US20070015889A1 - Directly polymerized low molecular weight granular polytetrafluoroethylene - Google Patents

Directly polymerized low molecular weight granular polytetrafluoroethylene Download PDF

Info

Publication number
US20070015889A1
US20070015889A1 US11/523,886 US52388606A US2007015889A1 US 20070015889 A1 US20070015889 A1 US 20070015889A1 US 52388606 A US52388606 A US 52388606A US 2007015889 A1 US2007015889 A1 US 2007015889A1
Authority
US
United States
Prior art keywords
molecular weight
low molecular
polytetrafluoroethylene
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/523,886
Inventor
Richard Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/523,886 priority Critical patent/US20070015889A1/en
Publication of US20070015889A1 publication Critical patent/US20070015889A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/24Treatment of polymer suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene

Definitions

  • This invention relates to low molecular weight granular polytetrafluoroethylene and modified polytetrafluoroethylene and a process for preparing the polymer directly by suspension polymerization.
  • PTFE polytetrafluoroethylene
  • Direct polymerization has generally been accomplished by “dispersion” polymerization (also known as “emulsion” polymerization) wherein the polymer is produced as sub-micrometer colloidal particles, i.e., particles having a size less than 1 micrometer, in an aqueous latex.
  • Dispersion polymerization of fluoropolymers often, but not always, employs a fluorinated surfactant for stabilization of the dispersion during polymerization. Dispersion polymerization can sometimes be carried out without surfactants if agitation is gentle and polymer solids are low (i.e., less than 20%).
  • Japanese patent publication (Kokoku) 57-22043 to Fumoto et al. discloses the preparation of low molecular weight PTFE with or without surfactant but calls for high levels of fluorine-containing telogen (fluoro or chlorofluoro alkanes) and achieves only low solids levels.
  • the product latexes are coagulated subsequent to polymerization to afford agglomerated powders.
  • the surfactants used to stabilize the dispersions are normally removed during isolation/drying.
  • the powders are generally rather friable and may be deagglomerated upon application of shear back toward the original sub-micrometer primary particles. Such deagglomeration is especially prevalent if the powders are dispersed into a liquid having a low surface tension. These powders also typically have high surface areas such as 8-20 m 2 /g.
  • the particle size of the low molecular weight PTFE powders is very important for some of its applications as an additive.
  • the preferred particle size for a coating or an ink print is typically slightly larger than the thickness of the coating or ink print.
  • PTFE particles that protrude slightly through the coating layer increase the smudge or scuff resistance of printed inks.
  • Such coatings or ink layers are typically 2-40 micrometers in thickness.
  • Sub-micrometer particles such as those obtained from prior-art dispersion direct polymerization are too small to protrude through the coating or ink surface and cannot significantly aid in smudge resistance.
  • the high surface area of low molecular weight PTFE additive powders can increase the viscosity of the formulations into which it may be added. Although a high thickening powder is sometimes desirable, a minimal effect on formulation viscosity is at other times wanted. Again the high surface areas of the prior-art dispersion polymers may be a disadvantage.
  • Granular PTFE can, after degradation of its molecular weight, be ground to the desired particle size for use in coatings and inks.
  • Such powders typically have a much lower surface area (1.0-4.0 m 2 /g) than polymer from emulsion or dispersion polymerization.
  • these degradation processes are expensive and also generate hazardous byproducts, such as hydrogen fluoride.
  • the powder isolated from a dispersion polymerization has a variety of agglomerate sizes and tightness of packing of the primary particles. This variation in the powder characteristics will cause variable agglomerate fusing at temperatures below the resin melting point. Incomplete fusing leads to the presence of friable agglomerates of primary dispersion particles, these agglomerates may deagglomerate to particles of less than 1 micrometer in size upon further processing such as mixing, grinding and the like.
  • a direct polymerization process for efficient production of low molecular weight PTFE powders suitable for use as additives to other materials is desired that can (1) minimize or eliminate the use of fluorosurfactants which are expensive and present a disposal problem after polymerization; (2) provide a powder substantially free of friable agglomerates of sub-micrometer primary particles; (3) provide a powder with a surface area less than 8 m 2 /g; and/or (4) minimize or eliminate the need for polymer degradation processes.
  • the invention provides for a process for producing low molecular weight, granular polytetrafluoroethylene or modified polytetrafluoroethylene by suspension polymerization of pressurized tetrafluoroethylene in an agitated reaction vessel.
  • the polymerization is conducted in aqueous medium in the presence of a free radical initiator, and a telogen.
  • the reaction vessel is agitated during polymerization sufficiently to produce coagulated, granular polytetrafluoroethylene or modified polytetrafluoroethylene.
  • the low molecular weight granular polytetrafluoroethylene or modified polytetrafluoroethylene powder having a melt viscosity of less than about 1 ⁇ 10 6 Pa ⁇ S is isolated directly from the reaction vessel.
  • the telogen is a non-fluorine containing organic compound, more preferably an aliphatic hydrocarbon or an aliphatic hydrochlorocarbon containing 1-6 carbon atoms.
  • the telogen is preferably present in a concentration of about 0.5 mole % to about 20 mole %, more preferably about 0.5 mole % to about 10 mole %, and most preferably 0.5 mole % to about 5 mole % based upon total tetrafluoroethylene and telogen present in the precharge.
  • the invention further provides for low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder having a melt viscosity of less than about 1 ⁇ 10 6 Pa ⁇ S, a specific surface area of less than about 8m 2 /g, an extractable fluoride level of about 3 ppm or less by weight, and a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less.
  • the particles of low molecular weight powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer.
  • the low molecular powder has a melt viscosity in the range of about 1 ⁇ 10 2 Pa ⁇ S to about 1 ⁇ 10 6 Pa ⁇ S, a specific surface area of less than about 5 m 2 /g, an extractable fluoride level of about 1 ppm or less by weight, and a polydispersity index of about 4.5 or less.
  • the particles of the low molecular weight polymer powder of this invention have a D90/D10 particle size distribution ratio of about 2 to about 10.
  • the invention provides a suspension polymerization process for production of low molecular weight polytetrafluoroethylene (PTFE) and modified PTFE powders that can be isolated directly from the reaction vessel.
  • PTFE polytetrafluoroethylene
  • the low molecular weight powder so produced is suitable for use as an additive to other materials such as inks, coatings, greases, lubricants, and plastics.
  • the process of this invention can be carried out similarly to TFE suspension polymerizations known in the art for high molecular weight PTFE, involving the steps of precharging water to a stirred reaction vessel, deoxygenating, pressuring with TFE to a predetermined level, adding optional comonomer and adding free radical initiator at a sufficient level to start and to maintain the polymerization reaction.
  • low levels of telogen are also added, preferably to the precharge.
  • TFE is introduced into the reaction vessel on a predetermined basis as the polymerization proceeds, for example to maintain a specified pressure or at a specified feed rate. Any workable pressure can be used in the process of this invention. High pressure offers an advantage over low pressure in increased reaction rate.
  • Low pressure offers an advantage over higher pressure in increased comonomer incorporation.
  • pressures in the range of about 0.3 to 7 MPa are used, and pressures in the range of 0.7 to 3.5 MPa are preferred.
  • Pressures in the range of 0.7 to 2.5 MPa are more preferred, and pressures in the range of 0.7 to 1.9 MPa are especially preferred.
  • Suspension polymerizations commonly used for the production of high molecular weight PTFE powders in water have been typically carried out with little or no surfactant addition and with a high degree of agitation.
  • Very small amounts of initiator are typically added so that a high molecular weight is maintained.
  • the absence or limited amount of surfactant and the high shear of agitation causes the initially formed polymer to coagulate at an early stage in the polymerization and subsequent polymerization occurs on the solid particles in a gas-solid reaction in which water acts primarily as a heat transfer medium.
  • the polymer particles typically are large and are “stringy” in nature. The appearance of the particles is believed to be partially due to the tendency of high molecular weight PTFE to cold-draw or fibrillate.
  • the agglomeration and fibrillation result in low surface areas, commonly in the range of 1.0-4.0 m 2 /g.
  • the isolated low molecular weight polymer has a melt viscosity of in the range of about 1 ⁇ 10 2 Pa ⁇ S to about 1 ⁇ 10 6 Pa ⁇ S.
  • TFE dissolves in the water and polymerizes to form tiny solid water-wet nuclei.
  • the water-wet nuclei have increased sufficiently in size, they are coagulated by the agitation applied to the aqueous medium to form agglomerated non-water-wet particles.
  • Further polymerization is believed to take place largely on the surface of the agglomerated non-water-wet particles at an increased rate, apparently via direct contact of gaseous monomer with the non-water-wet agglomerates in preference to contact with dissolved monomer with water-wet particles.
  • significant differences from standard suspension polymerization include the addition of increased amounts of initiator as well as the addition of small amounts of telogen to achieve reduced molecular weight polymer.
  • the reaction vessel in this polymerization process is agitated sufficiently to coagulate the polytetrafluoroethylene or modified polytetrafluoroethylene.
  • the agitator is operated in a range of about 300 to about 800 rpm such as described in U.S. Pat. No. 5,405,923 to Aten.
  • the agitation is sufficiently vigorous to smash the initially-formed particles together to create non-friable agglomerates of low surface area.
  • isolation can be performed directly from aqueous medium.
  • there is not an excessive amount of telogen and thus no need for further washing of the product. All of this is in contrast to dispersion polymerization which product requires subsequent steps such as coagulation and washing to achieve isolation.
  • agitation is sufficient to cause coagulation of greater than 90% by weight of said low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene, more preferably greater than 95%, and most preferably greater than 98%.
  • the amount of solids remaining in the liquid phase is generally less than 2.0 wt. % and frequently less than 0.5 wt. %.
  • high productivity can be achieved by the present invention in that polymer solids levels prior to isolation of greater than 15% and preferably greater than 20% are attained.
  • the fluorinated comonomer is preferably precharged and, optionally, continuously added in an amount sufficient to produce a copolymer of tetrafluoroethylene with preferably about 0.002 to about 0.20 mole % comonomer content.
  • the suspension polymerization process is conducted in the presence of low levels of telogen also known as a chain transfer agent (CTA).
  • CTA chain transfer agent
  • chain transfer implies the stopping of growth of one polymer chain and the initiation of growth of another such that the number of growing polymer radicals remains similar and the polymerization proceeds at a similar rate without the introduction of more initiator.
  • the new radical formed by the reaction of the growing polymer chain with a CTA does not always initiate a new polymer chain.
  • the number of polymer chain radicals and the reaction rate may be slowed without the addition of additional initiator.
  • the key effect is that the produced polymer has a lower molecular weight than it would have had without the presence of the CTA.
  • the telogen used in the process of the present invention is preferably a non-fluorine-containing organic compound.
  • the telogen can be defined as “active” in that the reaction requires relatively small amounts to achieve successful polymerization of the low molecular weight polymer.
  • the telogen is preferably present in the precharge in a concentration of only about 0.5 mole % to about 20 mole %, more preferably about 0.5 mole % to about 10 mole %, and most preferably about 0.5 mole % to about 5 mole % based upon total tetrafluoroethylene and telogen present in the precharge.
  • the telogen is selected from the group consisting of aliphatic hydrocarbons containing 1 to 6 carbon atoms and aliphatic hydrochlorocarbons containing 1 to 6 carbon atoms. In the most preferred embodiment, the telogen is an aliphatic hydrocarbon containing 1 to 6 carbon atoms. Examples of preferred telogens include chloroform and ethane.
  • telogen in contrast to the efficiency of the telogen used in the present invention is the process described in JP Patent Publication (Kokoku) 57-22043 (Daikin) which employs a high level of fluorine-containing telogen (fluoro or chlorofluoro alkanes) to produce low molecular weight polymer powder in low yields.
  • telogen fluorine-containing telogen
  • Examples in this publication describe a concentration of fluorine-containing telogen of from 30 to 80 mole %.
  • Such large amounts of telogen imply that the reaction media is composed of multiple liquid phases: water plus a liquid telogen phase. Telogen present in such quantity reduces the efficiency of commercial production of the low molecular weight polymer resulting in either reduced output or requiring larger reaction vessels.
  • High levels of telogen also require recovery of the telogen and washing of the product.
  • the suspension polymerization process of this invention is conducted preferably with a single liquid phase, i.e., aqueous medium.
  • a single liquid phase i.e., aqueous medium.
  • Water is convenient, liquid over a broad temperature range, inexpensive and safe.
  • a higher amount of initiator is employed than normally used for the standard polymerization of high molecular weight granular PTFE. Additional initiator aids in reducing the molecular weight and maintaining polymerization rate.
  • the amount of initiator depends on the polymerization temperature and the initiator type but the amount used for our invention may be 3-20 times that used to achieve high molecular weight PTFE.
  • Initiators that can be used in the practice of this invention include any free radical initiator for TFE polymerization that is effective over the temperature range to be employed.
  • Initiators commonly employed in aqueous polymerization are thermally activated water-soluble free radical initiators such as ammonium persulfate (APS), potassium persulfate (KPS), or disuccinic acid peroxide, or combinations thereof, or chemically activated redox systems such as potassium permanganate/oxalic acid/potassium bisulfite, potassium persulfate/potassium bisulfite/iron sulfate, or potassium bromate/potassium bisulfite/oxalic acid and the like.
  • thermally activated water-soluble free radical initiators such as ammonium persulfate (APS), potassium persulfate (KPS), or disuccinic acid peroxide, or combinations thereof
  • chemically activated redox systems such as potassium permanganate/oxalic acid/potassium bisulfite, potassium persulfate/potassium bisulfite/iron sulfate, or potassium bromate/potassium bisulfite/
  • the process of the present invention is preferably carried so that the contents of the reaction vessel are essentially free of surfactant, i.e., the amount of surfactant is less than 0.010% based on the amount of water present.
  • the use of fluorosurfactants adds expense and presents a disposal problem after polymerization. Further, the addition of surfactant to the reaction media tends to produce an undesired increase in the specific surface area of the polymer and leads to reduced amounts of coagulated polymer and increased polymer loss.
  • the process of this invention produces low molecular weight powder having a specific surface area of less than about 8m 2 /g, more preferably less than about 5 m 2 /g, even more preferably less than about 4 m 2 /g, and most preferably in the range of about 1 m 2 /g to about 4 m 2 /g.
  • the process of the present invention is preferably carried out without irradiation thereby producing low molecular weight polymer having an extractable fluoride level of about 3 ppm or less by weight and, preferably, an extractable fluoride level of about 1 ppm or less by weight.
  • the invention eliminates the need for costly degradation processes that can generate hazardous byproducts.
  • the process of this invention preferably produces particles of low molecular weight polymer powder having a weight average particle size of about 2 to about 40 micrometers and the powder is preferably substantially free of particles having a particle size of less than about 1 micrometer.
  • the powder so processed remains substantially free of particles having a size of less than one micrometer thus evidencing the lack of friable agglomerates produced during polymerization.
  • the process produces low molecular weight polymer with a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less, preferably of about 4.5 or less, more preferably of about 4 or less.
  • the process of this invention efficiently produces by direct polymerization low molecular weight PTFE or modified PTFE and minimizes or eliminates the use of fluorosurfactants while minimizing or eliminating the need for polymer degradation processes.
  • the product is substantially free of sub-micrometer primary particles and friable agglomerates of such particles and provides a powder with particles having a relatively large average particle size, a low specific surface area and narrow particle size distribution which are particularly useful as additives in selected applications as discussed below.
  • the low molecular weight polymers made in accordance with the present invention are polytetrafluoroethylene (PTFE) homopolymer and modified PTFE.
  • Modified PTFE is a copolymer of tetrafluoroethylene with one or more fluorinated, preferably perfluorinated monomers, such as olefins having from 3 to 6 carbon atoms, such as hexafluoropropylene, and perfluoro(alkyl vinyl ether) (PAVE) wherein the alkyl group contains 1 to 5 carbon atoms.
  • a preferred perfluoro(alkyl vinyl ether) is perfluoro(propyl vinyl ether) (PPVE).
  • the comonomer present in the tetrafluoroethylene polymer is preferably a relatively small amount; e.g., about 0.002 to about 0.20 mole % of comonomer.
  • the low molecular weight fluorocarbon polymer will generally have a first melting peak temperature of less than 340° C., preferably less than 335° C., more preferably less than 330° C. and most preferably about 315° C. to about 335° C. as measured by ASTM D4591-87.
  • the low molecular weight polymer of this invention has a melt viscosity of less than about 1 ⁇ 10 6 Pa ⁇ S, preferably in the range of about 1 ⁇ 10 2 Pa ⁇ S to about 1 ⁇ 10 6 Pa ⁇ S. In some applications such as when these low molecular weight fluoropolymer powders are used as additives to plastics, a range of about 1 ⁇ 10 4 Pa ⁇ S to about 1 ⁇ 10 5 Pa ⁇ S is desirable. In other applications such as when the low molecular weight fluoropolymer powders are used as additives to inks, a range of about 1 ⁇ 10 2 Pa ⁇ S to about 1 ⁇ 10 3 Pa ⁇ S is desirable.
  • Product melt viscosities are determined using essentially the method of ASTM D-1238-52T, modified as disclosed in U.S. Pat. No. 4,360,618 and further explained below in the section describing test methods.
  • the low molecular weight polymer of this invention has a specific surface area of less than about 8 m 2 /g, preferably less than about 5m 2 /g, more preferably less than about 4 m 2 /g and most preferably about 1 m 2 /g to about 4 m 2 /g.
  • Specific surface area (SSA) is measured according to the method of ASTM-5675.
  • the low molecular weight polymer of this invention has an extractable fluoride level of about 3 ppm or less by weight and preferably an extractable fluoride level of about 1 ppm or less by weight.
  • the procedure for determining extractable fluoride content is explained below in the section describing test methods.
  • the low molecular weight polymer powder of this invention has a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less, preferably of about 4.5 or less, more preferably of about 4 or less.
  • the procedure for determining the molecular weight distribution is explained below in the section describing test methods.
  • the narrow molecular weight distribution of the polymer of the invention provides improved surface characteristics when the low molecular weight powder is used as an additive to plastics for molding and extrusion operations. Surface imperfections and bubble formation in parts made of such plastic compounds are significantly reduced by minimizing additive material with substantially lower molecular weight.
  • the particles of low molecular weight polymer powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer.
  • the powder is free of friable agglomerates of sub-micrometer primary particles.
  • Average particle sizes are measured on alcohol suspensions of the product powders using a laser light scattering technique (Microtrac model 9200 analyzer) per ASTM specification D 5675-95a.
  • the presence of sub-micrometer particles can sometimes be seen via the laser light scattering technique but this can depend on the sample preparation method.
  • the preferred method to determine their presence is to employ scanning electron microscopic analysis of the powders dispersed in a fluid of low surface tension.
  • the particles of low molecular weight polymer powder of this invention have a D90/D10 particle size distribution ratio of about 2 to about 10.
  • the particle size distribution ratio is calculated as the ratio of the D90 particle size (90% of the particles are smaller than this value) to the D10 particle size (10% of the particles are smaller than this value).
  • the average powder particle size and its size distribution are very important for use of these powders as additives to other materials for example such as in printing inks and plastics.
  • the PTFE powder is added to inks to provide scuff resistance to prints and prevent printed pages from sticking to one another.
  • the optimum particle size for printing inks is generally slightly larger than the expected print thickness to aid in scuff resistance. Particles that are substantially larger than the print thickness can appear as grit or cause scratches in the print surface whereas smaller particles sink to the bottom of the print, where they become ineffective.
  • PTFE powders are added to plastics to enhance their wear performance, lubricity, and coefficient of friction.
  • the optimum particle size for use in plastics is generally larger than that for use in printing inks but size distribution is again important.
  • the PTFE particle size should be large enough to be sufficiently imbedded in the plastic part surface to avoid removal during abrasion or scuffing but not so large that they provide sites for mechanical failure or visual defects. Particles that are “too small” can more easily be removed from the plastic part surface by abrasion and should be minimized.
  • Low molecular weight polytetrafluoroethylene (PTFE) or modified PTFE can be advantageously used as an additive in other materials for improving sliding properties, increasing release, improving wear resistance, conferring increased stain and mar resistance, enhancing flame retardancy, and increasing water repellency.
  • These low molecular weight powders are advantageously added to inks, paints, coatings, lacquers, greases, oils, lubricants, thermoplastics, thermoset resins, and elastomers.
  • the powders of this invention are especially useful as additives to ink compositions and plastic compositions (especially engineering plastics) where larger average particle size and narrow particle size distribution are important. Such powder is added to inks to provide scuff resistance and to prevent printed pages from adhering to one another.
  • These low molecular weight powders are added to plastics to enhance wear performance, lubricity, and coefficient of friction.
  • Particle Size is determined by measuring alcohol suspensions of the product powders using a laser light scattering technique (Microtrac model 9200 analyzer) per ASTM specification D 5675-95a. This technique reports results as percent volume distribution calculated as equivalent spherical diameter. This is same as percent weight distribution since all particles have the same density. The weight average, D10, and D90 particle size are automatically determined from the distribution by the instrument. This equipment and technique may also show the presence or absence of sub-micrometer particles.
  • D90/D10 Particle Size Distribution Ratio is calculated as the ratio of the D90 particle size (90% of the particles are smaller than this value) to the D10 particle size (10% of the particles are smaller than this value).
  • sub-micrometer particles may be noted by the laser light scattering method described above.
  • a preferred method for determination of sub-micrometer particles is scanning electron microscopy of powder after ultrasonic-aided (ultrasonic bath or probe) dispersion in a fluid of low surface energy such as FREON® 113 or VERTREL® XF followed by deposition on a silicon wafer.
  • Melt Viscosity is determined using essentially the method of ASTM D-1238-52T, modified as disclosed in U.S. Pat. No. 4,360,618, except that a load of either 5000 or 10,000 grams may be used. A melt density of 1.50 g/cc is assumed and the melt viscosity (in Pa ⁇ S) is calculated as either 3691 or 7344 (depending on whether 5000 or 9940 g weight is applied) divided by the observed extrusion rate in g/minute.
  • SSA Specific Surface Area
  • This test measures the fluoride present in the polymer prior to testing and the fluoride produced during the test by decomposition of unstable end groups in the polymer.
  • Ten grams of sample to be tested are placed in a polyethylene bottle.
  • Ten milliliters of a 1:1 mixture (by volume) of methanol/water are added and 10 mL of a Orion 94-09-09 Total Ionic Strength Adjusting Buffer (normally used in fluoride specific ion measurements) are added.
  • the methanol portion of the mixture is necessary to speed the extraction.
  • the mixture is agitated briefly and allowed to stand for 18 hours. Fluoride concentration is determined directly on the sample mixture, using an appropriately calibrated specific ion electrode (Orion 96-90-00). Calibration in the range of 0.05 to 50 micrograms fluoride per milliliter of extracting solution is appropriate to analyze concentrations in the range 0.1 to 100 ppm.
  • the polydispersity index is a measure of the molecular weight distribution (M w /M n ) of a polymer as determined from rheology data.
  • Samples in powder form are individually piston pressed at 370° C. into a 25 mm-diameter disc, ⁇ 2-3 mm thick.
  • Sample testing is performed on a ARES Rheometer (Advanced Rheometric Expansion System) manufactured by Rheometrics Scientific of Piscataway, N.J. (presently owned by Waters Corporation) using 25 mm parallel plates. All test data are generated using Rheometrics Scientific Orchestrator Software, namely the dynamic frequency sweep test and the “Molecular Weight Distribution Synthesis Function” software.
  • Frequency sweep test parameters used are: temperature: 370° C., strain rate: 2%, frequency range of 0.01 to 100 rad/s.
  • the resulting data from the frequency sweep are then analyzed using the MWD Synthesis Function based on PTFE material properties and an estimation of MWD to determine the weight-average (M w ) and polydispersity index (M w /M n ) of the lots.
  • MWD Synthesis Function requires an initial estimation of MWD and then converges upon a solution by minimizing the difference between the data and a curve fit (“fit error”). Initial estimation of MWD is first determined using a unimodal fit then followed by a bimodal fit estimating the 2nd faction two or three times higher than the first estimation. Accepted data is taken based upon the lowest possible solution error.
  • All polymerizations are carried out in a stainless steel autoclave, capable of holding 83.5 lbs (38 kg) of water, encased in a jacket through which heat-transfer fluid is circulated.
  • the autoclave is equipped with a two-bladed, 45 degree angled flat downdraft agitator mounted on a vertical shaft. The temperature in the vapor space is measured by a thermocouple in a small well near the top of the autoclave.
  • Many of the details of the polymerizations are summarized in Table I.
  • the water charge is 47.0 lbs (21.4 kg) and the APS initiator is dissolved in an additional 0.7 to 1.3 lbs (0.3 to 0.6 kg) of water.
  • the autoclave is purged of air by alternately pressuring it with TFE and evacuating. After three purges, a vacuum is left on the autoclave and the telogen, i.e., chain transfer agent (CTA) is added.
  • CTA concentrations in Table 1 are expressed as the mole % of gas at the beginning of polymerization.
  • the autoclave contents are heated to 65° C. and the autoclave is then pressured to 1.83 MPa with TFE.
  • the agitator speed is turned to 600 rpm and held there for the remainder of the polymerization.
  • the initiator solution is pumped into the autoclave and kickoff (a 0.07 MPa drop in pressure) occurs within several minutes. TFE is then added to maintain the 1.83 MPa pressure.
  • the water phase from polymerization is analyzed to determine the amount of polymer that did not coagulate during polymerization.
  • Melting points for the powder of Examples 3, 4, 5 and 8, 10, and 11 are determined in accordance with ASTM D4591-87. For each of these powders, the first and second melting peak temperatures are shown in Table 1.
  • Example 3 and 4 are subjected to the rheological procedure discussed above to determine the polydispersity index (M w /M n ).
  • Powder of Example 3 has a polydispersity of 3.15 and powder of Example 4 has a polydispersity of 3.59.
  • low molecular weight PTFE powder commercially available as ZONYL® MP1300 (DuPont Company, Wilmington, Del.), produced by degradation of high molecular weight PTFE granular using irradiation, when subjected to the same measurement procedure has a polydispersity of 5.5.
  • a high polydispersity index implies the presence of a fraction of low or high molecular weight resin that could cause processing problems during compounding into another material.
  • the dried powders of Examples 2, 7 and 9 are subjected to the procedure described above for determining extractable fluoride content.
  • Powder of Examples 2, 7 and 9 are determined to have a very low extractable fluoride content, respectively, of 0.56 ppm, 0.61 ppm and 0.58.
  • samples of commercially available irradiated PTFE powders, ZONYL® MP1200 and MP1300 are analyzed for their fluoride content. Their respective fluoride levels are 53 and 25 ppm.
  • the dried powders of Examples 5 and 6 are ground using an 8 inch Vortac air-jet mill (manufactured by Churchmen's Machine Company, Wilmington, Del.) with an air temperature of 24° C. and a nozzle pressure of 100 psig.
  • the ground powder of Example 5 has an average particle size of 7.06 micrometers and a D90/D10 particle size distribution ratio of 3.22. There are no detectable particles less than about 2.3 micrometers or larger than 27 micrometers in size.
  • the ground powder of Example 6 has an average particle size of 2.6 micrometers and a D90/D10 particle size distribution ratio of 3.57. There are no particles smaller than 1.0 micrometer or larger than 13 micrometers.
  • ZONYL® MP1100 PTFE powder (DuPont Company, Wilmington, Del.), which is produced by irradiation and grinding of high molecular weight PTFE dispersion polymer, typically has an average particle size of about 4 micrometers but also typically contains 1-6% of sub-micrometer particles (by laser light scattering analysis).
  • ZONYL® MP 1600 PTFE powder (DuPont Company, Wilmington, Del.), which is produced by isolation and drying of polymer produced by aqueous dispersion polymerization in the presence of a telogen, show the presence of sub-micrometer particles by laser light scattering. SEM analysis of MP 1100 and MP 1600 powders also shows the presence of numerous sub-micrometer particles.
  • the ground PTFE powder of Example 6 is suspended at a 2% loading in a wax-free red ink base and the ink is then drawn down on a standard paper stock side-by-side with an ink that did not contain the PTFE. After drying at 350° F., the prints are rubbed by a GA-C.A.T (Comprehensive Abrasion Tester, available from Gavarti Associates of Milwaukee, Wis.) against an abrasive receptor (ASTM method D 5181) for 120 seconds and the prints are compared. The print that did not contain the PTFE shows considerably more scratches and wear than does the print that contained the PTFE. The receptor paper against the print that contained the PTFE shows very little ink transfer in comparison to the control without PTFE.
  • GA-C.A.T Comprehensive Abrasion Tester, available from Gavarti Associates of Milwaukee, Wis.
  • Portions of powders from Examples 10 and 11 are combined and ground using an 8 inch “Microjet” air mill manufactured by Fluid Energy Processing and Equipment Company of Hatfield, Pa.
  • the ground powder has an average particle size of 10.6 micrometers as determined by laser light scattering technique (Microtrac model 9200 analyzer) and a D90/D10 ratio of 5.08. It contains no particles smaller than 3 micrometers and no particles larger than 88 micrometers by laser light scattering. SEM analysis showed almost no particles less than one micrometer in diameter.
  • the ground powder is tumbled with DELRIN® 500P polyacetal powder (available from DuPont Company, Wilmington Del.) at a 20% loading and the mixture is then extruded through a single-screw extruder.
  • the extrudate is cut into pellets, a portion of which are molded into thrust washers using a Arburg 1.5 oz. injection molding machine.
  • the wear performance of this blend against a NYLATRON® surface is compared with a standard sample of DELRIN® 500P (DuPont) that contained no PTFE using a model LRI-1A Wear Test Machine manufactured by Lewis Research, Inc. of Lewes, Del.
  • the coefficient of friction of the control and the sample containing 20% of the PTFE of our invention are 0.39 and 0.17, respectively.
  • the steady-state wear rates are 0.8933 and 0.0017 mil/min, respectively.
  • the addition of the low molecular weight powder of this invention enhances the wear performance, lubricity and coefficient of friction of plastic parts to which the powder is added.

Abstract

A process for producing low molecular weight, granular polytetrafluoroethylene or modified polytetrafluoroethylene by suspension polymerization of pressurized tetrafluoroethylene in an agitated reaction vessel. The polymerization is conducted in aqueous medium in the presence of a free radical initiator, and a telogen. The reaction vessel is agitated during polymerization sufficiently to coagulate the polytetrafluoroethylene or modified polytetrafluoroethylene. Low molecular weight granular polytetrafluoroethylene or modified polytetrafluoroethylene having a melt viscosity of less than about 1×106 Pa·S powder is isolated directly from the reaction vessel. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder in accordance with the invention has a melt viscosity of less than about 1×106 Pa·S, a specific surface area of less than about 8 m2/g, an extractable fluoride level of about 3 ppm or less by weight, and a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less. The particles of low molecular powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer. The low molecular weight material so produced suitable for use as additives to other materials such as inks, coatings, greases, lubricants, and plastics.

Description

    FIELD OF THE INVENTION
  • This invention relates to low molecular weight granular polytetrafluoroethylene and modified polytetrafluoroethylene and a process for preparing the polymer directly by suspension polymerization.
  • BACKGROUND OF THE INVENTION
  • Low molecular weight polytetrafluoroethylene (PTFE) powders are widely used as additives to other materials such as inks, coatings, greases, lubricants, and plastics. These powders are currently produced either by direct polymerization or by degradation of high molecular weight PTFE powders through either high energy irradiation or thermal processes.
  • Direct polymerization has generally been accomplished by “dispersion” polymerization (also known as “emulsion” polymerization) wherein the polymer is produced as sub-micrometer colloidal particles, i.e., particles having a size less than 1 micrometer, in an aqueous latex. Dispersion polymerization of fluoropolymers often, but not always, employs a fluorinated surfactant for stabilization of the dispersion during polymerization. Dispersion polymerization can sometimes be carried out without surfactants if agitation is gentle and polymer solids are low (i.e., less than 20%). For example, Japanese patent publication (Kokoku) 57-22043 to Fumoto et al., discloses the preparation of low molecular weight PTFE with or without surfactant but calls for high levels of fluorine-containing telogen (fluoro or chlorofluoro alkanes) and achieves only low solids levels. In dispersion polymerization processes, the product latexes are coagulated subsequent to polymerization to afford agglomerated powders. The surfactants used to stabilize the dispersions are normally removed during isolation/drying. The powders are generally rather friable and may be deagglomerated upon application of shear back toward the original sub-micrometer primary particles. Such deagglomeration is especially prevalent if the powders are dispersed into a liquid having a low surface tension. These powders also typically have high surface areas such as 8-20 m2/g.
  • The particle size of the low molecular weight PTFE powders is very important for some of its applications as an additive. For example, the preferred particle size for a coating or an ink print is typically slightly larger than the thickness of the coating or ink print. PTFE particles that protrude slightly through the coating layer increase the smudge or scuff resistance of printed inks. Such coatings or ink layers are typically 2-40 micrometers in thickness. Sub-micrometer particles such as those obtained from prior-art dispersion direct polymerization are too small to protrude through the coating or ink surface and cannot significantly aid in smudge resistance.
  • The high surface area of low molecular weight PTFE additive powders can increase the viscosity of the formulations into which it may be added. Although a high thickening powder is sometimes desirable, a minimal effect on formulation viscosity is at other times wanted. Again the high surface areas of the prior-art dispersion polymers may be a disadvantage.
  • Low molecular weight PTFE powders for uses, wherein a 2-40 micrometer particle size and/or a low surface area is preferred, have been produced typically from high molecular weight “suspension” polymerized PTFE (usually referred to as “granular” PTFE) by thermal degradation or by irradiation with high energy electrons from either a gamma source or electron beam. Granular PTFE can, after degradation of its molecular weight, be ground to the desired particle size for use in coatings and inks. Such powders typically have a much lower surface area (1.0-4.0 m2/g) than polymer from emulsion or dispersion polymerization. However, these degradation processes are expensive and also generate hazardous byproducts, such as hydrogen fluoride.
  • It has also been attempted to change the particulate nature of low molecular weight dispersion polymerized PTFE powders to be more like powders produced by irradiating or thermally degrading high molecular weight PTFE. In U.S. Pat. No. 5,118,788 to Hosokawa et al., unsintered low molecular weight dispersion polymerized PTFE powder is heated to a temperature in range from about 70° C. lower than the melting point to a temperature lower than the melting point and comminuted. Such a process, however, is inherently difficult or impossible to control. As illustrated in the comparative examples of U.S. Pat. No. 5,118,788, a high temperature or long heating time will lead to poor comminuting properties and a low temperature or short heating time will not fuse all of the agglomerates and specific surface area will not be decreased. The powder isolated from a dispersion polymerization has a variety of agglomerate sizes and tightness of packing of the primary particles. This variation in the powder characteristics will cause variable agglomerate fusing at temperatures below the resin melting point. Incomplete fusing leads to the presence of friable agglomerates of primary dispersion particles, these agglomerates may deagglomerate to particles of less than 1 micrometer in size upon further processing such as mixing, grinding and the like.
  • A direct polymerization process for efficient production of low molecular weight PTFE powders suitable for use as additives to other materials is desired that can (1) minimize or eliminate the use of fluorosurfactants which are expensive and present a disposal problem after polymerization; (2) provide a powder substantially free of friable agglomerates of sub-micrometer primary particles; (3) provide a powder with a surface area less than 8 m2/g; and/or (4) minimize or eliminate the need for polymer degradation processes.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention provides for a process for producing low molecular weight, granular polytetrafluoroethylene or modified polytetrafluoroethylene by suspension polymerization of pressurized tetrafluoroethylene in an agitated reaction vessel. The polymerization is conducted in aqueous medium in the presence of a free radical initiator, and a telogen. The reaction vessel is agitated during polymerization sufficiently to produce coagulated, granular polytetrafluoroethylene or modified polytetrafluoroethylene. The low molecular weight granular polytetrafluoroethylene or modified polytetrafluoroethylene powder having a melt viscosity of less than about 1×106 Pa·S is isolated directly from the reaction vessel. In a preferred embodiment, the telogen is a non-fluorine containing organic compound, more preferably an aliphatic hydrocarbon or an aliphatic hydrochlorocarbon containing 1-6 carbon atoms. When polymerization is carried out by providing a precharge including tetrafluoroethylene and telogen in the reaction vessel and introducing additional tetrafluoroethylene to the reaction vessel as the polymerization proceeds, the telogen is preferably present in a concentration of about 0.5 mole % to about 20 mole %, more preferably about 0.5 mole % to about 10 mole %, and most preferably 0.5 mole % to about 5 mole % based upon total tetrafluoroethylene and telogen present in the precharge.
  • The invention further provides for low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder having a melt viscosity of less than about 1×106 Pa·S, a specific surface area of less than about 8m2/g, an extractable fluoride level of about 3 ppm or less by weight, and a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less. The particles of low molecular weight powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer. In preferred embodiments, the low molecular powder has a melt viscosity in the range of about 1×102 Pa·S to about 1×106 Pa·S, a specific surface area of less than about 5 m2/g, an extractable fluoride level of about 1 ppm or less by weight, and a polydispersity index of about 4.5 or less. In an especially preferred embodiment, the particles of the low molecular weight polymer powder of this invention have a D90/D10 particle size distribution ratio of about 2 to about 10.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides a suspension polymerization process for production of low molecular weight polytetrafluoroethylene (PTFE) and modified PTFE powders that can be isolated directly from the reaction vessel. The low molecular weight powder so produced is suitable for use as an additive to other materials such as inks, coatings, greases, lubricants, and plastics.
  • Suspension Polymerization Process
  • The process of this invention can be carried out similarly to TFE suspension polymerizations known in the art for high molecular weight PTFE, involving the steps of precharging water to a stirred reaction vessel, deoxygenating, pressuring with TFE to a predetermined level, adding optional comonomer and adding free radical initiator at a sufficient level to start and to maintain the polymerization reaction. For this invention, low levels of telogen are also added, preferably to the precharge. TFE is introduced into the reaction vessel on a predetermined basis as the polymerization proceeds, for example to maintain a specified pressure or at a specified feed rate. Any workable pressure can be used in the process of this invention. High pressure offers an advantage over low pressure in increased reaction rate. Low pressure offers an advantage over higher pressure in increased comonomer incorporation. Generally, pressures in the range of about 0.3 to 7 MPa are used, and pressures in the range of 0.7 to 3.5 MPa are preferred. Pressures in the range of 0.7 to 2.5 MPa are more preferred, and pressures in the range of 0.7 to 1.9 MPa are especially preferred.
  • Suspension polymerizations commonly used for the production of high molecular weight PTFE powders in water have been typically carried out with little or no surfactant addition and with a high degree of agitation. Very small amounts of initiator are typically added so that a high molecular weight is maintained. The absence or limited amount of surfactant and the high shear of agitation causes the initially formed polymer to coagulate at an early stage in the polymerization and subsequent polymerization occurs on the solid particles in a gas-solid reaction in which water acts primarily as a heat transfer medium. The polymer particles typically are large and are “stringy” in nature. The appearance of the particles is believed to be partially due to the tendency of high molecular weight PTFE to cold-draw or fibrillate. The agglomeration and fibrillation result in low surface areas, commonly in the range of 1.0-4.0 m2/g.
  • Prior to the present work, it has not been known whether low molecular weight PTFE powders with low surface areas could be polymerized at high solids levels by suspension polymerization. It was additionally not known what characteristics such polymer would have. Since it is believed that the molecular weight of PTFE must be high for fibrillation to play a role in the particle formation of suspension-polymerized PTFE, the particle morphology of low molecular weight PTFE produced by suspension polymerization was heretofore unknown. There was concern that polymer agglomeration of low molecular weight PTFE in the reaction vessel would be ineffective and that a significant amount of polymer would remain in the aqueous phase. Surprisingly, it has been found that with sufficient agitation low molecular weight, granular polytetrafluoroethylene or modified polytetrafluoroethylene having a melt viscosity of less than about 1×106 Pa·S can be isolated directly in high yield from the reaction vessel. In a preferred embodiment, the isolated low molecular weight polymer has a melt viscosity of in the range of about 1×102 Pa·S to about 1×106 Pa·S.
  • Similar to a standard suspension polymerization process such as that described in U.S. Pat. No. 3,245,972 to Anderson et al., it is believed that early in the process of the invention TFE dissolves in the water and polymerizes to form tiny solid water-wet nuclei. When the water-wet nuclei have increased sufficiently in size, they are coagulated by the agitation applied to the aqueous medium to form agglomerated non-water-wet particles. Further polymerization is believed to take place largely on the surface of the agglomerated non-water-wet particles at an increased rate, apparently via direct contact of gaseous monomer with the non-water-wet agglomerates in preference to contact with dissolved monomer with water-wet particles. However, significant differences from standard suspension polymerization include the addition of increased amounts of initiator as well as the addition of small amounts of telogen to achieve reduced molecular weight polymer.
  • As in the suspension polymerization of high molecular weight PTFE, the reaction vessel in this polymerization process is agitated sufficiently to coagulate the polytetrafluoroethylene or modified polytetrafluoroethylene. In a preferred embodiment the reaction vessel, the agitator is operated in a range of about 300 to about 800 rpm such as described in U.S. Pat. No. 5,405,923 to Aten. The agitation is sufficiently vigorous to smash the initially-formed particles together to create non-friable agglomerates of low surface area. Because the polymer coagulates during polymerization, isolation can be performed directly from aqueous medium. Moreover, as discussed in more detail below, there is not an excessive amount of telogen and thus no need for further washing of the product. All of this is in contrast to dispersion polymerization which product requires subsequent steps such as coagulation and washing to achieve isolation.
  • In a preferred embodiment of the invention, agitation is sufficient to cause coagulation of greater than 90% by weight of said low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene, more preferably greater than 95%, and most preferably greater than 98%. In the Examples of the invention which follow, it will be shown that the amount of solids remaining in the liquid phase is generally less than 2.0 wt. % and frequently less than 0.5 wt. %.
  • Also surprisingly, high productivity can be achieved by the present invention in that polymer solids levels prior to isolation of greater than 15% and preferably greater than 20% are attained.
  • In the production of modified PTFE, the fluorinated comonomer is preferably precharged and, optionally, continuously added in an amount sufficient to produce a copolymer of tetrafluoroethylene with preferably about 0.002 to about 0.20 mole % comonomer content.
  • The suspension polymerization process is conducted in the presence of low levels of telogen also known as a chain transfer agent (CTA). The term chain transfer implies the stopping of growth of one polymer chain and the initiation of growth of another such that the number of growing polymer radicals remains similar and the polymerization proceeds at a similar rate without the introduction of more initiator. However, in actual practice, the new radical formed by the reaction of the growing polymer chain with a CTA does not always initiate a new polymer chain. Thus, the number of polymer chain radicals and the reaction rate may be slowed without the addition of additional initiator. The key effect is that the produced polymer has a lower molecular weight than it would have had without the presence of the CTA.
  • The telogen used in the process of the present invention is preferably a non-fluorine-containing organic compound. The telogen can be defined as “active” in that the reaction requires relatively small amounts to achieve successful polymerization of the low molecular weight polymer. When polymerization is carried out by precharging a tetrafluoroethylene and telogen precharge to the reaction vessel and introducing additional tetrafluoroethylene as the polymerization proceeds, the telogen is preferably present in the precharge in a concentration of only about 0.5 mole % to about 20 mole %, more preferably about 0.5 mole % to about 10 mole %, and most preferably about 0.5 mole % to about 5 mole % based upon total tetrafluoroethylene and telogen present in the precharge.
  • In a more preferred embodiment of this invention, the telogen is selected from the group consisting of aliphatic hydrocarbons containing 1 to 6 carbon atoms and aliphatic hydrochlorocarbons containing 1 to 6 carbon atoms. In the most preferred embodiment, the telogen is an aliphatic hydrocarbon containing 1 to 6 carbon atoms. Examples of preferred telogens include chloroform and ethane.
  • In contrast to the efficiency of the telogen used in the present invention is the process described in JP Patent Publication (Kokoku) 57-22043 (Daikin) which employs a high level of fluorine-containing telogen (fluoro or chlorofluoro alkanes) to produce low molecular weight polymer powder in low yields. Examples in this publication describe a concentration of fluorine-containing telogen of from 30 to 80 mole %. Such large amounts of telogen imply that the reaction media is composed of multiple liquid phases: water plus a liquid telogen phase. Telogen present in such quantity reduces the efficiency of commercial production of the low molecular weight polymer resulting in either reduced output or requiring larger reaction vessels. High levels of telogen also require recovery of the telogen and washing of the product.
  • The suspension polymerization process of this invention is conducted preferably with a single liquid phase, i.e., aqueous medium. Water is convenient, liquid over a broad temperature range, inexpensive and safe.
  • In this reaction process for the production of low molecular weight polymer, a higher amount of initiator is employed than normally used for the standard polymerization of high molecular weight granular PTFE. Additional initiator aids in reducing the molecular weight and maintaining polymerization rate. The amount of initiator depends on the polymerization temperature and the initiator type but the amount used for our invention may be 3-20 times that used to achieve high molecular weight PTFE. Initiators that can be used in the practice of this invention include any free radical initiator for TFE polymerization that is effective over the temperature range to be employed. Initiators commonly employed in aqueous polymerization are thermally activated water-soluble free radical initiators such as ammonium persulfate (APS), potassium persulfate (KPS), or disuccinic acid peroxide, or combinations thereof, or chemically activated redox systems such as potassium permanganate/oxalic acid/potassium bisulfite, potassium persulfate/potassium bisulfite/iron sulfate, or potassium bromate/potassium bisulfite/oxalic acid and the like.
  • The process of the present invention is preferably carried so that the contents of the reaction vessel are essentially free of surfactant, i.e., the amount of surfactant is less than 0.010% based on the amount of water present. The use of fluorosurfactants adds expense and presents a disposal problem after polymerization. Further, the addition of surfactant to the reaction media tends to produce an undesired increase in the specific surface area of the polymer and leads to reduced amounts of coagulated polymer and increased polymer loss. In preferred embodiments, the process of this invention produces low molecular weight powder having a specific surface area of less than about 8m2/g, more preferably less than about 5 m2/g, even more preferably less than about 4 m2/g, and most preferably in the range of about 1 m2/g to about 4 m2/g.
  • The process of the present invention is preferably carried out without irradiation thereby producing low molecular weight polymer having an extractable fluoride level of about 3 ppm or less by weight and, preferably, an extractable fluoride level of about 1 ppm or less by weight. The invention eliminates the need for costly degradation processes that can generate hazardous byproducts.
  • The process of this invention preferably produces particles of low molecular weight polymer powder having a weight average particle size of about 2 to about 40 micrometers and the powder is preferably substantially free of particles having a particle size of less than about 1 micrometer. In addition, it is preferred for the process to produce powder substantially free of friable agglomerates of sub-micrometer primary particles. In another embodiment, it may be useful to further reduce size of the particles of a polymer formed by the process of this invention by grinding. The powder so processed remains substantially free of particles having a size of less than one micrometer thus evidencing the lack of friable agglomerates produced during polymerization.
  • In a preferred embodiment, the process produces low molecular weight polymer with a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less, preferably of about 4.5 or less, more preferably of about 4 or less.
  • The process of this invention efficiently produces by direct polymerization low molecular weight PTFE or modified PTFE and minimizes or eliminates the use of fluorosurfactants while minimizing or eliminating the need for polymer degradation processes. The product is substantially free of sub-micrometer primary particles and friable agglomerates of such particles and provides a powder with particles having a relatively large average particle size, a low specific surface area and narrow particle size distribution which are particularly useful as additives in selected applications as discussed below.
  • Low Molecular Weight Polymer Product
  • The low molecular weight polymers made in accordance with the present invention are polytetrafluoroethylene (PTFE) homopolymer and modified PTFE. Modified PTFE is a copolymer of tetrafluoroethylene with one or more fluorinated, preferably perfluorinated monomers, such as olefins having from 3 to 6 carbon atoms, such as hexafluoropropylene, and perfluoro(alkyl vinyl ether) (PAVE) wherein the alkyl group contains 1 to 5 carbon atoms. A preferred perfluoro(alkyl vinyl ether) is perfluoro(propyl vinyl ether) (PPVE). Also preferred is the partially fluorinated monomer, perfluorobutyl ethylene (PFBE). The comonomer present in the tetrafluoroethylene polymer is preferably a relatively small amount; e.g., about 0.002 to about 0.20 mole % of comonomer. The low molecular weight fluorocarbon polymer will generally have a first melting peak temperature of less than 340° C., preferably less than 335° C., more preferably less than 330° C. and most preferably about 315° C. to about 335° C. as measured by ASTM D4591-87.
  • The low molecular weight polymer of this invention has a melt viscosity of less than about 1×106 Pa·S, preferably in the range of about 1×102 Pa·S to about 1×106 Pa·S. In some applications such as when these low molecular weight fluoropolymer powders are used as additives to plastics, a range of about 1×104 Pa·S to about 1×105 Pa·S is desirable. In other applications such as when the low molecular weight fluoropolymer powders are used as additives to inks, a range of about 1×102 Pa·S to about 1×103 Pa·S is desirable. Product melt viscosities are determined using essentially the method of ASTM D-1238-52T, modified as disclosed in U.S. Pat. No. 4,360,618 and further explained below in the section describing test methods.
  • The low molecular weight polymer of this invention has a specific surface area of less than about 8 m2/g, preferably less than about 5m2/g, more preferably less than about 4 m2/g and most preferably about 1 m2/g to about 4 m2/g. Specific surface area (SSA) is measured according to the method of ASTM-5675.
  • The low molecular weight polymer of this invention has an extractable fluoride level of about 3 ppm or less by weight and preferably an extractable fluoride level of about 1 ppm or less by weight. The procedure for determining extractable fluoride content is explained below in the section describing test methods.
  • The low molecular weight polymer powder of this invention has a narrow molecular weight distribution as indicated by a polydispersity index of about 5 or less, preferably of about 4.5 or less, more preferably of about 4 or less. The procedure for determining the molecular weight distribution is explained below in the section describing test methods. The narrow molecular weight distribution of the polymer of the invention provides improved surface characteristics when the low molecular weight powder is used as an additive to plastics for molding and extrusion operations. Surface imperfections and bubble formation in parts made of such plastic compounds are significantly reduced by minimizing additive material with substantially lower molecular weight.
  • The particles of low molecular weight polymer powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer. Preferably, the powder is free of friable agglomerates of sub-micrometer primary particles. Average particle sizes are measured on alcohol suspensions of the product powders using a laser light scattering technique (Microtrac model 9200 analyzer) per ASTM specification D 5675-95a. The presence of sub-micrometer particles can sometimes be seen via the laser light scattering technique but this can depend on the sample preparation method. The preferred method to determine their presence is to employ scanning electron microscopic analysis of the powders dispersed in a fluid of low surface tension.
  • Preferably, the particles of low molecular weight polymer powder of this invention have a D90/D10 particle size distribution ratio of about 2 to about 10. The particle size distribution ratio is calculated as the ratio of the D90 particle size (90% of the particles are smaller than this value) to the D10 particle size (10% of the particles are smaller than this value).
  • The average powder particle size and its size distribution are very important for use of these powders as additives to other materials for example such as in printing inks and plastics. The PTFE powder is added to inks to provide scuff resistance to prints and prevent printed pages from sticking to one another. The optimum particle size for printing inks is generally slightly larger than the expected print thickness to aid in scuff resistance. Particles that are substantially larger than the print thickness can appear as grit or cause scratches in the print surface whereas smaller particles sink to the bottom of the print, where they become ineffective.
  • PTFE powders are added to plastics to enhance their wear performance, lubricity, and coefficient of friction. The optimum particle size for use in plastics is generally larger than that for use in printing inks but size distribution is again important. The PTFE particle size should be large enough to be sufficiently imbedded in the plastic part surface to avoid removal during abrasion or scuffing but not so large that they provide sites for mechanical failure or visual defects. Particles that are “too small” can more easily be removed from the plastic part surface by abrasion and should be minimized.
  • Use
  • Low molecular weight polytetrafluoroethylene (PTFE) or modified PTFE can be advantageously used as an additive in other materials for improving sliding properties, increasing release, improving wear resistance, conferring increased stain and mar resistance, enhancing flame retardancy, and increasing water repellency. These low molecular weight powders are advantageously added to inks, paints, coatings, lacquers, greases, oils, lubricants, thermoplastics, thermoset resins, and elastomers. As discussed above, the powders of this invention are especially useful as additives to ink compositions and plastic compositions (especially engineering plastics) where larger average particle size and narrow particle size distribution are important. Such powder is added to inks to provide scuff resistance and to prevent printed pages from adhering to one another. These low molecular weight powders are added to plastics to enhance wear performance, lubricity, and coefficient of friction.
  • Test Methods
  • Particle Size is determined by measuring alcohol suspensions of the product powders using a laser light scattering technique (Microtrac model 9200 analyzer) per ASTM specification D 5675-95a. This technique reports results as percent volume distribution calculated as equivalent spherical diameter. This is same as percent weight distribution since all particles have the same density. The weight average, D10, and D90 particle size are automatically determined from the distribution by the instrument. This equipment and technique may also show the presence or absence of sub-micrometer particles.
  • D90/D10 Particle Size Distribution Ratio is calculated as the ratio of the D90 particle size (90% of the particles are smaller than this value) to the D10 particle size (10% of the particles are smaller than this value).
  • The presence of sub-micrometer particles may be noted by the laser light scattering method described above. A preferred method for determination of sub-micrometer particles is scanning electron microscopy of powder after ultrasonic-aided (ultrasonic bath or probe) dispersion in a fluid of low surface energy such as FREON® 113 or VERTREL® XF followed by deposition on a silicon wafer.
  • Melt Viscosity is determined using essentially the method of ASTM D-1238-52T, modified as disclosed in U.S. Pat. No. 4,360,618, except that a load of either 5000 or 10,000 grams may be used. A melt density of 1.50 g/cc is assumed and the melt viscosity (in Pa·S) is calculated as either 3691 or 7344 (depending on whether 5000 or 9940 g weight is applied) divided by the observed extrusion rate in g/minute.
  • Specific Surface Area (SSA) is measured according to the method of ASTM-5675.
  • Extractable Fluoride Content
  • This test measures the fluoride present in the polymer prior to testing and the fluoride produced during the test by decomposition of unstable end groups in the polymer. Ten grams of sample to be tested are placed in a polyethylene bottle. Ten milliliters of a 1:1 mixture (by volume) of methanol/water are added and 10 mL of a Orion 94-09-09 Total Ionic Strength Adjusting Buffer (normally used in fluoride specific ion measurements) are added. The methanol portion of the mixture is necessary to speed the extraction. The mixture is agitated briefly and allowed to stand for 18 hours. Fluoride concentration is determined directly on the sample mixture, using an appropriately calibrated specific ion electrode (Orion 96-90-00). Calibration in the range of 0.05 to 50 micrograms fluoride per milliliter of extracting solution is appropriate to analyze concentrations in the range 0.1 to 100 ppm.
  • Polydispersity Index
  • The polydispersity index is a measure of the molecular weight distribution (Mw/Mn) of a polymer as determined from rheology data. Samples in powder form are individually piston pressed at 370° C. into a 25 mm-diameter disc, ˜2-3 mm thick. Sample testing is performed on a ARES Rheometer (Advanced Rheometric Expansion System) manufactured by Rheometrics Scientific of Piscataway, N.J. (presently owned by Waters Corporation) using 25 mm parallel plates. All test data are generated using Rheometrics Scientific Orchestrator Software, namely the dynamic frequency sweep test and the “Molecular Weight Distribution Synthesis Function” software. Frequency sweep test parameters used are: temperature: 370° C., strain rate: 2%, frequency range of 0.01 to 100 rad/s. The resulting data from the frequency sweep are then analyzed using the MWD Synthesis Function based on PTFE material properties and an estimation of MWD to determine the weight-average (Mw) and polydispersity index (Mw/Mn) of the lots. (Viscosity Exponent 3.4; Activation Energy 0; Plateau Modulus 1.7×106; Reference Temp 370° C.; Front Factor 2.15×10−17 Entanglement Mw 4800, Minimum Reptation Wt 9600.) MWD Synthesis Function requires an initial estimation of MWD and then converges upon a solution by minimizing the difference between the data and a curve fit (“fit error”). Initial estimation of MWD is first determined using a unimodal fit then followed by a bimodal fit estimating the 2nd faction two or three times higher than the first estimation. Accepted data is taken based upon the lowest possible solution error.
  • EXAMPLES
  • All polymerizations are carried out in a stainless steel autoclave, capable of holding 83.5 lbs (38 kg) of water, encased in a jacket through which heat-transfer fluid is circulated. The autoclave is equipped with a two-bladed, 45 degree angled flat downdraft agitator mounted on a vertical shaft. The temperature in the vapor space is measured by a thermocouple in a small well near the top of the autoclave. Many of the details of the polymerizations are summarized in Table I. The water charge is 47.0 lbs (21.4 kg) and the APS initiator is dissolved in an additional 0.7 to 1.3 lbs (0.3 to 0.6 kg) of water. The autoclave is purged of air by alternately pressuring it with TFE and evacuating. After three purges, a vacuum is left on the autoclave and the telogen, i.e., chain transfer agent (CTA) is added. The CTA concentrations in Table 1 are expressed as the mole % of gas at the beginning of polymerization. The autoclave contents are heated to 65° C. and the autoclave is then pressured to 1.83 MPa with TFE. The agitator speed is turned to 600 rpm and held there for the remainder of the polymerization. The initiator solution is pumped into the autoclave and kickoff (a 0.07 MPa drop in pressure) occurs within several minutes. TFE is then added to maintain the 1.83 MPa pressure. After the addition of 14-15 lbs (6.4-6.8 kg) of TFE, addition is stopped but the reaction is generally allowed to continue for an additional time period during which time the autoclave pressure drops. Finally, the agitator is stopped, cooling water is added to the autoclave jacket, and the reactor is vented. The polymer product, which is floating on the water in the autoclave, is then scooped from the autoclave and the water effluent is analyzed for suspended polymer. The polymer is dried in an oven at 150° C. The product data that are shown in Table 1 are of the powders after polymerization and drying, without cutting or grinding. However, the polymer can be cut or ground to a smaller particle size if so desired. The water phase from polymerization is analyzed to determine the amount of polymer that did not coagulate during polymerization. Melting points for the powder of Examples 3, 4, 5 and 8, 10, and 11 are determined in accordance with ASTM D4591-87. For each of these powders, the first and second melting peak temperatures are shown in Table 1.
  • The dried powders of Example 3 and 4 are subjected to the rheological procedure discussed above to determine the polydispersity index (Mw/Mn). Powder of Example 3 has a polydispersity of 3.15 and powder of Example 4 has a polydispersity of 3.59. In comparison low molecular weight PTFE powder commercially available as ZONYL® MP1300 (DuPont Company, Wilmington, Del.), produced by degradation of high molecular weight PTFE granular using irradiation, when subjected to the same measurement procedure has a polydispersity of 5.5. A high polydispersity index implies the presence of a fraction of low or high molecular weight resin that could cause processing problems during compounding into another material.
  • The dried powders of Examples 2, 7 and 9 are subjected to the procedure described above for determining extractable fluoride content. Powder of Examples 2, 7 and 9 are determined to have a very low extractable fluoride content, respectively, of 0.56 ppm, 0.61 ppm and 0.58. For comparison, samples of commercially available irradiated PTFE powders, ZONYL® MP1200 and MP1300 (DuPont Company, Wilmington, Del.), are analyzed for their fluoride content. Their respective fluoride levels are 53 and 25 ppm.
  • The dried powders of Examples 5 and 6 are ground using an 8 inch Vortac air-jet mill (manufactured by Churchmen's Machine Company, Wilmington, Del.) with an air temperature of 24° C. and a nozzle pressure of 100 psig. The ground powder of Example 5 has an average particle size of 7.06 micrometers and a D90/D10 particle size distribution ratio of 3.22. There are no detectable particles less than about 2.3 micrometers or larger than 27 micrometers in size. The ground powder of Example 6 has an average particle size of 2.6 micrometers and a D90/D10 particle size distribution ratio of 3.57. There are no particles smaller than 1.0 micrometer or larger than 13 micrometers. By comparison, ZONYL® MP1100 PTFE powder (DuPont Company, Wilmington, Del.), which is produced by irradiation and grinding of high molecular weight PTFE dispersion polymer, typically has an average particle size of about 4 micrometers but also typically contains 1-6% of sub-micrometer particles (by laser light scattering analysis). Also by comparison, ZONYL® MP 1600 PTFE powder (DuPont Company, Wilmington, Del.), which is produced by isolation and drying of polymer produced by aqueous dispersion polymerization in the presence of a telogen, show the presence of sub-micrometer particles by laser light scattering. SEM analysis of MP 1100 and MP 1600 powders also shows the presence of numerous sub-micrometer particles.
  • Incorporation of Ground PTFE Powder into Printing Ink
  • The ground PTFE powder of Example 6 is suspended at a 2% loading in a wax-free red ink base and the ink is then drawn down on a standard paper stock side-by-side with an ink that did not contain the PTFE. After drying at 350° F., the prints are rubbed by a GA-C.A.T (Comprehensive Abrasion Tester, available from Gavarti Associates of Milwaukee, Wis.) against an abrasive receptor (ASTM method D 5181) for 120 seconds and the prints are compared. The print that did not contain the PTFE shows considerably more scratches and wear than does the print that contained the PTFE. The receptor paper against the print that contained the PTFE shows very little ink transfer in comparison to the control without PTFE. Comparisons are also made with the use of ZONYL® MP1100 (irradiation-degraded high molecular weight dispersion polymer) and a low molecular weight PTFE powder that has been polymerized by the dispersion process of U.S. Pat. No. 6,060,167 to Morgan et al. They afford improved wear performance compared to the absence of any PTFE but show considerably more wear than the additive of this invention.
  • Incorporation of Ground PTFE Powder into Polyacetal Resin
  • Portions of powders from Examples 10 and 11 are combined and ground using an 8 inch “Microjet” air mill manufactured by Fluid Energy Processing and Equipment Company of Hatfield, Pa. The ground powder has an average particle size of 10.6 micrometers as determined by laser light scattering technique (Microtrac model 9200 analyzer) and a D90/D10 ratio of 5.08. It contains no particles smaller than 3 micrometers and no particles larger than 88 micrometers by laser light scattering. SEM analysis showed almost no particles less than one micrometer in diameter. The ground powder is tumbled with DELRIN® 500P polyacetal powder (available from DuPont Company, Wilmington Del.) at a 20% loading and the mixture is then extruded through a single-screw extruder. The extrudate is cut into pellets, a portion of which are molded into thrust washers using a Arburg 1.5 oz. injection molding machine. The wear performance of this blend against a NYLATRON® surface is compared with a standard sample of DELRIN® 500P (DuPont) that contained no PTFE using a model LRI-1A Wear Test Machine manufactured by Lewis Research, Inc. of Lewes, Del. The coefficient of friction of the control and the sample containing 20% of the PTFE of our invention are 0.39 and 0.17, respectively. The steady-state wear rates are 0.8933 and 0.0017 mil/min, respectively. The addition of the low molecular weight powder of this invention enhances the wear performance, lubricity and coefficient of friction of plastic parts to which the powder is added.
    TABLE 1
    Pressure
    CTA APS C-8 TFE Reaction Before
    Example Level Initiator Surfactant Added Time*** Vent
    Number Type mole % lbs lbs lbs minutes MPa
    1 CHCl3 2.0 0.013 None 14.3 128/22  0.40
    2 3.5 0.019 15.9 132/15  0.29
    3 ethane 2.2 0.033 14.1 82/33 0.18
    4 5.4 0.053 14.1 73/38 0.16
    5 5.3 0.066 0.0048 15.9 117/15  0.39
    6 6.3 None 15.9 83/31 0.19
    7 7.8 0.066 15.2 88/26 0.16
     8* 3.1 0.033 14.1 98/15 0.16
     9** 4.4 0.066 13.0 70/— 1.83
    10  0.33 0.010 14.1 63/24 0.16
    11  0.55 0.013 14.1 74/24 0.16
    Polymer
    in Polymer No No DSC
    H2O Melt Particle Size Particles Particles Melting
    Example Phase Viscosity SSA Avg. D90/D10 < Than > Than Point
    Number % Pa · S m2/g μm μm μm ° C.
    1 1.10 7.1 × 103 3.58 24.9 5.37 6 125
    2 1.09 3.8 × 104 4.24 21.7 6.03 6 148
    3 0.44 1.3 × 105 4.35 36.7 6.34 7 296 327/329
    4 0.65 7.9 × 103 25.0 6.30 6 148 327/329
    5 5.47 2.0 × 103 4.99 12.7 6.38 3 105 327/328
    6 0.24 2.1 × 103 3.35 18.9 7.97 3 176
    7 0.48 3.6 × 103 2.95 22.3 7.44 4 176
     8* 2.4 × 104 32.8 6.39 6 176
     9** 9.1 × 102 4.01 17.7 6.58 3 105
      10**** 0.22 NA 4.49 830 2.69 192 1535 332/330
      11**** 0.12 NA 4.40 649 2.93 161 1535 331/331

    C8 surfactant is perfluorooctanoic acid.

    *PFBE is added to this polymerization; 12.3 grams to the precharge followed by a constant addition of 0.145 grams/minute for 93 minutes during polymerization.

    **PPVE is added to this polymerization; 24.5 grams to the precharge followed by a constant addition of 0.23 grams/minute for 64 minutes during polymerization.

    ***Reaction time is expressed as two values; the first is the reaction time at 1.83 MPa (250 psig), maintained by TFE addition, and the second value is the time after TFE addition is stopped and the pressure is allowed to drop (with reaction continuing) until venting. The next column in the table lists the final pressure before reactor venting.

    ****Particle size analyzed on a Microtrac Model SRA200 Analyzer as dry powders

Claims (9)

1. Low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder having a melt viscosity of less than about 1×106 Pa·S, a specific surface area of less than about 8m2/g, an extractable fluoride level of 3 ppm or less by weight, a polydispersity index of about 5 or less and wherein the particles of low molecular powder have a weight average particle size of about 2 to about 40 micrometers and the powder is substantially free of particles having a particle size of less than about 1 micrometer.
2. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said particles have a D90/D10 particle size distribution ratio of about 2 to about 10.
3. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said melt viscosity is in the range of about 1×102 Pa·S to about 1×106 Pa·S.
4. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said extractable fluoride level is 1 ppm or less by weight.
5. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said specific surface area is less than about 5m2/g.
6. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said polydispersity index is about 4.5 or less.
7. The low molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene powder of claim 1 wherein said polydispersity index is about 4.0 or less.
8. An additive to ink compositions comprising the low molecular weight powder of polytetrafluoroethylene or modified polytetrafluoroethylene of claim 1.
9. An additive to plastic compositions comprising the low molecular weight powder of polytetrafluoroethylene or modified polytetrafluoroethylene of claim 1.
US11/523,886 2002-11-22 2006-09-20 Directly polymerized low molecular weight granular polytetrafluoroethylene Abandoned US20070015889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/523,886 US20070015889A1 (en) 2002-11-22 2006-09-20 Directly polymerized low molecular weight granular polytetrafluoroethylene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42834302P 2002-11-22 2002-11-22
US10/685,789 US7176265B2 (en) 2002-11-22 2003-10-15 Directly polymerized low molecular weight granular polytetrafluoroethylene
US11/523,886 US20070015889A1 (en) 2002-11-22 2006-09-20 Directly polymerized low molecular weight granular polytetrafluoroethylene

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/685,789 Division US7176265B2 (en) 2002-11-22 2003-10-15 Directly polymerized low molecular weight granular polytetrafluoroethylene

Publications (1)

Publication Number Publication Date
US20070015889A1 true US20070015889A1 (en) 2007-01-18

Family

ID=32469303

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/685,789 Expired - Fee Related US7176265B2 (en) 2002-11-22 2003-10-15 Directly polymerized low molecular weight granular polytetrafluoroethylene
US11/523,886 Abandoned US20070015889A1 (en) 2002-11-22 2006-09-20 Directly polymerized low molecular weight granular polytetrafluoroethylene

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/685,789 Expired - Fee Related US7176265B2 (en) 2002-11-22 2003-10-15 Directly polymerized low molecular weight granular polytetrafluoroethylene

Country Status (6)

Country Link
US (2) US7176265B2 (en)
EP (1) EP1562995A1 (en)
JP (1) JP2006509072A (en)
CN (2) CN1326893C (en)
AU (1) AU2003302666A1 (en)
WO (1) WO2004050727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043560A1 (en) * 2014-04-24 2017-02-16 Daikin Industries, Ltd. Laminate
US11326034B2 (en) 2015-09-07 2022-05-10 Sumitomo Electric Fine Polymer Method for manufacturing polytetrafluoroethylene formed product, and polytetrafluoroethylene formed product
EP4056366A4 (en) * 2019-11-05 2023-11-15 Daikin Industries, Ltd. Layered body and extrusion-molded article

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176265B2 (en) * 2002-11-22 2007-02-13 E. I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene
WO2004076539A1 (en) * 2003-02-28 2004-09-10 Daikin Industries, Ltd. Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
US7247690B2 (en) * 2003-04-17 2007-07-24 E. I. Du Pont De Nemours And Company Melt-fabricable tetrafluoroethylene/fluorinated vinyl ether copolymer prepared by suspension polymerization
US7410110B2 (en) * 2005-08-30 2008-08-12 Uchicago Argonne, Llc Efficient process for making tackifiers and adhesives
CN100506858C (en) * 2006-11-10 2009-07-01 中昊晨光化工研究院 Production method of low molecular weight tetrafluoro ethylene resin
JP5338667B2 (en) 2007-08-07 2013-11-13 ダイキン工業株式会社 Low molecular weight polytetrafluoroethylene aqueous dispersion, low molecular weight polytetrafluoroethylene powder and method for producing low molecular weight polytetrafluoroethylene
JP5697308B2 (en) * 2009-03-02 2015-04-08 ダイキン工業株式会社 Low molecular weight polytetrafluoroethylene powder and method for producing the same, low molecular weight polytetrafluoroethylene gelled powder, and coating for fixing member
US8754176B2 (en) * 2009-03-31 2014-06-17 Daikin Industries, Ltd. Low molecular weight polytetrafluoroethylene powder and preparation method therefor
US8485657B2 (en) * 2010-01-08 2013-07-16 Advanced Chemical Solutions, Llc Sublimation printing processes and fabric pretreatment compositions for ink jet printing onto arbitrary fabrics
JP5527904B2 (en) * 2011-11-28 2014-06-25 富士フイルム株式会社 Endoscope
CN105536384B (en) 2012-04-20 2017-09-19 大金工业株式会社 The manufacture method of filter material for air filters, air filter unit and perforated membrane
EP2955197B1 (en) * 2013-02-05 2019-04-17 AGC Inc. Process for producing polytetrafluoroethylene molding powder and process for producing polytetrafluoroethylene agglomerated product
US10245545B2 (en) 2013-10-23 2019-04-02 Daikin Industries, Ltd. Embossed air filter filtration medium, filter pack, air filter unit, and method for manufacturing filtration medium for embossed air filter
JP6673230B2 (en) 2017-01-12 2020-03-25 ダイキン工業株式会社 Air filter media
JP7205487B2 (en) * 2017-11-16 2023-01-17 Agc株式会社 Method for producing resin powder, method for producing resin powder and laminate
JP6816746B2 (en) 2018-07-20 2021-01-20 ダイキン工業株式会社 Air filter Filter media, filter pack, and air filter unit
EP3858456A4 (en) 2018-09-28 2022-07-20 Daikin Industries, Ltd. Filter medium for air filter, filter pack, air filter unit, and manufacturing methods therefor
CN110305585A (en) * 2019-07-11 2019-10-08 闽江学院 A kind of heat-resistant impact raw lacquer film and preparation method thereof
KR20220065003A (en) * 2019-09-17 2022-05-19 구자라트 플루오로케미칼스 리미티드 Low molecular weight polytetrafluoroethylene fine powder and method for preparing same
CN111412372A (en) * 2020-04-15 2020-07-14 山东军沃科技有限公司 Shell case lengthening water-free cleaning processing technology
JP7181480B2 (en) 2021-02-04 2022-12-01 ダイキン工業株式会社 Air filter medium, method for manufacturing air filter medium, filter medium for mask, and filter medium for pleated mask
WO2022255453A1 (en) 2021-06-04 2022-12-08 ダイキン工業株式会社 Air filter medium, pleated filter medium, air filter unit, mask filtering medium, and method of recycling air filter medium
CN114085481A (en) * 2021-12-17 2022-02-25 上海佳珊赫新材料科技有限公司 Modified formula for enhancing toughness and service life of polytetrafluoroethylene

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105824A (en) * 1960-05-03 1963-10-01 Du Pont Aqueous fluorocarbon telomer dispersion and process of preparing same
US3245972A (en) * 1962-06-21 1966-04-12 Du Pont Polytetrafluoroethylene molding powder and its preparation
US3813449A (en) * 1971-07-22 1974-05-28 Hoechst Ag Process for the preparation of fluorocarbon waxes
US3855191A (en) * 1973-04-04 1974-12-17 Du Pont Polytetrafluoroethylene molding powders of tetrafluoroethylene and perfluoro (alkyl vinyl ether) copolymer
US3956000A (en) * 1972-07-21 1976-05-11 Hoechst Aktiengesellschaft Fluorocarbon waxes and process for producing them
US4078134A (en) * 1975-05-28 1978-03-07 Hoechst Aktiengesellschaft Process for the manufacture of suspension polymers of tetrafluoroethylene
US4262101A (en) * 1976-08-31 1981-04-14 Hoechst Aktiengesellschaft Copolymers of tetrafluoroethylene and process for their manufacture
US4360618A (en) * 1981-11-19 1982-11-23 Monsanto Company Low acrylonitrile content styrene-acrylonitrile polymers blended with polyphenylene oxide
US4408007A (en) * 1979-12-12 1983-10-04 Hoechst Aktiengesellschaft Free-flowing sintering powders which have improved properties and are based on tetrafluoroethylene polymers and a process for their manufacture
US4487902A (en) * 1981-08-06 1984-12-11 E. I. Du Pont De Nemours And Company Polymer of TFE and f-alkyl ethylene
US4580981A (en) * 1982-12-24 1986-04-08 Kureha Kagaku Kogyo Kabushiki Kaisha Fluorine-containing monomer and process for producing the same
US4587316A (en) * 1983-02-01 1986-05-06 Daikin Kogyo Co., Ltd. Fluorine-containing copolymers and films thereof
US4703095A (en) * 1983-02-01 1987-10-27 Daiken Kogyo Co., Ltd. Fluorine-containing copolymer
US5118788A (en) * 1990-05-14 1992-06-02 Daikin Industries Ltd. Process for preparing polytetrafluoroethylene powder
US5405923A (en) * 1994-05-02 1995-04-11 E. I Du Pont De Nemours And Company Suspension polymerization of TFE
US5461129A (en) * 1993-10-29 1995-10-24 Nippon Mektron, Limited Tetrafluoroethylene-perfluorovinylether copolymer
US5576402A (en) * 1993-09-25 1996-11-19 Hoechst Aktiengesellschaft Process for the preparation of a modified polytetrafluoroethylene and its use
US5641571A (en) * 1993-09-21 1997-06-24 Hoechst Aktiengesellschaft Polytetrafluoroethylene micor powders, their preparation and use
US5760151A (en) * 1995-08-17 1998-06-02 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer
US5973091A (en) * 1996-11-25 1999-10-26 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US6060167A (en) * 1994-03-02 2000-05-09 E. I. Du Pont De Nemours And Company Non-chalking release/wear coating
US6703464B2 (en) * 2002-01-17 2004-03-09 Daikin America, Inc. Flourine-containing copolymer
US6747108B1 (en) * 1998-07-13 2004-06-08 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and process for preparing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141085A (en) 1974-10-05 1976-04-06 Daikin Ind Ltd TETORAFURUORUECHIRENWATSUKUSUNO SEIZOHO
JPS5246993A (en) 1975-10-09 1977-04-14 Glory Ltd Coin packing machine
JPS5722043A (en) 1980-07-15 1982-02-04 Nippon Catalytic Chem Ind Cylindrical body in fiber reinforced thermosetting resin andits manufacture
JPH0952955A (en) * 1995-08-11 1997-02-25 Daikin Ind Ltd Production of modified polytetrafluoroethylene granular powder
US6037402A (en) * 1995-10-27 2000-03-14 Daikin Industries, Ltd. Granular powder of filled polytetrafluoroethylene and process for the production thereof
EP1262496B1 (en) 1999-11-16 2005-02-16 Daikin Industries, Ltd. Fluorocopolymer
JP2002003514A (en) 2000-06-19 2002-01-09 Du Pont Mitsui Fluorochem Co Ltd Method for producing tetrafluoroethylene.perfluoro(alkyl vinyl ether) copolymer
US7176265B2 (en) * 2002-11-22 2007-02-13 E. I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105824A (en) * 1960-05-03 1963-10-01 Du Pont Aqueous fluorocarbon telomer dispersion and process of preparing same
US3245972A (en) * 1962-06-21 1966-04-12 Du Pont Polytetrafluoroethylene molding powder and its preparation
US3813449A (en) * 1971-07-22 1974-05-28 Hoechst Ag Process for the preparation of fluorocarbon waxes
US3956000A (en) * 1972-07-21 1976-05-11 Hoechst Aktiengesellschaft Fluorocarbon waxes and process for producing them
US3855191A (en) * 1973-04-04 1974-12-17 Du Pont Polytetrafluoroethylene molding powders of tetrafluoroethylene and perfluoro (alkyl vinyl ether) copolymer
US4078134A (en) * 1975-05-28 1978-03-07 Hoechst Aktiengesellschaft Process for the manufacture of suspension polymers of tetrafluoroethylene
US4262101A (en) * 1976-08-31 1981-04-14 Hoechst Aktiengesellschaft Copolymers of tetrafluoroethylene and process for their manufacture
US4408007A (en) * 1979-12-12 1983-10-04 Hoechst Aktiengesellschaft Free-flowing sintering powders which have improved properties and are based on tetrafluoroethylene polymers and a process for their manufacture
US4487902A (en) * 1981-08-06 1984-12-11 E. I. Du Pont De Nemours And Company Polymer of TFE and f-alkyl ethylene
US4360618A (en) * 1981-11-19 1982-11-23 Monsanto Company Low acrylonitrile content styrene-acrylonitrile polymers blended with polyphenylene oxide
US4580981A (en) * 1982-12-24 1986-04-08 Kureha Kagaku Kogyo Kabushiki Kaisha Fluorine-containing monomer and process for producing the same
US4587316A (en) * 1983-02-01 1986-05-06 Daikin Kogyo Co., Ltd. Fluorine-containing copolymers and films thereof
US4703095A (en) * 1983-02-01 1987-10-27 Daiken Kogyo Co., Ltd. Fluorine-containing copolymer
US5118788A (en) * 1990-05-14 1992-06-02 Daikin Industries Ltd. Process for preparing polytetrafluoroethylene powder
US5641571A (en) * 1993-09-21 1997-06-24 Hoechst Aktiengesellschaft Polytetrafluoroethylene micor powders, their preparation and use
US5576402A (en) * 1993-09-25 1996-11-19 Hoechst Aktiengesellschaft Process for the preparation of a modified polytetrafluoroethylene and its use
US5461129A (en) * 1993-10-29 1995-10-24 Nippon Mektron, Limited Tetrafluoroethylene-perfluorovinylether copolymer
US6060167A (en) * 1994-03-02 2000-05-09 E. I. Du Pont De Nemours And Company Non-chalking release/wear coating
US5405923A (en) * 1994-05-02 1995-04-11 E. I Du Pont De Nemours And Company Suspension polymerization of TFE
US5760151A (en) * 1995-08-17 1998-06-02 E. I. Du Pont De Nemours And Company Tetrafluoroethylene copolymer
US5973091A (en) * 1996-11-25 1999-10-26 E. I. Du Pont De Nemours And Company Perfluoroelastomer composition having improved processability
US6747108B1 (en) * 1998-07-13 2004-06-08 Daikin Industries, Ltd. Modified polytetrafluoroethylene fine powder and process for preparing the same
US6703464B2 (en) * 2002-01-17 2004-03-09 Daikin America, Inc. Flourine-containing copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043560A1 (en) * 2014-04-24 2017-02-16 Daikin Industries, Ltd. Laminate
US11780212B2 (en) * 2014-04-24 2023-10-10 Daikin Industries, Ltd. Laminate
US11326034B2 (en) 2015-09-07 2022-05-10 Sumitomo Electric Fine Polymer Method for manufacturing polytetrafluoroethylene formed product, and polytetrafluoroethylene formed product
EP4056366A4 (en) * 2019-11-05 2023-11-15 Daikin Industries, Ltd. Layered body and extrusion-molded article

Also Published As

Publication number Publication date
CN1326893C (en) 2007-07-18
WO2004050727A1 (en) 2004-06-17
US20050182216A1 (en) 2005-08-18
CN101029104A (en) 2007-09-05
WO2004050727A8 (en) 2004-10-21
AU2003302666A1 (en) 2004-06-23
EP1562995A1 (en) 2005-08-17
CN1714109A (en) 2005-12-28
JP2006509072A (en) 2006-03-16
US7176265B2 (en) 2007-02-13

Similar Documents

Publication Publication Date Title
US20070015889A1 (en) Directly polymerized low molecular weight granular polytetrafluoroethylene
US5374683A (en) Low-melting tetrafluoroethylene copolymer and its uses
EP0257644B1 (en) Modified polytetrafluoroethylene fine powder and production of the same
EP0481509B1 (en) Polytetrafluoroethylene fine particles and powder
US5397829A (en) Low-melting tetrafluoroethylene copolymer and its uses
US8754176B2 (en) Low molecular weight polytetrafluoroethylene powder and preparation method therefor
JP3303408B2 (en) Fluorine-containing resin composite fine particles
US5464904A (en) Low-melting tetrafluoroethylene copolymer and its uses
EP1888655B1 (en) Aqueous emulsion polymerization of fluorinated monomers in the presence of a partially fluorinated oligomer as an emulsifier
EP2563824B1 (en) Process for producing ptfe and articles thereof
WO2014084399A1 (en) Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
JPS5838706A (en) Batch polymerization
ZA200508620B (en) Melt-processible thermoplastic fluoropolymers having improved processing characteristics and method of producing same
US6531557B1 (en) Modified polytetrafluoroethylene fine powder and method for the production of the same
EP1172379B1 (en) Fine powder of modified polytetrafluoroethylene and process for producing the same
WO2015186793A1 (en) Polytetrafluoroethylene aqueous dispersion
EP1605011B1 (en) Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
CA2395706A1 (en) Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
CN1226392C (en) Method for preparing paraffin for aqueous dispersion polymerization of tetrafluoroethylene and process for preparing tetrafluoroethylene with said paraffin
JP2012503677A (en) Application of ethylene / tetrafluoroethylene copolymer
EP0731814B1 (en) Low-melting tetrafluoroethylene copolymer and its uses
US3526614A (en) Process for polymerization of perfluorocarbons in the presence of metal cations inert to the system
CN112409528B (en) Preparation method of core-shell structure PTFE dispersion resin
Ebnesajjad Polymerization of Commercial Thermoplastic Fluoropolymers

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION