Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070055277 A1
Publication typeApplication
Application numberUS 11/527,837
Publication date8 Mar 2007
Filing date27 Sep 2006
Priority date6 Apr 1998
Also published asCA2404916A1, CA2404916C, CN1427700A, CN1427700B, DE60117524D1, DE60117524T2, EP1272131A2, EP1272131B1, US6726691, US7959638, US7967827, US8152813, US8226717, US8246681, US8317865, US20020161373, US20030220648, US20030233096, US20040167562, US20060241644, US20060276819, US20070055266, US20070055267, US20070055278, US20070055280, US20070055281, US20070055284, US20070055285, US20070055300, US20070055382, US20070225705, US20080058827, US20080065087, US20080065089, US20080065190, US20080071283, US20080132935, US20080140079, US20080140084, US20080319444, WO2001076514A2, WO2001076514A3
Publication number11527837, 527837, US 2007/0055277 A1, US 2007/055277 A1, US 20070055277 A1, US 20070055277A1, US 2007055277 A1, US 2007055277A1, US-A1-20070055277, US-A1-2007055277, US2007/0055277A1, US2007/055277A1, US20070055277 A1, US20070055277A1, US2007055277 A1, US2007055277A1
InventorsReynaldo Osorio, Marialulu Follmer, Richard Layne, Ryan Boucher, Karen Talmadge, Joseph Basista
Original AssigneeKyphon Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods and devices for treating fractured and/or diseased bone using an expandable whisk structure
US 20070055277 A1
Abstract
An access tool is sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone. A cavity forming structure has an array of bristles having at least an expanded configuration and an collapsed configuration. The cavity forming structure is introduced through the access tool into the cancellous bone volume. Retraction and advancement of the array of bristles is controlled within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity. Material can be conveyed into the cavity.
Images(23)
Previous page
Next page
Claims(12)
1. A device comprising
an elongated shaft sized for deployment inside a cortical bone structure by passage through a percutaneous path, the shaft having a proximal end portion and a distal end portion, the distal end portion being sized for placement within a cancellous bone volume inside the cortical bone structure, the shaft including a material capable of transmitting rotational forces from the proximal end portion to the distal end portion in response to manipulation of the proximal end portion, and
a cavity forming structure carried by the distal end portion of the shaft, the cavity forming structure being sized for retraction and advancement in situ between a retracted position essentially fully withdrawn within the shaft and an advanced positioned projecting outside the distal end portion of the shaft, the cavity forming structure forming, when in the advanced position, an array of bristles having a dimension capable of forming a cavity within the cancellous bone volume to receive a volume of filling material.
2. A device according to claim 1
wherein the elongated shaft includes a longitudinal axis, and
wherein the bristles, when in the advanced position, extend generally along the longitudinal axis of the elongated shaft.
3. A device according to claim 2
wherein the bristles, when in the advanced position, radiate outward from the longitudinal axis of the elongated shaft.
4. A device according to claim 1
wherein at least one of the bristles is hollow.
5. A system comprising
an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone,
a device as defined in claim 1 for forming a cavity in the cancellous bone volume, and
a filling device sized to be introduced through the percutaneous access path for conveying a material into the cavity.
6. A system according to claim 5
wherein the filling material comprises at least one of a bone cement, curable bio-material, allograft tissue, autograft tissue, an synthetic bone substitute.
7. A device according to claim 1
further including a handle on the proximal end portion coupled to the cavity forming structure configured to control retraction and advancement of the cavity forming structure within the cancellous bone volume in synchrony with rotation of the distal end portion to create the cavity.
8. A device according to claim 7
wherein the handle comprises a controller.
9. A method comprising
providing an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone,
providing a device as defined in claim 1,
introducing the cavity forming structure through the access tool into the cancellous bone volume,
controlling retraction and advancement of the cavity forming structure within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity, and
conveying material into the cavity.
10. A method comprising
selecting a vertebral body for treatment having a cortical wall enclosing a cancellous bone volume,
providing an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone,
providing a device as defined in claim 1,
introducing the cavity forming structure through the access tool into the cancellous bone volume,
controlling retraction and advancement of the cavity forming structure within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity, and
conveying material into the cavity.
11. A method comprising
providing an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone,
providing a cavity forming structure comprising an array of bristles having at least an expanded configuration and an collapsed configuration,
introducing the cavity forming structure through the access tool into the cancellous bone volume,
controlling retraction and advancement of the array of bristles within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity, and
conveying material into the cavity.
12. A method comprising
selecting a vertebral body for treatment having a cortical wall enclosing a cancellous bone volume,
providing an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone,
introducing the cavity forming structure through the access tool into the cancellous bone volume,
controlling retraction and advancement of the array of bristles within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity, and
conveying material into the cavity.
Description
    RELATED APPLICATIONS
  • [0001]
    This application is a divisional of co-pending U.S. patent application Ser. No. 10/783,723, filed 20 Feb. 2004, and entitled “Methods and Devices for Treating Fractured and/or Diseased Bone,” which is a divisional of U.S. patent application Ser. No. 09/827,260, filed 5 Apr. 2001 (now U.S. Pat. No. 6,726,691), which claims the benefit of U.S. Provisional Patent Application No. 60/194,685, filed 5 Apr. 2000 (Expired), and which is also a continuation-in-part of U.S. patent application Ser. No. 09/134,323, filed 14 Aug. 1998 (now U.S. Pat. No. 6,241,734), each of which is incorporated herein by reference. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 10/958,944, filed 5 Oct. 2004, and entitled “Structures for Creating Cavities in Internal Body Regions,” which is a divisional of U.S. patent application Ser. No. 10/208,391, filed 30 Jul. 2002 (now U.S. Pat. No. 6,863,672), which is a divisional of U.S. patent application Ser. No. 09/055,805, filed 6 Apr. 1998 (now U.S. Pat. No. 6,440,138), each of which is also incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to devices and methods for treating fractured and/or diseased bone. More specifically, the present invention relates to devices and methods for repairing, reinforcing and/or treating fractured and/or diseased bone using various devices, including cavity-forming devices.
  • [0004]
    2. Description of the Background
  • [0005]
    Normal healthy bone is composed of a framework made of proteins, collagen and calcium salts. Healthy bone is typically strong enough to withstand the various stresses experienced by an individual during his or her normal daily activities, and can normally withstand much greater stresses for varying lengths of time before failing. However, osteoporosis or a host of other diseases, including such diseases as breast cancer, hemangiomas, osteolytic metastases or spinal myeloma lesions, as well as the long term excessive use of alcohol, tobacco and/or various drugs, can affect and significantly weaken healthy bone over time. If unchecked, such factors can degrade bone strength to a point where the bone is especially prone to fracture, collapse and/or is unable to withstand even normal daily stresses.
  • [0006]
    Unfortunately, losses in bone strength are often difficult to discover until bone integrity has already been seriously compromised. For instance, the effects of osteoporosis are often not discovered until after a bone fracture has already occurred, at which time much of the patient's overall bone strength has typically weakened to dangerous levels. Moreover, as most bone development occurs primarily during childhood and early adulthood, long-term losses in bone strength are typically irreversible. In addition, many bone diseases, including osteoporosis, cancer, and other bone-related disorders, are not routinely curable at our current stage of medical development.
  • [0007]
    For many individuals in our aging world population, undiagnosed and/or untreatable bone strength losses have already weakened these individuals' bones to a point that even normal daily activities pose a significant threat of fracture. For example, when the bones of the spine are sufficiently weakened, the compressive forces in the spine can often cause fracture and/or deformation of the vertebral bodies. For sufficiently weakened bone, even normal daily activities like walking down steps or carrying groceries can cause a collapse of one or more spinal bones, much like a piece of chalk collapses under the compressive weight of a human foot. A fracture of the vertebral body in this manner is typically referred to as a vertebral compression fracture. Researchers estimate that at least 25 percent of all women, and a somewhat smaller percentage of men, over the age of 50 will suffer one or more vertebral compression fractures due to osteoporosis alone. In the United States, it is estimated that over 700,000 vertebral compression fractures occur each year, over 200,000 of which require some form of hospitalization. Other commonly occurring fractures resulting from weakened bones can include hip, wrist, knee and ankle fractures, to name a few.
  • [0008]
    Fractures such as vertebral compression fractures often result in episodes of pain that are chronic and intense. Aside from the pain caused by the fracture itself, the involvement of the spinal column can result in pinched and/or damaged nerves, causing paralysis, loss of function, and intense pain which radiates throughout the patient's body. Even where nerves are not affected, however, the intense pain associated with all types of fractures is debilitating, resulting in a great deal of stress, impaired mobility and other long-term consequences. For example, progressive spinal fractures can, over time, cause serious deformation of the spine (“kyphosis”), giving an individual a hunched-back appearance, and can also result in significantly reduced lung capacity and increased mortality.
  • [0009]
    Until recently, treatment options for vertebral compression fractures, as well as other serious fractures and/or losses in bone strength, were extremely limited—mainly pain management with strong oral or intravenous medications, reduced activity, bracing and/or radiation therapy, all with mediocre results. Because patients with these problems are typically older, and often suffer from various other significant health complications, many of these individuals are unable to tolerate invasive surgery. In addition, to curb further loss of bone strength, many patients are given hormones and/or vitamin/mineral supplements—again with mediocre results and often with significant side effects.
  • [0010]
    Over the past decade, a technique called vertebroplasty has been introduced into the United States. Vertebroplasty involves the injection of a flowable reinforcing material, usually polymethylmethacrylate (PMMA—commonly known as bone cement), into a fractured, weakened, or diseased vertebral body. Shortly after injection, the liquid filling material hardens or polymerizes, desirably supporting the vertebral body internally, alleviating pain and preventing further collapse of the injected vertebral body.
  • [0011]
    While vertebroplasty has been shown to reduce some pain associated with vertebral compression fractures, this procedure has certain inherent drawbacks. The most significant danger associated with vertebroplasty is the inability of the practitioner to control the flow of liquid bone cement during injection into a vertebral body. Although the location and flow patterns of the cement can be monitored by CT scanning or x-ray fluoroscopy, once the liquid cement exits the injection needle, it naturally follows the path of least resistance within the bone, which is often through the cracks and/or gaps in the cancellous and/or cortical bone. Moreover, because the cancellous bone resists the injection of the bone cement and small diameter needles are typically used in vertebroplasty procedures, extremely high pressures are required to force the bone cement through the needle and into the vertebral body. Bone cement, which is viscous, is difficult to inject through small diameter needles, and thus many practitioners choose to “thin out” the cement mixture to improve cement injection, which ultimately exacerbates the leakage problems. In a recent study where 37 patients with bone metastases or multiple myeloma were treated with vertebroplasty, 72.5% of the procedures resulted in leakage of the cement outside the vertebral body. Cortet B. et al., Percutaneous Vertebroplasty in Patients With Osteolytic Metastases or Multiple Myeloma (1998). Moreover, where the practitioner attempts to “thin out” the cement by adding additional liquid monomer to the cement mix, the amount of unpolymerized or “free” monomer increases, which can ultimately be toxic to the patient.
  • [0012]
    Another drawback of vertebroplasty is due to the inability to visualize (using CT scanning or x-ray fluoroscopy) the various venous and other soft tissue structures existent within the vertebra. While the position of the needle within the vertebral body is typically visualized, the location of the venous structures within the vertebral body are not. Accordingly, a small diameter vertebroplasty needle can easily be accidentally positioned within a vein in the vertebral body, and liquid cement pumped directly into the venous system, where the cement easily passes out the anterior and/or posterior walls of the vertebrae through the anterior external venous plexus or the basivertebral vein.
  • [0013]
    Another significant drawback inherent in vertebroplasty is the inability of this procedure to restore the vertebral body to a pre-fractured condition prior to the injection of the reinforcing material. Because the bone is fractured and/or deformed, and not repositioned prior to the injection of cement, vertebroplasty essentially “freezes” the bone in its fractured condition. Moreover, it is highly unlikely that a traditional vertebroplasty procedure could be capable of restoring significant pre-fracture anatomy—because bone cement flows towards the path of least resistance, any en-masse movement of the cortical bone would likely create gaps in the interior and/or walls of the vertebral body through which the bone cement would then immediately flow.
  • [0014]
    A more recently developed procedure for treating fractures such as vertebral compression fractures and other bone-related disorders is known as Kyphoplasty™. See, for example, U.S. Pat. Nos. 4,969,888 and 5,108,404. In Kyphoplasty, an expandable body is inserted through a small opening in the fractured or weakened bone, and then expanded within the bone. This procedure compresses the cancellous bone, and desirably moves the fractured bone to its pre-fractured orientation, creating a cavity within the bone that can be filled with a settable material such as cement or any number of synthetic bone substitutes. In effect, the procedure “sets” the bone at or near its pre-fracture position and creates an internal “cast,” protecting the bone from further fracture and/or collapse. This procedure is of course suitable for use in various other bones as well.
  • [0015]
    While Kyphoplasty can restore bones to a pre-fractured condition, and injected bone filler is less likely to leak out of the vertebral body during a Kyphoplasty procedure, Kyphoplasty requires a greater number of surgical tools than a vertebroplasty procedure, at an increased cost. Moreover, Kyphoplasty tools are typically larger in diameter than vertebroplasty tools, and thus require larger incisions and are generally more invasive.
  • SUMMARY OF THE INVENTION
  • [0016]
    The present invention overcomes many of the problems and disadvantages associated with current strategies and designs in medical procedures to repair, reinforce and/or treat weakened, diseased and/or fractured bone.
  • [0017]
    One aspect of the invention provides a device comprising an elongated shaft sized for deployment inside a cortical bone structure by passage through a percutaneous path. The shaft has a proximal end portion and a distal end portion. The distal end portion is sized for placement within a cancellous bone volume inside the cortical bone structure. The shaft includes a material capable of transmitting rotational forces from the proximal end portion to the distal end portion in response to manipulation of the proximal end portion. The device also includes a cavity forming structure carried by the distal end portion of the shaft. The cavity forming structure is sized for retraction and advancement in situ between a retracted position essentially fully withdrawn within the shaft and an advanced positioned projecting outside the distal end portion of the shaft. The cavity forming structure forms, when in the advanced position, an array of bristles having a dimension capable of forming a cavity within the cancellous bone volume to receive a volume of filling material.
  • [0018]
    Another aspect of the invention provides a method that provides an access tool sized and configured to establish an access path through soft tissue to bone having an interior volume occupied, at least in part, by cancellous bone. The method also provides a cavity forming structure comprising an array of bristles having at least an expanded configuration and an collapsed configuration. The method introduces the cavity forming structure through the access tool into the cancellous bone volume. The method controls retraction and advancement of the array of bristles within the cancellous bone volume in synchrony with rotation of the distal end portion to create a cavity. The method conveys material into the cavity.
  • [0019]
    In one embodiment, the bone is a vertebral body.
  • [0020]
    Other objects, advantages, and embodiments of the invention are set forth in part in the description which follows, and in part, will be obvious from this description, or may be learned from the practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    FIG. 1 is a diagram of a spine with a compression fracture in one vertebrae;
  • [0022]
    FIG. 2 is a diagram of a patient about to undergo surgery;
  • [0023]
    FIG. 3 is a lateral view, partially broken away and in section, of a lumbar vertebra depicting a compression fracture;
  • [0024]
    FIG. 4 is a coronal view of a lumbar vertebra;
  • [0025]
    FIG. 5A is a lateral view of a lumbar vertebra depicting a spinal needle inserted into the vertebral body;
  • [0026]
    FIG. 5B is a lateral view of the lumbar vertebra of FIG. 5A, with the stylet removed from the spinal needle;
  • [0027]
    FIG. 5C is a lateral view of the lumbar vertebra of FIG. 5B, with a cavity-forming device constructed in accordance with one embodiment of the present invention inserted into the vertebral body;
  • [0028]
    FIG. 5D is a lateral view of the lumbar vertebra of FIG. 5C, with the cavity-forming device inflated;
  • [0029]
    FIG. 5E is a lateral view of the lumbar vertebra of FIG. 5D, with the cavity-forming device deflated;
  • [0030]
    FIG. 5F is a lateral view of the lumbar vertebra of FIG. 5E, with the cavity-forming device removed from the vertebral body;
  • [0031]
    FIG. 5G is a lateral view of the lumbar vertebra of FIG. 5F, with a bone filler injected into the vertebral body;
  • [0032]
    FIG. 5H is a lateral view of the lumbar vertebra of FIG. 5G, with the spinal needle advanced into the cavity;
  • [0033]
    FIG. 5I is a lateral view of the lumbar vertebra of FIG. 5H, with a second bone filler injected into the vertebral body;
  • [0034]
    FIG. 5J is a lateral view of the lumbar vertebra of FIG. 5I, with additional bone filler injected into the vertebral body;
  • [0035]
    FIG. 5K is a lateral view of the lumbar vertebra of FIG. 5J, with additional bone filler injected into the vertebral body;
  • [0036]
    FIG. 5L is a lateral view of the lumbar vertebra of FIG. 5K, with the spinal needle removed from vertebral body;
  • [0037]
    FIG. 6A is a side view of a cavity-forming device constructed in accordance with an alternate embodiment of the present invention;
  • [0038]
    FIG. 6B is a close-up view of the distal end of the cavity-forming device of FIG. 6A;
  • [0039]
    FIG. 7A is a lateral view of a lumbar vertebra, depicting the cavity-forming device of FIG. 6A being inserted into the vertebra;
  • [0040]
    FIG. 7B is a lateral view of the lumbar vertebra of FIG. 7A, with the cavity-forming device deployed within the vertebra;
  • [0041]
    FIG. 7C is a lateral view of the lumbar vertebra of FIG. 7B, with the cavity-forming device withdrawn from the vertebra;
  • [0042]
    FIG. 8A is a lateral view of a lumbar vertebra, depicting an alternate procedure for treating a vertebral body in accordance with the teachings of the present invention;
  • [0043]
    FIG. 8B is a lateral view of the lumbar vertebra of FIG. 8A, with a cavity-forming device inserted into the bone filler;
  • [0044]
    FIG. 8C is a lateral view of the lumbar vertebra of FIG. 8B, with the cavity-forming device expanded in the cavity;
  • [0045]
    FIG. 9 is a side view of a cavity-forming device constructed in accordance with one embodiment of the present invention;
  • [0046]
    FIG. 10 is a close-up view of the distal end of a cavity-forming device of FIG. 9;
  • [0047]
    FIG. 11 is a close-up view of the distal end of a balloon catheter protruding from the distal end of a needle, depicting the inflation of the balloon material with an inflation medium;
  • [0048]
    FIG. 12 is a side view of a cavity-forming device constructed in accordance with an alternate embodiment of the present invention;
  • [0049]
    FIG. 13 is a side view of a cavity-forming device constructed in accordance with another alternate embodiment of the present invention;
  • [0050]
    FIG. 14 is a side view of a cavity-forming device constructed in accordance with another alternate embodiment of the present invention;
  • [0051]
    FIG. 15 is a side view of a cavity-forming device constructed in accordance with another alternate embodiment of the present invention;
  • [0052]
    FIG. 16A is a lateral view of a lumbar vertebra, depicting an alternate procedure for treating a vertebral body in accordance with the teachings of the present invention;
  • [0053]
    FIG. 16B is a lateral view of the lumbar vertebra of FIG. 16A, with bone filler injected into the vertebra;
  • [0054]
    FIG. 16C is a lateral view of the lumbar vertebra of FIG. 16B, with a cavity-forming device inserted into the vertebra;
  • [0055]
    FIG. 16D is a lateral view of the lumbar vertebra of FIG. 16C, with the cavity-forming device expanded in the cavity;
  • [0056]
    FIG. 17 is a side view of a cavity-forming device constructed in accordance with another alternate embodiment of the present invention;
  • [0057]
    FIG. 18 is a side view of a cavity-forming device constructed in accordance with another alternate embodiment of the present invention;
  • [0058]
    FIG. 19 is a cross-sectional view of the cavity-forming device of FIG. 18, taken along line 19-19; and
  • [0059]
    FIG. 20 is a cross-sectional view of the cavity-forming device of FIG. 18, taken along line 20-20.
  • DESCRIPTION OF THE INVENTION
  • [0060]
    As embodied and broadly described herein, the present invention is directed to surgical methods for repairing, reinforcing and/or treating weakened, diseased and/or fractured bone. The present invention is further directed to various devices for facilitating such surgical methods.
  • [0061]
    FIG. 1 depicts a typical human spine 1, in which a compression fracture 10 has occurred in a lumbar vertebra 100. As best shown in FIG. 3, vertebra 100 has fractured, with the top and bottom plates 103 and 104 depressing generally towards the anterior wall 10 of the vertebra 100 and away from their pre-fracture, normally parallel orientation (indicated generally as parallel lines 90).
  • [0062]
    FIG. 4 depicts a coronal (top) view of the vertebra of FIG. 3. Vertebra 100 includes a vertebral body 105, which extends on the anterior (i.e. front or chest) side of the vertebra 100. Vertebral body 105 is approximately the shape of an oval disk, with an anterior wall 10 and a posterior wall 261. The geometry of the vertebral body 105 is generally symmetric. Vertebral body 105 includes an exterior formed from compact cortical bone 110. The cortical bone 110 encloses an interior volume of reticulated cancellous, or spongy, bone 115 (also called medullar bone or trabecular bone).
  • [0063]
    The spinal canal 150 is located on the posterior (i.e. back) side of each vertebra 100. The spinal cord 151 passes through the spinal canal 150. A vertebral arch 135 surrounds the spinal canal 150. Left and right pedicles 120 of the vertebral arch 135 adjoin the vertebral body 105. The spinous process 130 extends from the posterior of the vertebral arch 135, as do the left and right transverse processes 125 and the mamillary processes 126.
  • [0064]
    FIG. 2 depicts a patient 50 prepared for disclosed methods of the present invention. These procedures can be performed on an outpatient or inpatient basis by a medical professional properly trained and qualified to perform the disclosed procedures. Desirably, the patient will be placed under general or local anesthetic for the duration of the surgical procedures.
  • [0065]
    In one embodiment of the present invention, a surgical method comprises inserting an insertion device 350 (see FIG. 5A) percutaneously into the bone, such as a fractured vertebral body 105 through, preferably, a targeted area of the back, depicted as 60 in FIG. 2. The insertion device 350 may be any type and size of hollow instrument, preferably having a sharp end. In one preferred embodiment, the insertion device 350 comprises a hollow needle of approximately eleven gauge diameter. An eleven gauge needle is preferred for the procedure because it incorporates a hollow lumen of sufficient size to permit the passage of various instruments and materials, yet the overall size of the needle is small enough to minimize bone and tissue damage in the patient. It should be understood, however, that various other size needle assemblies, including needles of six to 14 gage, could be used with the devices and methods of the present invention, with varying results. In addition, various other access instruments, such as those described in U.S. Pat. Nos. 4,969,888, 5,108,404, 5,827,289, 5,972,015, 6,048,346 and 6,066,154, each of which are incorporated herein by reference, could be used in accordance with the teachings of the present invention, with varying results.
  • [0066]
    The insertion device 350 is preferably comprised of a strong, non-reactive, and medical grade material such as surgical steel. If desired, the insertion device 350 is attached to a manipulating assembly which is comprised of a non-reactive and medical grade material including, but not limited to, acrylonitrile-butadiene-styrene (ABS), polyethylene, polypropylene, polyurethane, Teflon, or surgical steel. FIG. 5A depicts a commercially available needle assembly typically used with various embodiments of the present invention, which are further described below.
  • [0067]
    As shown in FIG. 5A, an insertion device 350, such as an eleven gauge biopsy needle (commercially available from Becton Dickinson & Co of Franklin Lakes, N.J.) can be inserted through soft tissues of the back and into the vertebral body 105. Generally, the approach for such a procedure will be transpedicular, although various other approaches, including lateral, extrapedicular and/or anterior approaches, could be used, depending upon the level treated and/or intervening anatomical features well known to those of ordinary skill in the art. In one embodiment, the device 350 comprises a needle body 348 and a stylet 349, as is well known in the art. During insertion of the device 350, the location of the device 350 is desirably monitored using visualization equipment such as real-time X-Ray, CT scanning equipment 70 (see FIG. 2), MRI, or any other monitoring equipment commonly used by those of skill in the art, including computer aided guidance and mapping equipment such as the systems commercially available from BrainLab Corporation or General Electric Corporation.
  • [0068]
    In one preferred embodiment, the distal end 351 of the insertion device 350 is positioned in the vertebral body 105, preferably at a location towards the posterior side of the vertebral body 105. If desired, the distal end 351 could be positioned in various locations throughout the vertebral body 105, including towards the anterior side. Once in position, the stylet 349 of the insertion device 350 may be removed, see FIG. 5B, and a cavity-forming device 200 may be inserted through the shaft 348 and into the vertebral body 105. See FIG. 5C. The cavity-forming device 200, which is desirably comprised of a biologically compatible and medically acceptable material, can be a small mechanical tamp, reamer, hole punch, balloon catheter (as described below) or any appropriate device which is capable of displacing cancellous bone. Once the cavity-forming device is positioned within the vertebral body 105, it is used to displace cancellous bone 115, thereby creating a cavity 170. See FIG. 5F.
  • [0069]
    In one embodiment, shown in FIGS. 9 and 10, the cavity-forming device comprises a balloon catheter 200. The balloon catheter 200 desirably extends across at least 20% of the vertebral body, but could extend greater or lesser amounts, depending upon the desired size of the cavity to be produced. In this embodiment, as the balloon catheter 201 is expanded, cancellous bone is displaced generally outward from the cavity 170 in a controlled manner, desirably forming a compressed-bone region 172 around a substantial portion of the outer periphery of the cavity 170.
  • [0070]
    The balloon catheter 200, which will be described in more detail below, is sized or folded to fit through the hollow interior of the shaft 348 and into a vertebral body 105. Once in a desired position within the vertebral body 105, the balloon catheter 190 is filled with a pressurized filling medium 275 appropriate for use in medical applications including, but not limited to, air, nitrogen, saline or water. See FIGS. 5D and 11. In a preferred embodiment, the filling medium 275 is a radiopaque fluid (such as Conray® fluid available commercially from Mallinkrodt, Inc., of St. Louis, Mo.), which allows the physician to visualize the catheter 190 during inflation. If desired, alternate ways of expanding the catheter, including mechanical expanders, jacks, expanding springs and/or expanding/foaming agents, could be used, with varying results.
  • [0071]
    In one embodiment, the catheter 201 is expanded to any appropriate volume which creates a cavity 170 within the vertebral body 105. In a preferred embodiment, the catheter 201 is expanded to at least 0.20 cc in volume, but could be expanded to significantly greater sizes, such as 1, 2, 4, 6 or 8 cc, depending upon bone quality and density. After cavity creation, the catheter 201 is deflated (see FIG. 5E) and removed from the vertebral body 105 and shaft 348 (see FIG. 5F). Bone filler 180 is introduced through the shaft 348 and into the vertebral body 105 using any type of plunger, extruder and/or feed line assembly 349 compatible with the needle body 348. Once injection of bone filler is complete, the shaft 348 can be withdrawn.
  • [0072]
    If desired, a portion of the balloon catheter 201 could be temporarily or permanently left within a vertebral body 105. For example, after cavity formation and removal of the inflation medium, the deflated expanded section of the balloon catheter 201 could be refilled with bone filler 180 and left within the vertebral body 105. Alternatively, the inflation medium 275 could comprise bone filler 180. After the balloon catheter 201 is filled with such an inflation medium, at least a portion of the catheter 201 could be left permanently within the cavity 170. In an alternate embodiment, the catheter 201 which is intended to remain with the cavity 170 could comprise a bio-absorbable material and/or fabric/mesh material as the expandable structure.
  • [0073]
    In creating the cavity 170, the inflation of the catheter 201 causes the expandable material 210 to press against the cancellous bone 115 which may form a compressed bone region or “shell” 172 along much of the periphery of the cavity 170. This shell 172 will desirably inhibit or prevent bone filler 180 from exiting the cavity 170, thereby inhibiting extravazation of the bone filler and/or facilitating pressurization of the bone filler 180, if desired, within the cavity. As the pressure in the cavity 170 increases, the walls of the cavity 170 will desirably be forced further outward by the bone filler 180, compressing additional cancellous bone within the vertebral body 105 and/or increasing the size of the cavity 170. If sufficient pressure is available, and integrity of the shell 172 can be maintained without significant leakage of bone filler 180, pressures capable of moving fractured cortical bone can be developed.
  • [0074]
    In one embodiment of the present invention, after cavity formation, an amount of a material, such as a bone filler 180, is introduced through the shaft 348 into the vertebral body 105 under low pressure. The amount of bone filler will desirably be more than the volume of the cavity 170, however, less bone filler may be introduced with varying results. Once the cavity 170 is substantially filled, the continued introduction of bone filler 180 will desirably pressurize the bone filler 180 in the cavity 170 such that the increased pressure will cause at least a portion of the walls of the cavity to move outward, thereby enlarging the cavity 170 and further compressing cancellous bone and/or moving cortical bone. Desirably, introduction of the bone filler 180 will continue until bone filler leak from the vertebral body appears imminent, the cortical bone has regain its pre-fractured position and/or the practitioner determines that sufficient bone filler 180 has been injected into the bone. If desired, the physician can utilize the cavity-forming device to create additional cavities for bone filler, or the shaft 348 can be removed from the vertebral body to completed the procedure.
  • [0075]
    The bone filler 180 could be any appropriate filling material used in orthopedic surgery, including, but not limited to, allograft or autograft tissue, hydroxyapatite, epoxy, PMMA bone cement, or synthetic bone substitutes such Osteoset® from Wright Medical Technology, medical grade plaster of paris, Skeletal Repair System (SRS®) cement from Norian Corporation, or Collagraft from Zimmer. As bone filler 180 is introduced into the vertebral body 105, the introduction is desirably monitored by x-ray fluoroscopy, or any other appropriate monitoring device or method, to ensure that bone filler 180 does not flow outside of the vertebral body 105. To facilitate visualization, the bone filler 180 may be mixed with a fluoroscopic agent, such as radio opaque barium sulfate. In another embodiment, the bone filler 180 could comprise a mixture of bone cement and a thixotropic material which desirably limits and/or prevents extravazation of the bone cement.
  • [0076]
    In an alternate embodiment of the disclosed method, shown in FIGS. 5G through 5L, a first bone filler 180 is introduced into the cavity 170, the amount of first bone filler 180 being desirably less than or approximately equal to the volume of the cavity 170. For example, if the balloon catheter 200 utilized to create the cavity 170 was inflated with 1.0 cc of inflation fluid, then less than or approximately 1.0 cc of bone filler 180 will initially be injected into the cavity 170. Of course, if desired, an amount of first bone filler 180 greater than the cavity volume could be injected into the cavity. The shaft 348 is then re-positioned within the vertebral body 105, see FIG. 5H, with the distal end 351 of the device 350 desirably located within the bolus 400 of first bone filler 180 contained in the cavity 170. As best shown in FIG. 5I, a second amount of bone filler 182 is then injected into the vertebral body 105, which desirably forces the first amount of bone filler 180 outward against the walls of the cavity 170. Desirably, the first amount of bone filler 180 will resist extravazating out of the cavity 170 and will push outward against the walls of the cavity 170, further compressing the cancellous bone 115 and/or increasing the size of the cavity 170. Introduction of the second amount of bone filler 182 will desirably continue until bone filler leak from the vertebral body appears imminent, the cortical bone has regained its pre-fractured position, and/or the practitioner determines that sufficient bone filler 180 has been injected into the bone. If desired, the physician could reinsert a catheter 200 to create an additional cavity, or the shaft 348 can be removed to complete the procedure.
  • [0077]
    FIGS. 8A through 8C depict an alternate embodiment of the disclosed method, in which the practitioner introduces a first material, such as a bone filler 180, into the cavity 170, and subsequently inserts a cavity-forming device 200 into the bone. The cavity-forming device 200 is then expanded, and desirably compresses the bone filler 180 against the walls of the cavity, sealing any significant cracks and/or venous passages through which the cement will flow. In one further embodiment, a practitioner may wait to allow the first bone filler to harden partially or fully prior to removing the cavity-forming device and/or prior to introducing a second material, such as a bone filler. The second material (not shown) can subsequently be injected into the vertebral body with little fear of leakage. If desired, this method could be utilized whenever cement leakage appears imminent, and can be repeated multiple times until the practitioner determines that sufficient bone filler 180 has been injected into the bone. In addition, the practitioner could repeat this procedure until the cortical bone has regained its pre-fractured position. In an alternate embodiment, the practitioner could utilize a cavity-forming device prior to the introduction of the first bone filler, and then introduce the first bone filler into the cavity, subsequently follow one or more of the described methods.
  • [0078]
    The first bone filler will desirably comprise a material that can be introduced into the cavity, but which will resist extravazation out of the cavity and/or vertebral body when the second bone filler is injected into the cavity. In one embodiment of the invention, the first and second bone fillers comprise bone cement, with the first bone cement being more resistant to extravazation than the second bone cement. For example, the ingredients of the first bone cement could be specifically tailored such that the first bone cement cures faster than the second bone cement. Alternatively, the first bone cement could be prepared and/or introduced into the vertebral body before the second bone cement, allowing the first bone cement to partially or fully cure before the second bone cement. Alternatively, the curing and/or hardening of the first bone cement could be accelerated (by applying heat, for example) or curing and/or hardening of the second bone cement could be retarded (by cooling, for example). In another embodiment, the first and second bone fillers comprise bone cement, with the first bone cement desirably being more viscous than the second bone cement. In another alternate embodiment, the first bone filler comprises an expandable structure, such as a stent.
  • [0079]
    In another embodiment, the first bone filler comprises a material more viscous than the second bone filler, the first and second bone fillers comprising different materials. In another embodiment, the first bone filler comprises a material which is more resistant to extravazation into the cancellous bone than the second bone filler. In another embodiment, the first bone filler comprises a material having particles generally larger than particles in the second bone filler. In a further embodiment, the particles of the first bone filler are generally larger than the average pore size within the cancellous bone. In another embodiment, the first bone filler comprises a settable material, such as a two-part polyurethane material or other curable bio-material.
  • [0080]
    FIGS. 16A through 16D depict an alternate embodiment of the disclosed method, in which a first material, such as a bone filler 180, is initially introduced into the cancellous bone 115 of a human bone, such as a vertebral body 105. An expandable structure 210, such as that found at the distal end of a balloon catheter 200, is subsequently inserted into the vertebral body 105. The expandable structure 210 is then expanded, which displaces the bone filler 180 and/or cancellous bone 115, creating a cavity 170 within the vertebral body 105. In one embodiment, the expansion of the expandable structure 210 forces the bone filler 180 further into the cancellous bone 115, and/or further compresses cancellous bone. To minimize bone filler 180 leakage, the bone filler may be allowed to partially or completely harden prior to expansion of the expandable structure 210. Alternatively, the expandable structure 210 may be expanded, and the bone filler 180 allowed to partially or completely harden around the expandable structure 210. In either case, a second material, optionally additional bone filler, may be introduced into the cavity 170. In one embodiment, the second material is a material which supports the bone in a resting position. This method may be utilized whenever cement leakage appears imminent, and may be repeated multiple times until the practitioner determines that sufficient amounts and varieties of material have been introduced into the bone. Alternatively, the practitioner could halt introduction of filler material when the cortical bone regains or approximates its pre-fractured position.
  • [0081]
    By creating cavities and/or preferred flowpaths within the cancellous bone, the present invention obviates the need for extremely high pressure injection of bone filler into the cancellous bone. If desired, the bone filler could be injected into the bone at or near atmospheric and/or ambient pressures, or at pressures less than approximately 400 pounds per square inch, using bone filler delivery systems such as those described in co-pending U.S. patent application Ser. No. 09/134,323, which is incorporated herein by reference. Thus, more viscous bone fillers (such as, for example, thicker bone cement) can be injected into the bone under low pressures (such as, for example, exiting the delivery device at a delivery pressure at or near ambient or atmospheric pressure), reducing opportunities for cement leakage and/or extravazation outside of the bone.
  • Cavity-Forming Devices
  • [0082]
    The present invention also includes cavity-forming devices constructed in accordance with the teachings of the disclosed invention. In one embodiment, the cavity-forming device comprises a balloon catheter 201, as shown in FIGS. 9, 10, and 11. The catheter comprises a hollow tube 205, which is desirably comprised of a medical grade material such as plastic or stainless steel. The distal end 206 of the hollow tube 205 is surrounded by an expandable material 210 comprised of a flexible material such as commonly used for balloon catheters including, but not limited to, metal, plastics, composite materials, polyethylene, mylar, rubber or polyurethane. One or more openings 250 are disposed in the tube 205 near the distal end 206, desirably permitting fluid communication between the hollow interior of the tube 205 and the lumen formed between the tube 205 and the expandable structure 210. A fitting 220, having one or more inflation ports 222, 224, is secured to the proximal end 207 of the tube 205. In this embodiment, once the catheter 201 is in its desired position within the vertebral body 105, an inflation medium 275 is introduced into the fitting 220 through the inflation port 222, where it travels through the fitting 220, through the hollow tube 205, through the opening(s) 250 and into the lumen 274 between the expandable structure 210 and the hollow tube 205. As injection of the inflation medium 275 continues, the pressure of the inflation medium 275 forces the expandable structure 210 away from the hollow tube 205, inflating it outward and thereby compressing cancellous bone 115 and forming a cavity 170. Once a desired cavity size is reached, the inflation medium 275 is withdrawn from the catheter 200, the expandable structure collapses within the cavity 170, and the catheter 200 may be withdrawn.
  • [0083]
    For example, a balloon catheter 201 constructed in accordance with one preferred embodiment of the present invention, suitable for use with an 11-gauge needle, would comprise a hollow stainless steel hypodermic tube 205, having an outer diameter of 0.035 inches and a length of 10.75 inches. One or more openings 250 are formed approximately 0.25 inches from the distal end of the tube 205. In a preferred embodiment, the distal end 206 of the hollow tube 205 is sealed closed using any means well known in the art, including adhesive (for example, UV 198-M adhesive commercially available from Dymax Corporation—cured for approximately 15 minutes under UV light).
  • [0084]
    In one embodiment, the hollow tube 205 is substantially surrounded by an expandable structure 210 comprising an extruded tube of polyurethane (for example, TEXIN® 5290 polyurethane, available commercially from Bayer Corporation). In one embodiment, the polyurethane tube has an inner diameter of 0.046 inches, an outer diameter of 0.082 inches, and a length of 9-½ inches. The distal end of the polyurethane tube is bonded to the distal end 206 of the hollow tube 205 by means known in the art, such as by a suitable adhesive (for example, UV 198-M adhesive). Alternatively, the polyurethane tube may be heat sealed about the distal end 206 of the hollow tube 205 by means well known in the art. A ¾ inch long piece of heat shrink tubing 215 (commercially available from Raychem Corporation), having a 3/16 inch outer diameter, may be secured around the proximal end of the polyurethane tubing. In one embodiment, the proximal end of the hollow tubing 205 is inserted into the fitting 220 and the heat shrink tubing 215 is desirably bonded into the fitting 220 using a suitable adhesive known in the art, such as UV 198-M. The fitting 220, which may be a Luer T-fitting, commercially available from numerous parts suppliers, may be made of any appropriate material known to those of skill in the art. The fitting 220 comprises one or more ports 222, 224 for attachment to additional instruments, such as pumps and syringes (not shown). If desired, the hollow tube 205 can similarly be bonded into the fitting 220 using a suitable adhesive. Alternatively, as shown in FIG. 12, the expandable structure 210 could be significantly shorter than the hollow tube 205 and be bonded at its distal end 206 and its proximal end 209 to the hollow tube 205.
  • [0085]
    The hollow tube 205 and one or more openings 250 facilitate the withdrawal of inflation medium from the catheter during the disclosed procedures. When a catheter is deflated, the expandable structure 210 will normally collapse against the tube 205, which can often seal closed the lumen (in the absence of at least one secondary withdrawal path) and inhibit further withdrawal of inflation medium from the expanded structure 210 of a catheter. However, in an embodiment of the disclosed invention, the one or more openings 250 near the distal end of the tube 205 allow inflation medium 275 to be drawn through the hollow hypodermic tube 205, further deflating the expandable structure 210. The strong walls of the hollow hypodermic tube 205 resist collapsing under the vacuum which evacuates the inflation medium, maintaining a flowpath for the inflation medium and allowing the inflation medium to be quickly drawn out of the catheter, which desirably permits deflation of the catheter in only a few seconds.
  • [0086]
    In the disclosed embodiment, as the catheter 201 is inflated, the inflation medium 275 will typically seek to fill the entire lumen between the expandable structure 210 and the hollow tube 205, thus expanding the catheter 201 along the entire length of the expandable structure 210. However, because much of the catheter 201 is located within the lumen of the shaft 348, with the distal end 206 of the catheter 201 extending into the vertebral body 105, the shaft 348 will desirably constrain expansion of the expandable structure 210, causing the expandable structure 210 to expand primarily at the distal end 206 of the catheter 200. Desirably, further insertion or withdrawal of the catheter 201 will alter the amount of the expandable structure 210 extending from the distal end of the shaft 348, thereby increasing or decreasing the length of the expandable structure 210 that is free to expand within the vertebral body 105. By choosing the amount of catheter 201 to insert into the vertebral body 105, the practitioner can alter the length of the expandable structure, and ultimately the size of the cavity 170 created by the catheter 201, during the surgical procedure. Therefore, the disclosed embodiments can obviate and/or reduce the need for multiple catheters of varying lengths. If desired, markings 269 (see FIG. 9) can be placed along the proximal section of the catheter which correspond to the length of the catheter 201 extending from the shaft 348, allowing the practitioner to gauge the size of the expandable structure 210 of the catheter 200 within the vertebral body 105. Similarly, in an alternate embodiment as disclosed below, the cavity-forming device 201 could incorporate markings corresponding to the length of the bristles 425 extending beyond the tip of the shaft 348.
  • [0087]
    In an alternate embodiment, shown in FIG. 13, the length of an expandable section 211 of the catheter can be further constrained by securing and/or adhering the expandable structure 210 at a secondary location 214 along the hollow tube 205, thereby limiting expansion beyond the secondary location 214. For example, if a desired maximum length of the expandable section 211 were 3 inches, then the expandable structure 210 could be secured to the hollow tube 205 at a secondary location 214 approximately three inches from the distal end 206 of the hollow tube 205. This arrangement would desirably allow a practitioner to choose an expanded length of the expandable section 211 of up to three inches, while limiting and/or preventing expansion of the remaining section 203 of the catheter 201. This arrangement can also prevent unwanted expansion of the portion 202 of the catheter extending out of the proximal end 191 of the shaft body 348 (see FIG. 5C).
  • [0088]
    As previously noted, in the disclosed embodiment, the expandable structure is desirably secured to the distal end of the hollow tube, which will facilitate recovery of fragments of the expandable structure 210 if the expandable structure 210 is torn or damaged, such as by a complete radial tear. Because the hollow tube 205 will desirably remain attached to the fragments (not shown) of the expandable structure 210, these fragments can be withdrawn from the vertebral body 105 with the hollow tube 205. In addition, the distal attachment will desirably prevent and/or reduce significant expansion of the expandable structure 210 along the longitudinal axis of the hollow tube 205.
  • [0089]
    FIG. 17 depicts a cavity-forming device 300 constructed in accordance with an alternate embodiment of the present invention. Because many of the features of this embodiment are similar to embodiments previously described, like reference numerals will be used to denote like components. In this embodiment, the hollow tube 205 extends through the fitting 220, such as a t-shaped fitting, and is secured to a cap 310. In a preferred embodiment, the hollow tube 205 is capable of rotation relative to the fitting 220. If desired, a seal (not shown), such as a silicone or teflon o-ring, can be incorporated into the proximal fitting 222 to limit and/or prevent leakage of inflation medium past the hollow tube 205.
  • [0090]
    In use, a cavity-forming device 300 compresses cancellous bone and/or forms a cavity in a manner similar to the embodiments previously described. However, once the cavity is formed and withdrawal of the device 300 is desired, the cap 310 can be rotated, twisting the expandable material 210 relative to the fitting 220 and drawing the expandable structure 210 against the hollow tube 205, desirably minimizing the overall outside diameter of the expandable portion of the device 300. The device 300 can then easily be withdrawn through the shaft 348. Even where the expandable structure 210 has plastically deformed, or has failed in some manner, the present embodiment allows the expandable structure 210 to be wrapped around the hollow tube 205 for ease of withdrawal and/or insertion. Alternatively, the hollow tube 205 may be capable of movement relative to the longitudinal axis of the fitting 220, which would further stretch and/or contract the expandable structure 210 against the hollow tube 205.
  • [0091]
    FIGS. 6A and 6B depict a cavity-forming device 410 constructed in accordance with an alternate embodiment of the present invention. Cavity-forming device 410 comprises a shaft 420 which is desirably sized to pass through the shaft 348 of an insertion device 350. A handle assembly 415, which facilitates manipulation of the cavity-forming device 410, is secured to the proximal end 412 of the shaft 420. One or more wires or “bristles” 425 are secured to the distal end 423 of the shaft 420. The bristles 425 can be secured to the shaft 420 by welding, soldering, adhesives or other securing means well known in the art. Alternatively, the bristle(s) 425 can be formed integrally with the shaft 420, or can be etched from a shaft using a laser or other means well known in the art. The bristles and shaft may be formed of a strong, non-reactive, and medical grade material such as surgical steel. In one embodiment, the bristles 425 extend along the longitudinal axis of the shaft 425, but radiate slightly outward from the shaft axis. In this manner, the bristles 425 can be collected or “bunched” to pass through the shaft 348, but can expand or “fan” upon exiting of the shaft 348. If desired, the bristles can be straight or curved, to facilitate passage through the cancellous bone 115. In addition, if desired, one or more of the bristles 425 may be hollow, allowing a practitioner to take a biopsy sample of the cancellous bone during insertion of the device 410.
  • [0092]
    As shown in FIG. 7, the cavity-forming device 410 can desirably be inserted through a shaft 348 positioned in a targeted bone, such as a vertebral body 105. As the bristles 425 enter the cancellous bone 115, the bristles 425 will desirably displace the bone 115 and create one or more cavities 426 or preferred flowpaths in the vertebral body. If desired, a practitioner can withdraw the bristles 425 back into the shaft 348, reposition the cavity-forming device 410 (such as by rotating the device 410), and reinsert the bristles 425, thereby creating additional cavities in the cancellous bone 115. After removal of the cavity-forming device 410, a material, such as a bone filler (not shown), may be introduced through the shaft 348. The bone filler will desirably initially travel through the cavities 426 created by the bristles 425. If desired, a practitioner may interrupt introduction of the bone filler and create additional cavities by reinserting the cavity-forming device 410. In addition, in the event bone filler leakage occurs or is imminent, a practitioner can interrupt bone filler injection, create additional cavity(ies) as described above, wait for the introduced/leaking bone filler to harden sufficiently to resist further extravazation, and then continue introduction of bone filler. As previously described, the bone filler could comprise many different materials, or combinations of materials, with varying results.
  • [0093]
    FIG. 14 depicts a cavity-forming device 500 constructed in accordance with an alternate embodiment of the present invention. The cavity-forming device 500 comprises a shaft 520 which is sized to pass through the shaft 348 of an insertion device 350. A handle assembly 515, which facilitates manipulation of the cavity-forming device 500, is secured to the proximal end 512 of the shaft 520. The shaft 520 of the cavity-forming device 500 is desirably longer than the shaft 348 of the insertion device 350. The distal end 525 of the shaft 520 can be beveled (not shown) to facilitate passage through cancellous bone 115, or can be rounded or flattened to minimize opportunities for penetrating the anterior wall 10 of the vertebral body 105. In addition, if desired, the distal 525 end of the shaft 520 could be hollow (not shown), allowing the practitioner to take a biopsy sample of the cancellous bone 115 during insertion of the device 500.
  • [0094]
    FIG. 15 depicts a cavity-forming device 600 constructed in accordance with an alternate embodiment of the present invention. Cavity-forming device 600 comprises a shaft 620 which is sized to pass through the shaft 348 of an insertion device 350. A handle assembly 615, which facilitates manipulation of the cavity-forming device 600, is secured to the proximal end 612 of the shaft 620. The shaft 620 is desirably longer than the shaft 348 of insertion device 350. The distal end 625 of the shaft 620 can be beveled (not shown) to facilitate passage through cancellous bone 115, or can be rounded or flattened to minimize opportunities for penetrating the anterior wall 10 of the vertebral body 105. In this embodiment, the distal end 625 of the device 600 incorporates drill threads 627 which can facilitate advancement of the device 600 through cancellous bone 115. In addition, if desired, the distal 625 end of the shaft 620 could be hollow, allowing the practitioner to take a biopsy sample of the cancellous bone 115 during insertion of the device 600.
  • [0095]
    After removal of the device(s), bone filler (not shown) may be introduced through the shaft 348. Desirably, the bone filler will initially travel through the cavity(ies) created by the device(s). If desired, a practitioner can interrupt introduction of bone filler and create additional cavity(ies) by reinserting the device(s). In addition, in the event bone filler leakage occurs or is imminent, the practitioner can interrupt bone filler introduction, create additional cavity(ies) as described above, wait for the introduced/leaking bone filler to harden sufficiently, and then continue introducing bone filler. As previously described, the bone filler could comprise many different materials, or combinations of materials, with varying results.
  • [0096]
    FIGS. 18-20 depicts a cavity-forming device 600 a constructed in accordance with another alternate embodiment of the present invention. Because many of the components of this device are similar to those previously described, similar reference numerals will be used to denote similar components. Cavity-forming device 600 a comprises a shaft 620 a which is sized to pass through the shaft 348 of an insertion device 350. A handle assembly 615 a, which facilitates manipulation of the cavity-forming device 600 a, is secured to the proximal end 612 a of the shaft 620 a. The shaft 620 a is desirably longer than the shaft 348 of insertion device 350. The distal end 625 a of the shaft 620 a can be rounded or beveled to facilitate passage through cancellous bone 115, or can be or flattened to minimize opportunities for penetrating the anterior wall 10 of the vertebral body 105.
  • [0097]
    An opening or window 700 is desirably formed in the shaft 620 a. As shown in FIGS. 19 and 20, an expandable structure 710 is located at least partially within the shaft 620 a, desirably at a position adjacent the window 700. Upon introduction of inflation fluid through a lumen extending through the shaft 620 a, the expandable structure 710 expands and at least a portion of the expandable structure 710 will extend out of the shaft 620 a through the window 700. Desirably, as the structure continues to expand, the expandable structure 710 will “grow” (P1 to P2 to P3 in FIG. 20) through the window 700, thereby compacting cancellous bone, creating a cavity and/or displacing cortical bone. Upon contraction of the expandable structure 710, most of the expandable structure 710 will desirably be drawn back into the shaft 620 a for removal of the tool from the vertebral body. In one embodiment, at least a portion of the material comprising the expandable structure 710 will plastically deform as it expands.
  • [0098]
    The expandable structure 710 may be comprised of a flexible material common in medical device applications, including, but not limited to, plastics, polyethylene, mylar, rubber, nylon, polyurethane, metals or composite materials. Desirably, the shaft 620 a will comprise a material that is more resistant to expansion than the material of the expandable structure 710, including, but not limited to, stainless steel, ceramics, composite material and/or rigid plastics. In an alternate embodiment, similar materials for the expandable structure 710 and shaft 620 a may be used, but in different thickness and/or amounts, thereby inducing the expandable structure to be more prone to expansion than the shaft 620 a material. The expandable structure 710 may be bonded directly to the shaft 620 a by various means well known in the art, including, but not limited to, means such as welding, melting, gluing or the like. In alternative embodiments, the expandable structure may be secured inside or outside of the shaft 620 a, or a combination thereof.
  • [0099]
    As previously noted, any of the cavity-forming devices 500, 600 and 600 a may be inserted through a shaft 348 positioned in a targeted bone, such as a vertebral body 105. As the device(s) enter the cancellous bone 115, they will desirably displace the bone 115 and create one more cavities in the vertebral body. If desired, the physician can withdraw the device(s) back into the shaft 348 and reinsert as necessary to create the desired cavity(ies) in the cancellous bone 115.
  • [0100]
    In the embodiment of a cavity-forming device of FIGS. 18-20, the cavity-forming device 600 a may be utilized without an associated insertion device. In such a case, the cavity-forming device desirably will incorporate a sharpened distal tip capable of penetrating the soft tissues and cortical/cancellous bone of the vertebral body. If desired, the distal tip can be hollow or a solid construct. Similarly, the window may extend around more or less of the periphery of the shaft 620 a, depending upon the size and configuration of the expandable structure and the desired strength of the cavity-forming device.
  • [0101]
    By creating one or more cavities within the cancellous bone 115, the cavity-forming devices of the present invention desirably create preferred flowpaths for the bone filler 180. In addition, the cavity-forming devices can also desirably close and/or block other natural flowpaths out of the cavity, such as veins and/or cracks in the cancellous bone. Moreover, methods and devices disclosed herein can be used to manipulate bone filler already introduced into the bone. Thus, the present invention reduces opportunities for cement leakage outside of the vertebral body and/or improves the distribution of bone filler throughout significant portions of the vertebral body. In addition, the creation of cavities and desired flowpaths described in the present invention permits the placement of biomaterial more safely, under greater control and under lower pressures.
  • [0102]
    In addition to the specific uses described above, the cavity-forming devices and methods described herein would also be well-suited for use in treating and/or reinforcing weakened, diseased and/or fractured bones and other organs in various locations throughout the body. For example, the disclosed devices and methods could be used to deliver reinforcing materials and/or medications, such as cancer drugs, replacement bone cells, collagen, bone matrix, demineralized calcium, and other materials/medications, directly to a fractured, weakened and/or diseased bone, thereby increasing the efficacy of the materials, reinforcing the weakened bone and/or speed healing. Moreover, injection of such materials into one bone within a body could permit the medication/material to migrate and/or be transported to other bones and/or organs in the body, thereby improving the quality of bones and/or other organs not directly injected with the materials and/or medications.
  • [0103]
    Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All documents referenced herein are specifically and entirely incorporated by reference. The specification and examples should be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. As will be easily understood by those of ordinary skill in the art, variations and modifications of each of the disclosed embodiments can be easily made within the scope of the claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1366877 *17 Nov 192025 Jan 1921Craig Joseph EGuide and gage for dental drills
US3091237 *16 May 196028 May 1963Clawson N SkinnerFacial muscle and tissue conditioning device
US3181533 *15 Jan 19624 May 1965William C HeathSurgical snare
US3640280 *26 Nov 19698 Feb 1972Daniel R SlankerPower-driven reciprocating bone surgery instrument
US3648294 *4 Feb 197014 Mar 1972Shahrestani EsfandiarEndoprostheses, especially for hip joints
US3800788 *12 Jul 19722 Apr 1974White NAntral catheter for reduction of fractures
US3875595 *15 Apr 19748 Apr 1975Froning Edward CIntervertebral disc prosthesis and instruments for locating same
US3889665 *7 Mar 197317 Jun 1975Nat Res DevApparatus and method for pressurizing gap-filling cement to a concavely relieved site in a bone
US3949479 *1 Aug 197413 Apr 1976Oscar MalminEndodontic operating and sealing method and apparatus therefor
US4018230 *2 Apr 197519 Apr 1977Kazuo OchiaiCervical dilator
US4024639 *25 Feb 197524 May 1977End-Dent, Inc.Bone implants and method for inserting the same
US4083369 *2 Jul 197611 Apr 1978Manfred SinnreichSurgical instruments
US4203444 *7 Nov 197720 May 1980Dyonics, Inc.Surgical instrument suitable for closed surgery such as of the knee
US4245359 *16 Mar 197920 Jan 1981Sulzer Brothers LimitedPlug for openings produced by operative procedures in medullated bones
US4313434 *17 Oct 19802 Feb 1982David SegalFracture fixation
US4323071 *19 May 19806 Apr 1982Advanced Catheter Systems, Inc.Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4327736 *20 Nov 19794 May 1982Kanji InoueBalloon catheter
US4367816 *10 Jun 198111 Jan 1983Wilkes Kenneth RTear strip for gas sterilizable package and package
US4369772 *28 Apr 198025 Jan 1983University Of FloridaMethod for strengthening a fractured bone
US4432358 *22 Jan 198221 Feb 1984Fixel Irving ECompression hip screw apparatus
US4494535 *24 Jun 198122 Jan 1985Haig Armen CHip nail
US4562598 *1 Apr 19827 Jan 1986Mecron Medizinische Produkte GmbhJoint prosthesis
US4573448 *5 Oct 19834 Mar 1986Pilling Co.Method for decompressing herniated intervertebral discs
US4637396 *26 Oct 198420 Jan 1987Cook, IncorporatedBalloon catheter
US4644951 *16 Sep 198524 Feb 1987Concept, Inc.Vacuum sleeve for a surgical appliance
US4646738 *5 Dec 19853 Mar 1987Concept, Inc.Rotary surgical tool
US4650489 *30 Jan 198617 Mar 1987Massachusetts Institute Of TechnologyProsthetic device for implantation in bone
US4653489 *5 May 198631 Mar 1987Tronzo Raymond GFenestrated hip screw and method of augmented fixation
US4892550 *30 Dec 19859 Jan 1990Huebsch Donald LEndoprosthesis device and method
US4896662 *30 Nov 198730 Jan 1990Pfizer Hospital Products Group, Inc.Sealing device for introducing cement into a bone canal
US4909252 *26 May 198820 Mar 1990The Regents Of The Univ. Of CaliforniaPerfusion balloon catheter
US4983183 *21 Sep 19898 Jan 1991Horowitz Stephen MHip prosthesis and method for implanting the same
US4986830 *22 Sep 198922 Jan 1991Schneider (U.S.A.) Inc.Valvuloplasty catheter with balloon which remains stable during inflation
US4987892 *21 Dec 198929 Jan 1991Krag Martin HSpinal fixation device
US5002576 *6 Jun 198926 Mar 1991Mecron Medizinische Produkte GmbhIntervertebral disk endoprosthesis
US5015255 *10 May 198914 May 1991Spine-Tech, Inc.Spinal stabilization method
US5019042 *18 Apr 199028 May 1991Harvinder SahotaBalloon catheters
US5083923 *4 Jun 199028 Jan 1992Mcspadden John TMethod of obturating an extirpated root canal
US5090957 *9 Oct 199025 Feb 1992Abiomed, Inc.Intraaortic balloon insertion
US5090958 *5 Oct 199025 Feb 1992Harvinder SahotaBalloon catheters
US5100390 *22 Oct 199031 Mar 1992Norma A. LubeckLubeck spinal catheter needle
US5100423 *21 Aug 199031 Mar 1992Medical Engineering & Development Institute, Inc.Ablation catheter
US5102413 *14 Nov 19907 Apr 1992Poddar Satish BInflatable bone fixation device
US5108404 *15 Aug 199028 Apr 1992Arie ScholtenSurgical protocol for fixation of bone using inflatable device
US5116305 *23 Oct 199126 May 1992Abiomed, Inc.Curved intra aortic balloon with non-folding inflated balloon membrane
US5176638 *22 May 19915 Jan 1993Don Michael T AnthonyRegional perfusion catheter with improved drug delivery control
US5176683 *22 Apr 19915 Jan 1993Kimsey Timothy PProsthesis press and method of using the same
US5176692 *9 Dec 19915 Jan 1993Wilk Peter JMethod and surgical instrument for repairing hernia
US5190546 *9 Apr 19912 Mar 1993Raychem CorporationMedical devices incorporating SIM alloy elements
US5192283 *23 Jul 19919 Mar 1993Ling Robin S MSystem for performing hip prosthesis revision surgery
US5284443 *28 Aug 19928 Feb 1994Coltene/Whaledent, Inc.Method of forming dental restorations
US5290306 *29 Nov 19891 Mar 1994Cordis CorporationPuncture resistant balloon catheter
US5295959 *13 Mar 199222 Mar 1994Medtronic, Inc.Autoperfusion dilatation catheter having a bonded channel
US5295994 *15 Nov 199122 Mar 1994Bonutti Peter MActive cannulas
US5295995 *27 Aug 199222 Mar 1994Kleiman Jay HPerfusion dilatation catheter
US5302129 *19 Nov 199112 Apr 1994Heath Derek EEndodontic procedure and instrument
US5303718 *15 Jan 199219 Apr 1994Milan KrajicekMethod and device for the osteosynthesis of bones
US5380290 *16 Apr 199210 Jan 1995Pfizer Hospital Products Group, Inc.Body access device
US5383932 *27 Apr 199324 Jan 1995Johnson & Johnson Professional, Inc.Absorbable medullary plug
US5385566 *22 Feb 199331 Jan 1995Ullmark; GoestaDevice and a method for use in transplantation of bone tissue material
US5397320 *3 Mar 199414 Mar 1995Essig; Mitchell N.Dissecting surgical device and associated method
US5411514 *24 Jun 19942 May 1995Linvatec CorporationBendable variable angle rotating shaver
US5480400 *1 Oct 19932 Jan 1996Berger; J. LeeMethod and device for internal fixation of bone fractures
US5484411 *14 Jan 199416 Jan 1996Cordis CorporationSpiral shaped perfusion balloon and method of use and manufacture
US5489291 *23 Feb 19946 Feb 1996Wiley; Roy C.Apparatus for removing tissue during surgical procedures
US5489307 *1 Sep 19946 Feb 1996Spine-Tech, Inc.Spinal stabilization surgical method
US5496330 *10 Jun 19945 Mar 1996Boston Scientific CorporationSurgical extractor with closely angularly spaced individual filaments
US5499981 *4 Mar 199419 Mar 1996Ep Technologies, Inc.Flexible interlaced multiple electrode assemblies
US5509919 *24 Sep 199323 Apr 1996Young; Merry A.Apparatus for guiding a reaming instrument
US5512037 *12 May 199430 Apr 1996United States Surgical CorporationPercutaneous surgical retractor
US5514143 *27 Nov 19917 May 1996Apogee Medical Products, Inc.Apparatus and method for use during surgery
US5601564 *14 Sep 199511 Feb 1997Orthopaedic Innovations, Inc.Cannulated broach for total joint arthroplasty
US5601590 *4 Apr 199511 Feb 1997General Surgical Innovations, Inc.Expandable cannulas
US5624447 *20 Mar 199529 Apr 1997Othy, Inc.Surgical tool guide and entry hole positioner
US5628762 *17 Jan 199613 May 1997Al-Tameem; MoshinMethod of using a device for excision of a fistula
US5632746 *28 Feb 199227 May 1997Medtronic, Inc.Device or apparatus for manipulating matter
US5720754 *28 Apr 199524 Feb 1998Medtronic, Inc.Device or apparatus for manipulating matter
US5730704 *6 May 199624 Mar 1998Avitall; BoazLoop electrode array mapping and ablation catheter for cardiac chambers
US5749879 *24 Feb 199312 May 1998Medtronic, Inc.Device or apparatus for manipulating matter
US5755690 *21 Oct 199426 May 1998C. R. BardMultiple layer high strength balloon for dilatation catheter
US5865728 *21 Nov 19952 Feb 1999Origin Medsystems, Inc.Method of using an endoscopic inflatable lifting apparatus to create an anatomic working space
US5876399 *28 May 19972 Mar 1999Irvine Biomedical, Inc.Catheter system and methods thereof
US5879353 *10 Feb 19979 Mar 1999Gore Enterprise Holdings, Inc.Guided bone rasp
US5891147 *29 Sep 19976 Apr 1999Sdgi Holdings, Inc.Minimally invasive spinal surgical methods & instruments
US5893840 *24 Apr 199613 Apr 1999Medtronic, Inc.Releasable microcapsules on balloon catheters
US6015406 *21 Aug 199618 Jan 2000Gyrus Medical LimitedElectrosurgical instrument
US6017305 *29 Jan 199625 Jan 2000General Surgical Innovations, Inc.Method of retracting bones
US6036682 *2 Dec 199714 Mar 2000Scimed Life Systems, Inc.Catheter having a plurality of integral radiopaque bands
US6036711 *18 Feb 199814 Mar 2000United States Surgical CorporationReusable cannula
US6048346 *13 Aug 199711 Apr 2000Kyphon Inc.Systems and methods for injecting flowable materials into bones
US6066154 *22 Jan 199723 May 2000Kyphon Inc.Inflatable device for use in surgical protocol relating to fixation of bone
US6235043 *23 Jan 199722 May 2001Kyphon, Inc.Inflatable device for use in surgical protocol relating to fixation of bone
US6863672 *30 Jul 20028 Mar 2005Kyphon Inc.Structures and methods for creating cavities in interior body regions
US6875219 *14 Feb 20035 Apr 2005Yves P. ArramonBone access system
US6981981 *29 Dec 20033 Jan 2006Kyphon Inc.Inflatable device for use in surgical protocol relating to fixation of bone
US7044954 *19 Jun 200116 May 2006Kyphon Inc.Method for treating a vertebral body
US20020010472 *15 Dec 200024 Jan 2002Kuslich Stephen D.Tool to direct bone replacement material
US20020032447 *28 Aug 200114 Mar 2002Stuart WeikelTools and methods for creating cavities in bone
US20030050702 *13 Sep 200113 Mar 2003J - Lee BergerSpinal grooved director with built in balloon and method of using same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US766622615 Aug 200623 Feb 2010Benvenue Medical, Inc.Spinal tissue distraction devices
US766622715 Aug 200623 Feb 2010Benvenue Medical, Inc.Devices for limiting the movement of material introduced between layers of spinal tissue
US767037415 Aug 20062 Mar 2010Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US767037515 Aug 20062 Mar 2010Benvenue Medical, Inc.Methods for limiting the movement of material introduced between layers of spinal tissue
US778536815 Aug 200631 Aug 2010Benvenue Medical, Inc.Spinal tissue distraction devices
US781129130 Oct 200812 Oct 2010Osseon Therapeutics, Inc.Closed vertebroplasty bone cement injection system
US784204130 Oct 200830 Nov 2010Osseon Therapeutics, Inc.Steerable vertebroplasty system
US795539115 Feb 20107 Jun 2011Benvenue Medical, Inc.Methods for limiting the movement of material introduced between layers of spinal tissue
US796399315 Feb 201021 Jun 2011Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US796786415 Feb 201028 Jun 2011Benvenue Medical, Inc.Spinal tissue distraction devices
US796786515 Feb 201028 Jun 2011Benvenue Medical, Inc.Devices for limiting the movement of material introduced between layers of spinal tissue
US805754415 Aug 200615 Nov 2011Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US836677325 Jan 20085 Feb 2013Benvenue Medical, Inc.Apparatus and method for treating bone
US8372070 *26 Jun 200812 Feb 2013Olympus Medical Systems Corp.Surgical system and surgical operation method
US845461721 Feb 20084 Jun 2013Benvenue Medical, Inc.Devices for treating the spine
US853532716 Mar 201017 Sep 2013Benvenue Medical, Inc.Delivery apparatus for use with implantable medical devices
US855697815 Nov 201115 Oct 2013Benvenue Medical, Inc.Devices and methods for treating the vertebral body
US859158321 Feb 200826 Nov 2013Benvenue Medical, Inc.Devices for treating the spine
US8696679 *10 Dec 200715 Apr 2014Dfine, Inc.Bone treatment systems and methods
US880178716 Jun 201112 Aug 2014Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US880828610 Jan 201319 Aug 2014Olympus Medical Systems Corp.Surgical system
US880837625 Mar 200919 Aug 2014Benvenue Medical, Inc.Intravertebral implants
US881487322 Jun 201226 Aug 2014Benvenue Medical, Inc.Devices and methods for treating bone tissue
US882798120 Apr 20129 Sep 2014Osseon LlcSteerable vertebroplasty system with cavity creation element
US888283618 Dec 201211 Nov 2014Benvenue Medical, Inc.Apparatus and method for treating bone
US896160926 Sep 201324 Feb 2015Benvenue Medical, Inc.Devices for distracting tissue layers of the human spine
US896840824 Apr 20133 Mar 2015Benvenue Medical, Inc.Devices for treating the spine
US897992916 Jun 201117 Mar 2015Benvenue Medical, Inc.Spinal tissue distraction devices
US904433812 Mar 20132 Jun 2015Benvenue Medical, Inc.Spinal tissue distraction devices
US906680820 Feb 200930 Jun 2015Benvenue Medical, Inc.Method of interdigitating flowable material with bone tissue
US925932621 Nov 201416 Feb 2016Benvenue Medical, Inc.Spinal tissue distraction devices
US931425215 Aug 201419 Apr 2016Benvenue Medical, Inc.Devices and methods for treating bone tissue
US93268668 Nov 20133 May 2016Benvenue Medical, Inc.Devices for treating the spine
US95108858 Jan 20136 Dec 2016Osseon LlcSteerable and curvable cavity creation system
US96427124 Feb 20159 May 2017Benvenue Medical, Inc.Methods for treating the spine
US978896319 Oct 201517 Oct 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US978897411 Jan 201617 Oct 2017Benvenue Medical, Inc.Spinal tissue distraction devices
US980172925 Mar 201531 Oct 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US98083516 Oct 20157 Nov 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US20080154273 *10 Dec 200726 Jun 2008Shadduck John HBone treatment systems and methods
US20090012525 *1 Sep 20068 Jan 2009Eric BuehlmannDevices and systems for delivering bone fill material
US20090131867 *11 Feb 200821 May 2009Liu Y KingSteerable vertebroplasty system with cavity creation element
US20090131886 *16 Nov 200721 May 2009Liu Y KingSteerable vertebroplasty system
US20090131950 *16 Nov 200721 May 2009Liu Y KingVertebroplasty method with enhanced control
US20090182427 *5 Dec 200816 Jul 2009Osseon Therapeutics, Inc.Vertebroplasty implant with enhanced interfacial shear strength
US20090299282 *20 May 20093 Dec 2009Osseon Therapeutics, Inc.Steerable vertebroplasty system with a plurality of cavity creation elements
US20090326569 *26 Jun 200831 Dec 2009Olympus Medical Systems Corp.Surgical system and surgical operation method
WO2011059653A1 *21 Oct 201019 May 2011Carefusion 207, Inc.Curable material delivery systems and methods
Legal Events
DateCodeEventDescription
5 Feb 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA
Free format text: SECURITY AGREEMENT;ASSIGNOR:KYPHON INC.;REEL/FRAME:018875/0574
Effective date: 20070118
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS
Free format text: SECURITY AGREEMENT;ASSIGNOR:KYPHON INC.;REEL/FRAME:018875/0574
Effective date: 20070118
14 Mar 2008ASAssignment
Owner name: KYPHON, INC., CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020666/0869
Effective date: 20071101
Owner name: KYPHON, INC.,CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020666/0869
Effective date: 20071101
9 May 2008ASAssignment
Owner name: MEDTRONIC SPINE LLC, CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
Owner name: MEDTRONIC SPINE LLC,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
9 Jun 2008ASAssignment
Owner name: KYPHON SARL, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325
Owner name: KYPHON SARL,SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325
26 Mar 2015ASAssignment
Owner name: ORTHOPHOENIX, LLC, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KYPHON SARL;REEL/FRAME:035307/0018
Effective date: 20130425