materials, including materials such as those found in landfill materials and sewage sludge, by applying an electric potential to and thereby creating a current through the anaerobically decomposed organic material and thereby forming hydrogen.
  • 2. Description of Related Art
  • The established processes for producing commercially significant amounts of hydrogen are: (1) steam reforming of hydrocarbons, (2) partial oxidation of coal, (3) electrolysis of water, and (4) direct use of solar radiation (photovoltaic method).
  • Steam-reformation of hydrocarbons and partial oxidation of coal are disadvantageous in that fossil hydrocarbon fuels are consumed. Production of hydrogen by electrolysis of water, a relatively simple and non-polluting process, is costly and therefore economically disadvantageous for most industrial applications because the amount of energy needed for electrolysis of water exceeds the energy obtained from the combustion of the resulting hydrogen. Photovoltaic methods of hydrogen production have inherent inadequacy related to access to solar radiation for much of the world's population.
  • Unlike the methods for production of hydrogen outlined above, the process of the present invention does not depend on fossil fuels or the somewhat random appearance of sunlight to produce hydrogen. The present process converts what are typically waste materials into hydrogen, while simultaneously reducing the mass of said materials and/or reducing the treatment time of such materials by application of a relatively small and/or intermittent electric potential to said materials. The process of this invention uses raw materials typically found in, among other places, municipal waste sites and sewage treatment plants and produces more energy, in the form of the chemically stored potential energy of hydrogen, than the electric energy required to produce the hydrogen.
  • A method of producing hydrogen from sugars is discussed in Energy and the Environment, Proceedings of the 1st World Renewable Energy Congress, Reading, UK 23-28 Sep. 1990. S. Roychowdhury and D. Cox (“Roychowdhury”). This method involves the production of hydrogen from pure sugars such as glucose or maltose.
  • Roychowdhury reports the initial production of hydrogen upon inoculation of a sugar solution with so-called “landfill inocula”. To obtain landfill inocula, materials were obtained from various depths in a landfill, dried, ground (to obtain “landfill powder”) and then incubated in situ. The incubated culture medium was observed to produce carbon dioxide and methane, primarily, and little else, indicating the presence of highly methanogenic flora in the inoculum. The supernatant from this culture medium, or in some cases the landfill powder, were used as inocula.
  • Previously, Roychowdhury disclosed that upon inoculation of various sugar solutions with the landfill supernatant or landfill powder, the sugar solution produced hydrogen and carbon dioxide, and no methane or oxygen; indicating the presence of hydrogen-producing bacteria present in the landfill inoculum and/or landfill hydrogen. Hydrogen production decreased with increasing acidity.
  • It is another object of this invention to provide a method of hydrogen production which does not require the use of fossil fuels.
  • It is an object of the invention to serve communities that have relatively undeveloped electricity distribution and other energy infrastructures with a system that provides useful energy from collected wastes.
  • It is an object of the present invention to separate carbon dioxide, nitrogen and other gases from produced hydrogen.
  • SUMMARY OF THE INVENTION
  • This invention relates generally to a process which produces hydrogen from anaerobically decomposed organic materials such as anaerobically composted cellulosic materials and anaerobically digested sewage sludge. This process decreases the time required to treat anaerobically composed cellulosic materials and anaerobically digested sewage sludge. More specifically, the invention relates to an embodiment wherein a relatively low electric potential is applied to anaerobically decomposed organic materials such as anaerobically composted cellulosic waste materials and anaerobically digested sewage sludge which, as a result of anaerobic decomposition, have been fermented into “volatile” carboxylic acids such as acetic acid and bicarbonates of ammonia. The electric current resulting from the application of an electric potential is believed to hydrolyze the acetic acids, other volatile carboxylic acids, and bicarbonates of ammonia within the decomposed materials, thereby producing hydrogen. Formation of methane is suppressed, Organic mass, such as solids contained within sewage sludge is reduced at an increased rate, and the time required to treat waste materials such as sewage sludge is thereby reduced.
  • In another embodiment the time of application of electropotential is intermittent and the duty cycle of voltage application is adaptively adjusted to minimize electric power consumption while maximizing hydrogen production. In application it is believed that the activities of microorganisms that produce enzymes that release hydrogen from the ferment is greatly encouraged and that activities of microorganisms that produce enzymes favoring methane production are depressed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart showing both production of hydrogen and suppression of methaneogenesis from anaerobically decomposed organic materials in the presence of an applied electropotential, and methanogenesis from anaerobically decomposed organic materials in the absence of an applied electropotential.
  • FIG. 2 is a flow chart showing a process for production of hydrogen which includes on-site anaerobic decomposition of organic material.
  • FIG. 3 is a bar graph representation of the information in Table 1.
  • FIG. 4 is a bar graph representation of the information in Table 3.
  • FIG. 5 is a bar graph representation of the information in Table 3.
  • FIG. 6 is a bar graph representation of the information in Table 5.
  • FIG. 7 is a bar graph representation of the information in Table 6.
  • FIG. 8 is a bar graph representation of the information in Table 8.
  • FIG. 9 is a bar graph representation of the information in Table 9.
  • FIG. 10 is a bar graph representation of the information in Table 10.
  • FIG. 11 is a schematic illustration of an embodiment that adaptively controls application of intermittently applied voltage to maximize hydrogen production while minimizing methane production.
  • FIG. 12 is a schematically illustrated embodiment showing generation of voltage for practicing the principles of the invention.
  • FIG. 13 is a schematic illustrating the principles of another embodiment of the invention.
  • FIG. 14 is a schematic illustrating the principles of another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The process of the present invention may typically be practiced at any large municipal landfill or sewage treatment facility, but can be practiced on a smaller scale wherever anaerobically decomposed organics such as anaerobically composted cellulosic materials or anaerobically digested sewage sludge are found or may be generated.
  • Anaerobically composted cellulosic materials are typically found in landfill materials. Anaerobically digested sewage sludge typically comprises sludge found at municipal sewage treatment plants. Landfill materials generally consist of approximately 70% cellulosic materials and have a moisture content of 36% to 46%. Sewage sludge is primarily liquid, contains volatile acids such as acetic acid, and includes 2-3% solids. Both landfill materials and sewage sludge naturally contain methane-producing abacterial species and hydrogen-producing bacterial species.
  • The invention may be practiced by applying an electric potential of between 1 and 7 volts, preferably between 3 and 6 volts, most preferably between 3.0 and 4.5 volts to, and thereby passing an electric current through, anaerobically decomposed organic materials such as landfill materials or sewage sludge. This electric potential is applied through electrodes which are preferably made from lead, copper, steel, brass or carbon, more preferably from cast iron bars, and most preferable from metal impregnated or otherwise electrically conductive graphite.
  • Anaerobic decomposition, specifically anaerobic composting and anaerobic digestion, refers to a process where organic compounds, typically but not limited to compounds of the general formula CnH2nOn, decompose in the absence of an oxygen-donor environment. Volatile acids such as acetic acid are typically formed by such anaerobic decomposition. Although anaerobic decomposition may in some instances be preceded by aerobic decomposition, aerobic decomposition is not a prerequisite to anaerobic decomposition and electrodes can be placed within the organic materials prior to the commencement of anaerobic decomposition.
  • As described above, both landfill materials comprising anaerobically composted cellulosic materials and anaerobically digested sewage sludge contain relatively high amounts of volatile acids such as acetic acid. These acids are known to act as electrolytes. In practicing the invention, one or more sets of electrodes may be placed within landfill material or sewage sludge in such a way that an electric potential is applied, and according to the principles of the invention resulting in an electrical current with low polarization and ohmic losses. Electrode distance and placement along with the program of voltage control including occasional reversal of polarity may be adjusted to achieve these conditions. The voltage, average spacing of electrodes and number of electrodes will vary depending upon the size and composition of the landfill material or sewage sludge sought to be used to produce hydrogen. Electrode sets, may be of any suitable shape, e.g. plates, bars, grids, etc.
  • In a preferred embodiment of the invention, each individual electrode is placed into landfill materials and is surrounded by an inert “cage” which effectively ensures that the moisture component of the landfill materials, and not a component which might interfere with electrical activity, is immediately adjacent each electrode. Place of the electrodes in a suitable position within the landfill material may require some trial and error.
  • When an electric potential is applied, hydrogen production begins and production of hydrogen increases to from 70% to 75% by volume of the total gases produced. The level of methane produced decreases from a high of approximately 70% by volume of the total gases produced, when the electric current is first applied, to greatly diminished trace levels. Carbon dioxide and nitrogen production remain relatively constant and do not vary significantly with methane or hydrogen production.
  • Without being bound by theory, it is believed that the essence of the electrochemistry of this invention is the enzyme facilitated production and decomposition of low molecular weight volatile acids such as acetic acid produced by bacterial breakdown of carbohydrates and other nutrients. Because oxygen production is not observed, it is believed that electrolysis of water is not a source of hydrogen. It is further believed that hydrogen gas produced by the electrolysis of volatiles present in the sludge and in landfill materials, inhibits the subdivision, growth, and activity of methanogenic species.
  • In a preferred embodiment, cellulosic materials and/or sewage sludge are made to decompose “on-site”, i.e. in a localized bin or chamber, rather than at a centralized landfill or sewage treatment facility. The anaerobically composted cellulosic waste materials and/or the anaerobically digested sewage sludge are then optionally taken to a transfer station equipped with electrodes as previously described to produce hydrogen, or alternatively made to produce hydrogen “on-site” by application of electric potential at or near the on-site bin or chamber. In this alternate embodiment, hydrogen could then be stored or used on-sites as a energy source to produce useful forms of energy including the relatively minor amount used to practice the principles of the invention.
  • EXAMPLES Electrodes
  • Electrodes were cast iron bars, 300 mm long, 25 mm wide and 2.5 mm thick. Other metallic electrodes were used including lead, copper, steel, brass and others. pair of copper impregnated graphite electrodes of the same size was used. Degradation of the graphite electrode was not very noticeable.
  • Landfill Materials
  • Samples of landfill material were obtained from a sanitary landfill at Staten Island N.Y. from a depth of between 30 to 50 feet. The landfill materials naturally produce methane and carbon dioxide as primary gases (in 55:35 proportions) through methanogenesis.
  • Sludge
  • Sludge samples were taken from a primary digester of a sewage treatment plant at Brooklyn, N.Y. Sewage sludge produces methane and carbon dioxide (in 65:30 proportions) by methanogenesis.
  • Special Apparatus
  • A series of experiments were set up to determine whether the production of hydrogen would take place when voltage was applied through either sewage sludge or through landfill materials. The pH of the sludge was 7.0-7.5 and the pH of the landfill material was 6.5-7.0. Apparatus included on 800 ml flask with a three hole rubber stopper. Two of those holes were fitted with electrodes and the third hole had a glass delivery tube. The electrodes and the third hole had a glass delivery tube. The electrodes were connected across two 1.5 volt batteries in series, resulting in an applied potential of about 3.0 volts. The apparatus was placed in an incubator set either at 37° C. and later at 55° C. Other apparatus included a New Brunswick Fermenter using a 6-8 liter glass vessel where the temperature, and rotating stirrer and a cooling system could be controlled at a desired setting.
  • Experimental Data
  • Example 1
  • As an experimental control, freshly obtained sewage sludge in an 800 ml flask was placed at 37° C. in an incubator gases, including primarily methane, were produced as described at Table 1 and depicted at FIG. 3.
    TABLE 1
    Production of CH4 and CO2
    DAYS % CH4 % CO2 % N2
    1 65 30 5
    2 70 25 5
    3 70 25 5
    4 65 30 4
    5 60 35 4
    6 55 40 5
  • Example 2
  • Sewage sludge from the primary digester was placed in an 800 ml flask which was then placed in a preheated incubator at 37° C. Methane gas was generated. As soon as optimum production of methane was achieved, a current was passed through the liquid in the flask. The production of methane gas declined gradually and hydrogen and carbon dioxide were produced. Methane was completely suppressed when production of hydrogen reached its peak, as described at Table 2 and depicted at FIG. 4.
    TABLE 2
    Production of H2 and Suppression of CH4
    DAYS % CH4 % CO2 % H2
    1 60 35
    2 70 25
     3* 45 25 20
    4 25 28 46
    5 5 30 60
    6 TR 30 68

    *As and when current was passed.
  • Example 3
  • Sewage sludge from the primary digester was placed in an 800 ml flask which was then placed in an incubator at 37° C. A current was passed through the sludge, applying 3 volts, using the two 1.5 volt batteries in series. Very little methane was produced at the beginning. Within 3 days, production of hydrogen reached its peak and methane gas was virtually totally suppressed, as described at Table 3 and depicted at FIG. 5.
    TABLE 3
    Production of H2 and CO2 When Voltage Was
    Applied From the Start
    DAYS % H2 % CO2 % N2 % CH4
    1 65 25 2 8
    2 70 25 2 TR
    3 70 18 8 TR
    4 70 20 8
    5 68 25 4
  • Example 4
  • A sewage sludge sample was placed in a five liter flask in the New Brunswick Fermenter and 4 electrodes were introduced. Electrical current was passed through (2.5 volts and 0.05 to 0.07 Amps). In the beginning only methane and carbon dioxide were produced with very little hydrogen. As soon as the voltage was increased to 4.0-4.5, and current to 0.11-0.15 Amps, methane was gradually suppressed and hydrogen was produced as described at Table 4.
    TABLE 4
    Production of H2 and CO2, From
    Sludge in 5 liter Container
    DAYS % H2 % CO2 % N2 % CH4
    1 30 12 50
    2 5 35 8 46
    3 4 30 6 60
    5 25 30 5 40
    6 48 25 5 20
    7 60 20 2 8
    9 70 25 4 TR
  • Example 5
  • It is of particular interest to treat landfill materials because these materials present municipalities around the world with ubiquitous problems of vector (rodents, roaches, and communicable disease germs) breeding places along with sources of greenhouse gases and groundwater contamination due to production of poisonous leachate. The present invention provides for carbon sequestration from landfills including those that are depositories for sewage sludge.
  • Landfill materials collected by random borings were provided for determination of the least energy expenditures per energy production. Experiments were set up with landfill materials (composted municipal solid wastes) in two 800 ml flasks, (1) with landfill materials only, (2) with landfill materials where electrodes were dipped in. The results are described at Tables 5 and 6, and depicted at FIGS. 6 and 7.
    TABLE 5
    Production of Gases From Landfill Materials
    DAYS % H2 % CO2 % N2 % CH4
    1
    2 3 10
    3 20 8 10
    5 40 6 50
    6 30 5 63
    7 30 5 60
    8 35 4 60
    9 35 5 62
  • TABLE 6
    Production of Gases From Landfill
    Materials in Presence of Applied Voltage
    DAYS % H2 % CO2 % N2 % CH4 Total CC
    1 53 All 95
    2 72 8 13 302
    3 76 17 6 500
    4 75 18 6 600
    5 72 18 6 450
    7 79 18 6 600
    9 65 18 14 500
  • Example 6
  • Example 5 was repeated: (1) with sludge only, (2) with sludge having operating electrodes. The results are described at Tables 7 and 8, and depicted FIG. 8.
    TABLE 7
    Production of Gases From Sludge
    in Absence of Applied Voltage
    DAYS % H2 % CO2 % N2 % CH4 Total CC
    2 20 14 65 50
    3 14 10 70 125
    4 19 4 72 225
    5 22 4 66 258
    6 18 8 70 200
  • TABLE 8
    Production of Gases From Sludge
    in Presence of Applied Voltage
    DAYS % H2 % CO2 % N2 % CH4 Total CC
    2 65 28 4 8 85
    3 70 20 2 TR 200
    4 70 18 8 TR 310
    5 70 20 2 330
    6 68 22 4 258
  • Example 7
  • An experiment was set up with landfill materials in a 6 liter vessel with electrodes. A current was created through the landfill materials by applying an electric potential of 3.5 V. The results are described at Table 9 and depicted at FIG. 9.
    TABLE 9
    Production of Gases From Landfill Materials
    in 6 Liter Vessel With Applied Voltage
    DAYS % H2 % CO2 % N2 % CH4 TOTAL
    1 75 TR 12 100
    2 70 5 10 1020
    4 75 7 15 850
    6 75 8 17 750
    8 70 5 20 600
  • Example 8
  • Landfill materials in a 6 liter vessel were placed in a preheated incubator at 55° C. After 4 days electrodes were connected to 3.5 volt terminals. The results are described at Table 10, and depicted at FIG. 10.
  • Similar results are achieved by mixing a relatively small amount of inoculum of human sewage sludge with farm manure and/or crop wastes. After an incubation period in which anaerobic conditions were established, methane and carbon dioxide were produced with very little hydrogen. Upon presentation of voltage at 2.0 to 5.0 volts to cause current to reach 0.10 to 0.20 Amps, methane production was depressed and hydrogen was again produced as summarized in Table 10. Similar results are achieved by use of inoculum from previous runs of Example 4 and provide improvements in the efficiency of conversion of chemical energy potential of organic substances 25 into hydrogen.
    TABLE 10
    Production of Gas from landfill Materials
    in Two Different Environments In the Same Set-Up
    DAYS % H2 % CO2 % N2 % CH4 TOTAL
    1 5 All 20
    2 20 35 125
    3 35 55 200
    4
     5* 30 20 150
    7 25 31  7 150
    8 60 35 TR 250
    9 68 31 285
    10  65 30 200
  • FIG. 11 shows an embodiment 200 in which suitable electrodes such as concentric electrodes 202 and 204 receive intermittently applied voltage to influence the solvated organic waste between the electrodes to produce hydrogen more or less according to the data shown in Tables 8, 9, and 10. In operation, voltage is applied by voltage source 216 according to a duty cycle controlled by relay 212 that is constantly adjusted by controller 210 to facilitate hydrogen generation and to prevent substantial methane production.
  • Feedback information from gas detector 206/208 is provided to controller 210. If trace amounts of methane are detected a voltage is applied between electrodes 202 and 204 for a recorded time period until methane production is depressed. The time until methane traces are detected again is noted by controller 210 and a duty cycle of applying voltage across electrodes 202 and 204 for a time interval slightly longer than the time noted for depressing methane production followed by neutral electrode operation for a time period slightly less than the time noted previously for traces of methane to be detected.
  • This duty cycle is adaptively changed to shorten the time of voltage application and to extend the time between voltage application for purposes of minimizing methane production while maximizing hydrogen production with least application of voltage to electrodes 202 and 204. Voltage level is reduced to provide another variable and adaptively adjusted with respect to the time of voltage application to minimize energy expenditure. This adaptive control algorithm rapidly adjusts for changes in organic waste composition, moisture content, temperature, and other variables.
  • FIG. 12 shows an embodiment in which the fuel gas produced by the process of the invention in the presence of electrodes 230 and 232 is in part made available for energy conversion in 240 to electricity by a fuel cell or engine-generator set. Adaptively controlled application of voltage to electrodes 230 and 232 is provided by controller 236 and relay 234 as shown for purposes of minimizing energy consumption per therm of hydrogen produced.
  • Moreover, adaptive controller 236 provides a control algorithm to minimize methane production while facilitating maximum hydrogen production. Solenoid operated valve 238 controls delivery of fuel gas by line 242 to energy conversion unit 240 as needed to meet adaptively adjusted duty cycle and to meet other demands for electricity as delivered by insulated cables 244. Suitable power for pumping water, providing a heat-pump cycle, or production of electricity at 240 may be by a heat engine and generator, a fuel cell, a thermoelectric generator, or other devices that convert fuel potential energy into electricity.
  • In many applications, it is preferred to utilize a piston engine and generator in which the engine is fueled with a SmartPlug combination fuel injector and ignition system to facilitate extremely robust operation. SmartPlug operation is disclosed in U.S. Pat. Nos. 5,394,852 and 5,343,699. This enables the raw mixture of hydrogen and carbon dioxide to be used as a very low grade fuel without further conditioning while producing very high thermal efficiency and full rated power in comparison with engine operation on gasoline or diesel fuel. This is a particularly important advantage for remote operation and to bring fuel and power to depressed economies where it is prohibitive to import fossil-based fuels.
  • Preferential production of hydrogen provides thermodynamic advantages based on faster fuel combustion, wider air/fuel ratio combustion limits, and with SmartPlug operation the engine operates essentially without throttle losses. These thermodynamic advantages provide much higher brake mean effective pressure or “BMEP” for the same heat release in comparisons with gasoline or diesel fuel.
  • As shown in Table 11, it is possible to actually clean the air with an engine generator running on hydrogen-characterized fuel produced from landfill or sewage organic wastes. The ambient air was cleaned by operation of an engine that is compared in operation between hydrogen and gasoline.
    TABLE 11
    TEST RESULTS
    AMBIENT 0.00 ppm CO 1.0 ppm NO
    AIR 29 ppm HC (Carbon (Nitrogen
    TEST: (hydrocarbons) Monoxide) Monoxide)
    ENGINE WITH HYDROGEN OPERATION
    Idle:  18 ppm HC 0.00 ppm CO 1.0 ppm NO
    Full Power:  6 ppm HC 0.00 ppm CO 2.0 ppm NO
    USING GASOLINE AS FUEL IN THE SAME ENGINE:
    Idle: 190 ppm HC 25,000 ppm CO  390 ppm NO
    Full Power: 196 ppm HC 7,000 ppm CO   95 ppm NO
  • Substantial amounts of carbon dioxide are produced along with hydrogen by operation of electro-conditioned anaerobic digestion of organic wastes. Economical separation of hydrogen from the carbon dioxide is needed for fuel cell applications, for increasing the storage density of hydrogen, and for increasing the value of hydrogen produced. Such separation is provided by the embodiment of FIG. 13. This embodiment also serves the purpose of providing for utilization 25 of the carbon dioxide for various purposes including use in greenhouses or hydroponics and is an important aspect of the invention.
  • The solubility of carbon dioxide in water is about 21.6 volumes of gas per volume of water at 25 atmospheres pressure and 12° C. (54° F.). Increasing the pressure or decreasing the temperature increases the amount of carbon dioxide dissolved per volume of water. Lowering the pressure or increasing the temperature releases dissolved carbon dioxide. In most areas of the Earth, the ground water is maintained at a temperature that is equal to the mean annual air temperature plus one degree (F) for each 80′ of overburden to the saturated zone.
  • FIG. 13 shows a system for separating carbon dioxide from hydrogen by differential absorption of carbon dioxide within a suitable medium such as water or a hindered amine. In operation, mixed gases consisting of hydrogen, carbon dioxide, and lesser amounts of nitrogen and other gases are forced into the bottom of a column of water 302 approximately 1,000′ or higher.
  • It is generally preferred to use a column of water that is developed by placing a well approximately 1000′ below the saturated zone of the local groundwater. This provides the extremely large heat sink benefit of the sub soil including the ground water in the saturated zone where the temperature is generally constant at the desired temperature of 4° C. to 16° C. (40° F. to 60° F.) for most climate zones throughout the year. Water columns that are elevated along mountain slopes are also feasible but may suffer freezing conditions in the winter and unfavorable warming in the summer season.
  • Mixed gases are delivered to the bottom of tube 304 by a suitable pump (not shown). Mixed gases enter into a suitable scrubber zone such as the helical fin 306 that is attached to tube 304 with a higher elevation at the point of attachment than any other point on the element of rotation that describes the helical surface as shown. Gases thus tend to be buoyed towards tube 304 as they are scrubbed by the absorbing fluid. Carbon dioxide readily enters into solution at the pressure and temperature conditions maintained. Hydrogen exits at the top of the helix into tube 308 and is delivered to the surface for various uses.
  • Carbon-dioxide rich water is ducted to the surface by coaxial tube 310 as shown. As the head pressure lessens, carbon dioxide bubbles develop and escape upward and create a lower density mixture that is buoyantly lifted to the gas separator section 312 where denser water 25 that has lost the ability to retain carbon dioxide is returned to annular space 302 and sinks the bottom to replace the upward travelling inventory of water that is lifted within tube 310. Carbon dioxide is collected at the top of 310 by tube 314 for various useful purposes.
  • FIG. 14 shows an embodiment in which energy used to pressurize the hydrogen and carbon dioxide is regeneratively recovered by an expansion engine. Embodiment 400 shows an extremely rugged and simple energy conversion system that combines various renewable resources such as sewage, garbage, and farm wastes with solar energy to supply electricity, hydrogen, and carbon dioxide.
  • In many situations and applications it is preferred to pressurize water in a suitable vessel 402 to provide for the separation by solubility differences as desired to purify hydrogen. In operation, mixtures of hydrogen and carbon dioxide are forced through tube 404 into pressure vessel 402 at the nominal pressure of 450 PSI. It is preferred to utilize a spiral mixer consisting of a helical fin 406 that causes the mixture of gases to scrub along the surface and form high surface-to-volume ratios. The mixed gases follow an extended path through the water as carbon dioxide is absorbed to allow the hydrogen to be collected at the top of spiral scrubber 406 by tube 408 as shown. Carbon dioxide is absorbed into the water while hydrogen is collected at the top of separator 406 as shown.
  • Hydrogen is delivered by conduit 408 for immediate use in an engine or fuel cell or it may be stored for future use as needed. Carbon dioxide saturated water is taken from absorber vessel 402 by tube 410 to valve manifold 426 which provides control valves to time the flow of carbon dioxide rich water into each of a group of heat exchangers such as 414, 416, 418, 420, 422, and 424 as shown. Each heat exchanger is provided with an exit a nozzle that is aimed at the blades or buckets of an adjacent fluid motor rotor such as 430, 432, 434, 436, 438, and 440 which deliver work to a common output shaft as shown.
  • An inventory of water and carbon dioxide solution under pressure is suddenly forced into a preheated heat exchanger such as 414 by briefly opening the control valve that serves 414. As the fluid is heated the temperature and pressure of the fluid increases and it vaporizes and is expelled with very high momentum to power motor 430. Each of the other heat exchanger chambers receives a charge of fluid on a timed basis so that the shaft power from the group of motors shown can be considered to have multiple phase torquing such as six phase if each heat exchanger receives flow at a different times or three phase if two heat exchangers are filled simultaneously. A suitable application of the output of the fluid motor is generator 428 or other useful loads as needed.
  • It is preferred to provide concentrated radiation to the heat exchangers by a suitable solar collector such as a field of heliostats or a parabolic dish 442 as shown. At times that solar energy is insufficient to meet energy conversion needs, supplemental heat may be applied by combustion from a suitable burner 448. For such supplemental heating it is preferred to use mixtures of carbon dioxide and hydrogen and/or other combustible gases released by anaerobic digestion of organic matter.
  • After undergoing heating and expansion to a suitably low pressure, carbon dioxide is collected by tube 458 and taken to a suitable application. Water is condensed and collected in reservoir 450 which is cooled by countercurrent heat exchanger 456 by circulation of a suitable heat exchange fluid from 446 to 456 and then through 448 to a suitable cogeneration application. Cooled water is pressurized by pump 454 and returned to pressure vessel 402 to complete the novel carbon dioxide removal and energy conversion cycle.
  • SUMMARY OF THE INVENTION
  • Method and apparatus for utilization of intermittently applied voltage for depression of methane production while maximizing hydrogen generation from organic landfill and sewage wastes is provided along with a rational control regime for minimizing the energy expenditure to do so. Renewable biomass and solar resources are combined in a unique energy conversion regime. Production of electricity from an engine operated on hydrogen sourced by the invention is integrated in a synergistic combination that provides regenerative separation of carbon dioxide from fuel gas air and cleaning with carbon sequestration.
  • The time to dispose of organic materials is preferably reduced by anaerobically digesting such materials in a reaction zone and applying art electric potential across the zone thereby producing hydrogen and carbon dioxide. It is preferred to apply the electric potential occasionally after periods without application of said electric potential. It is preferred to apply the electric potential at a frequency and for a period to maximize the quantity of hydrogen produced per the amount of electricity consumed.
  • It is preferred to separate carbon dioxide and fuel produced by pressurizing a fluid to a state that provides preferential absorption of carbon dioxide, mixing the fuel and carbon dioxide with the pressurized fluid, and collecting the fuel that remains after preferential absorption of carbon dioxide. Energy conversion efficiency is increased by adding heat to the fluid after preferential absorption of carbon dioxide for the purpose of increasing the amount of work produced by a motor that expands the pressurized fluid, releasing the carbon dioxide in conjunction with the expanding process, and cooling the fluid before the pressurizing step.
  • The preferred source of such heat is selected from the group including solar energy, heat released by combustion of a portion of the fuel produced, concentrated solar energy, and a combination of solar energy along with heat produced by combustion of a portion of the hydrogen.
  • An energy conversion process is provided by the steps of anaerobically digesting organic materials to produce carbon dioxide and fuel selected from the group including hydrogen, methane, and mixtures of hydrogen and methane, separating the carbon dioxide from the fuel. The preferred method of separation is comprised of pressurizing a fluid to a state that provides preferential absorption of carbon dioxide, mixing the carbon dioxide and fuel with the fluid, collecting the fuel that remains after said preferential absorption of carbon dioxide, adding heat to the fluid after preferential absorption of carbon dioxide for the purpose of increasing the amount of work produced by a motor that expands pressurized fluid, releasing carbon dioxide in conjunction with the expanding process, and cooling the fluid before the pressurizing step.
  • In instances that it is preferred to utilize anaerobic digestion to produce hydrogen instead of methane, feedstock organic materials are placed in a reaction zone and an electric potential or voltage is applied across the materials thereby producing hydrogen and carbon dioxide. It is preferred to provide application of intermittent voltage for purposes selected from the group including depression of microorganismal activity that produces methane, enhancement of microorganismal activity that produces hydrogen, and creation of an atmosphere within organic materials that is maintained rich in hydrogen. The process intermittent application of voltage is optimized by feedback information from a gas detector as provided to a controller means. If trace amounts of methane are detected, the voltage is applied for a recorded time period until methane production is depressed, the time until methane traces are detected again is noted by the controller and a duty cycle is provided for applying voltage for a time interval slightly longer than the time noted for depressing methane production followed by neutral electrode operation for a time period slightly less than the time noted previously for traces of methane to be detected In this process, the voltage level is variably reduced to provide an adaptively adjusted control with respect to the time of said voltage application to minimize energy expenditure.

Claims (2)

1. A process for producing hydrogen from anaerobically digested organic materials comprising the steps of: placing said materials in a reaction zone; and applying an electric potential across said materials; thereby producing hydrogen and carbon dioxide whereby said electric potential is applied occasionally after periods without application of said electric potential.
2-22. (canceled)
US11/595,742 1996-06-06 2006-11-10 Process for production of hydrogen from anaerobically deomposed organic materials Abandoned US20070056842A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/595,742 US20070056842A1 (en) 1996-06-06 2006-11-10 Process for production of hydrogen from anaerobically deomposed organic materials
US12/772,724 US20110083971A1 (en) 1996-06-06 2010-05-03 Process for production of hydrogen from anaerobically decomposed organic materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/659,644 US6090266A (en) 1996-06-06 1996-06-06 Process for production of hydrogen from anaerobically decomposed organic materials
US47227499A 1999-12-27 1999-12-27
US09/932,014 US7138046B2 (en) 1996-06-06 2001-08-17 Process for production of hydrogen from anaerobically decomposed organic materials
US11/595,742 US20070056842A1 (en) 1996-06-06 2006-11-10 Process for production of hydrogen from anaerobically deomposed organic materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/932,014 Continuation US7138046B2 (en) 1996-06-06 2001-08-17 Process for production of hydrogen from anaerobically decomposed organic materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/772,724 Continuation US20110083971A1 (en) 1996-06-06 2010-05-03 Process for production of hydrogen from anaerobically decomposed organic materials

Publications (1)

Publication Number Publication Date
US20070056842A1 true US20070056842A1 (en) 2007-03-15

Family

ID=29273209

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/932,014 Expired - Fee Related US7138046B2 (en) 1996-06-06 2001-08-17 Process for production of hydrogen from anaerobically decomposed organic materials
US11/595,742 Abandoned US20070056842A1 (en) 1996-06-06 2006-11-10 Process for production of hydrogen from anaerobically deomposed organic materials
US12/772,724 Abandoned US20110083971A1 (en) 1996-06-06 2010-05-03 Process for production of hydrogen from anaerobically decomposed organic materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/932,014 Expired - Fee Related US7138046B2 (en) 1996-06-06 2001-08-17 Process for production of hydrogen from anaerobically decomposed organic materials

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/772,724 Abandoned US20110083971A1 (en) 1996-06-06 2010-05-03 Process for production of hydrogen from anaerobically decomposed organic materials

Country Status (1)

Country Link
US (3) US7138046B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213050A1 (en) * 2009-02-17 2010-08-26 Mcalister Roy E Apparatus and method for controlling nucleation during electrolysis
US20100213052A1 (en) * 2009-02-17 2010-08-26 Mcalister Roy E Electrolytic cell and method of use thereof
US20110042203A1 (en) * 2009-02-17 2011-02-24 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US20110201698A1 (en) * 2010-02-13 2011-08-18 Mcalister Technologies, Llc Carbon recycling and reinvestment using thermochemical regeneration
US20110207062A1 (en) * 2010-02-13 2011-08-25 Mcalister Technologies, Llc Oxygenated fuel
US8075749B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Apparatus and method for gas capture during electrolysis
US20110308962A1 (en) * 2010-06-18 2011-12-22 Nicholas Eckelberry Bio-Energy Reactor
US8916735B2 (en) 2011-08-13 2014-12-23 Mcalister Technologies, Llc Carbon-based durable goods and renewable fuel from biomass waste dissociation for transportation and storage
US8975458B2 (en) 2010-02-13 2015-03-10 Mcalister Technologies, Llc Carbon-based durable goods and renewable fuel from biomass waste dissociation
US9040012B2 (en) 2009-02-17 2015-05-26 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis
US9085745B2 (en) 2010-10-18 2015-07-21 Originoil, Inc. Systems and methods for extracting non-polar lipids from an aqueous algae slurry and lipids produced therefrom
US9127244B2 (en) 2013-03-14 2015-09-08 Mcalister Technologies, Llc Digester assembly for providing renewable resources and associated systems, apparatuses, and methods
US9193925B2 (en) 2011-08-12 2015-11-24 Mcalister Technologies, Llc Recycling and reinvestment of carbon from agricultural processes for renewable fuel and materials using thermochemical regeneration
US9284191B2 (en) 2013-03-15 2016-03-15 Mcalister Technologies, Llc Carbon-based manufacturing of fiber and graphene materials

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138046B2 (en) * 1996-06-06 2006-11-21 World Hydrogen Energy Llc Process for production of hydrogen from anaerobically decomposed organic materials
CA2479660C (en) * 2002-05-02 2009-11-24 Mitsubishi Heavy Industries, Ltd. Fuel cell power generation system and method for operating same
JP3670648B2 (en) * 2003-02-07 2005-07-13 新光電子株式会社 Load measuring mechanism
CA2565980A1 (en) 2004-05-12 2005-12-01 Luca Technologies, Llc Generation of hydrogen from hydrocarbon-bearing materials
US20060223160A1 (en) * 2005-04-05 2006-10-05 Luca Technologies, Llc Systems and methods for the isolation and identification of microorganisms from hydrocarbon deposits
US20060223159A1 (en) * 2005-04-05 2006-10-05 Luca Technologies, Llc Generation of materials with enhanced hydrogen content from microbial consortia including thermotoga
US7426960B2 (en) 2005-05-03 2008-09-23 Luca Technologies, Inc. Biogenic fuel gas generation in geologic hydrocarbon deposits
EP1885841A2 (en) * 2005-05-31 2008-02-13 Nanologix, Inc. Hydrogen producing apparatus utilizing excess heat from an industrial facility
US20060275206A1 (en) * 2005-05-31 2006-12-07 Felder Mitchell S Method of hydrogen production utilizing excess heat from an industrial facility
WO2006130680A2 (en) * 2005-05-31 2006-12-07 Nanologix, Inc. Method of hydrogen production combining a bioreactor with a nuclear reactor and associated apparatus
WO2006130678A2 (en) * 2005-05-31 2006-12-07 Nanologix, Inc. Dual method of hydrogen production
WO2006130557A2 (en) * 2005-05-31 2006-12-07 Nanologix, Inc. Dual hydrogen production apparatus
WO2006135711A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor
WO2006135750A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. Method for utilizing nonparaffinophilic microorganisms for producing specific waste degradation
WO2006135673A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. Production of hydrogen gas and isolation of hydrogen producing microorganisms using replenishing coated substrates
WO2006135672A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. Production of hydrogen gas in a bioreactor with coated substrates
WO2006135674A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor utilizing a circulation system
WO2006135632A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor
WO2006135676A2 (en) * 2005-06-10 2006-12-21 Nanologix, Inc. Method for isolating potential antibiotic microorganisms
WO2007002201A2 (en) * 2005-06-21 2007-01-04 Nanologix, Inc. Method for concentrated growth of a paraffinophilic microorganism for bioremediation and an associated apparatus
WO2007001796A2 (en) * 2005-06-21 2007-01-04 Nanologix, Inc. Method for sustained microbial production of hydrogen gas in a bioreactor utilizing an equalization tank
WO2007001788A1 (en) * 2005-06-21 2007-01-04 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor utilizing an equalization tank
US20070037268A1 (en) * 2005-08-09 2007-02-15 Felder Mitchell S Hydrogen producing bioreactor with sand for the maintenance of a high biomass bacteria
US20070036712A1 (en) * 2005-08-09 2007-02-15 Felder Mitchell S Method of hydrogen production utilizing sand for the maintenance of a high biomass bacteria in a hydrogen bioreactor
WO2007030175A2 (en) * 2005-09-01 2007-03-15 Nanologix, Inc. System for sustained microbial production of hydrogen gas in a bioreactor using klebsiella oxytoca
US7416879B2 (en) * 2006-01-11 2008-08-26 Luca Technologies, Inc. Thermacetogenium phaeum consortium for the production of materials with enhanced hydrogen content
EP1989287A2 (en) * 2006-02-13 2008-11-12 Nagarjuna Energy Private Limited Process for over-production of hydrogen
US7977282B2 (en) 2006-04-05 2011-07-12 Luca Technologies, Inc. Chemical amendments for the stimulation of biogenic gas generation in deposits of carbonaceous material
US7696132B2 (en) 2006-04-05 2010-04-13 Luca Technologies, Inc. Chemical amendments for the stimulation of biogenic gas generation in deposits of carbonaceous material
EP2132362A4 (en) * 2006-12-26 2013-01-02 World Hydrogen Energy Llc Process and apparatus for producing hydrogen from sewage sludge
US8093041B1 (en) 2007-01-23 2012-01-10 Arrowhead Center, Inc. Method and apparatus for membrane-based, two-stage gas production from solid biomaterials
US8092680B2 (en) 2007-10-25 2012-01-10 Landmark Structures I, Lp System and method for anaerobic digestion of biomasses
WO2011025512A1 (en) 2009-08-27 2011-03-03 Mcallister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8561598B2 (en) 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8225768B2 (en) 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
CA2772043C (en) 2009-08-27 2014-01-07 Mcalister Technologies, Llc Ceramic insulator and methods of use and manufacture thereof
CN102713244A (en) 2009-08-27 2012-10-03 麦卡利斯特技术有限责任公司 Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
KR20120086375A (en) 2009-12-07 2012-08-02 맥알리스터 테크놀로지즈 엘엘씨 Adaptive control system for fuel injectors and igniters
MX2012006563A (en) 2009-12-07 2012-08-23 Mcalister Technologies Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture.
US8479813B2 (en) 2009-12-16 2013-07-09 Luca Technologies, Inc. Biogenic fuel gas generation in geologic hydrocarbon deposits
CN102906413B (en) 2010-02-13 2014-09-10 麦卡利斯特技术有限责任公司 Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
EP2534347B1 (en) 2010-02-13 2016-05-04 McAlister, Roy Edward Methods and systems for adaptively cooling combustion chambers in engines
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
CN101949369B (en) * 2010-07-27 2012-07-04 昆明理工大学 Low temperature solar energy-biomass energy combined heat and power system
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
US8919377B2 (en) 2011-08-12 2014-12-30 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
CN103890343B (en) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 Systems and methods for improved engine cooling and energy generation
US9004162B2 (en) 2012-03-23 2015-04-14 Transworld Technologies Inc. Methods of stimulating acetoclastic methanogenesis in subterranean deposits of carbonaceous material
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9249972B2 (en) 2013-01-04 2016-02-02 Gas Technology Institute Steam generator and method for generating steam
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
DK177981B1 (en) * 2013-09-03 2015-02-16 Global Fuel Solution Sarl Method and apparatus for increasing gaseous content of a hydrocarbon fuel
FR3085969B1 (en) * 2018-09-13 2020-09-11 Institut National De Recherche En Sciences Et Tech Pour Lenvironnement Et Lagriculture Irstea PROCESS FOR IN-SITU REGENERATION OF A BIOANODE OF A BIO-ELECTROCHEMICAL SYNTHESIS DEVICE

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053395A (en) * 1974-08-22 1977-10-11 Alpha Systems Corporation Method for producing methane gas by processing waste materials
US4124481A (en) * 1976-10-06 1978-11-07 Ramer James L Apparatus for treating sewage
US4200505A (en) * 1979-04-03 1980-04-29 Day Donald L Electrochemical conversion of organic material
US4341608A (en) * 1981-02-17 1982-07-27 Institute Of Gas Technology Hydrogen production by biomass product depolarized water electrolysis
US4389288A (en) * 1981-09-28 1983-06-21 Chevron Research Company Catalyzed electrochemical gasification of carbonaceous materials at anode and production of hydrogen at cathode
US4395316A (en) * 1981-02-17 1983-07-26 Institute Of Gas Technology Hydrogen production by biomass product depolarized water electrolysis
US4699700A (en) * 1986-05-19 1987-10-13 Delphi Research, Inc. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor
US5028307A (en) * 1989-12-26 1991-07-02 Rightmyer Donald A Apparatus for generation of hydrogen and other gases from the decomposition of organic matter
US5254934A (en) * 1992-01-28 1993-10-19 The United States Of America As Represented By The United States Department Of Energy Method of and system for producing electrical power
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
US5394852A (en) * 1989-06-12 1995-03-07 Mcalister; Roy E. Method and apparatus for improved combustion engine
US6090266A (en) * 1996-06-06 2000-07-18 Roychowdhury; Sukomal Process for production of hydrogen from anaerobically decomposed organic materials
US7138046B2 (en) * 1996-06-06 2006-11-21 World Hydrogen Energy Llc Process for production of hydrogen from anaerobically decomposed organic materials

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE244742C (en) *
US3562137A (en) * 1968-01-22 1971-02-09 Fischer & Porter Co System for electrochemical water treatment
US4241608A (en) * 1978-01-24 1980-12-30 Unirad Corporation Ultrasonic scanner
GB2076849B (en) 1980-05-23 1984-08-08 Phillips Petroleum Co Gas purification
JPS60105495A (en) 1983-11-11 1985-06-10 Shinryo Air Conditioning Co Ltd Method for promoting bioreaction of microorganism
GB2190682B (en) 1986-04-18 1990-03-21 Wessex Water Authority Treatment of bio-gas
US4795537A (en) * 1987-04-10 1989-01-03 H.P.G. Research Ltd. Electrical conditioning system for electrodes in an electrolysis cell
WO1994008907A1 (en) * 1992-10-15 1994-04-28 Richter Gedeon Vegyészeti Gyár Rt. Process for intensification of fermentations
JPH0731998A (en) 1993-07-13 1995-02-03 Ebara Res Co Ltd Slightly anaerobic hydrogen fermentation method for organic waste
ITMI980914A1 (en) * 1998-04-29 1999-10-29 De Nora Spa METHOD FOR THE INTEGRATION OF FUEL CELLS WITH ELECTROCHEMICAL SYSTEMS

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053395A (en) * 1974-08-22 1977-10-11 Alpha Systems Corporation Method for producing methane gas by processing waste materials
US4124481A (en) * 1976-10-06 1978-11-07 Ramer James L Apparatus for treating sewage
US4200505A (en) * 1979-04-03 1980-04-29 Day Donald L Electrochemical conversion of organic material
US4341608A (en) * 1981-02-17 1982-07-27 Institute Of Gas Technology Hydrogen production by biomass product depolarized water electrolysis
US4395316A (en) * 1981-02-17 1983-07-26 Institute Of Gas Technology Hydrogen production by biomass product depolarized water electrolysis
US4389288A (en) * 1981-09-28 1983-06-21 Chevron Research Company Catalyzed electrochemical gasification of carbonaceous materials at anode and production of hydrogen at cathode
US4699700A (en) * 1986-05-19 1987-10-13 Delphi Research, Inc. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
US5394852A (en) * 1989-06-12 1995-03-07 Mcalister; Roy E. Method and apparatus for improved combustion engine
US5028307A (en) * 1989-12-26 1991-07-02 Rightmyer Donald A Apparatus for generation of hydrogen and other gases from the decomposition of organic matter
US5254934A (en) * 1992-01-28 1993-10-19 The United States Of America As Represented By The United States Department Of Energy Method of and system for producing electrical power
US6090266A (en) * 1996-06-06 2000-07-18 Roychowdhury; Sukomal Process for production of hydrogen from anaerobically decomposed organic materials
US7138046B2 (en) * 1996-06-06 2006-11-21 World Hydrogen Energy Llc Process for production of hydrogen from anaerobically decomposed organic materials

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668814B2 (en) 2009-02-17 2014-03-11 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US20110042203A1 (en) * 2009-02-17 2011-02-24 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US20100213050A1 (en) * 2009-02-17 2010-08-26 Mcalister Roy E Apparatus and method for controlling nucleation during electrolysis
US9133552B2 (en) 2009-02-17 2015-09-15 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US9040012B2 (en) 2009-02-17 2015-05-26 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis
US8075749B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Apparatus and method for gas capture during electrolysis
US8075748B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US8075750B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US20100213052A1 (en) * 2009-02-17 2010-08-26 Mcalister Roy E Electrolytic cell and method of use thereof
US8172990B2 (en) 2009-02-17 2012-05-08 Mcalister Technologies, Llc Apparatus and method for controlling nucleation during electrolysis
US8608915B2 (en) 2009-02-17 2013-12-17 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US8641875B2 (en) 2009-02-17 2014-02-04 Mcalister Technologies, Llc Apparatus and method for controlling nucleation during electrolysis
US9416457B2 (en) 2009-02-17 2016-08-16 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial, electrolysis, fermentation, and/or photosynthesis
US20110207062A1 (en) * 2010-02-13 2011-08-25 Mcalister Technologies, Llc Oxygenated fuel
US20110201698A1 (en) * 2010-02-13 2011-08-18 Mcalister Technologies, Llc Carbon recycling and reinvestment using thermochemical regeneration
US8975458B2 (en) 2010-02-13 2015-03-10 Mcalister Technologies, Llc Carbon-based durable goods and renewable fuel from biomass waste dissociation
US8912239B2 (en) 2010-02-13 2014-12-16 Mcalister Technologies, Llc Carbon recycling and reinvestment using thermochemical regeneration
US9297530B2 (en) 2010-02-13 2016-03-29 Mcalister Technologies, Llc Oxygenated fuel
US8784095B2 (en) 2010-02-13 2014-07-22 Mcalister Technologies, Llc Oxygenated fuel
US8986531B2 (en) * 2010-06-18 2015-03-24 Ennesys Sas Bio-energy reactor
US20110308962A1 (en) * 2010-06-18 2011-12-22 Nicholas Eckelberry Bio-Energy Reactor
US9085745B2 (en) 2010-10-18 2015-07-21 Originoil, Inc. Systems and methods for extracting non-polar lipids from an aqueous algae slurry and lipids produced therefrom
US9193925B2 (en) 2011-08-12 2015-11-24 Mcalister Technologies, Llc Recycling and reinvestment of carbon from agricultural processes for renewable fuel and materials using thermochemical regeneration
US8916735B2 (en) 2011-08-13 2014-12-23 Mcalister Technologies, Llc Carbon-based durable goods and renewable fuel from biomass waste dissociation for transportation and storage
US9127244B2 (en) 2013-03-14 2015-09-08 Mcalister Technologies, Llc Digester assembly for providing renewable resources and associated systems, apparatuses, and methods
US9284191B2 (en) 2013-03-15 2016-03-15 Mcalister Technologies, Llc Carbon-based manufacturing of fiber and graphene materials

Also Published As

Publication number Publication date
US20030205458A1 (en) 2003-11-06
US20110083971A1 (en) 2011-04-14
US7138046B2 (en) 2006-11-21

Similar Documents

Publication Publication Date Title
US7138046B2 (en) Process for production of hydrogen from anaerobically decomposed organic materials
EP1263686B1 (en) Process for production of hydrogen from anaerobically decomposed organic material
US6984305B2 (en) Method and apparatus for sustainable energy and materials
US6090266A (en) Process for production of hydrogen from anaerobically decomposed organic materials
CN102713280B (en) The system and method for sustainable economic development is realized by the integrated overall production of renewable energy
US20040172878A1 (en) Method and system of generating methane and electrical energy and thermal
Wilkie Anaerobic digestion: biology and benefits
Sorathia et al. Biogas generation and factors affecting the Bio-gas generationea review study’
CN102500604B (en) Household solid garbage recycling and renewable biological carbon circulating technology
AU2010201715A1 (en) Process for production of hydrogen from anaerobically decomposed organic material
WO2008083008A1 (en) Process and apparatus for producing hydrogen from sewage sludge
Woo et al. Influence of temperature and duration of heat treatment used for anaerobic seed sludge on biohydrogen fermentation
AU2013245464A1 (en) Process for production of hydrogen from anaerobically decomposed organic material
RU2295502C2 (en) Method and device for production of hydrogen from anaerobically decomposable material
CN106520523A (en) Biogas power generation system
CN206418106U (en) Methane power generating system
CN210856002U (en) Synthesizer for converting carbon dioxide into diesel oil by using percolate microorganism as catalyst
Wang et al. Biohydrogen production and wastewater treatment by anaerobic fermentation with UASB
NL2029927B1 (en) A process to treat a carbon dioxide comprising gas
Shah et al. Anaerobic fermentation for biogas production
Steven Wenetta Anaerobic biohydrogen production using different bacterial seed sources
Van Ginkel Anaerobic biohydrogen production using different bacterial seed sources
Hobson et al. Methods of Production of Fuels from Biomass
WO2006130677A2 (en) Method of hydrogen production combining a bioreactor with a power plant and associated apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION