US20070019706A1 - Temperature detection method and apparatus - Google Patents

Temperature detection method and apparatus Download PDF

Info

Publication number
US20070019706A1
US20070019706A1 US11/519,573 US51957306A US2007019706A1 US 20070019706 A1 US20070019706 A1 US 20070019706A1 US 51957306 A US51957306 A US 51957306A US 2007019706 A1 US2007019706 A1 US 2007019706A1
Authority
US
United States
Prior art keywords
resistive element
detector
winding
adhesive
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/519,573
Inventor
Jeffrey Hudson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliance Electric Technologies LLC
Original Assignee
Reliance Electric Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Electric Technologies LLC filed Critical Reliance Electric Technologies LLC
Priority to US11/519,573 priority Critical patent/US20070019706A1/en
Publication of US20070019706A1 publication Critical patent/US20070019706A1/en
Assigned to RELIANCE ELECTRIC TECHNOLOGIES, LLC reassignment RELIANCE ELECTRIC TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUDSON, JEFFREY A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations

Definitions

  • the present technique relates generally to the field of electric motors and to methods and apparatus for detecting temperatures within an electric motor. More particularly, the technique relates to a novel approach to detecting the temperature adjacent to a winding within an electric motor.
  • Electric motors, generators, and other similar devices are produced in a variety of mechanical and electrical configurations.
  • the configuration of these devices may depend upon the intended application, the operating environment, the available power source, or other similar factors.
  • these devices include a rotor surrounded at least partially by a stator.
  • a stator For instance, one common design of electrical motor is the induction motor, which is used in numerous and diverse applications.
  • Induction motors typically employ a stator assembly including a slotted core in which groups of coil windings are installed. By providing alternating current power to certain windings at certain times, a dynamic magnetic field is produced that causes the rotor to rotate within the stator.
  • the rotational speed of the rotor is a function of the frequency of the alternating current power input and of the motor design (i.e. the number of poles defined by the windings). This rotation may be used to transmit a mechanical force to a driven load via an output shaft coupled between the rotor and the driven load.
  • Inverter drives are commonly used with such motors to vary the frequency of the alternating current power driving the motor. This, accordingly, allows the rotational speed of the rotor to be varied as well.
  • An inverter drive is configured to receive a direct current input and to output a variable frequency waveform that simulates alternating current power.
  • a rectifying circuit may be used with the inverter drive if alternating current power is being provided to the inverter drive. In such a case, the rectifier converts the incoming alternating current power to direct current power for input into the inverter circuitry.
  • Electric motors and other similar devices are generally configured to operate in a given temperature range. Heat is generated within the motor from the passage of electrical current through the coil windings, or from a variety of other sources. Often, one or more resistance temperature detectors will be disposed within one or more slots of a stator core, adjacent to the coil windings. In this manner, the temperature of the coil windings can be measured to determine if the temperature is within desired operating parameters. However, these resistance temperature detectors must remain operable in order to provide this benefit.
  • a resistance temperature detector includes a resistance coil encased in an insulative cover. Current is applied to leads of the coil that results in a measurable voltage drop through the coil as a function of the resistance of the coil. Because the resistance varies with the temperature of the coil, by measuring the voltage drop, compensating for certain errors, and correlating the voltage drop to the known characteristics of the coil, the temperature at the detector location can be calculated. In motor applications this temperature signal may then be used for various monitoring, control, preventative maintenance, and other functions.
  • the environments in which conventional resistance temperature detectors are placed are often severe, particularly in high power motors.
  • the detectors are subjected to elevated temperature levels and, at times to significant voltage differentials, particularly in inverter driven applications.
  • the corresponding voltage stress and electric field within these environments may lead to premature failure of resistance temperature detectors.
  • the electric field within the motor may electrically break down small air gaps or other materials or zones of reduced dielectric constant within a resistance temperature detector, causing partial discharge and localized heating within such zones. If any air voids or low dielectric materials are disposed adjacent to the resistive element of the detector, this localized heating may cause the detector to report inaccurate temperatures or may cause the resistive element to deteriorate, resulting in the failure of the detector.
  • winding insulation systems are being further reduced in thickness, leading to increasing voltage stresses, particularly across temperature detector insulating layers. Such elevated stresses can similarly lead to failure of the detectors.
  • the present technique provides a novel technique for measuring the temperature within an electrical device.
  • the technique is applicable to a wide range of equipment, but is particularly well suited to measuring the temperature within the stator assembly of an electric motor.
  • a resistance temperature detector suitable for detecting temperatures between windings of an electrical machine.
  • This detector includes a resistive element and a detector insulating system disposed about and completely encasing the resistive element.
  • the resistive element is configured to receive an input signal and to produce an output signal that is a function of temperature.
  • the provided detector insulating system disposed about the resistive element may have a capacitance per unit area approximately equal to or greater than the capacitance per unit area of the winding insulating system.
  • a resistance temperature detector wherein a detector insulating system disposed about a resistive element may have a capacitance per unit area of sufficient magnitude that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the windings during operation is below a stress level that would cause partial discharge in such voids and materials.
  • a resistance temperature detector system for detecting temperatures between windings of an electrical machine.
  • the system comprises a winding configured to receive an alternating current voltage waveform during operation.
  • the winding has a winding insulating system disposed about a central conductor.
  • a resistance temperature detector comprising a resistive element disposed within an insulation system, is disposed adjacent to the winding for detecting a temperature of the winding during operation.
  • the combination of the winding insulating system and the detector insulating system have a capacitance sufficient that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the winding during operation is below a stress level that would cause partial discharge in such voids and materials.
  • the technique also offers a method for detecting temperatures between windings of an electrical machine.
  • the method comprises steps for providing a resistive element configured to receive a measurement signal and to produce an output signal that is a function of temperature.
  • the resistive element is disposed within a detector insulating system, the detector insulating system having a desired capacitance per unit area of sufficient magnitude that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the windings during operation is below a stress level that would cause partial discharge in such voids and materials.
  • FIG. 1 is a perspective view of an exemplary electric motor illustrating the various functional components of the motor in accordance with certain aspects of the invention
  • FIG. 2 is a front view of the frame and stator assembly of the electric motor of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of an individual slot in the stator assembly of the exemplary electric motor with components disposed therein;
  • FIG. 4 is an illustration of the various components of an exemplary resistance temperature detector in accordance with certain aspects of the invention.
  • FIG. 5 is a cross-sectional view of the assembled exemplary resistance temperature detector of FIG. 4 ;
  • FIG. 6 is a model of an equivalent electrical circuit representative of the capacitive characteristics of exemplary layers between a winding and an element of a resistance temperature detector disposed in a slot of a stator core in accordance with certain aspects of the invention
  • FIG. 7 is a model of an equivalent electrical circuit representative of the reactive characteristics associated with the capacitance of exemplary layers between a winding and an element of a resistance temperature detector disposed in a slot of a stator core in accordance with certain aspects of the invention.
  • FIG. 8 is a graphical representation of Paschen's Law as applicable to air, which may be used as a basis for anticipating a point of partial discharge breakdown for the design of the present detector system.
  • motor 10 is an induction motor housed in a conventional enclosure. Accordingly, motor 10 includes a frame 12 open at front and rear ends and capped by a front end cap 14 and a rear end cap 16 . Frame 12 , front end cap 14 , and rear end cap 16 form a protective shell, or housing, for a stator and a rotor. Stator windings are electrically interconnected to form groups, and the groups are, in turn, interconnected in a manner generally known in the art. The windings are further coupled to terminal leads (not shown).
  • the terminal leads are used to electrically connect the stator windings to an external power cable (not shown) coupled to a source of electrical power. Energizing the stator windings produces a magnetic field that induces rotation of the rotor and a rotary shaft 18 .
  • the electrical connections between the terminal leads and the power cable are housed within a conduit box 20 .
  • the rotor may include a cast rotor supported on a rotary shaft 18 within the frame 12 , front end cap 14 and rear end cap 16 .
  • the shaft 18 is configured for coupling to a driven machine element (not shown), for transmitting torque to the machine element.
  • the rotor and the shaft 18 may be supported for rotation within frame 12 by a front bearing set and a rear bearing set carried by the front end cap 14 and the rear end cap 16 , respectively.
  • the motor 10 may include a cooling fan within the frame 12 or end caps 14 and 16 to promote convective heat transfer through the frame 12 .
  • the frame 12 generally includes features permitting it to be mounted in a desired application, such as mounting bracket or integral mounting feet.
  • the partial motor 22 includes a stator assembly 24 .
  • the stator assembly 24 may include a group of laminations 26 which are stacked adjacent to each other, as shown, or a group of segments that extend the entire length of the stator core, or any other suitable configuration.
  • the laminations 26 are generally made of a ferromagnetic material, such as steel or another iron alloy.
  • Each of the laminations 26 has slots 28 that align with the same features of the other laminations 26 to form continuous slots through the entire length of the stator assembly 24 .
  • the general shape of the slots 28 may vary depending on the specific features and design requirements.
  • the slots 28 may include rectangular shapes (e.g. with a notched tooth for retaining a top wedge) or may be halved elliptical shapes, halved polygon shapes, or a generally elliptical shape with a portion of one end removed for insertion of the windings into the slots during manufacture of the stator.
  • stator assembly 24 is made up of laminations 26
  • the laminations 26 may be kept in a compressed bundle under pressure to maintain a specific form and to retain the alignment of the slots 28 .
  • end plates 30 may be formed to the same general dimensions as the frame 12 (see FIG. 1 ). The end plates 30 are used to hold the laminations 26 of the stator assembly 24 in a generally fixed position. The end plates 30 are able to maintain pressure on the laminations 26 by being secured on opposite sides of the laminations 26 .
  • the particular construction of the stator assembly 24 described and shown herein is intended as an example only. Many other designs, laminated and otherwise, may be envisaged and may benefit from use of the detectors described below.
  • Slot liners 42 may be disposed within slots 28 .
  • an insulating end piece or insulating end lamination 32 may be positioned at each end of the laminations 26 . While such structures may not be common in some machine designs, such as form-wound motors, they are discussed here for the sake of completeness.
  • the insulating end lamination 32 may include any insulating material, such as a moldable plastic material or composite material or structure, and may be a single continuous component, such as a ring or other shape.
  • the end plates 30 may be formed to the same general dimensions as the frame 12 and typically have a central opening. Located within the central opening of each end plate 30 is the insulating end lamination 32 . As discussed above, the insulating end lamination 32 supports the portion of the slot liners 42 that extends beyond the laminations 26 . Within each of the slots 28 , two windings or coils 34 are placed, designated as 34 A and 34 B. In the illustrated embodiment, the stator coils are single or stacks of conductive elements or formed rectangular wire (e.g. form wound coils). It should be noted that the windings may, alternatively include strands of conductive material, such as copper wire, which are bundled together to form the coil 34 .
  • the conductor or conductors may be a single element or a bundle of elements, such as many strands of wire.
  • the coils 34 pass thru the slots 28 and are disposed over the slot liners 42 .
  • the coils 34 pass through end plates 30 and the insulating end lamination 32 to extend beyond these components.
  • the method of inserting the coils 34 may vary as will be appreciated by those skilled in the art.
  • Each of the slots 28 may include a single coil 34 or a plurality of different coils 34 (typically two), depending on the specific design.
  • each of the slots 28 may have two coils 34 A and 34 B, with each coil 34 A or 34 B typically extending in opposite directions along the insulating end lamination 32 to enter into different slots of the stator.
  • winding patterns including lapped patterns, concentric patterns, and hybrid patterns.
  • FIG. 3 A cross-section of an individual slot 28 is generally shown in FIG. 3 with components disposed therein.
  • the slot 28 may include a slot liner 42 disposed within the slot 28 and extending through the entire stator assembly 24 .
  • the slot liner 42 may include any insulating material generally known by those skilled in the art, and may include a single insulating layer or multiple layers of such material.
  • the slot liner 42 may be as long as the slots 28 or may extend beyond the slots 28 .
  • Each winding 34 A and 34 B is shown enclosed within winding insulation 36 .
  • Winding insulation 36 may be any insulating material known by those skilled in the art and may consist of one or a plurality of insulating layers.
  • Resistance temperature detector 38 is shown positioned within slot 28 , between insulated windings 34 A and 34 B. Resistance temperature detector 38 allows measurement of the operating temperature within slot 28 , with input and output signals being communicated via lead wires 40 .
  • an insulating “stick” is positioned between the windings of each slot to separate the windings from one another and to aid in preventing shorts.
  • no such sticks may be provided, or partial-length sticks may be provided on one or both ends of the temperature detector to separate the portions of the windings not separated from one another by the detector.
  • a retaining element 39 or wedge may be placed at the opening of each slot and retained by teeth or grooves.
  • resistive element 44 typically comprises a very fine conductive wire, which may be formed from platinum, copper, nickel, or any other suitable conductive material. Further, a resistive element 44 may take any number of forms. For instance, resistive element 44 may be wound around a mandrel, may be disposed in various patterns, or may be etched into another material.
  • resistive element 44 provides the functionality described herein.
  • Lead wires 40 and connection plates 46 will often be made of copper, but like resistive element 44 , either or both may be formed of any other suitable material, including platinum or nickel.
  • Resistive element 44 is enclosed within an insulating system comprising insulation panels 48 and adhesive 50 .
  • Exemplary insulation panels 48 comprise a flexible insulating material, such as polyimide film, although other insulating materials or molding processes (e.g. for molded insulating systems) may also be used with the present technique. Such materials are commercially available from a number of sources, such as from E. I. Du Pont De Nemours & Co., under the commercial designation Kapton. Other suitable materials may include polyester, polyamide-imide, polyetheretherketone, polysulfone and polyphenylene sulfide. These insulation panels 48 are bound to each other and to resistance element 44 by adhesive 50 , which may be an acrylic, an epoxy, or any other suitable substance with suitable properties.
  • resistive element 44 vary in a predictable manner as a function of temperature.
  • the potential difference between the two ends of resistive element 44 may be measured as current is applied to the element.
  • the resistance of resistive element 44 may be calculated from the voltage drop through the element, and a corresponding temperature may be determined based upon the known relationship between the temperature of the element and its resistance.
  • FIG. 5 A cross-section of an assembled exemplary resistance temperature detector 38 is depicted in FIG. 5 .
  • the resistive element 44 of resistance temperature detector 38 is enclosed within layers of insulation panels 48 and adhesive 50 .
  • resistive element 44 is shown between insulation panels 52 and 54 , within an adhesive layer 56 .
  • Adhesive layer 56 binds insulation panels 52 and 54 together.
  • Insulation panels 58 and 60 which are bonded to insulating panels 52 and 54 by adhesive layers 62 and 64 respectively, provide further insulation for resistive element 44 .
  • the resistive element may appear as a virtual or solidly fixed ground path for current applied to the stator, and potential differences between the stator windings and the resistive element may reach very high levels, particularly when the motor is inverter-driven.
  • the detector, and indeed the winding and detector system are designed, however, to withstand such environments while preventing partial discharge breakdown within the detector as described below. The improved detector design and structure, then, prevent premature failure of the detector resistive element, or at least significantly prolong its life.
  • the permittivity of any dielectric material, relative to the permittivity of a vacuum, may be expressed as a ratio known as its dielectric constant.
  • the collective layers of insulation panels 48 and adhesive 50 have a permittivity sufficiently high to reduce the voltage stress level of any air gaps or voids, or low dielectric materials (or other locations where partial discharge may occur) within resistance temperature detector 38 to a level below that at which partial discharge would occur under the operating conditions of the machine.
  • Exemplary winding insulation 36 , insulation panels 48 , and adhesive 50 have similar dielectric constants sufficiently high to prevent partial discharge, such as between approximately 3 and 6, but other materials with dielectric constants outside this range, or even widely varying dielectric constants, may be used if the collective materials are sufficient to reduce partial discharge.
  • Such a construction extends the durable life of resistance temperature detector 38 and allows it to be placed in more severe electrical environments.
  • FIGS. 6 and 7 Certain electrical properties of the various exemplary insulation and adhesive layers shown between a winding 34 B and resistive element 44 , in FIGS. 3 and 5 , are modeled in the form of equivalent circuits in FIGS. 6 and 7 .
  • the equivalent capacitance of each layer disposed between resistive element 44 and winding 34 B within a slot 28 is represented in FIG. 6
  • the corresponding capacitive reactance of each layer is represented in FIG. 7 .
  • the capacitance and reactance of the entire system of insulation and adhesive layers is modeled between an outer surface 66 of a winding 34 B and resistive element 44 , which is depicted as virtual or solidly fixed ground 68 .
  • any electrical signal would have to pass through the following layers: winding insulation 36 , with an equivalent capacitance 70 and reactance 82 ; outer temperature detector insulation panel 58 , with an equivalent capacitance 72 and reactance 84 ; outer temperature detector adhesive layer 62 , with an equivalent capacitance 74 and reactance 86 ; inner temperature detector insulation panel 52 , with an equivalent capacitance 76 and reactance 88 ; and inner temperature detector adhesive layer 56 , with an equivalent capacitance 78 and reactance 90 . Also modeled is a capacitance 80 and reactance 92 corresponding to an air void within adhesive layer 56 .
  • Each layer of the insulation system and its corresponding reactance impedes the flow of current through the system.
  • the reactance of each layer of the insulating system opposes the flow of current through each layer in an amount inversely proportional to the capacitance of each layer.
  • the voltage stress across each layer is proportional to its reactance.
  • the ratio of the voltage stress across one layer to the voltage stress across the entire system is equal to the ratio of the reactances of the one layer and the entire system. Accordingly, increasing the capacitance of any particular layer decreases the corresponding reactance of the layer as well as the voltage stress across the layer.
  • the layers of the winding and resistance temperature detector insulation systems comprising winding insulation 36 , insulation panels 48 , and adhesive 50 , are selected to reduce the voltage stress across any air gaps or other low dielectric materials disposed adjacent to resistive element 44 .
  • Paschen's Law essentially states that the breakdown voltage of any gap between two materials is a function of the product of the pressure of the gas inside the gap and the distance between the two materials.
  • the breakdown voltage of air as predicted by Paschen's Law, is graphically represented in FIG. 8 .
  • the graph represents the minimum voltage required at each pressure-distance product necessary for breakdown, and consequent partial discharge, to occur. This pressure-distance product is shown along the horizontal axis of the graph, while the corresponding breakdown voltage is shown along the vertical axis.
  • the minimum breakdown voltage for air is 327 volts, corresponding to a pressure-distance product of approximately 5.7 Torr-mm.
  • the layers of resistance temperature detector 38 have dielectric constants such that the voltage stress across any air gaps remains below the breakdown voltage of the gap corresponding to the pressure and size of the gap.
  • temperature may affect the minimum breakdown voltage in several ways, such as by altering the pressure within the gap or changing the electrical properties of each layer between coil winding 34 and resistive element 44 .

Abstract

A resistance temperature detector device and system are provided for measuring the temperature adjacent to windings within a stator assembly. The resistance temperature detector comprises a resistive element enclosed within a plurality of insulative layers, including insulation panels and adhesive. These surrounding insulation layers are sufficient to prevent partial discharge within any air gaps or low dielectric materials adjacent to the resistive element when the resistance temperature detector is disposed within a motor. A method for detecting temperatures between windings of an electrical machine is also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/823,178, which was filed on Apr. 13, 2004.
  • BACKGROUND
  • The present technique relates generally to the field of electric motors and to methods and apparatus for detecting temperatures within an electric motor. More particularly, the technique relates to a novel approach to detecting the temperature adjacent to a winding within an electric motor.
  • Electric motors, generators, and other similar devices, are produced in a variety of mechanical and electrical configurations. The configuration of these devices may depend upon the intended application, the operating environment, the available power source, or other similar factors. In general, these devices include a rotor surrounded at least partially by a stator. For instance, one common design of electrical motor is the induction motor, which is used in numerous and diverse applications. Induction motors typically employ a stator assembly including a slotted core in which groups of coil windings are installed. By providing alternating current power to certain windings at certain times, a dynamic magnetic field is produced that causes the rotor to rotate within the stator. The rotational speed of the rotor is a function of the frequency of the alternating current power input and of the motor design (i.e. the number of poles defined by the windings). This rotation may be used to transmit a mechanical force to a driven load via an output shaft coupled between the rotor and the driven load.
  • Inverter drives are commonly used with such motors to vary the frequency of the alternating current power driving the motor. This, accordingly, allows the rotational speed of the rotor to be varied as well. An inverter drive is configured to receive a direct current input and to output a variable frequency waveform that simulates alternating current power. A rectifying circuit may be used with the inverter drive if alternating current power is being provided to the inverter drive. In such a case, the rectifier converts the incoming alternating current power to direct current power for input into the inverter circuitry.
  • Electric motors and other similar devices are generally configured to operate in a given temperature range. Heat is generated within the motor from the passage of electrical current through the coil windings, or from a variety of other sources. Often, one or more resistance temperature detectors will be disposed within one or more slots of a stator core, adjacent to the coil windings. In this manner, the temperature of the coil windings can be measured to determine if the temperature is within desired operating parameters. However, these resistance temperature detectors must remain operable in order to provide this benefit.
  • In general, a resistance temperature detector includes a resistance coil encased in an insulative cover. Current is applied to leads of the coil that results in a measurable voltage drop through the coil as a function of the resistance of the coil. Because the resistance varies with the temperature of the coil, by measuring the voltage drop, compensating for certain errors, and correlating the voltage drop to the known characteristics of the coil, the temperature at the detector location can be calculated. In motor applications this temperature signal may then be used for various monitoring, control, preventative maintenance, and other functions.
  • The environments in which conventional resistance temperature detectors are placed are often severe, particularly in high power motors. The detectors are subjected to elevated temperature levels and, at times to significant voltage differentials, particularly in inverter driven applications. The corresponding voltage stress and electric field within these environments may lead to premature failure of resistance temperature detectors. Particularly, the electric field within the motor may electrically break down small air gaps or other materials or zones of reduced dielectric constant within a resistance temperature detector, causing partial discharge and localized heating within such zones. If any air voids or low dielectric materials are disposed adjacent to the resistive element of the detector, this localized heating may cause the detector to report inaccurate temperatures or may cause the resistive element to deteriorate, resulting in the failure of the detector. Moreover, winding insulation systems are being further reduced in thickness, leading to increasing voltage stresses, particularly across temperature detector insulating layers. Such elevated stresses can similarly lead to failure of the detectors.
  • There is, therefore, a need for a resistance temperature detector that can better withstand the harsh electrical environment present in many applications, and particularly within a slot of a stator core. Such a device would allow for the monitoring of temperatures of windings of electric motors or similar devices, and thereby prevent damage and downtime, and improve reliability of the entire motor system.
  • BRIEF DESCRIPTION
  • The present technique provides a novel technique for measuring the temperature within an electrical device. The technique is applicable to a wide range of equipment, but is particularly well suited to measuring the temperature within the stator assembly of an electric motor.
  • In accordance with a first aspect of the technique, a resistance temperature detector suitable for detecting temperatures between windings of an electrical machine is provided. This detector includes a resistive element and a detector insulating system disposed about and completely encasing the resistive element. The resistive element is configured to receive an input signal and to produce an output signal that is a function of temperature. The provided detector insulating system disposed about the resistive element may have a capacitance per unit area approximately equal to or greater than the capacitance per unit area of the winding insulating system.
  • In particular, a resistance temperature detector is provided wherein a detector insulating system disposed about a resistive element may have a capacitance per unit area of sufficient magnitude that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the windings during operation is below a stress level that would cause partial discharge in such voids and materials.
  • In accordance with another aspect of the technique, a resistance temperature detector system for detecting temperatures between windings of an electrical machine is provided. The system comprises a winding configured to receive an alternating current voltage waveform during operation. The winding has a winding insulating system disposed about a central conductor. A resistance temperature detector, comprising a resistive element disposed within an insulation system, is disposed adjacent to the winding for detecting a temperature of the winding during operation. The combination of the winding insulating system and the detector insulating system have a capacitance sufficient that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the winding during operation is below a stress level that would cause partial discharge in such voids and materials.
  • The technique also offers a method for detecting temperatures between windings of an electrical machine. The method comprises steps for providing a resistive element configured to receive a measurement signal and to produce an output signal that is a function of temperature. The resistive element is disposed within a detector insulating system, the detector insulating system having a desired capacitance per unit area of sufficient magnitude that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the windings during operation is below a stress level that would cause partial discharge in such voids and materials.
  • DRAWINGS
  • The foregoing and other advantages and features of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1 is a perspective view of an exemplary electric motor illustrating the various functional components of the motor in accordance with certain aspects of the invention;
  • FIG. 2 is a front view of the frame and stator assembly of the electric motor of FIG. 1;
  • FIG. 3 is a cross-sectional view of an individual slot in the stator assembly of the exemplary electric motor with components disposed therein;
  • FIG. 4 is an illustration of the various components of an exemplary resistance temperature detector in accordance with certain aspects of the invention;
  • FIG. 5 is a cross-sectional view of the assembled exemplary resistance temperature detector of FIG. 4;
  • FIG. 6 is a model of an equivalent electrical circuit representative of the capacitive characteristics of exemplary layers between a winding and an element of a resistance temperature detector disposed in a slot of a stator core in accordance with certain aspects of the invention;
  • FIG. 7 is a model of an equivalent electrical circuit representative of the reactive characteristics associated with the capacitance of exemplary layers between a winding and an element of a resistance temperature detector disposed in a slot of a stator core in accordance with certain aspects of the invention; and
  • FIG. 8 is a graphical representation of Paschen's Law as applicable to air, which may be used as a basis for anticipating a point of partial discharge breakdown for the design of the present detector system.
  • DETAILED DESCRIPTION
  • Turning now to the drawings, and referring first to FIG. 1, an electric motor is shown and designated generally by the reference numeral 10. In the embodiment illustrated in FIG. 1, motor 10 is an induction motor housed in a conventional enclosure. Accordingly, motor 10 includes a frame 12 open at front and rear ends and capped by a front end cap 14 and a rear end cap 16. Frame 12, front end cap 14, and rear end cap 16 form a protective shell, or housing, for a stator and a rotor. Stator windings are electrically interconnected to form groups, and the groups are, in turn, interconnected in a manner generally known in the art. The windings are further coupled to terminal leads (not shown). The terminal leads are used to electrically connect the stator windings to an external power cable (not shown) coupled to a source of electrical power. Energizing the stator windings produces a magnetic field that induces rotation of the rotor and a rotary shaft 18. The electrical connections between the terminal leads and the power cable are housed within a conduit box 20.
  • In the embodiment illustrated, the rotor may include a cast rotor supported on a rotary shaft 18 within the frame 12, front end cap 14 and rear end cap 16. As will be appreciated by those skilled in the art, the shaft 18 is configured for coupling to a driven machine element (not shown), for transmitting torque to the machine element. The rotor and the shaft 18 may be supported for rotation within frame 12 by a front bearing set and a rear bearing set carried by the front end cap 14 and the rear end cap 16, respectively. The motor 10 may include a cooling fan within the frame 12 or end caps 14 and 16 to promote convective heat transfer through the frame 12. The frame 12 generally includes features permitting it to be mounted in a desired application, such as mounting bracket or integral mounting feet.
  • As will be appreciated by those skilled in the art, while reference is made herein to a specific motor design, many different types of machines and motors may employ detectors and temperature detection systems based upon the present techniques. For example, many different motor frame sizes, ratings and styles may benefit from the improved temperature detector designs. Similarly, motors operating on different electrical principles may receive the detectors, including induction motors, synchronous motors, and so forth. Also, application of the detectors is not limited to single phase or three phase motors, but either type may require detection of temperature of windings and, as such, may use detectors constructed in accordance with the principles set forth herein.
  • Referring generally to FIG. 2, a cross-sectional view of a partial motor is shown and designated generally by the reference numeral 22. As depicted in FIG. 2, the partial motor 22 includes a stator assembly 24. The stator assembly 24 may include a group of laminations 26 which are stacked adjacent to each other, as shown, or a group of segments that extend the entire length of the stator core, or any other suitable configuration. The laminations 26 are generally made of a ferromagnetic material, such as steel or another iron alloy. Each of the laminations 26 has slots 28 that align with the same features of the other laminations 26 to form continuous slots through the entire length of the stator assembly 24. With regard to the slots 28, the general shape of the slots 28 may vary depending on the specific features and design requirements. For instance, the slots 28 may include rectangular shapes (e.g. with a notched tooth for retaining a top wedge) or may be halved elliptical shapes, halved polygon shapes, or a generally elliptical shape with a portion of one end removed for insertion of the windings into the slots during manufacture of the stator.
  • Where the stator assembly 24 is made up of laminations 26, the laminations 26 may be kept in a compressed bundle under pressure to maintain a specific form and to retain the alignment of the slots 28. To maintain this lamination pressure, end plates 30 may be formed to the same general dimensions as the frame 12 (see FIG. 1). The end plates 30 are used to hold the laminations 26 of the stator assembly 24 in a generally fixed position. The end plates 30 are able to maintain pressure on the laminations 26 by being secured on opposite sides of the laminations 26. As will be appreciated by those skilled in the art, the particular construction of the stator assembly 24 described and shown herein is intended as an example only. Many other designs, laminated and otherwise, may be envisaged and may benefit from use of the detectors described below.
  • Slot liners 42 (FIG. 3) may be disposed within slots 28. As a means of supporting a portion of slot liners 42 that extend beyond the slots 28, an insulating end piece or insulating end lamination 32 may be positioned at each end of the laminations 26. While such structures may not be common in some machine designs, such as form-wound motors, they are discussed here for the sake of completeness. Where used, the insulating end lamination 32 may include any insulating material, such as a moldable plastic material or composite material or structure, and may be a single continuous component, such as a ring or other shape.
  • As shown in FIG. 2, the end plates 30 may be formed to the same general dimensions as the frame 12 and typically have a central opening. Located within the central opening of each end plate 30 is the insulating end lamination 32. As discussed above, the insulating end lamination 32 supports the portion of the slot liners 42 that extends beyond the laminations 26. Within each of the slots 28, two windings or coils 34 are placed, designated as 34A and 34B. In the illustrated embodiment, the stator coils are single or stacks of conductive elements or formed rectangular wire (e.g. form wound coils). It should be noted that the windings may, alternatively include strands of conductive material, such as copper wire, which are bundled together to form the coil 34. When reference is made herein to the windings, or one or more winding conductors, it should be thus understood that the conductor or conductors may be a single element or a bundle of elements, such as many strands of wire. The coils 34 pass thru the slots 28 and are disposed over the slot liners 42. The coils 34 pass through end plates 30 and the insulating end lamination 32 to extend beyond these components. The method of inserting the coils 34 may vary as will be appreciated by those skilled in the art. Each of the slots 28 may include a single coil 34 or a plurality of different coils 34 (typically two), depending on the specific design. For example, in one embodiment, each of the slots 28 may have two coils 34A and 34B, with each coil 34A or 34B typically extending in opposite directions along the insulating end lamination 32 to enter into different slots of the stator. As will also be appreciated by those skilled in the art, a wide range of winding patterns may be used, including lapped patterns, concentric patterns, and hybrid patterns.
  • A cross-section of an individual slot 28 is generally shown in FIG. 3 with components disposed therein. As discussed above, the slot 28 may include a slot liner 42 disposed within the slot 28 and extending through the entire stator assembly 24. The slot liner 42 may include any insulating material generally known by those skilled in the art, and may include a single insulating layer or multiple layers of such material. The slot liner 42 may be as long as the slots 28 or may extend beyond the slots 28. Each winding 34A and 34B is shown enclosed within winding insulation 36. Winding insulation 36 may be any insulating material known by those skilled in the art and may consist of one or a plurality of insulating layers. Resistance temperature detector 38 is shown positioned within slot 28, between insulated windings 34A and 34B. Resistance temperature detector 38 allows measurement of the operating temperature within slot 28, with input and output signals being communicated via lead wires 40. In a typical application, an insulating “stick” is positioned between the windings of each slot to separate the windings from one another and to aid in preventing shorts. However, in those slots that receive a temperature detector, no such sticks may be provided, or partial-length sticks may be provided on one or both ends of the temperature detector to separate the portions of the windings not separated from one another by the detector. Also as shown in FIG. 3, in certain designs a retaining element 39 or wedge may be placed at the opening of each slot and retained by teeth or grooves.
  • The individual components of an exemplary resistance temperature detector 38 are illustrated in FIG. 4. In this embodiment, lead wires 40 are electrically coupled to resistive element 44 by means of connection plates 46. Lead wires 40 may be used to perform a variety of functions, including supplying a measurement input signal, detecting an output signal, and permitting compensation for differences between the resistive properties of the leads (i.e. due to their lengths). Resistive element 44 typically comprises a very fine conductive wire, which may be formed from platinum, copper, nickel, or any other suitable conductive material. Further, a resistive element 44 may take any number of forms. For instance, resistive element 44 may be wound around a mandrel, may be disposed in various patterns, or may be etched into another material. Any form may be used in accordance with the present technique so long as the resistive element 44 provides the functionality described herein. Lead wires 40 and connection plates 46 will often be made of copper, but like resistive element 44, either or both may be formed of any other suitable material, including platinum or nickel.
  • Resistive element 44 is enclosed within an insulating system comprising insulation panels 48 and adhesive 50. Exemplary insulation panels 48 comprise a flexible insulating material, such as polyimide film, although other insulating materials or molding processes (e.g. for molded insulating systems) may also be used with the present technique. Such materials are commercially available from a number of sources, such as from E. I. Du Pont De Nemours & Co., under the commercial designation Kapton. Other suitable materials may include polyester, polyamide-imide, polyetheretherketone, polysulfone and polyphenylene sulfide. These insulation panels 48 are bound to each other and to resistance element 44 by adhesive 50, which may be an acrylic, an epoxy, or any other suitable substance with suitable properties. The resistive properties of resistive element 44 vary in a predictable manner as a function of temperature. Thus, the potential difference between the two ends of resistive element 44 may be measured as current is applied to the element. The resistance of resistive element 44 may be calculated from the voltage drop through the element, and a corresponding temperature may be determined based upon the known relationship between the temperature of the element and its resistance.
  • A cross-section of an assembled exemplary resistance temperature detector 38 is depicted in FIG. 5. As can be seen in the illustration, the resistive element 44 of resistance temperature detector 38 is enclosed within layers of insulation panels 48 and adhesive 50. Specifically, resistive element 44 is shown between insulation panels 52 and 54, within an adhesive layer 56. Adhesive layer 56 binds insulation panels 52 and 54 together. Insulation panels 58 and 60, which are bonded to insulating panels 52 and 54 by adhesive layers 62 and 64 respectively, provide further insulation for resistive element 44.
  • As described more fully below, it has been found that during operation, high potential differences may be developed between the windings of the stator and the resistive element of detector 38. Essentially, the resistive element may appear as a virtual or solidly fixed ground path for current applied to the stator, and potential differences between the stator windings and the resistive element may reach very high levels, particularly when the motor is inverter-driven. The detector, and indeed the winding and detector system are designed, however, to withstand such environments while preventing partial discharge breakdown within the detector as described below. The improved detector design and structure, then, prevent premature failure of the detector resistive element, or at least significantly prolong its life.
  • The permittivity of any dielectric material, relative to the permittivity of a vacuum, may be expressed as a ratio known as its dielectric constant. The collective layers of insulation panels 48 and adhesive 50 have a permittivity sufficiently high to reduce the voltage stress level of any air gaps or voids, or low dielectric materials (or other locations where partial discharge may occur) within resistance temperature detector 38 to a level below that at which partial discharge would occur under the operating conditions of the machine. Exemplary winding insulation 36, insulation panels 48, and adhesive 50, have similar dielectric constants sufficiently high to prevent partial discharge, such as between approximately 3 and 6, but other materials with dielectric constants outside this range, or even widely varying dielectric constants, may be used if the collective materials are sufficient to reduce partial discharge. Such a construction extends the durable life of resistance temperature detector 38 and allows it to be placed in more severe electrical environments.
  • Certain electrical properties of the various exemplary insulation and adhesive layers shown between a winding 34B and resistive element 44, in FIGS. 3 and 5, are modeled in the form of equivalent circuits in FIGS. 6 and 7. The equivalent capacitance of each layer disposed between resistive element 44 and winding 34B within a slot 28 is represented in FIG. 6, while the corresponding capacitive reactance of each layer is represented in FIG. 7. The capacitance and reactance of the entire system of insulation and adhesive layers is modeled between an outer surface 66 of a winding 34B and resistive element 44, which is depicted as virtual or solidly fixed ground 68. Moving from this outer surface 66 to ground 68, any electrical signal would have to pass through the following layers: winding insulation 36, with an equivalent capacitance 70 and reactance 82; outer temperature detector insulation panel 58, with an equivalent capacitance 72 and reactance 84; outer temperature detector adhesive layer 62, with an equivalent capacitance 74 and reactance 86; inner temperature detector insulation panel 52, with an equivalent capacitance 76 and reactance 88; and inner temperature detector adhesive layer 56, with an equivalent capacitance 78 and reactance 90. Also modeled is a capacitance 80 and reactance 92 corresponding to an air void within adhesive layer 56. Note that where no void 80 is present, the equivalent circuit would, of course, be different due to the elimination of the air void from the series circuit (i.e. from between capacitance 78 and ground 68), resulting in a different capacitance 78.
  • Each layer of the insulation system and its corresponding reactance impedes the flow of current through the system. The reactance of each layer of the insulating system opposes the flow of current through each layer in an amount inversely proportional to the capacitance of each layer. Thus, as the capacitance of each layer increases, its capacitive reactance decreases. The voltage stress across each layer is proportional to its reactance. Particularly, the ratio of the voltage stress across one layer to the voltage stress across the entire system is equal to the ratio of the reactances of the one layer and the entire system. Accordingly, increasing the capacitance of any particular layer decreases the corresponding reactance of the layer as well as the voltage stress across the layer. Because the potential difference across the entire circuit does not change, the decrease of voltage stress across one layer is redistributed to the other layers in an amount proportional to their respective reactances. In accordance with the present technique, the layers of the winding and resistance temperature detector insulation systems comprising winding insulation 36, insulation panels 48, and adhesive 50, are selected to reduce the voltage stress across any air gaps or other low dielectric materials disposed adjacent to resistive element 44.
  • Paschen's Law essentially states that the breakdown voltage of any gap between two materials is a function of the product of the pressure of the gas inside the gap and the distance between the two materials. The breakdown voltage of air, as predicted by Paschen's Law, is graphically represented in FIG. 8. The graph represents the minimum voltage required at each pressure-distance product necessary for breakdown, and consequent partial discharge, to occur. This pressure-distance product is shown along the horizontal axis of the graph, while the corresponding breakdown voltage is shown along the vertical axis. The minimum breakdown voltage for air is 327 volts, corresponding to a pressure-distance product of approximately 5.7 Torr-mm. At this minimum point, a higher pressure-distance product results in too many electron collisions within the gas for breakdown to occur, while a lower pressure-distance product presents too few. As shown by the graph, the voltage required to breakdown the air in the gap increases as the pressure-distance product deviates from this minimum. Accordingly, the layers of resistance temperature detector 38 have dielectric constants such that the voltage stress across any air gaps remains below the breakdown voltage of the gap corresponding to the pressure and size of the gap. As would be understood by those skilled in the art, temperature may affect the minimum breakdown voltage in several ways, such as by altering the pressure within the gap or changing the electrical properties of each layer between coil winding 34 and resistive element 44.
  • While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown in the drawings and have been described in detail herein by way of example only. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. For example, while multiple layers of insulating material are illustrated in the embodiment presented above, a single, or even more layers, or molded systems may be provided where desired. Such considerations will be based upon such factors as the insulating properties of the materials and the potential differences likely to be encountered in operation. Similarly, additional elements may be provided in the detector, such as partial insulating pieces adjacent to ends of the detector (lengthwise) to establish adequate insulation paths at those locations that are at least as robust as those offered by the layered materials on either side of the resistive element.

Claims (20)

1. A resistance temperature detector system for detecting temperatures between windings of an electrical machine, the system comprising:
a winding configured to receive an alternating current voltage waveform during operation, the winding having a winding insulating system disposed about a central conductor; and
a resistive temperature detector disposed adjacent to the winding for detecting a temperature of the winding during operation, the detector comprising a resistive element configured to receive a measurement signal and to produce an output signal that is a function of temperature, and a detector insulating system disposed about and completely encasing the resistive element;
wherein the combination of the winding insulating system and the detector insulating system have a capacitance sufficient that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the winding during operation is below a stress level that would cause partial discharge in such voids and materials.
2. A resistance temperature detector system for detecting temperatures between windings of an electrical machine, the system comprising:
a stator having a plurality of winding slots;
a plurality of windings disposed in the winding slots and configured to receive alternating current voltage waveforms during operation, each winding having a winding insulating system disposed about a central conductor; and
a resistive temperature detector disposed between adjacent windings in at least one of the slots for detecting a temperature of the adjacent windings during operation, the detector comprising a resistive element configured to receive a measurement signal and to produce an output signal that is a function of temperature, and a detector insulating system disposed about and completely encasing the resistive element;
wherein the combination of the winding insulating system and the detector insulating system have a capacitance sufficient that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the winding during operation is below a stress level that would cause partial discharge in such voids and materials.
3. A method for detecting temperatures between windings of an electrical machine, the method comprising:
providing a resistive element configured to receive a measurement signal and to produce an output signal that is a function of temperature;
disposing the resistive element within a detector insulating system to form a detector, the detector insulating system having a desired capacitance per unit area of sufficient magnitude that a voltage stress level experienced by any air voids or low dielectric materials adjacent to the resistive element resulting from voltage applied to the windings during operation is below a stress level that would cause partial discharge in such voids and materials.
4. The method of claim 3, further comprising coupling the resistive element to connection plates for supply of the measurement signal and for detection of the output signal.
5. The method of claim 4, further comprising coupling the connection plates to a set of lead wires including a compensation lead wire.
6. The method of claim 3, wherein disposing the resistive element within the detector insulating system includes joining a plurality of flexible insulative layers about the resistive element.
7. The method of claim 6, wherein the flexible insulative layers comprise a polyimide, polyester, polyamide-imide, polyetheretherketone, polysulfone or polyphenylene sulfide.
8. The method of claim 6, wherein the flexible insulative layers are joined by an adhesive.
9. The method of claim 8, wherein the adhesive and the flexible insulative layers are selected to reduce the voltage stress across and incidence of partial discharge within any air gaps or other low dielectric materials disposed adjacent to the resistive element.
10. The method of claim 8, wherein the flexible insulative layers and the adhesive have dielectric constants between approximately 3 and 6.
11. The method of claim 3, further comprising disposing the detector between adjacent windings of an electrical machine stator.
12. A device comprising:
a sensor configured to determine a parameter of an electromechanical system; and
an insulating system disposed about the sensor, the insulating system comprising one or more layers of a flexible insulating material and one or more layers of an adhesive, wherein the sensor is disposed within the one or more layers of adhesive, and the adhesive has a dielectric constant substantially equal to or greater than that of the flexible insulating material.
13. The device of claim 12, wherein the layers of adhesive and flexible insulating material each have dielectric constants between approximately 3 and 6.
14. The device of claim 12, wherein the flexible insulating material comprises polyimide.
15. The device of claim 14, wherein the adhesive comprises an acrylic adhesive.
16. The device of claim 12, wherein the flexible insulating material comprises polyester, polyamide-imide, polyetheretherketone, polysulfone or polyphenylene sulfide.
17. The device of claim 12, wherein the adhesive is selected from the group consisting of epoxy, silicone, polyester, and polyurethane adhesive systems.
18. The device of claim 12, wherein the parameter comprises temperature.
19. The device of claim 18, wherein the sensor comprises a resistive element configured to receive an input signal via a lead and to produce an output signal that is a function of temperature.
20. The device of claim 12, wherein electromechanical system is an induction motor, and the device is configured to be embedded within the induction motor adjacent to a winding of the induction motor.
US11/519,573 2004-04-13 2006-09-12 Temperature detection method and apparatus Abandoned US20070019706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/519,573 US20070019706A1 (en) 2004-04-13 2006-09-12 Temperature detection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/823,178 US7111983B2 (en) 2004-04-13 2004-04-13 Temperature detection method and apparatus for inverter-driven machines
US11/519,573 US20070019706A1 (en) 2004-04-13 2006-09-12 Temperature detection method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/823,178 Division US7111983B2 (en) 2004-04-13 2004-04-13 Temperature detection method and apparatus for inverter-driven machines

Publications (1)

Publication Number Publication Date
US20070019706A1 true US20070019706A1 (en) 2007-01-25

Family

ID=35060501

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/823,178 Expired - Fee Related US7111983B2 (en) 2004-04-13 2004-04-13 Temperature detection method and apparatus for inverter-driven machines
US11/519,573 Abandoned US20070019706A1 (en) 2004-04-13 2006-09-12 Temperature detection method and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/823,178 Expired - Fee Related US7111983B2 (en) 2004-04-13 2004-04-13 Temperature detection method and apparatus for inverter-driven machines

Country Status (1)

Country Link
US (2) US7111983B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060131968A1 (en) * 2002-11-03 2006-06-22 Ingolf Groening Electric motor comprising a temperature monitoring device
CN102243111A (en) * 2011-04-26 2011-11-16 上海中科深江电动车辆有限公司 Permanent magnet motor rotor temperature measurement device and measurement method
CN102507030A (en) * 2011-10-19 2012-06-20 青岛科技大学 Portable lock-rotor temperature measuring device of motor
US20130136153A1 (en) * 2007-07-16 2013-05-30 Rtd Company Robust stator winding temperature sensor
US20150364976A1 (en) * 2014-06-13 2015-12-17 Fanuc Corporation Overheat detection device for electric motor equipped with multiple ptc thermistors
EP2230749A3 (en) * 2009-03-16 2016-09-21 Egston System Electronics Eggenburg GmbH Stator for an electric machine, in particular an electric motor
US20170043092A1 (en) * 2014-04-25 2017-02-16 Panasonic Healthcare Holdings Co., Ltd. Pharmaceutical injection device
WO2019084721A1 (en) * 2017-10-30 2019-05-09 深圳市大疆创新科技有限公司 Electric motor, electric motor control system, electric motor temperature measuring method and unmanned aerial vehicle
US10935434B2 (en) * 2017-03-16 2021-03-02 Shibaura Electronics Co., Ltd. Temperature sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719400B1 (en) 2005-08-02 2010-05-18 Rtd Company Method and apparatus for flexible temperature sensor having coiled element
DE102008029192A1 (en) * 2008-03-13 2009-09-24 Epcos Ag Sensor for detecting a physical quantity and method for manufacturing the sensor
DE102008024378A1 (en) * 2008-05-20 2009-12-03 Miele & Cie. Kg Electric motor with sensor and / or thermal protection switch
US20100047089A1 (en) * 2008-08-20 2010-02-25 Schlumberger Technology Corporation High temperature monitoring system for esp
JP5617211B2 (en) * 2008-11-04 2014-11-05 富士電機株式会社 Inverter unit cooling capacity measurement method
US8794827B2 (en) * 2009-02-02 2014-08-05 Yazaki Corporation Thermal sensing structure and insulating structure of thermal sensing circuit
JP5248360B2 (en) * 2009-02-10 2013-07-31 矢崎総業株式会社 Circuit structure for temperature detection
US20130156071A1 (en) * 2011-12-16 2013-06-20 Remy Technologies, Llc Electric Machine Including Insulated Slot Liner With Temperature Sensor
CN105074405B (en) * 2012-10-16 2018-03-20 精量电子(美国)有限公司 Reinforced flexibility temperature sensor
WO2015017035A1 (en) * 2013-08-01 2015-02-05 Unison Industries, Llc Fast response temperature sensor using a polyimide enclosed rtd

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818785A (en) * 1930-08-11 1931-08-11 Gen Electric Temperature indicator for electrical apparatus
US2619573A (en) * 1952-01-30 1952-11-25 Gen Electric Temperature detector and lead assembly construction
US3305698A (en) * 1963-09-16 1967-02-21 Motorola Inc Electric motor overheating protection circuit
US3521212A (en) * 1968-06-21 1970-07-21 Texas Instruments Inc Electric motor protection sensor
US3899704A (en) * 1973-03-07 1975-08-12 Siemens Ag Starter or damper winding arrangement for a synchronous electrical machine
US3960017A (en) * 1975-02-10 1976-06-01 Qualitrol Corporation Thermometer insertable in winding of fluid cooled transformer
US4042900A (en) * 1974-06-03 1977-08-16 General Electric Company Electrostatic shielding of disc windings
US4071875A (en) * 1975-12-29 1978-01-31 Texas Instruments Incorporated Detector apparatus
US4092864A (en) * 1976-08-04 1978-06-06 Qualitrol Corporation Hot spot thermometer
US4150358A (en) * 1976-01-13 1979-04-17 Asea Aktiebolag Temperature measuring system for rotating machines
US4186712A (en) * 1974-10-22 1980-02-05 Brunswick Corporation RFI-suppressing ignition system for an internal combustion engine
US4266257A (en) * 1978-10-02 1981-05-05 Johnson Controls, Inc. Motor over-heating protection circuit
US4413325A (en) * 1980-03-26 1983-11-01 El-Fi Innovationer Ab Methods and apparatuses for determining the temperature of an asynchronous motor
USRE31685E (en) * 1979-01-15 1984-09-25 High voltage power transformer winding temperature control system
US4547769A (en) * 1981-10-30 1985-10-15 Kabushiki Kaisha Meidensha Vacuum monitor device and method for vacuum interrupter
US4683515A (en) * 1985-11-20 1987-07-28 Eaton Corporation Modular PTC thermistor overload protection system
US4716486A (en) * 1985-03-15 1987-12-29 Etudes Techniques Et Representations Industrielles E.T.R.I. Electric motor comprising a thermistor-type overcurrent protection device
US4751488A (en) * 1981-06-04 1988-06-14 The United States Of America As Represented By The United States Department Of Energy High voltage capability electrical coils insulated with materials containing SF6 gas
US4766387A (en) * 1987-03-12 1988-08-23 The Charles Stark Draper Laboratory, Inc. Motor winding insulation resistance monitoring system
US4831313A (en) * 1987-09-14 1989-05-16 Lennox Industries, Inc. Two speed motor controller
US5019760A (en) * 1989-12-07 1991-05-28 Electric Power Research Institute Thermal life indicator
US5514967A (en) * 1994-08-16 1996-05-07 Zelm; Richard J. Automatic insulation test equipment for testing high voltage electrical equipment at the rated voltage level
US6028382A (en) * 1998-07-14 2000-02-22 Reliance Electrical Industrial Company Temperature sensing arrangement for the stator core of an electromechanical machine
US6121707A (en) * 1998-01-22 2000-09-19 Reliance Electric Technologies, Llc Electric motor and electric motor stator and method for making same
US6225813B1 (en) * 1997-06-09 2001-05-01 General Electric Co. Portable apparatus for in situ field stator bar insulation capacitance mapping
US6351202B1 (en) * 1998-12-01 2002-02-26 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
US20020048312A1 (en) * 2000-05-18 2002-04-25 Schurr Dana K. Sensor assembly
US6434505B1 (en) * 1999-10-15 2002-08-13 Atecs Mannesmann Ag Method for determining the instantaneous winding temperature of the stator winding of a three-phase AC motor, in particular a pole-changeable asynchronous motor
US20030178999A1 (en) * 2002-03-19 2003-09-25 Emerson Electric Co. Method and system for monitoring winding insulation resistance
US6639505B2 (en) * 2001-03-23 2003-10-28 Denso Corporation Temperature sensor
US20040091017A1 (en) * 2002-10-22 2004-05-13 Franz Gramsamer System for temperature monitoring
US20040188674A1 (en) * 2001-01-12 2004-09-30 International Business Machines Corporation Electronic structures with reduced capacitance
US6817160B2 (en) * 2000-04-21 2004-11-16 Cmd Corporation Vertical form fill seal bag with recloseable seal and method of making thereof
US6817760B2 (en) * 2002-11-22 2004-11-16 Tektronix, Inc. Method of monitoring current probe transformer temperature
US20040263342A1 (en) * 2003-06-30 2004-12-30 Matlock Milton Gregory System for monitoring motors
US6975102B2 (en) * 2000-12-12 2005-12-13 Sharp Kabushiki Kaisha Apparatus and method for analyzing capacitance of insulator
US7033073B2 (en) * 2001-09-04 2006-04-25 Siemens Aktiengesellschaft Device and method for measuring the temperature of an electric motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855768A (en) * 1981-09-28 1983-04-02 Mitsubishi Electric Corp Insulation diagnosing method
DE3241147C2 (en) * 1982-11-08 1986-03-27 Schorch GmbH, 4050 Mönchengladbach Resistance thermometer
JPH0445180A (en) * 1990-06-12 1992-02-14 Furukawa Electric Co Ltd:The Heat-resistant insulating coating compound
JP3521570B2 (en) * 1995-10-05 2004-04-19 株式会社明電舎 Insulation diagnostic method for low-voltage rotating electrical machine windings

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818785A (en) * 1930-08-11 1931-08-11 Gen Electric Temperature indicator for electrical apparatus
US2619573A (en) * 1952-01-30 1952-11-25 Gen Electric Temperature detector and lead assembly construction
US3305698A (en) * 1963-09-16 1967-02-21 Motorola Inc Electric motor overheating protection circuit
US3521212A (en) * 1968-06-21 1970-07-21 Texas Instruments Inc Electric motor protection sensor
US3899704A (en) * 1973-03-07 1975-08-12 Siemens Ag Starter or damper winding arrangement for a synchronous electrical machine
US4042900A (en) * 1974-06-03 1977-08-16 General Electric Company Electrostatic shielding of disc windings
US4186712A (en) * 1974-10-22 1980-02-05 Brunswick Corporation RFI-suppressing ignition system for an internal combustion engine
US3960017A (en) * 1975-02-10 1976-06-01 Qualitrol Corporation Thermometer insertable in winding of fluid cooled transformer
US4071875A (en) * 1975-12-29 1978-01-31 Texas Instruments Incorporated Detector apparatus
US4150358A (en) * 1976-01-13 1979-04-17 Asea Aktiebolag Temperature measuring system for rotating machines
US4092864A (en) * 1976-08-04 1978-06-06 Qualitrol Corporation Hot spot thermometer
US4266257A (en) * 1978-10-02 1981-05-05 Johnson Controls, Inc. Motor over-heating protection circuit
USRE31685E (en) * 1979-01-15 1984-09-25 High voltage power transformer winding temperature control system
US4413325A (en) * 1980-03-26 1983-11-01 El-Fi Innovationer Ab Methods and apparatuses for determining the temperature of an asynchronous motor
US4751488A (en) * 1981-06-04 1988-06-14 The United States Of America As Represented By The United States Department Of Energy High voltage capability electrical coils insulated with materials containing SF6 gas
US4547769A (en) * 1981-10-30 1985-10-15 Kabushiki Kaisha Meidensha Vacuum monitor device and method for vacuum interrupter
US4716486A (en) * 1985-03-15 1987-12-29 Etudes Techniques Et Representations Industrielles E.T.R.I. Electric motor comprising a thermistor-type overcurrent protection device
US4683515A (en) * 1985-11-20 1987-07-28 Eaton Corporation Modular PTC thermistor overload protection system
US4766387A (en) * 1987-03-12 1988-08-23 The Charles Stark Draper Laboratory, Inc. Motor winding insulation resistance monitoring system
US4831313A (en) * 1987-09-14 1989-05-16 Lennox Industries, Inc. Two speed motor controller
US5019760A (en) * 1989-12-07 1991-05-28 Electric Power Research Institute Thermal life indicator
US5514967A (en) * 1994-08-16 1996-05-07 Zelm; Richard J. Automatic insulation test equipment for testing high voltage electrical equipment at the rated voltage level
US6225813B1 (en) * 1997-06-09 2001-05-01 General Electric Co. Portable apparatus for in situ field stator bar insulation capacitance mapping
US6121707A (en) * 1998-01-22 2000-09-19 Reliance Electric Technologies, Llc Electric motor and electric motor stator and method for making same
US6028382A (en) * 1998-07-14 2000-02-22 Reliance Electrical Industrial Company Temperature sensing arrangement for the stator core of an electromechanical machine
US6351202B1 (en) * 1998-12-01 2002-02-26 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
US6434505B1 (en) * 1999-10-15 2002-08-13 Atecs Mannesmann Ag Method for determining the instantaneous winding temperature of the stator winding of a three-phase AC motor, in particular a pole-changeable asynchronous motor
US6817160B2 (en) * 2000-04-21 2004-11-16 Cmd Corporation Vertical form fill seal bag with recloseable seal and method of making thereof
US20020048312A1 (en) * 2000-05-18 2002-04-25 Schurr Dana K. Sensor assembly
US6975102B2 (en) * 2000-12-12 2005-12-13 Sharp Kabushiki Kaisha Apparatus and method for analyzing capacitance of insulator
US20040188674A1 (en) * 2001-01-12 2004-09-30 International Business Machines Corporation Electronic structures with reduced capacitance
US6639505B2 (en) * 2001-03-23 2003-10-28 Denso Corporation Temperature sensor
US7033073B2 (en) * 2001-09-04 2006-04-25 Siemens Aktiengesellschaft Device and method for measuring the temperature of an electric motor
US20030178999A1 (en) * 2002-03-19 2003-09-25 Emerson Electric Co. Method and system for monitoring winding insulation resistance
US6794883B2 (en) * 2002-03-19 2004-09-21 Emerson Electric Co. Method and system for monitoring winding insulation resistance
US20040091017A1 (en) * 2002-10-22 2004-05-13 Franz Gramsamer System for temperature monitoring
US6817760B2 (en) * 2002-11-22 2004-11-16 Tektronix, Inc. Method of monitoring current probe transformer temperature
US20040263342A1 (en) * 2003-06-30 2004-12-30 Matlock Milton Gregory System for monitoring motors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060131968A1 (en) * 2002-11-03 2006-06-22 Ingolf Groening Electric motor comprising a temperature monitoring device
US7362550B2 (en) * 2002-11-13 2008-04-22 Rexroth Indramat Gmbh Electric motor comprising a temperature monitoring device
US20130136153A1 (en) * 2007-07-16 2013-05-30 Rtd Company Robust stator winding temperature sensor
US9546913B2 (en) * 2007-07-16 2017-01-17 Measurement Specialties, Inc. Robust stator winding temperature sensor
EP2230749A3 (en) * 2009-03-16 2016-09-21 Egston System Electronics Eggenburg GmbH Stator for an electric machine, in particular an electric motor
CN102243111A (en) * 2011-04-26 2011-11-16 上海中科深江电动车辆有限公司 Permanent magnet motor rotor temperature measurement device and measurement method
CN102507030A (en) * 2011-10-19 2012-06-20 青岛科技大学 Portable lock-rotor temperature measuring device of motor
US20170043092A1 (en) * 2014-04-25 2017-02-16 Panasonic Healthcare Holdings Co., Ltd. Pharmaceutical injection device
US20150364976A1 (en) * 2014-06-13 2015-12-17 Fanuc Corporation Overheat detection device for electric motor equipped with multiple ptc thermistors
US10018518B2 (en) * 2014-06-13 2018-07-10 Fanuc Corporation Overheat detection device for electric motor equipped with multiple PTC thermistors
US10935434B2 (en) * 2017-03-16 2021-03-02 Shibaura Electronics Co., Ltd. Temperature sensor
WO2019084721A1 (en) * 2017-10-30 2019-05-09 深圳市大疆创新科技有限公司 Electric motor, electric motor control system, electric motor temperature measuring method and unmanned aerial vehicle

Also Published As

Publication number Publication date
US7111983B2 (en) 2006-09-26
US20050226308A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US20070019706A1 (en) Temperature detection method and apparatus
JP5072448B2 (en) Multi-function sensor system for electric machine
CN102239623B (en) Winding insulation arrangement for axial flux machines
US20090140614A1 (en) Stator of a dynamoelectric machine equipped with temperature detection
US6531797B2 (en) Rotary electric machine stator having individual removable coils
JP5614881B2 (en) Electrical equipment
US9590460B2 (en) Electric machine with a slot liner
CN106992635B (en) Motor assembly and detection device thereof
CN111245164B (en) Rotating electric machine and method for manufacturing same
US8736276B2 (en) Ripple spring and diagnostic method therefor
US10992199B2 (en) Hydroelectrical machine coil insulation method
US6967554B2 (en) Coil for a rotary electric machine
EP2810358B1 (en) High voltage stator coil with reduced power tip-up
KR101843587B1 (en) Polyphase dynamoelectric machines and stators with phase windings formed of different conductor material(s)
JPH0373226B2 (en)
US20100148623A1 (en) High voltage motor windings
JP2015023750A (en) Electric motor
KR100952226B1 (en) Hybrid Measurement Sensor of Flux, Surge, and Temperature for On-line Condition Monitoring in Generator and Motor
JP5181246B2 (en) Resolver stator structure and resolver
WO2011128732A2 (en) Method of arranging temperature-sensing element, and motor
US20120181882A1 (en) Electric machine having an integrated rotor temperature sensor
McDermid A utility's evaluation of a stator bar insulation system operating at increased electric stress
JP2015056970A (en) Electric apparatus
WO2012054392A2 (en) Systems and methods for insulating y-points of three phase electric motors
GB2133936A (en) Electrical apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: RELIANCE ELECTRIC TECHNOLOGIES, LLC, SOUTH CAROLIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUDSON, JEFFREY A.;REEL/FRAME:019232/0547

Effective date: 20040406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION