US20070006489A1 - Control systems and foot-receiving device products containing such systems - Google Patents

Control systems and foot-receiving device products containing such systems Download PDF

Info

Publication number
US20070006489A1
US20070006489A1 US11/177,489 US17748905A US2007006489A1 US 20070006489 A1 US20070006489 A1 US 20070006489A1 US 17748905 A US17748905 A US 17748905A US 2007006489 A1 US2007006489 A1 US 2007006489A1
Authority
US
United States
Prior art keywords
footwear
foot
article
control
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/177,489
Inventor
Charles Case
Albert Shum
Allan Schrock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike Inc
Original Assignee
Nike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike Inc filed Critical Nike Inc
Priority to US11/177,489 priority Critical patent/US20070006489A1/en
Assigned to NIKE, INC. reassignment NIKE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASE, JR., CHARLES W., SCHROCK, ALLAN M., SHUM, ALBERT
Priority to CN2006800252167A priority patent/CN101217894B/en
Priority to EP06773634A priority patent/EP1919318A1/en
Priority to PCT/US2006/024015 priority patent/WO2007008352A1/en
Priority to JP2008521397A priority patent/JP5220600B2/en
Priority to BRPI0612798-3A priority patent/BRPI0612798A2/en
Publication of US20070006489A1 publication Critical patent/US20070006489A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/06Running shoes; Track shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/24Insertions or other supports preventing the foot canting to one side , preventing supination or pronation
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • A43D1/027Shoe fit indicating devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers

Definitions

  • This invention relates generally to articles of footwear or other foot-receiving devices that include monitoring and/or control systems for automatically controlling a characteristic of the article of footwear, such as a performance characteristic of the article of footwear, as well as speed and/or distance monitoring systems, e.g., of the pedometer type.
  • the upper member provides a covering for the foot that receives and positions the foot with respect to the sole structure.
  • the upper member may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration.
  • the sole structure generally is secured to a lower portion of the upper member and generally is positioned between the foot and the contact surface (the terms “contact surface” or “surface,” as used herein, include any foot or footwear contact surface, including but not limited to: grass, dirt, snow, ice, tile, flooring, carpeting, synthetic grass, asphalt, cement, concrete, clay, court surfaces, and the like).
  • the sole structure may provide traction and help control foot motion, such as pronation. Accordingly, the upper member and the sole structure operate cooperatively to provide a comfortable structure that is suited for a variety of ambulatory activities, such as walking and running.
  • the sole member of athletic footwear in at least some instances, will exhibit a layered configuration that includes a comfort-enhancing insole, a resilient midsole (e.g., formed, at least in part, from a polymer foam material), and a ground-contacting outsole that provides both abrasion-resistance and traction.
  • the midsole in at least some instances, will be the primary sole structure element that attenuates ground reaction forces and controls foot motion.
  • Suitable polymer foam materials for at least portions of the midsole include ethylvinylacetate (“EVA”) or polyurethane (“PU”) that compress resiliently under an applied load to attenuate ground reaction forces.
  • Conventional polymer foam materials are resiliently compressible, in part, due to the inclusion of a plurality of open or closed cells that define an inner volume substantially displaced by gas.
  • the upper member and sole structure in conventional footwear products may be joined to one another in various different ways, such as using cements or adhesives, stitching or sewing, mechanical connectors, fusing techniques, or the like.
  • foot-receiving devices such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including insole, midsole, and/or outsole portions) engaged with the foot-covering member.
  • a foot-covering member such as an upper member
  • a foot-supporting member such as a sole member, optionally including insole, midsole, and/or outsole portions
  • the foot-receiving device further may include: (a) a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is positioned and/or adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use; (b) a control system that receives output from the sensing device and controls at least one characteristic of the foot-receiving device (such as a characteristic of the foot-supporting member) based (at least in part) on this output; and (c) a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device.
  • the monitoring system may receive input from the same sensing device used for providing data to the control system.
  • the control system may alter, for example, the impact attenuation characteristics, the traction characteristics, the flexibility characteristics, the fit characteristics, or the like of the article of footwear.
  • Such foot-receiving systems further may include one or more devices, such as remote or peripheral devices, e.g., for receiving user input (e.g., relating to user settings or desired features for the settable or controllable characteristics, etc.), for providing information to the user (e.g., speed or distance information, etc.), and the like.
  • Such methods may include, for example: (a) engaging a sensing device with an article of footwear or foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is positioned and/or adapted to sense at least one characteristic of contact between the article of footwear or foot-receiving device and a contact surface when the article of footwear is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or foot-receiving device based on the output from the sensing device; and (c) providing a distance monitoring system at least partially engaged with the article of footwear or foot-receiving device, wherein the distance monitoring system is programmed and adapted to detect and/or store data indicating speed or distance information associated with use of the article of footwear or
  • the distance monitoring system may receive input data from the same sensing device that provides input data used by the control system (e.g., if the sensing device is capable of detecting each step down or step up event of the user's foot, etc.).
  • Still additional aspects of this invention relate to example methods for using footwear or foot-receiving device systems of the types described above.
  • Such methods may include: (a) sensing contact or other interaction between an article of footwear (or other foot-receiving device) and a contact surface during use, wherein the contact or interaction is sensed using a sensing device at least partially engaged with the article of footwear (or other foot-receiving device); (b) controlling a characteristic of the article of footwear (or other foot-receiving device) based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device.
  • Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in setting and/or controlling the characteristic of the article of footwear (or other foot-receiving device), e.g., to match or set user preferences, etc.
  • FIG. 1 illustrates an overview of an example system according to the invention and/or an example environment in which aspects of the invention may be used or practiced;
  • FIG. 2 illustrates a schematic diagram of an example system that may be used in accordance with examples of the invention
  • FIGS. 3A through 3C illustrate an example of an article of footwear including an active impact-attenuation control system as a control system in accordance with examples of the invention
  • FIG. 4 illustrates an example graph illustrating how output from a sensing device, such as the sensing device of FIGS. 3A through 3C , may be used to provide pedometer based speed and/or distance information;
  • FIG. 5 illustrates an example of an article of footwear including a control system with user input and display features in accordance with examples of the invention
  • FIG. 6 illustrates an example of a sole member for an article of footwear that includes pronation and/or supination reduction or elimination features as a control system in accordance with examples of the invention
  • FIG. 7 illustrates an example of an article of footwear including a traction control system as a control system in accordance with examples of the invention
  • FIG. 8 illustrates an example of an article of footwear including a footwear flexibility control system as a control system in accordance with examples of the invention.
  • FIG. 9 illustrates an example of an article of footwear including a footwear fit or securing system tightness control system as a control system in accordance with examples of the invention.
  • “Foot-receiving device” means any device into which a user places at least some portion of his or her foot.
  • foot-receiving devices include, but are not limited to: bindings and other devices for securing feet in snow skis, cross country skis, water skis, snowboards, and the like; bindings, clips, or other devices for securing feet in pedals for use with bicycles, exercise equipment, and the like; bindings, clips, or other devices for receiving feet during play of video games or other games; and the like.
  • “Footwear” means any type of product worn on the feet, and this term includes, but is not limited to: all types of shoes, boots, sneakers, sandals, thongs, flip-flops, mules, scuffs, slippers, sport-specific shoes (such as golf shoes, tennis shoes, baseball cleats, soccer or football cleats, ski boots, etc.), and the like. “Footwear” may protect the feet from the environment and/or enhance a wearer's performance (e.g., physically, physiologically, medically, etc.).
  • “Foot-covering members” include one or more portions of a foot-receiving device that extend at least partially over and/or at least partially cover at least some portion of the wearer's foot, e.g., so as to assist in holding the foot-receiving device on and/or in place with respect to the wearer's foot. “Foot-covering members” include, but are not limited to, upper members of the type provided in some conventional footwear products.
  • “Foot-supporting members” include one or more portions of a foot-receiving device that extend at least partially beneath at least some portion of the wearer's foot, e.g., so as to assist in supporting the foot and/or attenuating the reaction forces to which the wearer's foot would be exposed, for example, when stepping down in the foot-receiving device.
  • “Foot-supporting members” include, but are not limited to, sole members of the type provided in some conventional footwear products. Such sole members may include conventional outsole, midsole, and/or insole members.
  • “Ground-contacting elements” or “members” include at least some portions of a foot-receiving device structure that contact the ground or any other surface in use, and/or at least some portions of a foot-receiving device structure that engage another element or structure in use.
  • Such “ground-contacting elements” may include, for example, but are not limited to, outsole elements provided in some conventional footwear products.
  • “Ground-contacting elements” in at least some example structures may be made of suitable and conventional materials to provide long wear, traction, and protect the foot and/or to prevent the remainder of the foot-receiving device structure from wear effects, e.g., when contacting the ground or other surface in use.
  • FIG. 1 which generally illustrates an example of the invention and an example environment in which the invention may be used, one or more individual articles of footwear 100 (such as athletic footwear or other foot-receiving devices) may be equipped with one or more sensing devices 102 , such as performance or ground interaction measuring devices.
  • the sensing devices 102 may be programmed and adapted to sense or collect information relating to at least one characteristic of contact between the article of footwear 100 and the contact surface (e.g., the ground, the floor, etc.) when the article of footwear is used (e.g., the impact force on the contact surface during an athletic event, exercise, or other performance, etc.).
  • Output from the sensing device 102 may be provided to a control system 104 , which optionally may include a microprocessor mounted in or on the article of footwear 100 , and the control system 104 then can be used to control or change at least one characteristic of the article of footwear 100 (optionally, automatically, without the need for further user input).
  • a control system 104 which optionally may include a microprocessor mounted in or on the article of footwear 100 , and the control system 104 then can be used to control or change at least one characteristic of the article of footwear 100 (optionally, automatically, without the need for further user input).
  • any desired number or type(s) of characteristics of the article of footwear 100 may be changed or controlled based on output from the sensing device 102
  • more specific examples of the types of changes or controls include: change or control in an amount of impact-attenuation provided by the article of footwear 100 , e.g., by the sole member; change or control of foot impact characteristics to induce a pronation, supination, or other gait correction configuration; change or control in the tightness of the footwear securing system (e.g., in laces, straps, buckles, etc.); change or control in traction characteristics; change or control in foot fit characteristics; change or control in footwear flexibility characteristics; etc.
  • the sensing device 102 also may be capable of providing (and programmed and adapted to provide) information indicating each time the user steps down in the article of footwear 100 .
  • This step information may be used by systems and methods in accordance with at least some examples of this invention to provide distance monitoring systems, e.g., systems for detecting and/or storing speed and/or distance information associated with use of the article of footwear 100 .
  • the sensed interaction between the article of footwear 100 and the contact surface which is used to provide footwear characteristic control information in the example system described above, also may be used to provide speed and/or distance information (e.g., speed and/or distance information of the pedometer type).
  • this speed and/or distance data may be stored in a memory (e.g., a memory included on board the article of footwear 100 , a memory provided with a peripheral device, etc.), e.g., for later use and/or analysis, and/or it may be transmitted or otherwise made available to the user 106 or others, e.g., via wireless transmission devices 108 optionally included as part of the control system 104 or the article of footwear 100 .
  • the sensing device 102 , the control system 104 , and/or the article of footwear 100 may include one or more microprocessors or other data processing capability to enable processing of collected data before transmitting the data or other information to the user 106 or others.
  • the data or desired information may be conveyed to the user 106 or others in any desired manner without departing from the invention, for example, to a wireless receiver 110 provided with a display device 112 .
  • the display device 112 may be equipped with one or more microprocessors to enable initial processing of the raw data sent by the sensing device 102 , control system 104 , and/or the article of footwear 100 , to enable further processing of data and/or information sent, etc.
  • Any type of information may be presented to the user 106 (or others) via display device 112 , such as speed and/or distance information, time information, GPS information, footwear setting information, etc.
  • the display device 112 may include various electronic devices, such as portable, user carried devices, e.g., a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, headphones or earphones, etc. Any type of “display device” also may be provided, such as audio devices, video devices, audio/video devices, alpha-numeric displays, etc.
  • the display device 112 (for another device) also may be programmed and adapted to receive user input, e.g., control or setting information for the control system 104 , etc.
  • the display device 112 may be equipped with a transmitter or other output device that sends data to a receiver or other input device located in or on the article of footwear.
  • devices 108 and 110 may be capable of performing both transmission and reception functions in at least some examples of this invention.
  • aspects of this invention relate to foot-receiving device systems, such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including an insole, a midsole, and/or an outsole portion) engaged with the foot-covering member.
  • a foot-covering member such as an upper member
  • a foot-supporting member such as a sole member, optionally including an insole, a midsole, and/or an outsole portion
  • the foot-receiving device system further may include a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use (e.g., interactions between the foot-receiving device and its contact surface and/or a user's foot during a step).
  • the sensing device may send its output to a control system, and the control system then may be used to control at least one characteristic of the foot-receiving device (such as the foot-supporting member) based on output from the sensing device.
  • the foot-receiving device system also may be equipped with a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device system.
  • this monitoring system may receive input from the same sensing device used for providing data to the control system.
  • the control system may be used to control a wide variety of different features or characteristics of the foot-receiving device system.
  • the control system may be programmed and adapted to: (a) control an amount of impact attenuation provided by the foot-supporting member (e.g., by altering a stiffness of at least a portion of the foot-supporting member, by changing the impact attenuation at least in a heel portion of the foot-receiving device, etc.); (b) control the amount of impact attenuation in one or more portions of the foot-receiving device so as to reduce or eliminate pronation and/or supination when the foot-receiving device is in use; (c) control a degree of traction provided, e.g., by the ground-contacting member of the foot-receiving device (e.g., by an outsole member); (d) control a degree of flexibility in at least one portion of the foot-receiving device (e.g., in the arch, in the upper member,
  • control system may respond to the sensing device output and control the characteristics or features of the foot-receiving device in an automatic or “smart” manner (e.g., without the need for user input to change the settings, automatically, between steps, etc.).
  • peripheral devices also may be associated with foot-receiving device systems in accordance with at least some examples of this invention.
  • a peripheral device may be provided that is in communication with the control system for providing user input to the control system (e.g., to allow at least partial user control over the control system, to allow remote user control, to allow user input regarding general settings, preferences, or ranges, etc.).
  • This same peripheral device or a different device also may be used to provide information to the user, such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); map, track, or route warning or other information; and/or any other desired audio, video, alphanumeric, or other information.
  • the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device system (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to enable the device to be included in or attached to the foot-receiving device, the user, the user's clothing, etc.; etc.).
  • the sensing device that supplies signals to the control system and/or the monitoring system may be of any suitable or desired form without departing from the invention, including, for example, pressure sensors, force transducers, Hall effect sensor systems, strain gauges, piezoelectric elements, load cells, proximity sensors, optical sensors, accelerometers, capacitance sensors, inductance sensors, ultrasonic transducer and receiver systems, radio frequency transmitter and receiver systems, magneto-resistive elements, etc.
  • At least one more specific aspect of the invention relates to footwear systems that include footwear control systems and speed and/or distance monitoring systems.
  • Some more specific examples of footwear systems in accordance with these examples of the invention may include: (a) an article of footwear including an upper member and a sole member; (b) a sensing device engaged with the article of footwear, wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear and a contact surface when the article of footwear is in use; (c) a footwear control system that controls a characteristic of the article of footwear based on output from the sensing device; and (d) a speed and/or distance monitoring system at least partially engaged with the article of footwear for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear.
  • the speed and/or distance monitoring system may use input from the sensing device mentioned above.
  • Such methods may include: (a) engaging a sensing device with an article of footwear or other foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear or other foot-receiving device and a contact surface or a user's foot when the article of footwear or other foot-receiving device is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or other foot-receiving device based on the output from the sensing device; and (c) providing a speed and/or distance monitoring system at least partially engaged with the article of footwear or other foot-receiving device, wherein the speed and/or distance monitoring system is programmed
  • the speed and/or distance monitoring system may receive data from the sane sensing device that provides output used by the control system.
  • the control system and/or the monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
  • methods in accordance with at least some examples of this invention further may include providing a peripheral device.
  • the peripheral device may perform various functions, including, for example: providing user input to the control system; providing information to the user or others (such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); warning information; and/or any other desired audio, video, alphanumeric, or other information); etc.
  • the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to be mounted on an article of footwear, an article of clothing, or a piece of athletic equipment; etc.).
  • Still additional method aspects according to the invention include methods for using footwear or other foot-receiving device systems that include control systems and speed and/or distance monitoring systems, e.g., of the types described above. Such methods may include: (a) sensing contact between an article of footwear or other foot-receiving device and a contact surface or a user's foot as the article of footwear or other foot-receiving device is used, wherein the contact is sensed using a sensing device at least partially engaged with the article of footwear or other foot-receiving device; (b) controlling a characteristic of the article of footwear or other foot-receiving device based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device.
  • the control system and/or the speed and/or distance monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
  • Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in controlling the characteristic(s) of the article of footwear or other foot-receiving device.
  • user input may be entered, for example, through a footwear mounted input system, through a device separate and remote from the article of footwear, etc.
  • the same or a different peripheral device also may be included to provide speed and/or distance information to a user of the article of footwear or other foot-receiving device (or to others).
  • the devices included in these methods may be portable so as to be readily carried by the user, e.g., during use of the article of footwear, as part of the article of footwear, clipped to a belt or other portion of the user's clothing, worn on a user's arm or leg, etc.
  • FIG. 1 generally illustrates an example of the invention and an example environment of use in which articles of footwear 100 (such as athletic footwear) or other foot-receiving devices are equipped with sensing devices 102 , control systems 104 , and speed and/or distance monitoring devices.
  • the sensing devices 102 may include detectors or sensing devices for sensing and/or collecting information during a performance (e.g., during exercise, an athletic event, or other performance activity).
  • the sensing devices 102 , control systems 104 , and/or the articles of footwear 100 further may include processing capabilities and/or transmission/reception capabilities to provide information to the footwear user 106 (or others) and/or to receive information from the footwear user 106 (or others).
  • the desired information may be presented to the user 106 (or others) and/or input may be received from the user 106 (or others) via a communication device 112 , such as a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, RF device, infrared transmission, etc.
  • a communication device 112 such as a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, RF device, infrared transmission, etc.
  • the sensed information (based on output generated by sensing device 102 ) may be used to automatically change or control characteristics or features of the footwear 100 itself (e.g., to control the impact attenuation characteristics of the footwear, etc.) or to change or control other devices, with or without providing speed, distance, and/or other information to a user 106 (or others).
  • FIG. 2 schematically illustrates example elements and an example arrangement or system 200 that may be included as part of an overall footwear or foot-receiving device system that includes control and/or distance monitoring capabilities of the type generally described in conjunction with FIG. 1 .
  • the system 200 of this example includes a monitoring element 202 that includes a sensing device 204 adapted to sense at least one characteristic of contact or interaction between an article of footwear and a contact surface or a user's foot when the article of footwear is in use.
  • the monitoring element 202 in this example structure 200 may be mounted in and/or constructed as part of the article of footwear, e.g., in or as part of the sole member of an article of footwear, such as in the midsole.
  • the sensing device 204 may be separate from the monitoring element 202 , and optionally, the sensing device 204 may send signals to the monitoring element 202 (e.g., via wired or wireless connections, etc.).
  • Data relating to the contact or interaction between the article of footwear and the contact surface or the user's foot may be measured by sensing device 204 and transferred to a microprocessor 206 and/or stored in memory 208 . Based on the measured data from the sensing device 204 , the microprocessor 206 may control one or more devices 210 , e.g., included as part of the article of footwear to control a characteristic of the article of footwear. As a more concrete example, and as will be explained in more detail below, the sensing device 204 may sense the amount of compression of the article of footwear's midsole member. Based on the sensed degree of midsole compression, the microprocessor 206 may control a device 210 to increase or decrease the stiffness of at least a portion of the sole member.
  • the monitoring element 202 can be used to actively and/or automatically control the impact attenuation characteristics of an article of footwear without the need for additional user input.
  • Various examples of this type of impact attenuation control and other controlled devices 210 will be described in more detail below.
  • the controlled device 210 may be included as part of the monitoring element 202 without departing from this invention.
  • the sensing device 204 of this example system 200 also may be capable of sensing each of the user's steps (e.g., the midsole will compress somewhat with each step). If desired, and as will be explained in more detail below, detection of information corresponding to each user's step may be used by systems and methods according to at least some examples of this invention to collect pedometer type speed and/or distance information relating to use of the article of footwear. This speed and/or distance information may be stored in memory 208 , e.g., for real time or later analysis, display, processing, review, etc.
  • the speed and/or distance information may be transmitted to another device 212 , e.g., a peripheral display device, in any desired manner, e.g., via wired or wireless connections (a wireless communication system is illustrated in the example of FIG. 2 ), to enable display of speed and/or distance information to the user in real time, as the exercise or event continues, etc.
  • this device 212 may be any type of display device, such as an audio display device, a video display device, an alphanumeric display device, or the like. More specific examples of possible devices 212 for this purpose include: a watch or other arm worn display device, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, etc.
  • the device 212 also may include a user input system for receiving a user's input, e.g., and directing it to the monitoring system 202 .
  • the user input system may be used for any purpose without departing from this invention, for example: for requesting information from the monitoring element 202 (such as pedometer type speed and/or distance information, step count information, other available information); for setting parameters used in the control system 200 (e.g., setting general impact attenuation characteristics, etc.); for communicating with other devices; for interacting with other features of the device 212 (e.g., requesting time, altitude, or GPS information; setting time, display or other features of device 212 , etc.); and the like.
  • the input system may include any type of input devices, such as buttons, keys, switches, voice recognition/input, digitizer/stylus input, etc.
  • a wide variety of characteristics of an article of footwear may be controlled by systems and methods in accordance with this invention, and additionally, a wide variety of different types of sensing devices also may be used (e.g., magnetic sensors, Hall effect sensors, light or other radiation sensors, pressure sensors, piezoelectric sensors, accelerometers, gyro-sensors, optical sensors, etc.).
  • sensing devices e.g., magnetic sensors, Hall effect sensors, light or other radiation sensors, pressure sensors, piezoelectric sensors, accelerometers, gyro-sensors, optical sensors, etc.
  • One more specific example relates to active/automatic control of impact-attenuation characteristics of an article of footwear based on a sensed degree of compression of the midsole and/or other portions of the article of footwear.
  • the monitoring element 202 in accordance with at least some examples of the invention may sense this large amount of compression and automatically activate a device so as to increase stiffness characteristics of at least some portion of the article of footwear.
  • the monitoring element 202 in accordance with at least some examples of the invention may sense this fact and automatically activate a device so as to decrease stiffness characteristics of at least some portion of the article of footwear.
  • Independent user input may be provided, e.g., to set broad parameters for the desired amount of impact attenuation (e.g., a user's preference for a firm midsole v. a user's preference for a soft midsole, etc.), to override the automatically set impact attenuation levels, etc.
  • broad parameters for the desired amount of impact attenuation e.g., a user's preference for a firm midsole v. a user's preference for a soft midsole, etc.
  • FIGS. 3A, 3B , and 3 C illustrate more specific examples of arrangements, elements, and components that may be included in monitoring and/or control systems in accordance with at least some examples of this invention.
  • a sole member 300 of an article of footwear 350 (or other foot-receiving device) includes a midsole member 302 and an outsole member 304 .
  • the monitoring and/or control system and the sensing device(s) associated therewith are provided in an area defined between the midsole member 302 and the outsole member 304 .
  • a lower support plate 306 and an upper support plate 308 are provided (optionally, integrally formed with the outsole member 304 and the midsole member 302 , respectively), and portions of the monitoring and control system are provided between these plates 306 and 308 .
  • These optional upper and lower support plates 308 and 306 may be included, for example, to help maintain at least some portions of the monitoring and/or control system in a particular predetermined orientation. If desired, at least some portions of the monitoring and/or control system may be disposed within a cavity 310 defined in the midsole member 302 .
  • the midsole 302 may be made of conventional materials and/or in conventional manners, as are known and used in the art.
  • the monitoring and/or control system in accordance with at least some examples of this invention may include an actuation system 314 driven based on output from a sensing device (described in more detail below).
  • the actuation system 314 may include a driver 316 (e.g., a motor) and an adjustable element 318 .
  • the monitoring and/or control system further may include a sensor 320 , e.g., a proximity sensor, a magnetic field sensor, a Hall Effect sensor, an accelerometer, etc., a magnet 322 , and associated electrical circuitry.
  • the monitoring and/or control system may take on the general structure and/or form illustrated and described in U.S. Patent Application Publication No. 2004/0177531.
  • the sensor 320 is located below the adjustable element 318 , and the magnet 322 is vertically spaced from the sensor 320 and located above the adjustable element 318 .
  • Any desired type of magnet 322 may be used without departing from this invention, such as a neodymium iron bore type magnet or other known or conventional magnets (e.g., permanent magnets).
  • the actual positioning and/or spacing of the sensor 320 with respect to the magnet 322 may vary widely, e.g., to suit a particular application, for example, for measuring and/or modifying the compressibility of the sole member 300 (e.g., the midsole member 302 ).
  • the senor 320 and the magnet 322 are located at positions that generally correspond to areas where maximum compression occurs in the rearfoot portion of an article of footwear 350 (e.g., under the user's calcaneous or heel).
  • the sensor 320 and magnet 322 may be centered generally between a lateral side and a medial side of the sole member 300 and may be between about 25 mm and about 45 mm forward of a posterior aspect of the user's foot.
  • the actuation system 314 may include a driver 316 . More specifically, in at least some example arrangements, the driver 316 may include a motor 324 and a transmission element 326 .
  • the adjustable element 318 which may be used to control the degree of stiffness or “give” in the midsole member 302 , may include a limiter 328 , an expansion element 330 , and a stop member 332 .
  • the driver 316 includes a lead screw drive, made up of the bi-directional electric motor 324 and a threaded rod that forms the transmission element 326 .
  • the motor 324 may be a radio-controlled servomotor of the type used in model airplanes or other similar small electronic objects.
  • the threaded rod 326 may be constructed from any desired material, such as steel, stainless steel, etc.
  • the motor 324 may be mechanically coupled to the transmission element 326 to drive the transmission element 326 in either a clockwise or counter-clockwise direction.
  • the transmission element 326 may be designed to threadedly engage the limiter 328 and transversely position the limiter 328 relative to the expansion element 330 (see the double headed arrow in FIG. 3B ).
  • the limiter 328 is threadedly engaged with the transmission element 326 , it is prevented from rotation relative to the motor 324 and the article of footwear, and therefore, no power is required to maintain the limiter's 328 position once the position is set in this example structure 300 .
  • the actuation system 314 may contain sufficient friction and a sufficiently fine thread may be provided on the transmission element 326 to prevent inadvertent rotation of the transmission element 326 during or in response to a heel strike or other step down event.
  • the driver 316 may include any type of rotary or linear actuator, a gear train, a linkage, or combinations thereof, without departing from this invention.
  • the expansion element 330 constitutes a generally cylindrical element with an elongated circular or generally elliptically-shaped cross-section. While they may be, the arcuate ends of the expansion element 330 are not necessarily semi-circular in shape. The radius of the arcuate ends may be selected so as to suit a particular application, e.g., to provide a predetermined amount of flex, etc. Moreover, the sizes of these ends may be varied, e.g., to control the amount of longitudinal expansion of the expansion element 330 when under a compressive vertical load, etc. In general, the larger the radius or size of the end portions, greater longitudinal expansion is possible under vertical compression loading.
  • the expansion element 330 may be constructed so as to have a solid outer wall, and optionally, if desired, a compressible core of foam or other resilient material.
  • the size, shape, and materials used in the expansion element 330 may be freely selected, e.g., to suit a particular application.
  • the expansion element 330 may be constructed from plastic or polymeric materials, such as thermoplastic materials like DESMOPAN® (a thermoplastic polyurethane material available from Bayer AG of Leverkusen, Germany), PEBAX® (a polyether-block co-polyamide polymer available from Atofina Corp. of Puteaux, France), etc.
  • the expansion element 330 or at least its outer wall may be made as a unitary, one-piece member, e.g., by injection molding or by other suitable or desired methods, including conventional methods known in the art.
  • the transmission element 326 may extend through the expansion element 330 and connect to stop member 332 .
  • the stop member 332 may be used to prevent movement of the expansion element 330 in a direction away from the limiter 328 .
  • the functions of the stop member 332 may be performed by a rear wall of the cavity 310 or other portion of the sole structure, and the stop member 332 may be omitted, without departing from this invention.
  • a wide variety of other structural modifications also may be provided within the sole structure without departing from this invention.
  • the general operation of the adjustable element 318 is described with respect to an application where the monitoring and/or control system is used to modify the impact-attenuation characteristics of an article of footwear 350 in response to a measured parameter, for example, in response to measured compression of the midsole member 302 .
  • the expansion element 330 compresses when acted on by a vertical force (e.g., a step, landing a jump, etc). In response to the compression, the expansion element 330 expands in the horizontal direction.
  • the limiter 328 controls/limits the amount of movement or horizontal expansion that the expansion element 330 can experience. When the horizontal movement is limited, the vertical movement will be limited as well, thereby enabling control over the firmness or feel of the midsole member by controlling the location of limiter 328 . Therefore, by controlling the position of limiter 328 , the overall impact attenuation characteristics of the article of footwear 350 may be controlled.
  • the monitoring and/or control system may be used to actively and/or automatically control the amount of midsole member 302 compression a user creates when stepping down in the article of footwear 350 , landing a jump, etc.
  • a user wearing an article of footwear 350 like that illustrated in FIGS. 3A through 3C engages a contact surface during a stride or other activity
  • vertical force is applied to the expansion element 330 via the sole member 300 and the user's foot. This force causes the expansion element 330 to expand during ground contact until the expansion element 330 contacts the limiter 328 , thereby controlling the amount of compression experienced in the sole member 300 .
  • the sensing device 320 included as part of the monitoring and/or control system in this example system measures field strength of the magnet 322 .
  • the sensing device 320 is provided proximate the bottom of the midsole member 302 and the magnet 322 is disposed proximate the top of the midsole member 302 with the expansion element 330 therebetween.
  • the magnetic field strength detected by the sensing device 320 changes as the magnet 322 moves closer to the sensing device 320 , e.g., as the midsole member 302 is compressed, for example, during a step, when landing a jump, etc.
  • the amount of change or other variations in the sensed magnetic field may correspond to the force of the step (e.g., proportionally, etc.).
  • a microprocessor 334 included as part of the monitoring and/or control system may be programmed and adapted such that this magnetic field strength can be converted to a distance (e.g., a midsole member 302 compression distance).
  • the change in distance indicates the extent to which the midsole member 302 has compressed.
  • the microprocessor 334 of the monitoring and/or control system then may output a signal to the actuation system 314 based on the change in distance or compression measurement, to thereby automatically, and in real time, change the impact-attenuation characteristics of the article of footwear 350 (e.g., to modify the hardness or compressibility of the midsole member 302 based on the signal received from the monitoring and/or control system).
  • Changes to the impact-attenuation characteristics may be made on the fly, if desired, between steps, automatically, while the event or performance continues (e.g., high measured midsole compression levels or forces may induce a “hardening” of the midsole and/or low measured midsole compression levels or forces may induce a “softening” of the midsole).
  • midsole member 302 may be used without departing from the invention. More specific examples include air or fluid filled bladders (e.g., where changes in pressure or volume change hardness or compressibility), piston type systems, hydraulic type systems, pneumatic type systems, etc.
  • the impact attenuation characteristics of the article of footwear also may be changed at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
  • Detection of compression of the midsole member 302 also may be used in systems and methods in accordance with at least some examples of this invention as a step count indicator, thereby allowing the monitoring and/or control system to also provide pedometer based and/or other speed and/or distance information.
  • This data may be stored in memory 336 , displayed on the article of footwear, and/or otherwise provided to a user, e.g., via a wired or wireless connection (a general transmission/receiver device 338 is illustrated in FIGS. 3A and 3B ).
  • Any type of speed and/or distance type information may be provided and/or any type of data transmission system may be used without departing from this invention, including, for example, using algorithms and/or systems of the types described in U.S. Pat. Nos. 5,724,265, 5,955,667, 6,018,705, 6,052,654, 6,876,947 and 6,882,955, which patents each are entirely incorporated herein by reference.
  • FIG. 4 illustrates an example of output that may be generated by a sensing device (e.g., sensor 320 ) and its use for both impact attenuation control and providing pedometer based speed and/or distance information.
  • a sensing device 320 e.g., a Hall sensor or other magnetic sensor
  • the impact attenuation characteristics of the article of footwear 350 may be considered as too stiff (e.g., the midsole does not provide adequate compression), and the position of the limiter 328 may be moved to enable more expansion of the expandable element 330 .
  • the impact attenuation characteristics of the article of footwear 350 may be considered as too giving (e.g., the midsole provides too much compression), and the position of the limiter 328 may be moved to enable less expansion of the expandable element 330 .
  • output from the sensing device 320 may be used to automatically control impact attenuation characteristics of an article of footwear.
  • This same sensor data may be used to provide “step count” information (e.g., each user step may be sensed due to compression of the midsole member). For example, as illustrated in FIG. 4 , each time the sensed magnetic field strength exceeds a certain threshold 384 , systems and methods according to at least some examples of this invention may consider that the user has taken a step.
  • systems and methods in accordance with at least some example aspects of this invention may operate in conjunction with one or more peripheral devices, e.g., devices that provide information to users, devices that receive user entered input (e.g., step length data, etc.) devices that receive input from other sources (e.g., GPS data, map data, etc.) etc.
  • peripheral devices e.g., devices that provide information to users, devices that receive user entered input (e.g., step length data, etc.) devices that receive input from other sources (e.g., GPS data, map data, etc.) etc.
  • the monitoring and/or control system and/or the speed and distance measuring system may communicate with the peripheral device via a remote or wireless connection. Any desired type of connection, communication system, and/or communication protocol may be used without departing from this invention.
  • the user inputs, external inputs or information sources, and/or display devices may be remote from and/or wirelessly in communication with the monitoring and/or control system and/or the speed and distance measuring system.
  • wired connections, electrode pins or connections, and the like may be used as opposed to wireless connections.
  • the user inputs, external inputs or other information, sources (e.g., GPS tracking systems, map information, etc.) and/or display devices may be provided on and/or as part of the article of footwear (or other foot-receiving device) or separate from the associated article of footwear (or other foot-receiving device). As one more specific example, as illustrated in FIG.
  • an article of footwear 400 that includes a monitoring and/or control system and/or a speed and/or distance measuring system also may include user input devices 402 ( a ) and 402 ( b ) (e.g., in the form of buttons, etc.) that allow the user to input information requesting increased or decreased midsole member compressibility, respectively.
  • user input devices 402 ( a ) and 402 ( b ) e.g., in the form of buttons, etc.
  • input buttons 402 ( a ) and 402 ( b ) may be used to change and/or control the position of limiter 328 (see FIGS. 3A and 3B ), to thereby change the potential compressibility of the midsole member 302 .
  • user input for other purposes may be provided without departing from the invention (e.g., to provide other footwear control information, to control information provided as output, to request certain output information, to input typical stride length data or other information used in pedometer systems, etc.).
  • articles of footwear 400 also may include one or more display devices 404 that provide various types of information to the user, such as midsole compressibility setting information, speed and/or distance information, and/or any other desired information.
  • the display device 404 may be an LED, LCD, or other display devices like those typically used for electronic devices, such as watches, cellular telephones, PDAs, MP3 or other portable audio devices, and the like.
  • the various display device(s) 404 and/or input systems 402 ( a ) and 402 ( b ) individually may be mounted on any part of the footwear structure 400 without departing from the invention, such as on the upper member, on the sole member, on more than one portion of the footwear structure 400 , etc.
  • FIG. 6 illustrates an example sole structure 500 that includes devices that alter a user's gait, e.g., to help in correcting (e.g., reducing or eliminating) pronation or supination in a user's gait, to help the user step or land more correctly, or for other purposes.
  • the sole member 500 of an article of footwear may include one or more sensing devices 502 ( a ) and 502 ( b ) that sense the manner in which the user's foot (or the article of footwear) strikes the contact surface.
  • the sensing device(s) may be positioned so as to sense when a user pronates and/or supinates in his/her gait.
  • the sensing device(s) 502 ( a ) and 502 ( b ) may provide their signals to a microprocessor or other portion of a monitoring and/or control system 504 , which can determine, for example, the relative timing and/or force associated with the footstrike on each side of the foot.
  • the microprocessor or other portion of the monitoring and/or control system 504 may be provided on-board the article of footwear (e.g., in the midsole, as shown in FIGS.
  • elements 506 ( a ) and/or 506 ( b ) provided as part of the article of footwear may be controlled (e.g., by the same microprocessor or other portion of the monitoring and/or control system 504 described above or a different microprocessor or system) so as to change the user's gait or footstrike characteristics to reduce or eliminate the pronation or supination.
  • the controlled elements 506 ( a ) and 506 ( b ) may constitute air or fluid-filled bladders that expand or contract depending on the applied pressure, air or fluid-filled bladders that become softer or harder depending on the applied pressure, expansion elements of the type described above in connection with FIGS. 3A through 3C , pistons, hydraulic elements, pneumatic elements, etc.
  • any way of detecting the pronation and/or supination tendency and/or modifying the article of footwear or the sole member 500 to reduce or eliminate the pronation and/or supination tendency and/or otherwise change the user's gait or footstrike characteristics may be used without departing from the invention. Also, as described above, these changes can be made automatically, in between steps, as the user continues using the article of footwear.
  • control element(s) 506 ( a ) and/or 506 ( b ) to change the characteristics of a person's gait or footstrike characteristics may be changed for any reason and/or in response to any sensed characteristics without departing from the invention.
  • the fluid-filled bladders, pistons, hydraulic elements, pneumatic elements, or other controlled elements may be provided at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
  • the sensing devices 502 ( a ) and 502 ( b ) of this example sole structure 500 are capable of detecting the surface contact by the foot (e.g., each step), the same signals for detecting a pronation, supination, or other gait tendency also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS.
  • the microprocessor and/or other control system 504 (or another microprocessor or system) in sole member 500 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by one or more of the sensing devices 502 ( a ) and/or 502 ( b ).
  • FIG. 7 illustrates another example of an article of footwear 600 in which a characteristic thereof may be automatically controlled.
  • the degree of traction provided by the article of footwear 600 may be controlled, e.g., automatically and on the fly, optionally, between individual steps, for example, based on the amount of slip detected during a user's step.
  • an article of footwear 600 may be equipped with one or more sensing devices 602 , such as an accelerometer and/or other devices, that is positioned so as to be capable of sensing when a user's foot slides or slips in making a step.
  • the microprocessor and/or other portion of the control system 604 may be programmed and adapted to change one or more characteristics of the article of footwear 600 in an effort to provide better traction. More specifically, in accordance with at least some examples of this invention, the microprocessor and/or other portion of the control system 604 (or another microprocessor or system) may be programmed and adapted to change the traction characteristics of at least some portion of the footwear outsole member 606 so as to provide better traction.
  • the traction providing characteristics of the footwear outsole member 606 may be changed, e.g., by heating the material of the outsole member 606 using one or more heating elements 608 included in or adjacent to the outsole member 606 .
  • Heating elements 608 of this type may be used to soften the material of the outsole member 606 somewhat, thereby providing better traction on floors or other surfaces.
  • a microprocessor or other portion of the control system may be used to automatically lengthen spikes or cleats included in the article of footwear (e.g., by rotating out additional spike or cleat length, by pushing out more spike or cleat length via pneumatic, hydraulic or pressure cylinders, etc.).
  • a microprocessor or other portion of the control system may be used to automatically expose additional spikes or cleats included with the article of footwear when a predetermined degree of slipping and/or sliding is detected.
  • Still other ways of modifying the traction characteristics may be provided without departing from this invention.
  • the sensing device 602 of this example footwear structure 600 may be capable of detecting surface contact by the foot (e.g., detecting each step due to the change in direction detectable by an accelerometer or other detector, etc.), the same signals for detecting a slip or slide also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS.
  • the microprocessor and/or other portions of the control system 604 (or another microprocessor or system) in the article of footwear 600 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device 602 .
  • FIG. 8 Another example of a controllable article of footwear 700 is shown in FIG. 8 .
  • a degree of flexibility of the article of footwear 700 is controlled, optionally automatically and on the fly (e.g., in real time, between steps or interactions with the ground surface, etc.), based on output from one or more sensing devices (a single sensing device 702 is shown in FIG. 8 ).
  • the sensing device(s) 702 may sense a degree of flex in the article of footwear 700 as the user steps down and send this information to a microprocessor or control system 704 .
  • the degree of flexibility of the article of footwear may be changed, e.g., based on signals provided by the microprocessor or other portion of the control system 704 .
  • sensors may be located to sense the degree of pressure applied by the user's foot to various portions of the sole member (e.g., at the insole, in the heel and toe areas, etc.) to sense when the user is attempting to flex the shoe's arch (e.g., for dancing and/or aerobic shoes), and the flexibility of the article of footwear 700 then may be changed to allow more or less flex in the arch, depending on the pressure applied by the user's foot and/or the locations where the pressure is applied.
  • FIG. 8 generally illustrates an example in which the degree of flexibility in an arch support portion of an article of footwear 700 is changed, e.g., by changing a thickness of a support plate system 706 included in the arch area (in this general illustrated example, the thickness of the plate system 706 is changed by moving one plate 706 ( a ) with respect to the other 706 ( b ) to thereby increase or decrease the overall thickness of the plate system 706 in the arch area).
  • additional plate elements may be moved from one area of the article of footwear 700 to another area to provide additional plate support material or to decrease the amount of plate support material in a given area, to thereby increase or decrease flexibility in that area.
  • heating and/or cooling elements also may be provided with the article of footwear 700 , mechanical devices may be fixed, loosened, moved, etc., and the like, to change the degree of flexibility of a support material without departing from this invention. Other ways of changing the flexibility may be provided without departing from the invention.
  • the sensing device(s) 702 of this example footwear structure 700 may be capable of detecting surface contact by the foot (e.g., each step due to the detected flex amount, etc.), the same signals for detecting the degree of flex also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS.
  • the microprocessor and/or other portion of the control system 704 (or another microprocessor or system) in the article of footwear 700 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device(s) 702 .
  • FIG. 9 illustrates still another example of a controllable article of footwear 800 .
  • footwear structure 800 aspects of the manner in which the article of footwear 800 fits or engages a user's foot are controlled, optionally automatically and on the fly (e.g., in real time, between steps or interactions with the contact surface, etc.).
  • One or more fit aspects of the article of footwear may be controlled based on output from one or more sensing devices (a single sensing device 802 is shown in FIG. 9 ).
  • the sensing device(s) 802 may sense the amount of pressure applied by a user's foot when contacting the ground or other surface during a step, jump, etc., e.g., as a measure of the effort being put forth by the user.
  • This data may be sent to a microprocessor or other portion of the control system 804 . If the contact pressure exceeds an upper threshold or falls below a lower threshold, the tightness of the laces or other securing system 806 of the article of footwear may be changed, e.g., based on signals produced by the microprocessor or other portion of the control system 804 .
  • FIG. 9 generally illustrates an example in which the degree of tightness of a securing system is changed by changing a length of a strap member 806 used as the securing system (the strap member 806 in this example securing system wraps around the user's foot multiple times—across the upper member, through the sole member etc.).
  • the length of this strap member 806 may be changed, for example, by using the microprocessor or other portion of the control system 804 to wrap or unwrap some of the strap member 806 from a supply device 808 (e.g., a roller, etc.).
  • the microprocessor or other portion of the control system 804 may be used to move more of the strap member 806 through a clamp or buckle member 810 (e.g., by rotating a portion of the clamp 810 that engages the strap 806 , etc.).
  • the microprocessor or other portion of the control system 804 may be used to move securing system laces into or out of a lace clamp or holding member, change a length of a fitting strap or cable that fits around a periphery of a wearer's foot, and/or otherwise change an aspect of the manner in which the article of footwear engages or fits a user's foot.
  • the securing system and/or other fit element that is controlled may be located at any place in the article of footwear and/or engage the user's foot or portions of the article of footwear at any desired location and in any desired manner without departing from this invention.
  • Systems of this type may be used to automatically customize the footwear size to a user, at any given time of use, irrespective of the other equipment being worn by the user (e.g., no socks, thin socks, thick socks, multiple pairs of socks, etc.).
  • user input also may be received by such fit adjusting systems to enable at least some user control over the type of fit at a given time (e.g., tight fit for play, loose fit at other times, tight fit for running or sprinting v. looser fit for walking or jogging, etc.).
  • the sensing device(s) 802 of this example footwear structure 800 may be capable of detecting surface contact by the foot (e.g., each step due to the detected pressure sensing, etc.), the same signals for controlling the tightness or fit characteristic(s) also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS.
  • the microprocessor and/or other portions of the control system 804 (or another microprocessor or system) in the article of footwear 800 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device(s) 802 .
  • user input may be received, e.g., in a peripheral device that is remotely located from the article of footwear and/or removably mounted to the article of footwear (or other portions of the user's body or clothing).
  • This device may be used, at least in part, to remotely control the desired characteristic(s) of the article of footwear (e.g., to enable the user to set impact attenuation characteristics at discrete levels or intervals, to enable the user to vary the set performance characteristic(s) and/or their thresholds, to enable the user to override the automatically set characteristic(s), etc.).
  • This user input device may adjust the settings in both articles of footwear simultaneously, and/or if desired, individual control over the articles of footwear may be provided.
  • the overall system may control stiffness or impact attenuation in the plantar/dorsi directions of the user's foot as well as in the medial/lateral directions, or in combinations or subcombinations of these various directions. Additionally, if desired, impact attenuation or other characteristics may be controlled in the upper member and/or in any portion of the sole member without departing from this invention.
  • pedometer based speed and/or distance information may be derived from step counts generated by one article of footwear or by two.
  • the peripheral device may display GPS information, map information, or other location or route based information (e.g., generated based on GPS and/or pedometer based speed and/or distance information).
  • GPS information e.g., generated based on GPS and/or pedometer based speed and/or distance information.
  • one or more characteristic(s) of the article of footwear may be controlled based on, for example: the user's location along a route; detected changes in terrain, altitude, etc; reaching various predetermined landmarks; reaching various threshold distances or altitudes; and the like.
  • various landmarks may be used to transmit information to a control system (optionally carried by the user and/or within the article of footwear) that may be used for changing one or more characteristics of an article of footwear in accordance with at least some examples of this invention.
  • a control system (optionally carried by the user and/or within the article of footwear) that may be used for changing one or more characteristics of an article of footwear in accordance with at least some examples of this invention.
  • a wide variety of control elements and triggering events may be used to automatically control one or more characteristic(s) of an article of footwear without departing from this invention.
  • Various examples of the invention described above relate to use of control systems in accordance with examples of the invention to adjust various characteristics of an article of footwear (or other foot-receiving device) in real time, e.g., on the fly, automatically, as the article of footwear (or other foot-receiving device) is being used (e.g., in between individual steps), etc. While one advantageous aspect in accordance with some examples of this invention, the invention is not limited to use in these situations.
  • systems and methods according to at least some examples of the invention may be used to adjust characteristics of an article of footwear (or other foot-receiving device) over time and/or under different use conditions, e.g., to accommodate for changes in the footwear structure caused by wear, damage, aging, temperature, humidity, moisture, etc.
  • aspects of the present invention may be used to adapt the impact attenuation characteristics of an article of footwear due to changes in the foam material of the midsole member that may occur over time (e.g., due to foam breakdown, damage, wetness, aging, etc.), so that the article of footwear provides a more consistent feel throughout its life and/or under a wide variety of use conditions.
  • aspects of the invention may be used to adjust the traction characteristics of an article of footwear due to wear on the outsole, cleats, or spike members that may occur over time (e.g., to provide additional cleat or spike length as the ends of the cleats or spikes wear away, to heat the outsole member more often or frequently as the outsole member's traction elements wear away, etc.).
  • one or more features relating to contact between an article of footwear and a contact surface or a user's foot may be sensed as the article of footwear is used (e.g., as the user steps down), such as one or more of the various features described above in connection with FIGS. 1-9 (e.g., contact pressure, midsole compression, degree of flex, degree of slip or slide, etc.).
  • the sensed information may be fed to a control system, which in turn may send signals to another device e.g., to change a configuration of the article of footwear to thereby control a characteristic of the article of footwear when appropriate (e.g., when the sensed parameters fall within a predetermined range, when they fall above or below threshold values, depending on a predetermined algorithm, etc.).
  • user input may be provided and used, at least in part, to set one or more of the characteristics and/or parameters associated with setting the characteristic(s).
  • the changed characteristic(s) may include, for example: changing impact attenuation characteristics, changing traction characteristics, changing flexibility characteristics, changing fit characteristics, changing securing system tightness characteristics, etc.
  • the sensed information may be used in determining user speed or distance information (e.g., pedometer type speed and/or distance information) and providing this information to the user.
  • Such methods may include engaging a sensing device with an article of footwear, e.g., with the upper member and/or sole member, integrally formed as part of the article of footwear, embedded or housed in the sole member, etc. This engaging may occur during footwear manufacture or assembly, at retail or use locations (e.g., via a slot or mounting element provided in the article of footwear for receiving the sensing and/or control devices, etc.).
  • the sensing device as noted above, may be positioned and adapted to sense at least one characteristic of contact between the article of footwear and a contact surface or a user's foot when the article of footwear is in use.
  • a control system may be provided (e.g., separate from or commonly housed or supported with the sensing device) to receive output from the sensing device and to control a characteristic of the article of footwear, as described above (e.g., to alter some aspect of the article of footwear's configuration), based on the received output.
  • the control device may be located in or on the article of footwear, partially in or on the article of footwear, or remote from the article of footwear without departing from this invention.
  • Aspects of providing footwear systems in accordance with examples of the invention further may include providing a distance monitoring system, optionally at least partially engaged with the article of footwear, for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear.
  • the distance monitoring system may use the same sensing device and optionally the same signals provided by the sensing device as those used for footwear characteristic control.

Abstract

Foot-receiving devices, such as articles of footwear, include: (a) a sensing device that senses a characteristic of an interaction between a user's foot and a foot-receiving device; (b) a control system that receives output from the sensing device and controls a characteristic of the foot-receiving device based on this output; and (c) a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device. The monitoring system may receive input from the same sensing device used for providing data to the control system. The control system may alter the impact attenuation characteristics, the traction characteristics, the flexibility characteristics, the fit characteristics, or the like of the article of footwear. Methods of making and using such foot-receiving devices also are described.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to articles of footwear or other foot-receiving devices that include monitoring and/or control systems for automatically controlling a characteristic of the article of footwear, such as a performance characteristic of the article of footwear, as well as speed and/or distance monitoring systems, e.g., of the pedometer type.
  • BACKGROUND
  • Conventional articles of footwear have included two primary elements, namely an upper member and a sole structure. The upper member provides a covering for the foot that receives and positions the foot with respect to the sole structure. In addition, the upper member may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure generally is secured to a lower portion of the upper member and generally is positioned between the foot and the contact surface (the terms “contact surface” or “surface,” as used herein, include any foot or footwear contact surface, including but not limited to: grass, dirt, snow, ice, tile, flooring, carpeting, synthetic grass, asphalt, cement, concrete, clay, court surfaces, and the like). In addition to attenuating ground reaction forces, the sole structure may provide traction and help control foot motion, such as pronation. Accordingly, the upper member and the sole structure operate cooperatively to provide a comfortable structure that is suited for a variety of ambulatory activities, such as walking and running.
  • The sole member of athletic footwear, in at least some instances, will exhibit a layered configuration that includes a comfort-enhancing insole, a resilient midsole (e.g., formed, at least in part, from a polymer foam material), and a ground-contacting outsole that provides both abrasion-resistance and traction. The midsole, in at least some instances, will be the primary sole structure element that attenuates ground reaction forces and controls foot motion. Suitable polymer foam materials for at least portions of the midsole include ethylvinylacetate (“EVA”) or polyurethane (“PU”) that compress resiliently under an applied load to attenuate ground reaction forces. Conventional polymer foam materials are resiliently compressible, in part, due to the inclusion of a plurality of open or closed cells that define an inner volume substantially displaced by gas. The upper member and sole structure in conventional footwear products may be joined to one another in various different ways, such as using cements or adhesives, stitching or sewing, mechanical connectors, fusing techniques, or the like.
  • SUMMARY
  • The following presents a general summary of aspects of this invention in order to provide a basic understanding of at least some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a general form as a prelude to the more detailed description provided below.
  • Aspects of this invention relate to foot-receiving devices, such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including insole, midsole, and/or outsole portions) engaged with the foot-covering member. The foot-receiving device further may include: (a) a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is positioned and/or adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use; (b) a control system that receives output from the sensing device and controls at least one characteristic of the foot-receiving device (such as a characteristic of the foot-supporting member) based (at least in part) on this output; and (c) a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device. Optionally, if desired, the monitoring system may receive input from the same sensing device used for providing data to the control system. The control system may alter, for example, the impact attenuation characteristics, the traction characteristics, the flexibility characteristics, the fit characteristics, or the like of the article of footwear. Such foot-receiving systems further may include one or more devices, such as remote or peripheral devices, e.g., for receiving user input (e.g., relating to user settings or desired features for the settable or controllable characteristics, etc.), for providing information to the user (e.g., speed or distance information, etc.), and the like.
  • Further aspects of this invention relate to methods for making footwear or other foot-receiving device systems that include control systems and/or monitoring systems, e.g., of the types described above. Such methods may include, for example: (a) engaging a sensing device with an article of footwear or foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is positioned and/or adapted to sense at least one characteristic of contact between the article of footwear or foot-receiving device and a contact surface when the article of footwear is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or foot-receiving device based on the output from the sensing device; and (c) providing a distance monitoring system at least partially engaged with the article of footwear or foot-receiving device, wherein the distance monitoring system is programmed and adapted to detect and/or store data indicating speed or distance information associated with use of the article of footwear or foot-receiving device. Optionally, if desired, the distance monitoring system may receive input data from the same sensing device that provides input data used by the control system (e.g., if the sensing device is capable of detecting each step down or step up event of the user's foot, etc.).
  • Still additional aspects of this invention relate to example methods for using footwear or foot-receiving device systems of the types described above. Such methods may include: (a) sensing contact or other interaction between an article of footwear (or other foot-receiving device) and a contact surface during use, wherein the contact or interaction is sensed using a sensing device at least partially engaged with the article of footwear (or other foot-receiving device); (b) controlling a characteristic of the article of footwear (or other foot-receiving device) based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device.
  • Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in setting and/or controlling the characteristic of the article of footwear (or other foot-receiving device), e.g., to match or set user preferences, etc. The same or a different device, optionally on board, attached to, or remote from the article of footwear (or other foot-receiving device), also may be included to provide speed and/or distance information or other information to a user or others.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present invention and certain advantages thereof may be acquired by referring to the following description in consideration with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
  • FIG. 1 illustrates an overview of an example system according to the invention and/or an example environment in which aspects of the invention may be used or practiced;
  • FIG. 2 illustrates a schematic diagram of an example system that may be used in accordance with examples of the invention;
  • FIGS. 3A through 3C illustrate an example of an article of footwear including an active impact-attenuation control system as a control system in accordance with examples of the invention;
  • FIG. 4 illustrates an example graph illustrating how output from a sensing device, such as the sensing device of FIGS. 3A through 3C, may be used to provide pedometer based speed and/or distance information;
  • FIG. 5 illustrates an example of an article of footwear including a control system with user input and display features in accordance with examples of the invention;
  • FIG. 6 illustrates an example of a sole member for an article of footwear that includes pronation and/or supination reduction or elimination features as a control system in accordance with examples of the invention;
  • FIG. 7 illustrates an example of an article of footwear including a traction control system as a control system in accordance with examples of the invention;
  • FIG. 8 illustrates an example of an article of footwear including a footwear flexibility control system as a control system in accordance with examples of the invention; and
  • FIG. 9 illustrates an example of an article of footwear including a footwear fit or securing system tightness control system as a control system in accordance with examples of the invention.
  • DETAILED DESCRIPTION
  • In the following description of various examples of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example systems and environments in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, example systems, and environments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “side,” “front,” “back,” “above,” “below,” “under,” “over,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures and/or a typical orientation during use. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention.
  • To assist the reader, this specification is broken into various subsections, as follows: Terms; General Description of Foot-Receiving Device Systems and Methods of Making and Using Them According to the Invention; and Specific Examples of the Invention.
  • A. Terms
  • The following terms are used in this specification, and unless otherwise noted or clear from the context, these terms have the meanings provided below.
  • “Foot-receiving device” means any device into which a user places at least some portion of his or her foot. In addition to all types of footwear (described below), foot-receiving devices include, but are not limited to: bindings and other devices for securing feet in snow skis, cross country skis, water skis, snowboards, and the like; bindings, clips, or other devices for securing feet in pedals for use with bicycles, exercise equipment, and the like; bindings, clips, or other devices for receiving feet during play of video games or other games; and the like.
  • “Footwear” means any type of product worn on the feet, and this term includes, but is not limited to: all types of shoes, boots, sneakers, sandals, thongs, flip-flops, mules, scuffs, slippers, sport-specific shoes (such as golf shoes, tennis shoes, baseball cleats, soccer or football cleats, ski boots, etc.), and the like. “Footwear” may protect the feet from the environment and/or enhance a wearer's performance (e.g., physically, physiologically, medically, etc.).
  • “Foot-covering members” include one or more portions of a foot-receiving device that extend at least partially over and/or at least partially cover at least some portion of the wearer's foot, e.g., so as to assist in holding the foot-receiving device on and/or in place with respect to the wearer's foot. “Foot-covering members” include, but are not limited to, upper members of the type provided in some conventional footwear products.
  • “Foot-supporting members” include one or more portions of a foot-receiving device that extend at least partially beneath at least some portion of the wearer's foot, e.g., so as to assist in supporting the foot and/or attenuating the reaction forces to which the wearer's foot would be exposed, for example, when stepping down in the foot-receiving device. “Foot-supporting members” include, but are not limited to, sole members of the type provided in some conventional footwear products. Such sole members may include conventional outsole, midsole, and/or insole members.
  • “Ground-contacting elements” or “members” include at least some portions of a foot-receiving device structure that contact the ground or any other surface in use, and/or at least some portions of a foot-receiving device structure that engage another element or structure in use. Such “ground-contacting elements” may include, for example, but are not limited to, outsole elements provided in some conventional footwear products. “Ground-contacting elements” in at least some example structures may be made of suitable and conventional materials to provide long wear, traction, and protect the foot and/or to prevent the remainder of the foot-receiving device structure from wear effects, e.g., when contacting the ground or other surface in use.
  • B. General Description of Foot-Receiving Device Systems and Methods of Making and Using Them According to the Invention
  • Some aspects of the present invention relate generally to footwear systems and other foot-receiving device systems. As shown in FIG. 1, which generally illustrates an example of the invention and an example environment in which the invention may be used, one or more individual articles of footwear 100 (such as athletic footwear or other foot-receiving devices) may be equipped with one or more sensing devices 102, such as performance or ground interaction measuring devices. The sensing devices 102 may be programmed and adapted to sense or collect information relating to at least one characteristic of contact between the article of footwear 100 and the contact surface (e.g., the ground, the floor, etc.) when the article of footwear is used (e.g., the impact force on the contact surface during an athletic event, exercise, or other performance, etc.). Output from the sensing device 102 may be provided to a control system 104, which optionally may include a microprocessor mounted in or on the article of footwear 100, and the control system 104 then can be used to control or change at least one characteristic of the article of footwear 100 (optionally, automatically, without the need for further user input). While any desired number or type(s) of characteristics of the article of footwear 100 may be changed or controlled based on output from the sensing device 102, more specific examples of the types of changes or controls include: change or control in an amount of impact-attenuation provided by the article of footwear 100, e.g., by the sole member; change or control of foot impact characteristics to induce a pronation, supination, or other gait correction configuration; change or control in the tightness of the footwear securing system (e.g., in laces, straps, buckles, etc.); change or control in traction characteristics; change or control in foot fit characteristics; change or control in footwear flexibility characteristics; etc.
  • Additionally, as shown in the example of FIG. 1, as the user 106 moves, the sensing device 102 also may be capable of providing (and programmed and adapted to provide) information indicating each time the user steps down in the article of footwear 100. This step information may be used by systems and methods in accordance with at least some examples of this invention to provide distance monitoring systems, e.g., systems for detecting and/or storing speed and/or distance information associated with use of the article of footwear 100. In other words, the sensed interaction between the article of footwear 100 and the contact surface, which is used to provide footwear characteristic control information in the example system described above, also may be used to provide speed and/or distance information (e.g., speed and/or distance information of the pedometer type). If desired, this speed and/or distance data may be stored in a memory (e.g., a memory included on board the article of footwear 100, a memory provided with a peripheral device, etc.), e.g., for later use and/or analysis, and/or it may be transmitted or otherwise made available to the user 106 or others, e.g., via wireless transmission devices 108 optionally included as part of the control system 104 or the article of footwear 100. Optionally, if desired, the sensing device 102, the control system 104, and/or the article of footwear 100 may include one or more microprocessors or other data processing capability to enable processing of collected data before transmitting the data or other information to the user 106 or others.
  • The data or desired information may be conveyed to the user 106 or others in any desired manner without departing from the invention, for example, to a wireless receiver 110 provided with a display device 112. Optionally, if desired, the display device 112 may be equipped with one or more microprocessors to enable initial processing of the raw data sent by the sensing device 102, control system 104, and/or the article of footwear 100, to enable further processing of data and/or information sent, etc. Any type of information may be presented to the user 106 (or others) via display device 112, such as speed and/or distance information, time information, GPS information, footwear setting information, etc. As more specific examples, the display device 112 may include various electronic devices, such as portable, user carried devices, e.g., a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, headphones or earphones, etc. Any type of “display device” also may be provided, such as audio devices, video devices, audio/video devices, alpha-numeric displays, etc.
  • If desired, the display device 112 (for another device) also may be programmed and adapted to receive user input, e.g., control or setting information for the control system 104, etc. In this example configuration, the display device 112 may be equipped with a transmitter or other output device that sends data to a receiver or other input device located in or on the article of footwear. If desired, devices 108 and 110 may be capable of performing both transmission and reception functions in at least some examples of this invention.
  • In light of this general example and general description of an example environment of use, various example aspects of the invention will be described in more detail below, including various example features relating to example structural components of foot-receiving device systems in accordance with the invention; manners of making such systems; and manners of using such systems.
  • 1. Example Foot-Receiving Device Systems According to the Invention
  • In general, aspects of this invention relate to foot-receiving device systems, such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including an insole, a midsole, and/or an outsole portion) engaged with the foot-covering member. The foot-receiving device system further may include a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use (e.g., interactions between the foot-receiving device and its contact surface and/or a user's foot during a step). The sensing device may send its output to a control system, and the control system then may be used to control at least one characteristic of the foot-receiving device (such as the foot-supporting member) based on output from the sensing device. The foot-receiving device system also may be equipped with a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device system. Optionally, if desired, this monitoring system may receive input from the same sensing device used for providing data to the control system.
  • The control system may be used to control a wide variety of different features or characteristics of the foot-receiving device system. For example, the control system may be programmed and adapted to: (a) control an amount of impact attenuation provided by the foot-supporting member (e.g., by altering a stiffness of at least a portion of the foot-supporting member, by changing the impact attenuation at least in a heel portion of the foot-receiving device, etc.); (b) control the amount of impact attenuation in one or more portions of the foot-receiving device so as to reduce or eliminate pronation and/or supination when the foot-receiving device is in use; (c) control a degree of traction provided, e.g., by the ground-contacting member of the foot-receiving device (e.g., by an outsole member); (d) control a degree of flexibility in at least one portion of the foot-receiving device (e.g., in the arch, in the upper member, in the toe portion, etc.); (e) control at least one aspect of the manner in which the foot-receiving device fits a user's foot (e.g., by controlling a degree of tension applied to a securing system for the foot-receiving device; by controlling a fit of the foot-covering member, by controlling a fit of the foot-supporting member, etc.); and the like. Optionally, if desired, the control system may respond to the sensing device output and control the characteristics or features of the foot-receiving device in an automatic or “smart” manner (e.g., without the need for user input to change the settings, automatically, between steps, etc.).
  • Various peripheral devices also may be associated with foot-receiving device systems in accordance with at least some examples of this invention. For example, a peripheral device may be provided that is in communication with the control system for providing user input to the control system (e.g., to allow at least partial user control over the control system, to allow remote user control, to allow user input regarding general settings, preferences, or ranges, etc.). This same peripheral device or a different device also may be used to provide information to the user, such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); map, track, or route warning or other information; and/or any other desired audio, video, alphanumeric, or other information. Optionally, the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device system (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to enable the device to be included in or attached to the foot-receiving device, the user, the user's clothing, etc.; etc.).
  • The sensing device that supplies signals to the control system and/or the monitoring system may be of any suitable or desired form without departing from the invention, including, for example, pressure sensors, force transducers, Hall effect sensor systems, strain gauges, piezoelectric elements, load cells, proximity sensors, optical sensors, accelerometers, capacitance sensors, inductance sensors, ultrasonic transducer and receiver systems, radio frequency transmitter and receiver systems, magneto-resistive elements, etc.
  • As noted above, at least one more specific aspect of the invention relates to footwear systems that include footwear control systems and speed and/or distance monitoring systems. Some more specific examples of footwear systems in accordance with these examples of the invention may include: (a) an article of footwear including an upper member and a sole member; (b) a sensing device engaged with the article of footwear, wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear and a contact surface when the article of footwear is in use; (c) a footwear control system that controls a characteristic of the article of footwear based on output from the sensing device; and (d) a speed and/or distance monitoring system at least partially engaged with the article of footwear for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear. Optionally, if desired, the speed and/or distance monitoring system may use input from the sensing device mentioned above.
  • 2. Example Methods of Making Foot-Receiving Device Systems According to Examples of the Invention
  • Further aspects of this invention relate to methods for providing footwear and/or other foot-receiving device systems that include control systems and speed and/or distance monitoring systems, e.g., of the types described above. Such methods may include: (a) engaging a sensing device with an article of footwear or other foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear or other foot-receiving device and a contact surface or a user's foot when the article of footwear or other foot-receiving device is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or other foot-receiving device based on the output from the sensing device; and (c) providing a speed and/or distance monitoring system at least partially engaged with the article of footwear or other foot-receiving device, wherein the speed and/or distance monitoring system is programmed and adapted to detect or store data indicating speed or distance information associated with use of the article of footwear or other foot-receiving device. Optionally, if desired, the speed and/or distance monitoring system may receive data from the sane sensing device that provides output used by the control system. In various example methods in accordance with this invention, the control system and/or the monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
  • Additionally, methods in accordance with at least some examples of this invention further may include providing a peripheral device. The peripheral device may perform various functions, including, for example: providing user input to the control system; providing information to the user or others (such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); warning information; and/or any other desired audio, video, alphanumeric, or other information); etc. Optionally, the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to be mounted on an article of footwear, an article of clothing, or a piece of athletic equipment; etc.).
  • 3. Example Methods of Using Foot-Receiving Device Systems According to Examples of the Invention
  • Still additional method aspects according to the invention include methods for using footwear or other foot-receiving device systems that include control systems and speed and/or distance monitoring systems, e.g., of the types described above. Such methods may include: (a) sensing contact between an article of footwear or other foot-receiving device and a contact surface or a user's foot as the article of footwear or other foot-receiving device is used, wherein the contact is sensed using a sensing device at least partially engaged with the article of footwear or other foot-receiving device; (b) controlling a characteristic of the article of footwear or other foot-receiving device based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device. In various example methods in accordance with these aspects of the invention, the control system and/or the speed and/or distance monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
  • Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in controlling the characteristic(s) of the article of footwear or other foot-receiving device. Such user input may be entered, for example, through a footwear mounted input system, through a device separate and remote from the article of footwear, etc. The same or a different peripheral device also may be included to provide speed and/or distance information to a user of the article of footwear or other foot-receiving device (or to others). The devices included in these methods may be portable so as to be readily carried by the user, e.g., during use of the article of footwear, as part of the article of footwear, clipped to a belt or other portion of the user's clothing, worn on a user's arm or leg, etc.
  • Specific examples of structures according to examples of the invention are described in more detail below. The reader should understand that these specific examples and structures are set forth merely to illustrate the invention, and they should not be construed as limiting the invention.
  • C. Specific Examples of the Invention
  • The various figures in this application illustrate examples of footwear and other foot-receiving device products according to examples of this invention. When the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings to refer to the same or similar parts throughout.
  • As described above, FIG. 1 generally illustrates an example of the invention and an example environment of use in which articles of footwear 100 (such as athletic footwear) or other foot-receiving devices are equipped with sensing devices 102, control systems 104, and speed and/or distance monitoring devices. The sensing devices 102 may include detectors or sensing devices for sensing and/or collecting information during a performance (e.g., during exercise, an athletic event, or other performance activity). The sensing devices 102, control systems 104, and/or the articles of footwear 100 further may include processing capabilities and/or transmission/reception capabilities to provide information to the footwear user 106 (or others) and/or to receive information from the footwear user 106 (or others). The desired information may be presented to the user 106 (or others) and/or input may be received from the user 106 (or others) via a communication device 112, such as a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, RF device, infrared transmission, etc. Alternatively or additionally, if desired, the sensed information (based on output generated by sensing device 102) may be used to automatically change or control characteristics or features of the footwear 100 itself (e.g., to control the impact attenuation characteristics of the footwear, etc.) or to change or control other devices, with or without providing speed, distance, and/or other information to a user 106 (or others).
  • FIG. 2 schematically illustrates example elements and an example arrangement or system 200 that may be included as part of an overall footwear or foot-receiving device system that includes control and/or distance monitoring capabilities of the type generally described in conjunction with FIG. 1. The system 200 of this example includes a monitoring element 202 that includes a sensing device 204 adapted to sense at least one characteristic of contact or interaction between an article of footwear and a contact surface or a user's foot when the article of footwear is in use. The monitoring element 202 in this example structure 200 may be mounted in and/or constructed as part of the article of footwear, e.g., in or as part of the sole member of an article of footwear, such as in the midsole. Optionally, if desired, the sensing device 204 may be separate from the monitoring element 202, and optionally, the sensing device 204 may send signals to the monitoring element 202 (e.g., via wired or wireless connections, etc.).
  • Data relating to the contact or interaction between the article of footwear and the contact surface or the user's foot may be measured by sensing device 204 and transferred to a microprocessor 206 and/or stored in memory 208. Based on the measured data from the sensing device 204, the microprocessor 206 may control one or more devices 210, e.g., included as part of the article of footwear to control a characteristic of the article of footwear. As a more concrete example, and as will be explained in more detail below, the sensing device 204 may sense the amount of compression of the article of footwear's midsole member. Based on the sensed degree of midsole compression, the microprocessor 206 may control a device 210 to increase or decrease the stiffness of at least a portion of the sole member. In this manner, the monitoring element 202 can be used to actively and/or automatically control the impact attenuation characteristics of an article of footwear without the need for additional user input. Various examples of this type of impact attenuation control and other controlled devices 210 will be described in more detail below. Of course, if desired, the controlled device 210 may be included as part of the monitoring element 202 without departing from this invention.
  • In addition to providing information regarding the degree of compression of the midsole or other aspects of the interaction between a user's foot and an article of footwear, the sensing device 204 of this example system 200 also may be capable of sensing each of the user's steps (e.g., the midsole will compress somewhat with each step). If desired, and as will be explained in more detail below, detection of information corresponding to each user's step may be used by systems and methods according to at least some examples of this invention to collect pedometer type speed and/or distance information relating to use of the article of footwear. This speed and/or distance information may be stored in memory 208, e.g., for real time or later analysis, display, processing, review, etc. Optionally, if desired, the speed and/or distance information may be transmitted to another device 212, e.g., a peripheral display device, in any desired manner, e.g., via wired or wireless connections (a wireless communication system is illustrated in the example of FIG. 2), to enable display of speed and/or distance information to the user in real time, as the exercise or event continues, etc. As described above, this device 212 may be any type of display device, such as an audio display device, a video display device, an alphanumeric display device, or the like. More specific examples of possible devices 212 for this purpose include: a watch or other arm worn display device, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, etc.
  • As further shown in FIG. 2, the device 212 also may include a user input system for receiving a user's input, e.g., and directing it to the monitoring system 202. Of course, the user input system may be used for any purpose without departing from this invention, for example: for requesting information from the monitoring element 202 (such as pedometer type speed and/or distance information, step count information, other available information); for setting parameters used in the control system 200 (e.g., setting general impact attenuation characteristics, etc.); for communicating with other devices; for interacting with other features of the device 212 (e.g., requesting time, altitude, or GPS information; setting time, display or other features of device 212, etc.); and the like. The input system may include any type of input devices, such as buttons, keys, switches, voice recognition/input, digitizer/stylus input, etc.
  • A wide variety of characteristics of an article of footwear (or other foot-receiving device) may be controlled by systems and methods in accordance with this invention, and additionally, a wide variety of different types of sensing devices also may be used (e.g., magnetic sensors, Hall effect sensors, light or other radiation sensors, pressure sensors, piezoelectric sensors, accelerometers, gyro-sensors, optical sensors, etc.). One more specific example relates to active/automatic control of impact-attenuation characteristics of an article of footwear based on a sensed degree of compression of the midsole and/or other portions of the article of footwear. For example, when a midsole member compresses a substantial amount as sensed by a sensing device 204, the monitoring element 202 in accordance with at least some examples of the invention may sense this large amount of compression and automatically activate a device so as to increase stiffness characteristics of at least some portion of the article of footwear. On the other hand, when the sensed midsole member compression is determined to be rather slight, e.g., optionally, despite rather firm contact with the contact surface or the user's foot, the monitoring element 202 in accordance with at least some examples of the invention may sense this fact and automatically activate a device so as to decrease stiffness characteristics of at least some portion of the article of footwear. Independent user input may be provided, e.g., to set broad parameters for the desired amount of impact attenuation (e.g., a user's preference for a firm midsole v. a user's preference for a soft midsole, etc.), to override the automatically set impact attenuation levels, etc.
  • Various detector types, systems, and methods may be used for providing automatic impact attenuation control without departing from this invention. For example, known systems like those described in U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. Patent Application Publication No. 2004/0177531 may be used to actively and/or dynamically control the impact attenuation characteristics of an article of footwear in accordance with at least some examples of this invention (U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. Patent Application Publication No. 2004/0177531 each are entirely incorporated herein by reference).
  • FIGS. 3A, 3B, and 3C illustrate more specific examples of arrangements, elements, and components that may be included in monitoring and/or control systems in accordance with at least some examples of this invention. As shown in these figures, a sole member 300 of an article of footwear 350 (or other foot-receiving device) includes a midsole member 302 and an outsole member 304. In this example sole structure 300, the monitoring and/or control system and the sensing device(s) associated therewith are provided in an area defined between the midsole member 302 and the outsole member 304. More specifically, in this example structure, a lower support plate 306 and an upper support plate 308 are provided (optionally, integrally formed with the outsole member 304 and the midsole member 302, respectively), and portions of the monitoring and control system are provided between these plates 306 and 308. These optional upper and lower support plates 308 and 306, respectively, may be included, for example, to help maintain at least some portions of the monitoring and/or control system in a particular predetermined orientation. If desired, at least some portions of the monitoring and/or control system may be disposed within a cavity 310 defined in the midsole member 302. The midsole 302 may be made of conventional materials and/or in conventional manners, as are known and used in the art.
  • The monitoring and/or control system in accordance with at least some examples of this invention may include an actuation system 314 driven based on output from a sensing device (described in more detail below). The actuation system 314 may include a driver 316 (e.g., a motor) and an adjustable element 318. The monitoring and/or control system further may include a sensor 320, e.g., a proximity sensor, a magnetic field sensor, a Hall Effect sensor, an accelerometer, etc., a magnet 322, and associated electrical circuitry. In general, if desired, the monitoring and/or control system may take on the general structure and/or form illustrated and described in U.S. Patent Application Publication No. 2004/0177531.
  • In the example structure illustrated in FIGS. 3A through 3C, the sensor 320 is located below the adjustable element 318, and the magnet 322 is vertically spaced from the sensor 320 and located above the adjustable element 318. Any desired type of magnet 322 may be used without departing from this invention, such as a neodymium iron bore type magnet or other known or conventional magnets (e.g., permanent magnets). The actual positioning and/or spacing of the sensor 320 with respect to the magnet 322 may vary widely, e.g., to suit a particular application, for example, for measuring and/or modifying the compressibility of the sole member 300 (e.g., the midsole member 302). In this illustrated example structure 300, the sensor 320 and the magnet 322 are located at positions that generally correspond to areas where maximum compression occurs in the rearfoot portion of an article of footwear 350 (e.g., under the user's calcaneous or heel). In such structures, the sensor 320 and magnet 322 may be centered generally between a lateral side and a medial side of the sole member 300 and may be between about 25 mm and about 45 mm forward of a posterior aspect of the user's foot.
  • If desired, the overall monitoring and/or control system, or at least portions of it, may be encased in a sealed, waterproof enclosure. The actuation system 314 may include a driver 316. More specifically, in at least some example arrangements, the driver 316 may include a motor 324 and a transmission element 326. The adjustable element 318, which may be used to control the degree of stiffness or “give” in the midsole member 302, may include a limiter 328, an expansion element 330, and a stop member 332. In the particularly illustrated example, the driver 316 includes a lead screw drive, made up of the bi-directional electric motor 324 and a threaded rod that forms the transmission element 326. If desired, in at least some examples of this invention, the motor 324 may be a radio-controlled servomotor of the type used in model airplanes or other similar small electronic objects. The threaded rod 326 may be constructed from any desired material, such as steel, stainless steel, etc.
  • The motor 324 may be mechanically coupled to the transmission element 326 to drive the transmission element 326 in either a clockwise or counter-clockwise direction. The transmission element 326 may be designed to threadedly engage the limiter 328 and transversely position the limiter 328 relative to the expansion element 330 (see the double headed arrow in FIG. 3B). In this illustrated example structure 300, because the limiter 328 is threadedly engaged with the transmission element 326, it is prevented from rotation relative to the motor 324 and the article of footwear, and therefore, no power is required to maintain the limiter's 328 position once the position is set in this example structure 300. For example, the actuation system 314 may contain sufficient friction and a sufficiently fine thread may be provided on the transmission element 326 to prevent inadvertent rotation of the transmission element 326 during or in response to a heel strike or other step down event. Of course, other arrangements of the various sensor and control elements are possible without departing from this invention. As a more specific example, the driver 316 may include any type of rotary or linear actuator, a gear train, a linkage, or combinations thereof, without departing from this invention.
  • In the illustrated example structure 300, the expansion element 330 constitutes a generally cylindrical element with an elongated circular or generally elliptically-shaped cross-section. While they may be, the arcuate ends of the expansion element 330 are not necessarily semi-circular in shape. The radius of the arcuate ends may be selected so as to suit a particular application, e.g., to provide a predetermined amount of flex, etc. Moreover, the sizes of these ends may be varied, e.g., to control the amount of longitudinal expansion of the expansion element 330 when under a compressive vertical load, etc. In general, the larger the radius or size of the end portions, greater longitudinal expansion is possible under vertical compression loading. The expansion element 330 may be constructed so as to have a solid outer wall, and optionally, if desired, a compressible core of foam or other resilient material. The size, shape, and materials used in the expansion element 330 may be freely selected, e.g., to suit a particular application. As more specific examples, the expansion element 330 may be constructed from plastic or polymeric materials, such as thermoplastic materials like DESMOPAN® (a thermoplastic polyurethane material available from Bayer AG of Leverkusen, Germany), PEBAX® (a polyether-block co-polyamide polymer available from Atofina Corp. of Puteaux, France), etc. In at least some examples, the expansion element 330 or at least its outer wall may be made as a unitary, one-piece member, e.g., by injection molding or by other suitable or desired methods, including conventional methods known in the art.
  • If desired, the transmission element 326 may extend through the expansion element 330 and connect to stop member 332. The stop member 332 may be used to prevent movement of the expansion element 330 in a direction away from the limiter 328. Alternatively, if desired, the functions of the stop member 332 may be performed by a rear wall of the cavity 310 or other portion of the sole structure, and the stop member 332 may be omitted, without departing from this invention. A wide variety of other structural modifications also may be provided within the sole structure without departing from this invention.
  • The general operation of the adjustable element 318 is described with respect to an application where the monitoring and/or control system is used to modify the impact-attenuation characteristics of an article of footwear 350 in response to a measured parameter, for example, in response to measured compression of the midsole member 302. The expansion element 330 compresses when acted on by a vertical force (e.g., a step, landing a jump, etc). In response to the compression, the expansion element 330 expands in the horizontal direction. The limiter 328 controls/limits the amount of movement or horizontal expansion that the expansion element 330 can experience. When the horizontal movement is limited, the vertical movement will be limited as well, thereby enabling control over the firmness or feel of the midsole member by controlling the location of limiter 328. Therefore, by controlling the position of limiter 328, the overall impact attenuation characteristics of the article of footwear 350 may be controlled.
  • The monitoring and/or control system may be used to actively and/or automatically control the amount of midsole member 302 compression a user creates when stepping down in the article of footwear 350, landing a jump, etc. As an example, when a user wearing an article of footwear 350 like that illustrated in FIGS. 3A through 3C engages a contact surface during a stride or other activity, vertical force is applied to the expansion element 330 via the sole member 300 and the user's foot. This force causes the expansion element 330 to expand during ground contact until the expansion element 330 contacts the limiter 328, thereby controlling the amount of compression experienced in the sole member 300.
  • During compression, the sensing device 320 included as part of the monitoring and/or control system in this example system measures field strength of the magnet 322. In this illustrated example structure, the sensing device 320 is provided proximate the bottom of the midsole member 302 and the magnet 322 is disposed proximate the top of the midsole member 302 with the expansion element 330 therebetween. The magnetic field strength detected by the sensing device 320 changes as the magnet 322 moves closer to the sensing device 320, e.g., as the midsole member 302 is compressed, for example, during a step, when landing a jump, etc. The amount of change or other variations in the sensed magnetic field may correspond to the force of the step (e.g., proportionally, etc.). A microprocessor 334 included as part of the monitoring and/or control system may be programmed and adapted such that this magnetic field strength can be converted to a distance (e.g., a midsole member 302 compression distance). The change in distance (and thus the change in measured magnetic field strength) indicates the extent to which the midsole member 302 has compressed. The microprocessor 334 of the monitoring and/or control system then may output a signal to the actuation system 314 based on the change in distance or compression measurement, to thereby automatically, and in real time, change the impact-attenuation characteristics of the article of footwear 350 (e.g., to modify the hardness or compressibility of the midsole member 302 based on the signal received from the monitoring and/or control system). Changes to the impact-attenuation characteristics may be made on the fly, if desired, between steps, automatically, while the event or performance continues (e.g., high measured midsole compression levels or forces may induce a “hardening” of the midsole and/or low measured midsole compression levels or forces may induce a “softening” of the midsole).
  • Of course, other structures for changing the hardness or compressibility of the midsole member 302 may be used without departing from the invention. More specific examples include air or fluid filled bladders (e.g., where changes in pressure or volume change hardness or compressibility), piston type systems, hydraulic type systems, pneumatic type systems, etc. The impact attenuation characteristics of the article of footwear also may be changed at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
  • Detection of compression of the midsole member 302 also may be used in systems and methods in accordance with at least some examples of this invention as a step count indicator, thereby allowing the monitoring and/or control system to also provide pedometer based and/or other speed and/or distance information. This data may be stored in memory 336, displayed on the article of footwear, and/or otherwise provided to a user, e.g., via a wired or wireless connection (a general transmission/receiver device 338 is illustrated in FIGS. 3A and 3B). Any type of speed and/or distance type information may be provided and/or any type of data transmission system may be used without departing from this invention, including, for example, using algorithms and/or systems of the types described in U.S. Pat. Nos. 5,724,265, 5,955,667, 6,018,705, 6,052,654, 6,876,947 and 6,882,955, which patents each are entirely incorporated herein by reference.
  • FIG. 4 illustrates an example of output that may be generated by a sensing device (e.g., sensor 320) and its use for both impact attenuation control and providing pedometer based speed and/or distance information. As shown in FIG. 4 and described above, a sensing device 320 (e.g., a Hall sensor or other magnetic sensor) may generate an output indicating a measured magnetic field strength of magnet 322. Due to midsole compression (e.g., during a step, landing a jump, etc.), the magnitude of the measured magnetic field strength may change over time (e.g., through the course of a step, etc.). If the measured peak magnetic field strength during a step cycle falls below a predetermined lower threshold 380, the impact attenuation characteristics of the article of footwear 350 may be considered as too stiff (e.g., the midsole does not provide adequate compression), and the position of the limiter 328 may be moved to enable more expansion of the expandable element 330. On the other hand, if the measured peak magnetic field strength during a step cycle falls above a predetermined upper threshold 382, the impact attenuation characteristics of the article of footwear 350 may be considered as too giving (e.g., the midsole provides too much compression), and the position of the limiter 328 may be moved to enable less expansion of the expandable element 330. In this manner, output from the sensing device 320 may be used to automatically control impact attenuation characteristics of an article of footwear.
  • This same sensor data, however, also may be used to provide “step count” information (e.g., each user step may be sensed due to compression of the midsole member). For example, as illustrated in FIG. 4, each time the sensed magnetic field strength exceeds a certain threshold 384, systems and methods according to at least some examples of this invention may consider that the user has taken a step. Using this step count data, along with data indicating the user's step length (e.g., data previously entered by the user, previously measured, measured on a metered track, derived from averages for specific user heights, etc.), elapsed time data, and the like, systems and methods according to this example of the invention may measure and/or display to the user (or others) pedometer based speed and/or distance information (e.g., distance=step count×step length; speed=distance/elapsed time; etc.).
  • As described above in conjunction with FIGS. 1 through 3C, if desired, systems and methods in accordance with at least some example aspects of this invention may operate in conjunction with one or more peripheral devices, e.g., devices that provide information to users, devices that receive user entered input (e.g., step length data, etc.) devices that receive input from other sources (e.g., GPS data, map data, etc.) etc. In the various illustrated examples discussed above, the monitoring and/or control system and/or the speed and distance measuring system may communicate with the peripheral device via a remote or wireless connection. Any desired type of connection, communication system, and/or communication protocol may be used without departing from this invention.
  • It is not necessary, however, for the user inputs, external inputs or information sources, and/or display devices to be remote from and/or wirelessly in communication with the monitoring and/or control system and/or the speed and distance measuring system. For example, if desired, wired connections, electrode pins or connections, and the like may be used as opposed to wireless connections. Additionally, if desired, the user inputs, external inputs or other information, sources (e.g., GPS tracking systems, map information, etc.) and/or display devices may be provided on and/or as part of the article of footwear (or other foot-receiving device) or separate from the associated article of footwear (or other foot-receiving device). As one more specific example, as illustrated in FIG. 5, an article of footwear 400 that includes a monitoring and/or control system and/or a speed and/or distance measuring system (generally indicated as expansion element 330 in FIG. 5) also may include user input devices 402(a) and 402(b) (e.g., in the form of buttons, etc.) that allow the user to input information requesting increased or decreased midsole member compressibility, respectively. As more specific examples, if desired, input buttons 402(a) and 402(b) may be used to change and/or control the position of limiter 328 (see FIGS. 3A and 3B), to thereby change the potential compressibility of the midsole member 302. Of course, user input for other purposes may be provided without departing from the invention (e.g., to provide other footwear control information, to control information provided as output, to request certain output information, to input typical stride length data or other information used in pedometer systems, etc.).
  • In addition to user input devices, articles of footwear 400 also may include one or more display devices 404 that provide various types of information to the user, such as midsole compressibility setting information, speed and/or distance information, and/or any other desired information. For example, the display device 404 may be an LED, LCD, or other display devices like those typically used for electronic devices, such as watches, cellular telephones, PDAs, MP3 or other portable audio devices, and the like. Also, the various display device(s) 404 and/or input systems 402(a) and 402(b) individually may be mounted on any part of the footwear structure 400 without departing from the invention, such as on the upper member, on the sole member, on more than one portion of the footwear structure 400, etc.
  • Characteristics of an article of footwear other than the amount of impact attenuation provided may be controlled without departing from this invention. FIG. 6 illustrates an example sole structure 500 that includes devices that alter a user's gait, e.g., to help in correcting (e.g., reducing or eliminating) pronation or supination in a user's gait, to help the user step or land more correctly, or for other purposes. As shown, the sole member 500 of an article of footwear may include one or more sensing devices 502(a) and 502(b) that sense the manner in which the user's foot (or the article of footwear) strikes the contact surface. The sensing device(s) (e.g., 502(a) and 502(b) in this example) may be positioned so as to sense when a user pronates and/or supinates in his/her gait. The sensing device(s) 502(a) and 502(b) may provide their signals to a microprocessor or other portion of a monitoring and/or control system 504, which can determine, for example, the relative timing and/or force associated with the footstrike on each side of the foot. The microprocessor or other portion of the monitoring and/or control system 504 may be provided on-board the article of footwear (e.g., in the midsole, as shown in FIGS. 3A through 3C) or remote from it, such as in a peripheral device for receiving user input and/or displaying information for the user. If the footstrike is sensed substantially more or substantially earlier on one side of the foot as compared to the other (e.g., when more than a predetermined degree of pronation or supination is detected), elements 506(a) and/or 506(b) provided as part of the article of footwear may be controlled (e.g., by the same microprocessor or other portion of the monitoring and/or control system 504 described above or a different microprocessor or system) so as to change the user's gait or footstrike characteristics to reduce or eliminate the pronation or supination. As more specific examples, the controlled elements 506(a) and 506(b) may constitute air or fluid-filled bladders that expand or contract depending on the applied pressure, air or fluid-filled bladders that become softer or harder depending on the applied pressure, expansion elements of the type described above in connection with FIGS. 3A through 3C, pistons, hydraulic elements, pneumatic elements, etc. Of course, any way of detecting the pronation and/or supination tendency and/or modifying the article of footwear or the sole member 500 to reduce or eliminate the pronation and/or supination tendency and/or otherwise change the user's gait or footstrike characteristics may be used without departing from the invention. Also, as described above, these changes can be made automatically, in between steps, as the user continues using the article of footwear.
  • The control element(s) 506(a) and/or 506(b) to change the characteristics of a person's gait or footstrike characteristics may be changed for any reason and/or in response to any sensed characteristics without departing from the invention. Additionally, the fluid-filled bladders, pistons, hydraulic elements, pneumatic elements, or other controlled elements may be provided at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
  • Because the sensing devices 502(a) and 502(b) of this example sole structure 500 are capable of detecting the surface contact by the foot (e.g., each step), the same signals for detecting a pronation, supination, or other gait tendency also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS. 3A through 4, the microprocessor and/or other control system 504 (or another microprocessor or system) in sole member 500 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by one or more of the sensing devices 502(a) and/or 502(b).
  • FIG. 7 illustrates another example of an article of footwear 600 in which a characteristic thereof may be automatically controlled. In this example footwear structure 600, the degree of traction provided by the article of footwear 600 may be controlled, e.g., automatically and on the fly, optionally, between individual steps, for example, based on the amount of slip detected during a user's step. As a more specific example, as illustrated in FIG. 7, an article of footwear 600 may be equipped with one or more sensing devices 602, such as an accelerometer and/or other devices, that is positioned so as to be capable of sensing when a user's foot slides or slips in making a step. When a slip or slide is detected (e.g., more than a predetermined amount of slip or slide, as determined by an algorithm provided in a microprocessor and/or other portion of the control system 604), the microprocessor and/or other portion of the control system 604 (or another microprocessor or system) may be programmed and adapted to change one or more characteristics of the article of footwear 600 in an effort to provide better traction. More specifically, in accordance with at least some examples of this invention, the microprocessor and/or other portion of the control system 604 (or another microprocessor or system) may be programmed and adapted to change the traction characteristics of at least some portion of the footwear outsole member 606 so as to provide better traction. As one more specific example, the traction providing characteristics of the footwear outsole member 606 may be changed, e.g., by heating the material of the outsole member 606 using one or more heating elements 608 included in or adjacent to the outsole member 606. Heating elements 608 of this type may be used to soften the material of the outsole member 606 somewhat, thereby providing better traction on floors or other surfaces.
  • Of course, other ways of modifying the traction characteristics of an article of footwear may be used without departing from this invention. For example, when slides or slips are detected, a microprocessor or other portion of the control system may be used to automatically lengthen spikes or cleats included in the article of footwear (e.g., by rotating out additional spike or cleat length, by pushing out more spike or cleat length via pneumatic, hydraulic or pressure cylinders, etc.). As another potential example, a microprocessor or other portion of the control system may be used to automatically expose additional spikes or cleats included with the article of footwear when a predetermined degree of slipping and/or sliding is detected. Still other ways of modifying the traction characteristics may be provided without departing from this invention.
  • Because the sensing device 602 of this example footwear structure 600 may be capable of detecting surface contact by the foot (e.g., detecting each step due to the change in direction detectable by an accelerometer or other detector, etc.), the same signals for detecting a slip or slide also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS. 3A through 4, the microprocessor and/or other portions of the control system 604 (or another microprocessor or system) in the article of footwear 600 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device 602.
  • Another example of a controllable article of footwear 700 is shown in FIG. 8. In this example footwear structure 700, a degree of flexibility of the article of footwear 700 is controlled, optionally automatically and on the fly (e.g., in real time, between steps or interactions with the ground surface, etc.), based on output from one or more sensing devices (a single sensing device 702 is shown in FIG. 8). As an example, the sensing device(s) 702 may sense a degree of flex in the article of footwear 700 as the user steps down and send this information to a microprocessor or control system 704. If the amount of flex exceeds an upper threshold or falls below a lower threshold, the degree of flexibility of the article of footwear may be changed, e.g., based on signals provided by the microprocessor or other portion of the control system 704. As another example, if desired, sensors may be located to sense the degree of pressure applied by the user's foot to various portions of the sole member (e.g., at the insole, in the heel and toe areas, etc.) to sense when the user is attempting to flex the shoe's arch (e.g., for dancing and/or aerobic shoes), and the flexibility of the article of footwear 700 then may be changed to allow more or less flex in the arch, depending on the pressure applied by the user's foot and/or the locations where the pressure is applied.
  • Any way of changing the degree of flexibility of an article of footwear may be used and the degree of flexibility may be changed at any location in the article of footwear without departing from this invention. FIG. 8 generally illustrates an example in which the degree of flexibility in an arch support portion of an article of footwear 700 is changed, e.g., by changing a thickness of a support plate system 706 included in the arch area (in this general illustrated example, the thickness of the plate system 706 is changed by moving one plate 706(a) with respect to the other 706(b) to thereby increase or decrease the overall thickness of the plate system 706 in the arch area). Alternatively, as another example, if desired, additional plate elements may be moved from one area of the article of footwear 700 to another area to provide additional plate support material or to decrease the amount of plate support material in a given area, to thereby increase or decrease flexibility in that area. As still additional examples, heating and/or cooling elements also may be provided with the article of footwear 700, mechanical devices may be fixed, loosened, moved, etc., and the like, to change the degree of flexibility of a support material without departing from this invention. Other ways of changing the flexibility may be provided without departing from the invention.
  • Because the sensing device(s) 702 of this example footwear structure 700 may be capable of detecting surface contact by the foot (e.g., each step due to the detected flex amount, etc.), the same signals for detecting the degree of flex also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS. 3A through 4, the microprocessor and/or other portion of the control system 704 (or another microprocessor or system) in the article of footwear 700 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device(s) 702.
  • FIG. 9 illustrates still another example of a controllable article of footwear 800. In this example footwear structure 800, aspects of the manner in which the article of footwear 800 fits or engages a user's foot are controlled, optionally automatically and on the fly (e.g., in real time, between steps or interactions with the contact surface, etc.). One or more fit aspects of the article of footwear may be controlled based on output from one or more sensing devices (a single sensing device 802 is shown in FIG. 9). As an example, the sensing device(s) 802 may sense the amount of pressure applied by a user's foot when contacting the ground or other surface during a step, jump, etc., e.g., as a measure of the effort being put forth by the user. This data may be sent to a microprocessor or other portion of the control system 804. If the contact pressure exceeds an upper threshold or falls below a lower threshold, the tightness of the laces or other securing system 806 of the article of footwear may be changed, e.g., based on signals produced by the microprocessor or other portion of the control system 804.
  • Any way of changing the tightness of the securing system or other fit characteristic for an article of footwear may be used without departing from this invention. FIG. 9 generally illustrates an example in which the degree of tightness of a securing system is changed by changing a length of a strap member 806 used as the securing system (the strap member 806 in this example securing system wraps around the user's foot multiple times—across the upper member, through the sole member etc.). The length of this strap member 806 may be changed, for example, by using the microprocessor or other portion of the control system 804 to wrap or unwrap some of the strap member 806 from a supply device 808 (e.g., a roller, etc.). As another example, if desired, the microprocessor or other portion of the control system 804 may be used to move more of the strap member 806 through a clamp or buckle member 810 (e.g., by rotating a portion of the clamp 810 that engages the strap 806, etc.). As still additional examples, if desired, the microprocessor or other portion of the control system 804 may be used to move securing system laces into or out of a lace clamp or holding member, change a length of a fitting strap or cable that fits around a periphery of a wearer's foot, and/or otherwise change an aspect of the manner in which the article of footwear engages or fits a user's foot. The securing system and/or other fit element that is controlled may be located at any place in the article of footwear and/or engage the user's foot or portions of the article of footwear at any desired location and in any desired manner without departing from this invention. Systems of this type may be used to automatically customize the footwear size to a user, at any given time of use, irrespective of the other equipment being worn by the user (e.g., no socks, thin socks, thick socks, multiple pairs of socks, etc.). As described above, user input also may be received by such fit adjusting systems to enable at least some user control over the type of fit at a given time (e.g., tight fit for play, loose fit at other times, tight fit for running or sprinting v. looser fit for walking or jogging, etc.).
  • Because the sensing device(s) 802 of this example footwear structure 800 may be capable of detecting surface contact by the foot (e.g., each step due to the detected pressure sensing, etc.), the same signals for controlling the tightness or fit characteristic(s) also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with FIGS. 3A through 4, the microprocessor and/or other portions of the control system 804 (or another microprocessor or system) in the article of footwear 800 also may be used to provide speed and/or distance information to the user, e.g., via a remote peripheral device, via a display on board the article of footwear, etc., based on output generated by the sensing device(s) 802.
  • As described above, user input may be received, e.g., in a peripheral device that is remotely located from the article of footwear and/or removably mounted to the article of footwear (or other portions of the user's body or clothing). This device may be used, at least in part, to remotely control the desired characteristic(s) of the article of footwear (e.g., to enable the user to set impact attenuation characteristics at discrete levels or intervals, to enable the user to vary the set performance characteristic(s) and/or their thresholds, to enable the user to override the automatically set characteristic(s), etc.).
  • This user input device may adjust the settings in both articles of footwear simultaneously, and/or if desired, individual control over the articles of footwear may be provided. If desired, the overall system may control stiffness or impact attenuation in the plantar/dorsi directions of the user's foot as well as in the medial/lateral directions, or in combinations or subcombinations of these various directions. Additionally, if desired, impact attenuation or other characteristics may be controlled in the upper member and/or in any portion of the sole member without departing from this invention. Also, pedometer based speed and/or distance information may be derived from step counts generated by one article of footwear or by two.
  • As still additional potential examples or alternatives, if desired, the peripheral device may display GPS information, map information, or other location or route based information (e.g., generated based on GPS and/or pedometer based speed and/or distance information). If desired, in such systems, one or more characteristic(s) of the article of footwear may be controlled based on, for example: the user's location along a route; detected changes in terrain, altitude, etc; reaching various predetermined landmarks; reaching various threshold distances or altitudes; and the like. As still additional examples, various landmarks (such as mile markers along a route, signs, other transmission devices, or the like) may be used to transmit information to a control system (optionally carried by the user and/or within the article of footwear) that may be used for changing one or more characteristics of an article of footwear in accordance with at least some examples of this invention. A wide variety of control elements and triggering events may be used to automatically control one or more characteristic(s) of an article of footwear without departing from this invention.
  • Systems of the type described in U.S. Pat. No. 6,865,825, which patent is entirely incorporated herein by reference, also may be used for providing control in accordance with at least some examples of this invention.
  • Various examples of the invention described above relate to use of control systems in accordance with examples of the invention to adjust various characteristics of an article of footwear (or other foot-receiving device) in real time, e.g., on the fly, automatically, as the article of footwear (or other foot-receiving device) is being used (e.g., in between individual steps), etc. While one advantageous aspect in accordance with some examples of this invention, the invention is not limited to use in these situations. For example, systems and methods according to at least some examples of the invention may be used to adjust characteristics of an article of footwear (or other foot-receiving device) over time and/or under different use conditions, e.g., to accommodate for changes in the footwear structure caused by wear, damage, aging, temperature, humidity, moisture, etc. As a more specific example, aspects of the present invention may be used to adapt the impact attenuation characteristics of an article of footwear due to changes in the foam material of the midsole member that may occur over time (e.g., due to foam breakdown, damage, wetness, aging, etc.), so that the article of footwear provides a more consistent feel throughout its life and/or under a wide variety of use conditions. As another example, aspects of the invention may be used to adjust the traction characteristics of an article of footwear due to wear on the outsole, cleats, or spike members that may occur over time (e.g., to provide additional cleat or spike length as the ends of the cleats or spikes wear away, to heat the outsole member more often or frequently as the outsole member's traction elements wear away, etc.).
  • Various manners of operating control systems in accordance with examples of this invention are described above and will be evident to those skilled in the art based on the descriptions above. As a more specific example, one or more features relating to contact between an article of footwear and a contact surface or a user's foot may be sensed as the article of footwear is used (e.g., as the user steps down), such as one or more of the various features described above in connection with FIGS. 1-9 (e.g., contact pressure, midsole compression, degree of flex, degree of slip or slide, etc.). The sensed information may be fed to a control system, which in turn may send signals to another device e.g., to change a configuration of the article of footwear to thereby control a characteristic of the article of footwear when appropriate (e.g., when the sensed parameters fall within a predetermined range, when they fall above or below threshold values, depending on a predetermined algorithm, etc.). Optionally, user input may be provided and used, at least in part, to set one or more of the characteristics and/or parameters associated with setting the characteristic(s). The changed characteristic(s) may include, for example: changing impact attenuation characteristics, changing traction characteristics, changing flexibility characteristics, changing fit characteristics, changing securing system tightness characteristics, etc. These changes to the characteristics may occur at any time, such as in real time, on the fly, between steps or jumps, etc., while use of the article of footwear continues. Many different changes to the characteristics may occur during continuing use of the article of footwear without departing from the invention. The sensed information, or optionally information from another sensor or detector, also may be used in determining user speed or distance information (e.g., pedometer type speed and/or distance information) and providing this information to the user.
  • Various different methods of providing footwear systems including control features also may be provided without departing from the invention, as is evident from the description above. Such methods may include engaging a sensing device with an article of footwear, e.g., with the upper member and/or sole member, integrally formed as part of the article of footwear, embedded or housed in the sole member, etc. This engaging may occur during footwear manufacture or assembly, at retail or use locations (e.g., via a slot or mounting element provided in the article of footwear for receiving the sensing and/or control devices, etc.). The sensing device, as noted above, may be positioned and adapted to sense at least one characteristic of contact between the article of footwear and a contact surface or a user's foot when the article of footwear is in use. A control system may be provided (e.g., separate from or commonly housed or supported with the sensing device) to receive output from the sensing device and to control a characteristic of the article of footwear, as described above (e.g., to alter some aspect of the article of footwear's configuration), based on the received output. The control device may be located in or on the article of footwear, partially in or on the article of footwear, or remote from the article of footwear without departing from this invention. Aspects of providing footwear systems in accordance with examples of the invention further may include providing a distance monitoring system, optionally at least partially engaged with the article of footwear, for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear. Optionally, the distance monitoring system may use the same sensing device and optionally the same signals provided by the sensing device as those used for footwear characteristic control.
  • CONCLUSION
  • Of course, many modifications to the specifically described structures, systems, and methods may take place without departing from this invention. For example, while the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations, combinations, and permutations of the above described systems and methods. Moreover, various specific structural features included in the examples merely represent examples of structural features that may be included in some examples of structures according to the invention. Those skilled in the art will understand that various specific structural features may be omitted and/or modified in a footwear or other foot-receiving device product without departing from the invention. Moreover, with respect to the methods, many variations in the method steps may take place, the steps may be changed in order, various steps or features may be added or omitted, etc., without departing from the invention. Thus, the reader should understand that the spirit and scope of the invention should be construed broadly as set forth in the appended claims.

Claims (57)

1. A footwear system, comprising:
an article of footwear including an upper member and a sole member;
a sensing device engaged with the article of footwear, wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear and a surface when the article of footwear is in use;
a footwear control system that controls a characteristic of the article of footwear based on output from the sensing device; and
a distance monitoring system at least partially engaged with the article of footwear for detecting or storing data indicating speed or distance information associated with use of the article of footwear.
2. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control an amount of impact attenuation provided by the article of footwear.
3. A footwear system according to claim 2, wherein the footwear control system is programmed and adapted to control the amount of impact attenuation by altering a stiffness of a midsole portion of the sole member.
4. A footwear system according to claim 2, wherein the footwear control system is programmed and adapted to control the amount of impact attenuation at least in a heel portion of the article of footwear.
5. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control a degree of traction provided by the sole member.
6. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control a degree of flexibility in at least one portion of the article of footwear.
7. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control tightness of a securing system for the article of footwear.
8. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control at least one aspect of the manner in which the article of footwear fits a user's foot.
9. A footwear system according to claim 1, wherein the footwear control system is programmed and adapted to control the characteristic of the article of footwear so as to reduce or eliminate pronation when the article of footwear is in use.
10. A footwear system according to claim 1, wherein the distance monitoring system utilizes output from the sensing device for determining the speed or distance information.
11-19. (canceled)
20. A footwear system according to claim 1, further comprising:
a device in communication with the footwear control system for providing user input to the footwear control system.
21-22. (canceled)
23. A footwear system according to claim 1, further comprising:
a device in communication with the distance monitoring system for providing the speed or distance information to a user.
24-25. (canceled)
26. A footwear system according to claim 1, wherein the sensing device includes a magnet and a sensor for detecting changes in a detected magnetic field as a result of the contact.
27. A footwear system according to claim 1, wherein the sensing device senses contact pressure or a pressure change induced by the contact.
28. A foot-receiving device system, comprising:
a foot-covering member;
a foot-supporting member engaged with the foot-covering member;
a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use;
a control system that controls a characteristic of the foot-supporting member based on output from the sensing device; and
a monitoring system at least partially engaged with the foot-receiving device for detecting or storing data indicating speed or distance information associated with use of the foot-receiving device.
29. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control an amount of impact attenuation provided by the foot-supporting member.
30. A foot-receiving device system according to claim 29, wherein the control system is programmed and adapted to control the amount of impact attenuation by altering a stiffness of at least a portion of the foot-supporting member.
31. A foot-receiving device system according to claim 29, wherein the control system is programmed and adapted to control the amount of impact attenuation at least in a heel portion of the foot-receiving device.
32. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control a degree of traction provided by the ground-contacting member.
33. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control a degree of flexibility in at least one portion of the foot-receiving device.
34. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control tightness of a securing system.
35. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control at least one aspect of the manner in which at least a portion of the foot-receiving device system fits a user's foot.
36. A foot-receiving device system according to claim 28, wherein the control system is programmed and adapted to control the characteristic so as to reduce or eliminate pronation in a user's gait.
37. A foot-receiving device system according to claim 28, wherein the monitoring system utilizes output from the sensing device for determining the speed or distance information.
38-46. (canceled)
47. A foot-receiving device system according to claim 28, further comprising:
a device in communication with the control system for providing user input to the control system.
48-49. (canceled)
50. A foot-receiving device system according to claim 28, further comprising:
a device in communication with the monitoring system for providing the speed or distance information to a user.
51-52. (canceled)
53. A foot-receiving device system according to claim 28, wherein the sensing device includes a magnet and a sensor for detecting changes in a detected magnetic field as a result of the interaction.
54. A foot-receiving device system according to claim 28, wherein the sensing device senses contact pressure or a pressure change induced by the interaction.
55. A method of providing a footwear system, comprising:
engaging a sensing device with an article of footwear, wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear and a surface when the article of footwear is in use;
providing a footwear control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear based on the output from the sensing device; and
providing a distance monitoring system at least partially engaged with the article of footwear, wherein the distance monitoring system is programmed and adapted to detect or store data indicating speed or distance information associated with use of the article of footwear.
56. A method according to claim 55, wherein the footwear control system is programmed and adapted to control an amount of impact attenuation provided by the article of footwear.
57. A method according to claim 56, wherein the footwear control system is programmed and adapted to control a stiffness of a midsole portion of the sole member.
58-61. (canceled)
62. A method according to claim 55, wherein the footwear control system is programmed and adapted to control at least one aspect of the manner in which the article of footwear fits a user's foot.
63. (canceled)
64. A method according to claim 55, wherein the distance monitoring system is programmed and adapted to receive an output from the sensing device and to utilize the received output for determining the speed or distance information.
65-76. (canceled)
77. A method according to claim 55, further comprising:
providing a device in communication with the distance monitoring system, wherein the device is programmed and adapted to provide the speed or distance information to a user.
78-79. (canceled)
80. A method according to claim 55, wherein the sensing device includes a magnet and a sensor for detecting changes in a detected magnetic field as a result of the contact.
81. A footwear system according to claim 55, wherein the sensing device senses contact pressure or a pressure change induced by the contact.
82. A method of using a footwear system, comprising:
sensing contact between an article of footwear and a surface as the article of footwear is used, wherein the contact is sensed using a sensing device at least partially engaged with the article of footwear;
controlling a characteristic of the article of footwear based, at least in part, on output from the sensing device; and
determining user speed or distance information based, at least in part, on output from the sensing device.
83. A method according to claim 82, wherein the controlling includes controlling an amount of impact attenuation provided by the article of footwear.
84. A method according to claim 83, wherein the controlling includes controlling the amount of impact attenuation by altering a stiffness of a midsole portion of the article of footwear.
85-88. (canceled)
89. A method according to claim 82, wherein the controlling includes controlling at least one aspect of the manner in which the article of footwear fits a user's foot.
90-94. (canceled)
95. A method according to claim 82, further comprising:
providing speed or distance information to the user.
96. A method according to claim 95, wherein the speed or distance information is provided to the user via a device separate from the article of footwear.
97-98. (canceled)
99. A method according to claim 82, wherein the sensing includes detecting changes in at least one magnetic characteristic induced by the contact.
100. A method according to claim 82, wherein the sensing includes detecting a contact pressure or a pressure change induced by the contact.
US11/177,489 2005-07-11 2005-07-11 Control systems and foot-receiving device products containing such systems Abandoned US20070006489A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/177,489 US20070006489A1 (en) 2005-07-11 2005-07-11 Control systems and foot-receiving device products containing such systems
CN2006800252167A CN101217894B (en) 2005-07-11 2006-06-21 Control systems and foot-receiving device products containing such systems
EP06773634A EP1919318A1 (en) 2005-07-11 2006-06-21 Control systems and foot-receiving device products containing such systems
PCT/US2006/024015 WO2007008352A1 (en) 2005-07-11 2006-06-21 Control systems and foot-receiving device products containing such systems
JP2008521397A JP5220600B2 (en) 2005-07-11 2006-06-21 Footwear system, foot receiving device system, and method of providing or using them
BRPI0612798-3A BRPI0612798A2 (en) 2005-07-11 2006-06-21 foot receiving device control systems and products containing such systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/177,489 US20070006489A1 (en) 2005-07-11 2005-07-11 Control systems and foot-receiving device products containing such systems

Publications (1)

Publication Number Publication Date
US20070006489A1 true US20070006489A1 (en) 2007-01-11

Family

ID=37102395

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/177,489 Abandoned US20070006489A1 (en) 2005-07-11 2005-07-11 Control systems and foot-receiving device products containing such systems

Country Status (6)

Country Link
US (1) US20070006489A1 (en)
EP (1) EP1919318A1 (en)
JP (1) JP5220600B2 (en)
CN (1) CN101217894B (en)
BR (1) BRPI0612798A2 (en)
WO (1) WO2007008352A1 (en)

Cited By (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183292A1 (en) * 2003-03-10 2005-08-25 Christian Dibenedetto Intelligent footwear systems
US20060283050A1 (en) * 2005-03-31 2006-12-21 Adidas International Marketing B.V. Shoe housing
US20070000154A1 (en) * 2003-03-10 2007-01-04 Christian Dibenedetto Intelligent footwear systems
US20070011920A1 (en) * 2003-03-10 2007-01-18 Adidas International Marketing B.V. Intelligent footwear systems
US20070089320A1 (en) * 2005-10-26 2007-04-26 Pamela Denfeld Vehicle shaped footwear
US20070123391A1 (en) * 2005-11-28 2007-05-31 Samsung Electronics Co., Ltd Exercise management function providing system and method
US20070149361A1 (en) * 2005-12-02 2007-06-28 Samsung Electronics Co., Ltd. System and method for manipulating portable equipment using foot motion
US7310895B2 (en) 2004-03-01 2007-12-25 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US20080250672A1 (en) * 2007-04-13 2008-10-16 Forbes Brandon F Footwear device with scrolling light emitting diode display
WO2008151642A1 (en) * 2007-06-12 2008-12-18 Nokia Corporation Directing shoe insole
US20090048039A1 (en) * 2007-08-15 2009-02-19 Catapult Innovations Pty Ltd Tracking balls in sports
DE202007018163U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
DE202007018164U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
DE202007018165U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
DE202007018166U1 (en) * 2007-12-29 2009-05-20 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
US20090135001A1 (en) * 2007-11-02 2009-05-28 Lo Tong Yuk Pressure sensing system
DE102007063160A1 (en) * 2007-12-29 2009-07-09 Puma Aktiengesellschaft Rudolf Dassler Sport Method for influencing the pronation behavior of a shoe
US20090233770A1 (en) * 2007-08-17 2009-09-17 Stephen Michael Vincent Sports Electronic Training System With Electronic Gaming Features, And Applications Thereof
WO2009132465A1 (en) 2008-05-01 2009-11-05 Plantiga Technologies Inc. Footwear assembly with integral footbed suspension system
WO2009146791A2 (en) * 2008-06-06 2009-12-10 Cairos Technologies Ag System and method for the mobile evaluation of cushioning properties of shoes
US20100048272A1 (en) * 2008-08-21 2010-02-25 Sony Online Entertainment Llc Measuring and converting activities to benefits
US20100063779A1 (en) * 2008-06-13 2010-03-11 Nike, Inc. Footwear Having Sensor System
US20100160014A1 (en) * 2008-11-25 2010-06-24 Mario Galasso Methods and apparatus for virtual competition
US20100222165A1 (en) * 2004-09-17 2010-09-02 Adidas International Marketing B.V. Bladder
US7805150B2 (en) 2004-01-16 2010-09-28 Adidas Ag Wireless device, program products and methods of using a wireless device to deliver services
US20100292600A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Program Products, Methods, and Systems for Providing Fitness Monitoring Services
US20100292599A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Portable Fitness Monitoring Systems With Displays and Applications Thereof
US20100292050A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Portable Fitness Monitoring Systems, and Applications Thereof
WO2010133300A1 (en) * 2009-05-19 2010-11-25 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, particularly sports shoe
US20110047828A1 (en) * 2009-09-02 2011-03-03 Gary Stephen Shuster Remotely controlled footwear disruptor
US20110092339A1 (en) * 2008-01-31 2011-04-21 Jeffrey David Stewart Exercise apparatuses and methods of using the same
US20110119027A1 (en) * 2009-11-18 2011-05-19 Silicon Valley Micro E Corporation Pedometer with shoe mounted sensor and transmitter
WO2011072111A2 (en) 2009-12-09 2011-06-16 Nike International Ltd. Athletic performance monitoring system utilizing heart rate information
US20110230274A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US20110230986A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US20110230273A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US20120042726A1 (en) * 2010-08-23 2012-02-23 Jeon Younghyeog Device and method for measuring a moving distance
US8141277B2 (en) 2004-03-01 2012-03-27 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US8162804B2 (en) 2007-02-14 2012-04-24 Nike, Inc. Collection and display of athletic information
WO2012061438A2 (en) 2010-11-01 2012-05-10 Nike International Ltd. Wearable device assembly having athletic functionality
WO2012138543A2 (en) 2011-04-05 2012-10-11 Nike International Ltd. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US8332544B1 (en) 2010-03-17 2012-12-11 Mattel, Inc. Systems, methods, and devices for assisting play
US20120325019A1 (en) * 2011-06-21 2012-12-27 Industrial Technology Research Institute Force sensing device and force sensing system
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
JP2013059357A (en) * 2011-09-10 2013-04-04 Denso Corp Footwear
EP2581120A1 (en) 2009-04-26 2013-04-17 Nike International Ltd. Athletic watch
WO2013056263A1 (en) * 2011-10-14 2013-04-18 Bishop, Roger Sport performance monitoring apparatus, process, and method of use
US20130104277A1 (en) * 2011-10-28 2013-05-02 Geoff McCue Stabilizer apparatus and method
EP2612595A2 (en) 2012-01-04 2013-07-10 Nike International Ltd. Athletic watch
US8493822B2 (en) 2010-07-14 2013-07-23 Adidas Ag Methods, systems, and program products for controlling the playback of music
EP2618282A2 (en) 2012-01-18 2013-07-24 Nike International Ltd. Wearable device assembly having athletic functionality
WO2013109940A2 (en) 2012-01-19 2013-07-25 Nike International Ltd. Power management in an activity monitoring device
ITPD20120042A1 (en) * 2012-02-21 2013-08-22 Alessio Saviolo DESIGN OF A PAIR OF TECHNOLOGICAL SHOES.
US20130278436A1 (en) * 2012-04-18 2013-10-24 Frampton E. Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
US20130278435A1 (en) * 2012-04-18 2013-10-24 Frampton E. Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
WO2014009503A1 (en) * 2012-07-11 2014-01-16 Brim Brothers Limited Device and method for measuring forces applied to a cycling shoe
EP2700434A2 (en) 2008-04-02 2014-02-26 Nike International Ltd. Wearable device assembly having athletic functionality
WO2014032181A1 (en) * 2012-08-27 2014-03-06 Université Du Québec À Chicoutimi Method to determine physical properties of the ground, foot-worn sensor therefore, and method to advise a user of a risk of falling based thereon
JP2014046087A (en) * 2012-09-03 2014-03-17 Seiko Instruments Inc Electronic equipment and program
CN103720115A (en) * 2014-01-08 2014-04-16 南京物联传感技术有限公司 Intelligent shoe
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US8739639B2 (en) 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US8784274B1 (en) * 2011-03-18 2014-07-22 Thomas C. Chuang Athletic performance monitoring with body synchronization analysis
EP2770454A1 (en) 2013-02-22 2014-08-27 NIKE Innovate C.V. Activity monitoring, tracking and synchronization
US20140257156A1 (en) * 2013-03-05 2014-09-11 Boa Technology, Inc. Systems, methods, and devices for automatic closure of medical devices
WO2014147066A1 (en) * 2013-03-18 2014-09-25 Iee International Electronics & Engineering S.A. Performance sensing system for pedal powered vehicles
US9002680B2 (en) 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
US9089182B2 (en) 2008-06-13 2015-07-28 Nike, Inc. Footwear having sensor system
US20150260542A1 (en) * 2014-03-13 2015-09-17 Stmicroelectronics S.R.L. Energy scavenging step-counter device and related step-counting method
US20150296922A1 (en) * 2014-04-22 2015-10-22 Nike, Inc. Article of Footwear with Dynamic Support
US20150313309A1 (en) * 2012-11-30 2015-11-05 Vans, Inc. Tuning elements for footwear
US9192816B2 (en) 2011-02-17 2015-11-24 Nike, Inc. Footwear having sensor system
US20150375085A1 (en) * 2008-12-05 2015-12-31 Nike, Inc. Athletic Performance Monitoring Systems and Methods in a Team Sports Environment
US9247784B2 (en) 2012-06-22 2016-02-02 Jeffrey David Stewart Wearable exercise apparatuses
US9257054B2 (en) 2012-04-13 2016-02-09 Adidas Ag Sport ball athletic activity monitoring methods and systems
US9279734B2 (en) 2013-03-15 2016-03-08 Nike, Inc. System and method for analyzing athletic activity
US9375053B2 (en) 2012-03-15 2016-06-28 Boa Technology, Inc. Tightening mechanisms and applications including the same
US9375624B2 (en) 2011-04-28 2016-06-28 Nike, Inc. Golf clubs and golf club heads
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
WO2016108325A1 (en) * 2014-12-30 2016-07-07 Lg Electronics Inc. Portable device and method of controlling therefor
US9389057B2 (en) 2010-11-10 2016-07-12 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US9393478B2 (en) 2008-02-20 2016-07-19 Nike, Inc. System and method for tracking one or more rounds of golf
US9408437B2 (en) 2010-04-30 2016-08-09 Boa Technology, Inc. Reel based lacing system
US9409073B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9411940B2 (en) 2011-02-17 2016-08-09 Nike, Inc. Selecting and correlating physical activity data with image data
US9409076B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9424397B2 (en) 2011-12-22 2016-08-23 Adidas Ag Sports monitoring system using GPS with location beacon correction
US9422018B2 (en) 2008-11-25 2016-08-23 Fox Factory, Inc. Seat post
US9427639B2 (en) 2011-04-05 2016-08-30 Nike, Inc. Automatic club setting and ball flight optimization
US9433844B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9433845B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US20160260311A1 (en) * 2015-03-05 2016-09-08 Shintaro Asano Fall detector and alert system
US9439477B2 (en) 2013-01-28 2016-09-13 Boa Technology Inc. Lace fixation assembly and system
US9446294B2 (en) 2009-01-20 2016-09-20 Nike, Inc. Golf club and golf club head structures
US20160335913A1 (en) * 2015-05-15 2016-11-17 Motion Metrics, LLC System and method for physical activity performance analysis
US9500464B2 (en) 2013-03-12 2016-11-22 Adidas Ag Methods of determining performance information for individuals and sports objects
US9504414B2 (en) 2012-04-13 2016-11-29 Adidas Ag Wearable athletic activity monitoring methods and systems
US9516923B2 (en) 2012-11-02 2016-12-13 Boa Technology Inc. Coupling members for closure devices and systems
US9523406B2 (en) 2009-03-19 2016-12-20 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US9532626B2 (en) 2013-04-01 2017-01-03 Boa Technology, Inc. Methods and devices for retrofitting footwear to include a reel based closure system
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US9587959B2 (en) 2012-09-26 2017-03-07 Stmicroelectronics S.R.L. Step counter device with energy-scavenging functionality, and step-counting method
US9610480B2 (en) 2014-06-20 2017-04-04 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9615785B2 (en) 2009-04-01 2017-04-11 Adidas Ag Method and apparatus to determine the overall fitness of a test subject
US20170105476A1 (en) 2015-10-20 2017-04-20 Nike, Inc. Footwear with Interchangeable Sole Structure Elements
US9629417B2 (en) 2013-07-02 2017-04-25 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US9643050B2 (en) 2011-12-22 2017-05-09 Adidas Ag Fitness activity monitoring systems and methods
US9642415B2 (en) 2011-02-07 2017-05-09 New Balance Athletics, Inc. Systems and methods for monitoring athletic performance
US9650094B2 (en) 2010-07-02 2017-05-16 Fox Factory, Inc. Lever assembly for positive lock adjustable seatpost
US20170135415A1 (en) * 2012-04-18 2017-05-18 Frampton E. Ellis Bladders, Compartments, Chambers or Internal Sipes Controlled by a Computer System Using Big Data Techniques and a Smartphone Device
US9662551B2 (en) 2010-11-30 2017-05-30 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9681705B2 (en) 2013-09-13 2017-06-20 Boa Technology Inc. Failure compensating lace tension devices and methods
US9682604B2 (en) 2009-03-19 2017-06-20 Fox Factory, Inc. Methods and apparatus for selective spring pre-load adjustment
US9694247B2 (en) 2013-02-15 2017-07-04 Adidas Ag Ball for a ball sport
US9700101B2 (en) 2013-09-05 2017-07-11 Boa Technology Inc. Guides and components for closure systems and methods therefor
US9706814B2 (en) 2013-07-10 2017-07-18 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US9710711B2 (en) 2014-06-26 2017-07-18 Adidas Ag Athletic activity heads up display systems and methods
US9724000B2 (en) 2014-03-27 2017-08-08 Industrial Technology Research Institute Exercise guiding system, exercise guiding method and anaerobic threshold measuring method
US9737115B2 (en) 2012-11-06 2017-08-22 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
US9737261B2 (en) 2012-04-13 2017-08-22 Adidas Ag Wearable athletic activity monitoring systems
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US9756895B2 (en) 2012-02-22 2017-09-12 Nike, Inc. Footwear having sensor system
US9763489B2 (en) 2012-02-22 2017-09-19 Nike, Inc. Footwear having sensor system
WO2017160865A1 (en) 2016-03-15 2017-09-21 Nike Innovate C.V. Capacitive foot presence sensing for footwear
US9770070B2 (en) 2013-06-05 2017-09-26 Boa Technology Inc. Integrated closure device components and methods
US9841330B2 (en) 2012-12-13 2017-12-12 Nike, Inc. Apparel having sensor system
US9849361B2 (en) 2014-05-14 2017-12-26 Adidas Ag Sports ball athletic activity monitoring methods and systems
US9854873B2 (en) 2010-01-21 2018-01-02 Boa Technology Inc. Guides for lacing systems
US20180008864A1 (en) * 2011-10-14 2018-01-11 Chris Norcross Bender Sport-boot pressure monitor and method of use
US9872790B2 (en) 2013-11-18 2018-01-23 Boa Technology Inc. Methods and devices for providing automatic closure of prosthetics and orthotics
US20180035752A1 (en) * 2015-05-29 2018-02-08 Nike, Inc. Footwear Including an Incline Adjuster
US9925433B2 (en) 2011-04-28 2018-03-27 Nike, Inc. Golf clubs and golf club heads
US9968159B2 (en) 2015-10-20 2018-05-15 Nike, Inc. Footwear with interchangeable sole structure elements
US20180220937A1 (en) * 2017-02-09 2018-08-09 Seiko Epson Corporation Motion analysis system, motion analysis apparatus, motion analysis program, and motion analysis method
US10070695B2 (en) 2010-04-30 2018-09-11 Boa Technology Inc. Tightening mechanisms and applications including the same
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US10076160B2 (en) 2013-06-05 2018-09-18 Boa Technology Inc. Integrated closure device components and methods
US10086670B2 (en) 2009-03-19 2018-10-02 Fox Factory, Inc. Methods and apparatus for suspension set up
US10137347B2 (en) 2016-05-02 2018-11-27 Nike, Inc. Golf clubs and golf club heads having a sensor
US10151648B2 (en) 2012-02-22 2018-12-11 Nike, Inc. Footwear having sensor system
USD835898S1 (en) 2015-01-16 2018-12-18 Boa Technology Inc. Footwear lace tightening reel stabilizer
USD835976S1 (en) 2014-01-16 2018-12-18 Boa Technology Inc. Coupling member
US10159885B2 (en) 2016-05-02 2018-12-25 Nike, Inc. Swing analysis system using angular rate and linear acceleration sensors
US10188890B2 (en) 2013-12-26 2019-01-29 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US20190037070A1 (en) * 2016-02-29 2019-01-31 Digital Privacy Gmbh Method for call setup
USD839565S1 (en) * 2018-05-31 2019-02-05 Nike, Inc. Shoe
USD839564S1 (en) * 2018-05-21 2019-02-05 Nike, Inc. Shoe
US10220285B2 (en) 2016-05-02 2019-03-05 Nike, Inc. Golf clubs and golf club heads having a sensor
US10220259B2 (en) 2012-01-05 2019-03-05 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US10226082B2 (en) * 2012-04-18 2019-03-12 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US10226681B2 (en) 2016-05-02 2019-03-12 Nike, Inc. Golf clubs and golf club heads having a plurality of sensors for detecting one or more swing parameters
US10226396B2 (en) 2014-06-20 2019-03-12 Icon Health & Fitness, Inc. Post workout massage device
US10251451B2 (en) 2013-03-05 2019-04-09 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US10258828B2 (en) 2015-01-16 2019-04-16 Icon Health & Fitness, Inc. Controls for an exercise device
BE1025587B1 (en) * 2017-12-29 2019-04-24 Luckyunion(Shanghai) Technology Co., Ltd. SHOES WITH FEET TREATMENT FUNCTION
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10279212B2 (en) 2013-03-14 2019-05-07 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10336148B2 (en) 2009-01-07 2019-07-02 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10343017B2 (en) 2016-11-01 2019-07-09 Icon Health & Fitness, Inc. Distance sensor for console positioning
US10358180B2 (en) 2017-01-05 2019-07-23 Sram, Llc Adjustable seatpost
US10363453B2 (en) 2011-02-07 2019-07-30 New Balance Athletics, Inc. Systems and methods for monitoring athletic and physiological performance
US10376736B2 (en) 2016-10-12 2019-08-13 Icon Health & Fitness, Inc. Cooling an exercise device during a dive motor runway condition
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US20190261725A1 (en) * 2015-05-28 2019-08-29 Nike, Inc. Article of footwear and a charging system for an article of footwear
US10413019B2 (en) 2011-10-13 2019-09-17 Boa Technology Inc Reel-based lacing system
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US10441844B2 (en) 2016-07-01 2019-10-15 Icon Health & Fitness, Inc. Cooling systems and methods for exercise equipment
US10471299B2 (en) 2016-07-01 2019-11-12 Icon Health & Fitness, Inc. Systems and methods for cooling internal exercise equipment components
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10492568B2 (en) 2014-08-28 2019-12-03 Boa Technology Inc. Devices and methods for tensioning apparel and other items
US10499709B2 (en) 2016-08-02 2019-12-10 Boa Technology Inc. Tension member guides of a lacing system
US10500473B2 (en) 2016-10-10 2019-12-10 Icon Health & Fitness, Inc. Console positioning
US10523053B2 (en) 2014-05-23 2019-12-31 Adidas Ag Sport ball inductive charging methods and systems
US10518163B2 (en) 2010-07-14 2019-12-31 Adidas Ag Location-aware fitness monitoring methods, systems, and program products, and applications thereof
US10543630B2 (en) 2017-02-27 2020-01-28 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US10543395B2 (en) 2016-12-05 2020-01-28 Icon Health & Fitness, Inc. Offsetting treadmill deck weight during operation
US10550909B2 (en) 2008-08-25 2020-02-04 Fox Factory, Inc. Methods and apparatus for suspension lock out and signal generation
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US20200057418A1 (en) * 2018-08-17 2020-02-20 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
US10568381B2 (en) 2012-02-22 2020-02-25 Nike, Inc. Motorized shoe with gesture control
US10575591B2 (en) 2014-10-07 2020-03-03 Boa Technology Inc. Devices, methods, and systems for remote control of a motorized closure system
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
US10670106B2 (en) 2009-01-07 2020-06-02 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10677309B2 (en) 2011-05-31 2020-06-09 Fox Factory, Inc. Methods and apparatus for position sensitive suspension damping
US10702409B2 (en) 2013-02-05 2020-07-07 Boa Technology Inc. Closure devices for medical devices and methods
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
US10723409B2 (en) 2009-01-07 2020-07-28 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10729965B2 (en) 2017-12-22 2020-08-04 Icon Health & Fitness, Inc. Audible belt guide in a treadmill
EP2871994B1 (en) * 2012-08-31 2020-08-26 NIKE Innovate C.V. Motorized tensioning system with sensors
US10772384B2 (en) 2017-07-18 2020-09-15 Boa Technology Inc. System and methods for minimizing dynamic lace movement
US10781879B2 (en) 2009-01-07 2020-09-22 Fox Factory, Inc. Bypass for a suspension damper
US10791798B2 (en) 2015-10-15 2020-10-06 Boa Technology Inc. Lacing configurations for footwear
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
US10813407B2 (en) 2015-11-30 2020-10-27 Nike, Inc. Electrorheological fluid structure having strain relief element and method of fabrication
US10821795B2 (en) 2009-01-07 2020-11-03 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10842230B2 (en) 2016-12-09 2020-11-24 Boa Technology Inc. Reel based closure system
US10849390B2 (en) 2003-06-12 2020-12-01 Boa Technology Inc. Reel based closure system
US10859133B2 (en) 2012-05-10 2020-12-08 Fox Factory, Inc. Method and apparatus for an adjustable damper
US20200388190A1 (en) * 2017-12-19 2020-12-10 Sony Corporation Information processing apparatus, information processing method, and program
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
US10922383B2 (en) 2012-04-13 2021-02-16 Adidas Ag Athletic activity monitoring methods and systems
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10966638B2 (en) 2017-10-16 2021-04-06 Zhor Tech Miniaturized electronic unit for integration in any sole
US10980314B2 (en) 2017-08-31 2021-04-20 Nike, Inc. Incline adjuster with multiple discrete chambers
US10980312B2 (en) 2017-08-31 2021-04-20 Nike, Inc. Footwear including an incline adjuster
USD918544S1 (en) * 2019-06-27 2021-05-11 uFaktory Oy Shoe
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US11026481B2 (en) 2016-03-15 2021-06-08 Nike, Inc. Foot presence signal processing using velocity
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
US11064768B2 (en) 2016-03-15 2021-07-20 Nike, Inc. Foot presence signal processing using velocity
US11103027B2 (en) 2017-10-13 2021-08-31 Nike, Inc. Footwear midsole with electrorheological fluid housing
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
USD933342S1 (en) * 2020-04-04 2021-10-19 Ecco Sko A/S Footwear
US11168758B2 (en) 2009-01-07 2021-11-09 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
US11217341B2 (en) 2011-04-05 2022-01-04 Adidas Ag Fitness monitoring methods, systems, and program products, and applications thereof
US11279199B2 (en) 2012-01-25 2022-03-22 Fox Factory, Inc. Suspension damper with by-pass valves
US11279198B2 (en) 2009-10-13 2022-03-22 Fox Factory, Inc. Methods and apparatus for controlling a fluid damper
USD948184S1 (en) * 2019-10-25 2022-04-12 U-Invest S.R.L. Safety shoe
US11299233B2 (en) 2009-01-07 2022-04-12 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11306798B2 (en) 2008-05-09 2022-04-19 Fox Factory, Inc. Position sensitive suspension damping with an active valve
US11317678B2 (en) 2015-12-02 2022-05-03 Puma SE Shoe with lacing mechanism
US11350853B2 (en) 2018-10-02 2022-06-07 Under Armour, Inc. Gait coaching in fitness tracking systems
US11357279B2 (en) 2017-05-09 2022-06-14 Boa Technology Inc. Closure components for a helmet layer and methods for installing same
US11357290B2 (en) 2016-03-15 2022-06-14 Nike, Inc. Active footwear sensor calibration
USD960546S1 (en) * 2020-07-08 2022-08-16 Ecco Sko A/S Footwear
US11439192B2 (en) 2016-11-22 2022-09-13 Puma SE Method for putting on or taking off a piece of clothing or for closing, putting on, opening, or taking off a piece of luggage
US11451108B2 (en) 2017-08-16 2022-09-20 Ifit Inc. Systems and methods for axial impact resistance in electric motors
US11472252B2 (en) 2016-04-08 2022-10-18 Fox Factory, Inc. Electronic compression and rebound control
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
US11492228B2 (en) 2019-05-01 2022-11-08 Boa Technology Inc. Reel based closure system
US11499601B2 (en) 2009-01-07 2022-11-15 Fox Factory, Inc. Remotely operated bypass for a suspension damper
US11519477B2 (en) 2009-01-07 2022-12-06 Fox Factory, Inc. Compression isolator for a suspension damper
US11562417B2 (en) 2014-12-22 2023-01-24 Adidas Ag Retail store motion sensor systems and methods
US11583223B2 (en) * 2012-10-05 2023-02-21 Reqbo Aps Appliance for people with reduced sense of touch or disabled people
US20230086698A1 (en) * 2012-04-18 2023-03-23 Frampton E. Ellis Medical system or tool to counteract the adverse anatomical and medical effects of unnatural supination of the subtalar joint
US11619278B2 (en) 2009-03-19 2023-04-04 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US11708878B2 (en) 2010-01-20 2023-07-25 Fox Factory, Inc. Remotely operated bypass for a suspension damper
US11779083B2 (en) 2008-11-21 2023-10-10 Boa Technology, Inc. Reel based lacing system
US20230335276A1 (en) * 2012-04-18 2023-10-19 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
US11793272B2 (en) 2012-12-17 2023-10-24 Nike, Inc. Electronically controlled bladder assembly
US11805854B2 (en) 2016-11-22 2023-11-07 Puma SE Method for fastening a shoe, in particular, a sports shoe, and shoe, in particular sports shoe
US11859690B2 (en) 2009-10-13 2024-01-02 Fox Factory, Inc. Suspension system
US11864548B1 (en) * 2018-10-22 2024-01-09 Bell Laboratories, Inc. Remote sensing repeating rodent trap
WO2024015235A1 (en) * 2022-07-13 2024-01-18 Nike Innovate C.V. Recursive footwear-based body presence detection
US11930863B2 (en) * 2019-07-26 2024-03-19 Valerije Nezaj Anti-slip device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090278707A1 (en) * 2006-04-13 2009-11-12 Sential, Llc Wear monitor for recreational footgear
US8188868B2 (en) * 2006-04-20 2012-05-29 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with apparel
CN101589860B (en) * 2009-06-23 2011-06-15 中国科学院合肥物质科学研究院 Health monitoring sneakers based on flexible array pressure sensor and health monitoring method thereof
NL2003448C2 (en) * 2009-09-07 2011-03-08 Ddsign Sports shoe comprising a sole provided with a grip enhancing structure.
EP2458338B1 (en) * 2010-11-25 2014-12-31 Silicon Valley Micro E Corporation Pedometer With Shoe Mounted Sensor And Transmitter
JP2014046088A (en) * 2012-09-03 2014-03-17 Seiko Instruments Inc Electronic equipment and program
GB2527282B (en) * 2014-06-10 2017-11-15 The Diabetic Boot Company Ltd Support device
JP2016131752A (en) * 2015-01-20 2016-07-25 株式会社エクスプロア Shoe having display section
WO2018170148A2 (en) * 2016-03-15 2018-09-20 Walker Steven H Foot presence signal processing using velocity
US9961963B2 (en) 2016-03-15 2018-05-08 Nike, Inc. Lacing engine for automated footwear platform
US10834999B2 (en) 2016-05-18 2020-11-17 Nike, Inc. Article of footwear with a pulley system
US10624423B2 (en) 2016-05-18 2020-04-21 Nike, Inc. Article of footwear with a pulley system having a guide portion
JP6644298B2 (en) * 2016-07-22 2020-02-12 広島県 Walking data acquisition device and walking data acquisition system
KR102646496B1 (en) * 2017-03-14 2024-03-11 나이키 이노베이트 씨.브이. Foot presence signal processing using velocity
WO2018181681A1 (en) * 2017-03-30 2018-10-04 東洋紡株式会社 Wearable smart device and connector conversion adapter
JP2019015506A (en) * 2017-07-03 2019-01-31 旭化成エレクトロニクス株式会社 Position recognition device, position recognition method, standstill determination device and standstill determination method

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578769A (en) * 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US5335188A (en) * 1993-08-10 1994-08-02 Brisson Lawrence J Bicycle computer with memory and means for comparing present and past performance in real time
US5471405A (en) * 1992-11-13 1995-11-28 Marsh; Stephen A. Apparatus for measurement of forces and pressures applied to a garment
US5596652A (en) * 1995-03-23 1997-01-21 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5598849A (en) * 1992-07-21 1997-02-04 Hayle Brainpower P/L Interactive exercise monitoring system and method
US5720200A (en) * 1995-01-06 1998-02-24 Anderson; Kenneth J. Performance measuring footwear
US5724265A (en) * 1995-12-12 1998-03-03 Hutchings; Lawrence J. System and method for measuring movement of objects
US5793882A (en) * 1995-03-23 1998-08-11 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5890997A (en) * 1994-08-03 1999-04-06 Roth; Eric S. Computerized system for the design, execution, and tracking of exercise programs
US5931763A (en) * 1995-10-05 1999-08-03 Technogym S.R.L. System for programming training on exercise apparatus or machines and related method
US5955667A (en) * 1996-10-11 1999-09-21 Governors Of The University Of Alberta Motion analysis system
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6018705A (en) * 1997-10-02 2000-01-25 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6077193A (en) * 1998-04-03 2000-06-20 Unisen, Inc. Tracking system for promoting health fitness
US6230501B1 (en) * 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US20010054014A1 (en) * 2000-06-20 2001-12-20 Hajime Noda Client information collecting method, client information providing method, point assigning method, merchandise information providing method, and merchandise information collection apparatus using network
US20020022551A1 (en) * 1999-07-08 2002-02-21 Watterson Scott R. Methods and systems for controlling an exercise apparatus using a portable remote device
US6356856B1 (en) * 1998-02-25 2002-03-12 U.S. Philips Corporation Method of and system for measuring performance during an exercise activity, and an athletic shoe for use in system
US6375612B1 (en) * 1998-03-24 2002-04-23 P. Timothy Guichon Method and system for monitoring animals
US6396413B2 (en) * 1999-03-11 2002-05-28 Telephonics Corporation Personal alarm monitor system
US20020077883A1 (en) * 2000-09-29 2002-06-20 Lancos Kenneth J. System and method for accumulating marketing data from guests at a coverage area
US20020080198A1 (en) * 2000-11-14 2002-06-27 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US20020091796A1 (en) * 2000-01-03 2002-07-11 John Higginson Method and apparatus for transmitting data over a network using a docking device
US6424264B1 (en) * 2000-10-12 2002-07-23 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US6430843B1 (en) * 2000-04-18 2002-08-13 Nike, Inc. Dynamically-controlled cushioning system for an article of footwear
US20020142887A1 (en) * 2001-03-28 2002-10-03 O' Malley Sean M. Guided instructional cardiovascular exercise with accompaniment
US20020147642A1 (en) * 2001-04-06 2002-10-10 Royal Ahold Nv And Unipower Solutions, Inc. Methods and systems for providing personalized information to users in a commercial establishment
US20020147629A1 (en) * 2001-04-04 2002-10-10 Koninklijke Philips Electronics N.V. Method for creating personality profiles using tagged physical objects
US20020156677A1 (en) * 2001-04-18 2002-10-24 Peters Marcia L. Method and system for providing targeted advertising in public places and carriers
US20020165758A1 (en) * 2001-05-03 2002-11-07 Hind John R. Identification and tracking of persons using RFID-tagged items
US20020173407A1 (en) * 2001-05-18 2002-11-21 Bowman Robert C. Exercise information system
US20020174025A1 (en) * 2001-05-17 2002-11-21 Hind John R. Method and system for providing targeted advertising and personalized customer services
US20030009382A1 (en) * 2001-06-12 2003-01-09 D'arbeloff Matthew A. Customer identification, loyalty and merchant payment gateway
US20030009308A1 (en) * 2000-06-24 2003-01-09 Chris Kirtley Instrumented insole
US6526158B1 (en) * 1996-09-04 2003-02-25 David A. Goldberg Method and system for obtaining person-specific images in a public venue
US20030040922A1 (en) * 2001-08-23 2003-02-27 International Business Machines Corporation System and method for intelligent merchandise indicator and product information provision
US6531963B1 (en) * 2000-01-18 2003-03-11 Jan Bengtsson Method for monitoring the movements of individuals in and around buildings, rooms and the like
US20030090386A1 (en) * 2001-11-13 2003-05-15 Safetzone Technologies Corporation Identification tag for real-time location of people
US20030097878A1 (en) * 2001-11-29 2003-05-29 Koninklijke Philips Electronics Shoe based force sensor and equipment for use with the same
US6600407B2 (en) * 2000-07-20 2003-07-29 Speedchip Co., Ltd. Record measurement method and system using radio frequency identification
US6604419B2 (en) * 2000-12-07 2003-08-12 Bbc International, Ltd. Apparatus and method for measuring the maximum speed of a runner over a prescribed distance
US20030163287A1 (en) * 2000-12-15 2003-08-28 Vock Curtis A. Movement and event systems and associated methods related applications
US20030160732A1 (en) * 2002-02-25 2003-08-28 Koninklijke Philips Electronics N.V. Fabric antenna for tags
US6614392B2 (en) * 2001-12-07 2003-09-02 Delaware Capital Formation, Inc. Combination RFID and GPS functionality on intelligent label
US6788200B1 (en) * 2002-10-21 2004-09-07 Mitchell W Jamel Footwear with GPS
US20040177531A1 (en) * 2003-03-10 2004-09-16 Adidas International Marketing B.V. Intelligent footwear systems
US6878947B2 (en) * 2001-03-22 2005-04-12 Ese Embedded System Engineering Gmbh Device for the simultaneous detection of radiation of different wavelengths
US6882955B1 (en) * 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69116261T2 (en) * 1990-08-23 1996-06-13 Casio Computer Co Ltd Shoe or boot with air pockets
SE468499B (en) * 1992-01-30 1993-02-01 Monica Sjoesvaerd NECK PROTECTION FOR SKODON
US5813142A (en) * 1996-02-09 1998-09-29 Demon; Ronald S. Shoe sole with an adjustable support pattern
DE29701308U1 (en) * 1997-01-28 1997-05-15 Schiebl Frank Dipl Sportlehrer Movement measuring device for detecting the movement of the foot in the shoe
WO2000033031A1 (en) * 1998-11-27 2000-06-08 Carnap Analytic Corporation System for use in footwear for measuring, analyzing, and reporting the performance of an athlete
DE10201134A1 (en) * 2002-01-08 2003-07-10 Mohammad Nasseri Capture and processing of human movement data using piezoelectric sensors incorporated in the sole of a shoe or in an innersole together with integral processing and storage electronics

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578769A (en) * 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US5598849A (en) * 1992-07-21 1997-02-04 Hayle Brainpower P/L Interactive exercise monitoring system and method
US5471405A (en) * 1992-11-13 1995-11-28 Marsh; Stephen A. Apparatus for measurement of forces and pressures applied to a garment
US5335188A (en) * 1993-08-10 1994-08-02 Brisson Lawrence J Bicycle computer with memory and means for comparing present and past performance in real time
US6865825B2 (en) * 1994-04-14 2005-03-15 Promdx Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US6230501B1 (en) * 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US5890997A (en) * 1994-08-03 1999-04-06 Roth; Eric S. Computerized system for the design, execution, and tracking of exercise programs
US5720200A (en) * 1995-01-06 1998-02-24 Anderson; Kenneth J. Performance measuring footwear
US5596652A (en) * 1995-03-23 1997-01-21 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5793882A (en) * 1995-03-23 1998-08-11 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5931763A (en) * 1995-10-05 1999-08-03 Technogym S.R.L. System for programming training on exercise apparatus or machines and related method
US5724265A (en) * 1995-12-12 1998-03-03 Hutchings; Lawrence J. System and method for measuring movement of objects
US6526158B1 (en) * 1996-09-04 2003-02-25 David A. Goldberg Method and system for obtaining person-specific images in a public venue
US5955667A (en) * 1996-10-11 1999-09-21 Governors Of The University Of Alberta Motion analysis system
US6018705A (en) * 1997-10-02 2000-01-25 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6882955B1 (en) * 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6052654A (en) * 1997-10-02 2000-04-18 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6356856B1 (en) * 1998-02-25 2002-03-12 U.S. Philips Corporation Method of and system for measuring performance during an exercise activity, and an athletic shoe for use in system
US6375612B1 (en) * 1998-03-24 2002-04-23 P. Timothy Guichon Method and system for monitoring animals
US6569092B1 (en) * 1998-03-24 2003-05-27 P. Timothy Guichon Method and system for monitoring animals
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6077193A (en) * 1998-04-03 2000-06-20 Unisen, Inc. Tracking system for promoting health fitness
US6396413B2 (en) * 1999-03-11 2002-05-28 Telephonics Corporation Personal alarm monitor system
US20020022551A1 (en) * 1999-07-08 2002-02-21 Watterson Scott R. Methods and systems for controlling an exercise apparatus using a portable remote device
US20020091796A1 (en) * 2000-01-03 2002-07-11 John Higginson Method and apparatus for transmitting data over a network using a docking device
US6531963B1 (en) * 2000-01-18 2003-03-11 Jan Bengtsson Method for monitoring the movements of individuals in and around buildings, rooms and the like
US6430843B1 (en) * 2000-04-18 2002-08-13 Nike, Inc. Dynamically-controlled cushioning system for an article of footwear
US20030009913A1 (en) * 2000-04-18 2003-01-16 Potter Daniel R. Dynamically-controlled cushioning system for an article of footwear
US20010054014A1 (en) * 2000-06-20 2001-12-20 Hajime Noda Client information collecting method, client information providing method, point assigning method, merchandise information providing method, and merchandise information collection apparatus using network
US20030009308A1 (en) * 2000-06-24 2003-01-09 Chris Kirtley Instrumented insole
US6600407B2 (en) * 2000-07-20 2003-07-29 Speedchip Co., Ltd. Record measurement method and system using radio frequency identification
US20020077883A1 (en) * 2000-09-29 2002-06-20 Lancos Kenneth J. System and method for accumulating marketing data from guests at a coverage area
US6424264B1 (en) * 2000-10-12 2002-07-23 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US20020080198A1 (en) * 2000-11-14 2002-06-27 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US6604419B2 (en) * 2000-12-07 2003-08-12 Bbc International, Ltd. Apparatus and method for measuring the maximum speed of a runner over a prescribed distance
US20030163287A1 (en) * 2000-12-15 2003-08-28 Vock Curtis A. Movement and event systems and associated methods related applications
US6878947B2 (en) * 2001-03-22 2005-04-12 Ese Embedded System Engineering Gmbh Device for the simultaneous detection of radiation of different wavelengths
US20020142887A1 (en) * 2001-03-28 2002-10-03 O' Malley Sean M. Guided instructional cardiovascular exercise with accompaniment
US20020147629A1 (en) * 2001-04-04 2002-10-10 Koninklijke Philips Electronics N.V. Method for creating personality profiles using tagged physical objects
US20020147642A1 (en) * 2001-04-06 2002-10-10 Royal Ahold Nv And Unipower Solutions, Inc. Methods and systems for providing personalized information to users in a commercial establishment
US20020156677A1 (en) * 2001-04-18 2002-10-24 Peters Marcia L. Method and system for providing targeted advertising in public places and carriers
US20020165758A1 (en) * 2001-05-03 2002-11-07 Hind John R. Identification and tracking of persons using RFID-tagged items
US20020174025A1 (en) * 2001-05-17 2002-11-21 Hind John R. Method and system for providing targeted advertising and personalized customer services
US20020173407A1 (en) * 2001-05-18 2002-11-21 Bowman Robert C. Exercise information system
US20030009382A1 (en) * 2001-06-12 2003-01-09 D'arbeloff Matthew A. Customer identification, loyalty and merchant payment gateway
US20030040922A1 (en) * 2001-08-23 2003-02-27 International Business Machines Corporation System and method for intelligent merchandise indicator and product information provision
US20030090386A1 (en) * 2001-11-13 2003-05-15 Safetzone Technologies Corporation Identification tag for real-time location of people
US20030097878A1 (en) * 2001-11-29 2003-05-29 Koninklijke Philips Electronics Shoe based force sensor and equipment for use with the same
US6614392B2 (en) * 2001-12-07 2003-09-02 Delaware Capital Formation, Inc. Combination RFID and GPS functionality on intelligent label
US20030160732A1 (en) * 2002-02-25 2003-08-28 Koninklijke Philips Electronics N.V. Fabric antenna for tags
US6788200B1 (en) * 2002-10-21 2004-09-07 Mitchell W Jamel Footwear with GPS
US20040177531A1 (en) * 2003-03-10 2004-09-16 Adidas International Marketing B.V. Intelligent footwear systems
US7188439B2 (en) * 2003-03-10 2007-03-13 Adidas International Marketing B.V. Intelligent footwear systems
US7506460B2 (en) * 2003-03-10 2009-03-24 Adidas International Marketing B.V. Intelligent footwear systems

Cited By (553)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955558B2 (en) 2003-01-16 2021-03-23 Adidas Ag Systems and methods for electronically sharing information about health-related activities
US10132930B2 (en) 2003-01-16 2018-11-20 Adidas Ag Systems and methods for maintaining a health-related action database
US10509129B2 (en) 2003-01-16 2019-12-17 Adidas Ag Systems and methods for maintaining a health-related action database
US10816671B2 (en) 2003-01-16 2020-10-27 Adidas Ag Systems and methods for presenting comparative athletic performance information
US10371819B2 (en) 2003-01-16 2019-08-06 Adidas Ag Systems and methods for presenting health-related messages
US20070180737A1 (en) * 2003-03-10 2007-08-09 Adidas International Marketing B.V. Intelligent footwear systems
US7676960B2 (en) 2003-03-10 2010-03-16 Adidas International Marketing B.V. Intelligent footwear systems
US20070180736A1 (en) * 2003-03-10 2007-08-09 Adidas International Marketing B.V. Intelligent footwear systems
US8234798B2 (en) 2003-03-10 2012-08-07 Adidas International Marketing B.V. Intelligent footwear systems
US7676961B2 (en) 2003-03-10 2010-03-16 Adidas International Marketing B.V. Intelligent footwear systems
US20070011920A1 (en) * 2003-03-10 2007-01-18 Adidas International Marketing B.V. Intelligent footwear systems
US20100050478A1 (en) * 2003-03-10 2010-03-04 Adidas International Marketing B.V. Intelligent footwear systems
US20090265958A1 (en) * 2003-03-10 2009-10-29 Adidas International Marketing B.V. Intelligent footwear systems
US20070000154A1 (en) * 2003-03-10 2007-01-04 Christian Dibenedetto Intelligent footwear systems
US8056268B2 (en) 2003-03-10 2011-11-15 Adidas International Marketing B.V. Intelligent footwear systems
US20050183292A1 (en) * 2003-03-10 2005-08-25 Christian Dibenedetto Intelligent footwear systems
US10849390B2 (en) 2003-06-12 2020-12-01 Boa Technology Inc. Reel based closure system
US11493637B2 (en) 2004-01-16 2022-11-08 Adidas Ag Systems and methods for providing a health coaching message
US11650325B2 (en) 2004-01-16 2023-05-16 Adidas Ag Systems and methods for providing a health coaching message
US10571577B2 (en) 2004-01-16 2020-02-25 Adidas Ag Systems and methods for presenting route traversal information
US11150354B2 (en) 2004-01-16 2021-10-19 Adidas Ag Systems and methods for modifying a fitness plan
US11119220B2 (en) 2004-01-16 2021-09-14 Adidas Ag Systems and methods for providing a health coaching message
US7805150B2 (en) 2004-01-16 2010-09-28 Adidas Ag Wireless device, program products and methods of using a wireless device to deliver services
US20080060224A1 (en) * 2004-03-01 2008-03-13 Whittlesey Saunders N Shoe with sensors, controller and active-response elements and method for use thereof
US7552549B2 (en) 2004-03-01 2009-06-30 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US7310895B2 (en) 2004-03-01 2007-12-25 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US8141277B2 (en) 2004-03-01 2012-03-27 Acushnet Company Shoe with sensors, controller and active-response elements and method for use thereof
US20100222165A1 (en) * 2004-09-17 2010-09-02 Adidas International Marketing B.V. Bladder
US8231487B2 (en) 2004-09-17 2012-07-31 Adidas International Marketing B.V. Bladder
US9032647B2 (en) 2005-03-31 2015-05-19 Adidas Ag Shoe housing
US8458929B2 (en) 2005-03-31 2013-06-11 Adidas International Marketing B.V. Shoe housing
US20090313857A1 (en) * 2005-03-31 2009-12-24 Adidas International Marketing B.V. Shoe Housing
US20060283050A1 (en) * 2005-03-31 2006-12-21 Adidas International Marketing B.V. Shoe housing
US7980009B2 (en) 2005-03-31 2011-07-19 Adidas International Marketing B.V. Shoe housing
US20070089320A1 (en) * 2005-10-26 2007-04-26 Pamela Denfeld Vehicle shaped footwear
US7748144B2 (en) * 2005-10-26 2010-07-06 Pamela Denfeld Vehicle shaped footwear
US20070123391A1 (en) * 2005-11-28 2007-05-31 Samsung Electronics Co., Ltd Exercise management function providing system and method
US7713173B2 (en) * 2005-11-28 2010-05-11 Samsung Electronics Co., Ltd Exercise management function providing system and method
US20070149361A1 (en) * 2005-12-02 2007-06-28 Samsung Electronics Co., Ltd. System and method for manipulating portable equipment using foot motion
US8021269B2 (en) * 2005-12-02 2011-09-20 Samsung Electronics Co., Ltd System and method for manipulating portable equipment using foot motion
US10307639B2 (en) 2007-02-14 2019-06-04 Nike, Inc. Collection and display of athletic information
US11081223B2 (en) 2007-02-14 2021-08-03 Nike, Inc. Collection and display of athletic information
US8162804B2 (en) 2007-02-14 2012-04-24 Nike, Inc. Collection and display of athletic information
US20080250672A1 (en) * 2007-04-13 2008-10-16 Forbes Brandon F Footwear device with scrolling light emitting diode display
US7866066B2 (en) * 2007-04-13 2011-01-11 Forbes Brandon F Footwear device with scrolling light emitting diode display
WO2008151642A1 (en) * 2007-06-12 2008-12-18 Nokia Corporation Directing shoe insole
US8353791B2 (en) * 2007-08-15 2013-01-15 Catapult Innovations Pty Ltd Tracking balls in sports
US20090048039A1 (en) * 2007-08-15 2009-02-19 Catapult Innovations Pty Ltd Tracking balls in sports
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US10062297B2 (en) 2007-08-17 2018-08-28 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US9759738B2 (en) 2007-08-17 2017-09-12 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
US7927253B2 (en) 2007-08-17 2011-04-19 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US9242142B2 (en) 2007-08-17 2016-01-26 Adidas International Marketing B.V. Sports electronic training system with sport ball and electronic gaming features
US20090233770A1 (en) * 2007-08-17 2009-09-17 Stephen Michael Vincent Sports Electronic Training System With Electronic Gaming Features, And Applications Thereof
US8221290B2 (en) 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US9625485B2 (en) 2007-08-17 2017-04-18 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US9087159B2 (en) 2007-08-17 2015-07-21 Adidas International Marketing B.V. Sports electronic training system with sport ball, and applications thereof
US9645165B2 (en) 2007-08-17 2017-05-09 Adidas International Marketing B.V. Sports electronic training system with sport ball, and applications thereof
US20090135001A1 (en) * 2007-11-02 2009-05-28 Lo Tong Yuk Pressure sensing system
WO2009083097A1 (en) * 2007-12-29 2009-07-09 Puma Aktiengesellschaft Rudolf Dassier Sport Shoe, in particular sports shoe
DE202007018164U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
DE102007063160A1 (en) * 2007-12-29 2009-07-09 Puma Aktiengesellschaft Rudolf Dassler Sport Method for influencing the pronation behavior of a shoe
DE202007018166U1 (en) * 2007-12-29 2009-05-20 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
DE202007018163U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
US20100198111A1 (en) * 2007-12-29 2010-08-05 Puma Aktiengesellschaft Rudolf Dassler Sport Method for influencing the pronation behaviour of a shoe
DE202007018165U1 (en) * 2007-12-29 2009-05-14 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular sports shoe
WO2009083098A1 (en) * 2007-12-29 2009-07-09 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, in particular a sports shoe
US10493316B2 (en) 2008-01-31 2019-12-03 Jeffrey D. Stewart Exercise apparatuses and methods of using the same
US20110092339A1 (en) * 2008-01-31 2011-04-21 Jeffrey David Stewart Exercise apparatuses and methods of using the same
US8617033B2 (en) * 2008-01-31 2013-12-31 Jeffrey David Stewart Exercise apparatuses and methods of using the same
US11857836B2 (en) 2008-02-20 2024-01-02 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US10350453B2 (en) 2008-02-20 2019-07-16 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US9623284B2 (en) * 2008-02-20 2017-04-18 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US9393478B2 (en) 2008-02-20 2016-07-19 Nike, Inc. System and method for tracking one or more rounds of golf
US10806967B2 (en) 2008-02-20 2020-10-20 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US20110230273A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US20110230986A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US10486022B2 (en) 2008-02-20 2019-11-26 Karsten Manufacturing Corporation Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US20110230274A1 (en) * 2008-02-20 2011-09-22 Nike, Inc. Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
US9486669B2 (en) 2008-02-20 2016-11-08 Nike, Inc. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US9661894B2 (en) 2008-02-20 2017-05-30 Nike, Inc. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
EP2700434A2 (en) 2008-04-02 2014-02-26 Nike International Ltd. Wearable device assembly having athletic functionality
US20110131836A1 (en) * 2008-05-01 2011-06-09 Plantiga Technologies, Inc Footwear assembly with integral footbed suspension system
US9044061B2 (en) 2008-05-01 2015-06-02 Plantiga Technologies, Inc. Footwear assembly with integral footbed suspension system
EP2280621A1 (en) * 2008-05-01 2011-02-09 Plantiga Technologies Inc. Footwear assembly with integral footbed suspension system
EP2280621A4 (en) * 2008-05-01 2013-12-11 Plantiga Technologies Inc Footwear assembly with integral footbed suspension system
WO2009132465A1 (en) 2008-05-01 2009-11-05 Plantiga Technologies Inc. Footwear assembly with integral footbed suspension system
US8763278B2 (en) 2008-05-01 2014-07-01 Plantiga Technologies, Inc. Footwear assembly with integral footbed suspension system
US11306798B2 (en) 2008-05-09 2022-04-19 Fox Factory, Inc. Position sensitive suspension damping with an active valve
WO2009146791A2 (en) * 2008-06-06 2009-12-10 Cairos Technologies Ag System and method for the mobile evaluation of cushioning properties of shoes
WO2009146791A3 (en) * 2008-06-06 2010-03-04 Cairos Technologies Ag System and method for the mobile evaluation of cushioning properties of shoes
US20110175744A1 (en) * 2008-06-06 2011-07-21 Walter Englert Systems and Method for the Mobile Evaluation of Cushioning Properties of Shoes
US8676541B2 (en) * 2008-06-13 2014-03-18 Nike, Inc. Footwear having sensor system
US10912490B2 (en) 2008-06-13 2021-02-09 Nike, Inc. Footwear having sensor system
US10314361B2 (en) 2008-06-13 2019-06-11 Nike, Inc. Footwear having sensor system
US9089182B2 (en) 2008-06-13 2015-07-28 Nike, Inc. Footwear having sensor system
US9002680B2 (en) 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
US9622537B2 (en) 2008-06-13 2017-04-18 Nike, Inc. Footwear having sensor system
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US10408693B2 (en) 2008-06-13 2019-09-10 Nike, Inc. System and method for analyzing athletic activity
US20100063779A1 (en) * 2008-06-13 2010-03-11 Nike, Inc. Footwear Having Sensor System
US10182744B2 (en) 2008-06-13 2019-01-22 Nike, Inc. Footwear having sensor system
US9462844B2 (en) * 2008-06-13 2016-10-11 Nike, Inc. Footwear having sensor system
US20100063778A1 (en) * 2008-06-13 2010-03-11 Nike, Inc. Footwear Having Sensor System
US11707107B2 (en) 2008-06-13 2023-07-25 Nike, Inc. Footwear having sensor system
US11026469B2 (en) 2008-06-13 2021-06-08 Nike, Inc. Footwear having sensor system
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US10398189B2 (en) 2008-06-13 2019-09-03 Nike, Inc. Footwear having sensor system
US20100048272A1 (en) * 2008-08-21 2010-02-25 Sony Online Entertainment Llc Measuring and converting activities to benefits
US11162555B2 (en) 2008-08-25 2021-11-02 Fox Factory, Inc. Methods and apparatus for suspension lock out and signal generation
US10550909B2 (en) 2008-08-25 2020-02-04 Fox Factory, Inc. Methods and apparatus for suspension lock out and signal generation
US11779083B2 (en) 2008-11-21 2023-10-10 Boa Technology, Inc. Reel based lacing system
US10537790B2 (en) 2008-11-25 2020-01-21 Fox Factory, Inc. Methods and apparatus for virtual competition
US11869651B2 (en) 2008-11-25 2024-01-09 Fox Factory, Inc. Methods and apparatus for virtual competition
US9422018B2 (en) 2008-11-25 2016-08-23 Fox Factory, Inc. Seat post
US10472013B2 (en) 2008-11-25 2019-11-12 Fox Factory, Inc. Seat post
US11897571B2 (en) 2008-11-25 2024-02-13 Fox Factory, Inc. Seat post
US9108098B2 (en) * 2008-11-25 2015-08-18 Fox Factory, Inc. Methods and apparatus for virtual competition
US20100160014A1 (en) * 2008-11-25 2010-06-24 Mario Galasso Methods and apparatus for virtual competition
US10029172B2 (en) 2008-11-25 2018-07-24 Fox Factory, Inc. Methods and apparatus for virtual competition
US11257582B2 (en) 2008-11-25 2022-02-22 Fox Factory, Inc. Methods and apparatus for virtual competition
US11875887B2 (en) 2008-11-25 2024-01-16 Fox Factory, Inc. Methods and apparatus for virtual competition
US11021204B2 (en) 2008-11-25 2021-06-01 Fox Factory, Inc. Seat post
US11043294B2 (en) 2008-11-25 2021-06-22 Fox Factoory, Inc. Methods and apparatus for virtual competition
US20150375085A1 (en) * 2008-12-05 2015-12-31 Nike, Inc. Athletic Performance Monitoring Systems and Methods in a Team Sports Environment
US10123583B2 (en) * 2008-12-05 2018-11-13 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US11541296B2 (en) 2008-12-05 2023-01-03 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US10800220B2 (en) 2009-01-07 2020-10-13 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11499601B2 (en) 2009-01-07 2022-11-15 Fox Factory, Inc. Remotely operated bypass for a suspension damper
US11299233B2 (en) 2009-01-07 2022-04-12 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11866120B2 (en) 2009-01-07 2024-01-09 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11794543B2 (en) 2009-01-07 2023-10-24 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11890908B2 (en) 2009-01-07 2024-02-06 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11660924B2 (en) 2009-01-07 2023-05-30 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10821795B2 (en) 2009-01-07 2020-11-03 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11173765B2 (en) 2009-01-07 2021-11-16 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11168758B2 (en) 2009-01-07 2021-11-09 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10814689B2 (en) 2009-01-07 2020-10-27 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11408482B2 (en) 2009-01-07 2022-08-09 Fox Factory, Inc. Bypass for a suspension damper
US11549565B2 (en) 2009-01-07 2023-01-10 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10807433B2 (en) 2009-01-07 2020-10-20 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10781879B2 (en) 2009-01-07 2020-09-22 Fox Factory, Inc. Bypass for a suspension damper
US10336148B2 (en) 2009-01-07 2019-07-02 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10336149B2 (en) 2009-01-07 2019-07-02 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11519477B2 (en) 2009-01-07 2022-12-06 Fox Factory, Inc. Compression isolator for a suspension damper
US10723409B2 (en) 2009-01-07 2020-07-28 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10670106B2 (en) 2009-01-07 2020-06-02 Fox Factory, Inc. Method and apparatus for an adjustable damper
US9446294B2 (en) 2009-01-20 2016-09-20 Nike, Inc. Golf club and golf club head structures
US10145435B2 (en) 2009-03-19 2018-12-04 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US9682604B2 (en) 2009-03-19 2017-06-20 Fox Factory, Inc. Methods and apparatus for selective spring pre-load adjustment
US10591015B2 (en) 2009-03-19 2020-03-17 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US11413924B2 (en) 2009-03-19 2022-08-16 Fox Factory, Inc. Methods and apparatus for selective spring pre-load adjustment
US10086670B2 (en) 2009-03-19 2018-10-02 Fox Factory, Inc. Methods and apparatus for suspension set up
US9523406B2 (en) 2009-03-19 2016-12-20 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US10414236B2 (en) 2009-03-19 2019-09-17 Fox Factory, Inc. Methods and apparatus for selective spring pre-load adjustment
US11619278B2 (en) 2009-03-19 2023-04-04 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US11655873B2 (en) 2009-03-19 2023-05-23 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US11920655B2 (en) 2009-03-19 2024-03-05 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US9615785B2 (en) 2009-04-01 2017-04-11 Adidas Ag Method and apparatus to determine the overall fitness of a test subject
EP2866103A2 (en) 2009-04-26 2015-04-29 NIKE Innovate C.V. Athletic watch
EP2584414A1 (en) 2009-04-26 2013-04-24 Nike International Ltd. Athletic Watch
EP2581120A1 (en) 2009-04-26 2013-04-17 Nike International Ltd. Athletic watch
US9908001B2 (en) 2009-05-18 2018-03-06 Adidas Ag Portable fitness monitoring systems with displays and applications thereof
US8241184B2 (en) 2009-05-18 2012-08-14 Adidas Ag Methods and computer program products for providing audio performance feedback to a user during an athletic activity
US11376468B2 (en) 2009-05-18 2022-07-05 Adidas Ag Portable fitness monitoring methods
US9675842B2 (en) 2009-05-18 2017-06-13 Adidas Ag Portable fitness monitoring methods
US8801577B2 (en) 2009-05-18 2014-08-12 Adidas Ag Portable fitness monitoring systems with displays and applications thereof
US8200323B2 (en) 2009-05-18 2012-06-12 Adidas Ag Program products, methods, and systems for providing fitness monitoring services
US20100292599A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Portable Fitness Monitoring Systems With Displays and Applications Thereof
US20100292600A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Program Products, Methods, and Systems for Providing Fitness Monitoring Services
US8715139B2 (en) 2009-05-18 2014-05-06 Adidas Ag Portable fitness monitoring systems, and applications thereof
US9077465B2 (en) 2009-05-18 2015-07-07 Adidas Ag Portable fitness monitoring methods
US8033959B2 (en) 2009-05-18 2011-10-11 Adidas Ag Portable fitness monitoring systems, and applications thereof
US8360936B2 (en) 2009-05-18 2013-01-29 Adidas Ag Portable fitness monitoring systems with displays and applications thereof
US8855756B2 (en) 2009-05-18 2014-10-07 Adidas Ag Methods and program products for providing heart rate information
US10166436B2 (en) 2009-05-18 2019-01-01 Adidas Ag Methods and program products for building a workout
US11673023B2 (en) 2009-05-18 2023-06-13 Adidas Ag Portable fitness monitoring methods
US20100292050A1 (en) * 2009-05-18 2010-11-18 Adidas Ag Portable Fitness Monitoring Systems, and Applications Thereof
US8105208B2 (en) 2009-05-18 2012-01-31 Adidas Ag Portable fitness monitoring systems with displays and applications thereof
US8562490B2 (en) 2009-05-18 2013-10-22 Adidas Ag Portable fitness monitoring systems, and applications thereof
US9550090B2 (en) 2009-05-18 2017-01-24 addidas AG Portable fitness monitoring systems with displays and applications thereof
US10363454B2 (en) 2009-05-18 2019-07-30 Adidas Ag Portable fitness monitoring methods
WO2010133300A1 (en) * 2009-05-19 2010-11-25 Puma Aktiengesellschaft Rudolf Dassler Sport Shoe, particularly sports shoe
US8234800B2 (en) 2009-05-19 2012-08-07 Puma SE Shoe, particularly sports shoe
US20110047828A1 (en) * 2009-09-02 2011-03-03 Gary Stephen Shuster Remotely controlled footwear disruptor
US11859690B2 (en) 2009-10-13 2024-01-02 Fox Factory, Inc. Suspension system
US11279198B2 (en) 2009-10-13 2022-03-22 Fox Factory, Inc. Methods and apparatus for controlling a fluid damper
US8990045B2 (en) * 2009-11-18 2015-03-24 Silicon Valley Micro E Corp. Pedometer with shoe mounted sensor and transmitter
US20110119027A1 (en) * 2009-11-18 2011-05-19 Silicon Valley Micro E Corporation Pedometer with shoe mounted sensor and transmitter
WO2011072111A2 (en) 2009-12-09 2011-06-16 Nike International Ltd. Athletic performance monitoring system utilizing heart rate information
US11708878B2 (en) 2010-01-20 2023-07-25 Fox Factory, Inc. Remotely operated bypass for a suspension damper
US9854873B2 (en) 2010-01-21 2018-01-02 Boa Technology Inc. Guides for lacing systems
US8332544B1 (en) 2010-03-17 2012-12-11 Mattel, Inc. Systems, methods, and devices for assisting play
US9408437B2 (en) 2010-04-30 2016-08-09 Boa Technology, Inc. Reel based lacing system
US10070695B2 (en) 2010-04-30 2018-09-11 Boa Technology Inc. Tightening mechanisms and applications including the same
US10888139B2 (en) 2010-04-30 2021-01-12 Boa Technology Inc. Tightening mechanisms and applications including same
US9650094B2 (en) 2010-07-02 2017-05-16 Fox Factory, Inc. Lever assembly for positive lock adjustable seatpost
US10086892B2 (en) 2010-07-02 2018-10-02 Fox Factory, Inc. Lever assembly for positive lock adjustable seat post
US11866110B2 (en) 2010-07-02 2024-01-09 Fox Factory, Inc. Lever assembly for positive lock adjustable seat post
US10843753B2 (en) 2010-07-02 2020-11-24 Fox Factory, Inc. Lever assembly for positive lock adjustable seat post
US10518163B2 (en) 2010-07-14 2019-12-31 Adidas Ag Location-aware fitness monitoring methods, systems, and program products, and applications thereof
US8493822B2 (en) 2010-07-14 2013-07-23 Adidas Ag Methods, systems, and program products for controlling the playback of music
US20120042726A1 (en) * 2010-08-23 2012-02-23 Jeon Younghyeog Device and method for measuring a moving distance
EP4220310A1 (en) 2010-11-01 2023-08-02 Nike Innovate C.V. Wearable device assembly having athletic functionality
WO2012061440A2 (en) 2010-11-01 2012-05-10 Nike International Ltd. Wearable device assembly having athletic functionality
WO2012061438A2 (en) 2010-11-01 2012-05-10 Nike International Ltd. Wearable device assembly having athletic functionality
US11568977B2 (en) 2010-11-10 2023-01-31 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US11600371B2 (en) 2010-11-10 2023-03-07 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US10293209B2 (en) 2010-11-10 2019-05-21 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US9429411B2 (en) 2010-11-10 2016-08-30 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US11817198B2 (en) 2010-11-10 2023-11-14 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US9389057B2 (en) 2010-11-10 2016-07-12 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US11935640B2 (en) 2010-11-10 2024-03-19 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US9757619B2 (en) 2010-11-10 2017-09-12 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US10632343B2 (en) 2010-11-10 2020-04-28 Nike, Inc. Systems and methods for time-based athletic activity measurement and display
US9662551B2 (en) 2010-11-30 2017-05-30 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9642415B2 (en) 2011-02-07 2017-05-09 New Balance Athletics, Inc. Systems and methods for monitoring athletic performance
US10363453B2 (en) 2011-02-07 2019-07-30 New Balance Athletics, Inc. Systems and methods for monitoring athletic and physiological performance
US9192816B2 (en) 2011-02-17 2015-11-24 Nike, Inc. Footwear having sensor system
US10179263B2 (en) 2011-02-17 2019-01-15 Nike, Inc. Selecting and correlating physical activity data with image data
US10674782B2 (en) 2011-02-17 2020-06-09 Nike, Inc. Footwear having sensor system
US9411940B2 (en) 2011-02-17 2016-08-09 Nike, Inc. Selecting and correlating physical activity data with image data
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
US9924760B2 (en) 2011-02-17 2018-03-27 Nike, Inc. Footwear having sensor system
US11109635B2 (en) 2011-02-17 2021-09-07 Nike, Inc. Footwear having sensor system
US10220254B1 (en) * 2011-03-18 2019-03-05 Thomas C. Chuang Multi-sensor body movement analysis
US8784274B1 (en) * 2011-03-18 2014-07-22 Thomas C. Chuang Athletic performance monitoring with body synchronization analysis
US9427639B2 (en) 2011-04-05 2016-08-30 Nike, Inc. Automatic club setting and ball flight optimization
WO2012138528A2 (en) 2011-04-05 2012-10-11 Nike International Ltd. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
WO2012138543A2 (en) 2011-04-05 2012-10-11 Nike International Ltd. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
WO2012138605A2 (en) 2011-04-05 2012-10-11 Nike International Ltd. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
WO2012138536A1 (en) 2011-04-05 2012-10-11 Nike International Ltd. Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US11217341B2 (en) 2011-04-05 2022-01-04 Adidas Ag Fitness monitoring methods, systems, and program products, and applications thereof
US11077343B2 (en) 2011-04-28 2021-08-03 Nike, Inc. Monitoring device for a piece of sports equipment
US10500452B2 (en) 2011-04-28 2019-12-10 Nike, Inc. Golf clubs and golf club heads
US9409073B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9409076B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9433844B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9433845B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9375624B2 (en) 2011-04-28 2016-06-28 Nike, Inc. Golf clubs and golf club heads
US9925433B2 (en) 2011-04-28 2018-03-27 Nike, Inc. Golf clubs and golf club heads
US11796028B2 (en) 2011-05-31 2023-10-24 Fox Factory, Inc. Methods and apparatus for position sensitive suspension damping
US10677309B2 (en) 2011-05-31 2020-06-09 Fox Factory, Inc. Methods and apparatus for position sensitive suspension damping
US20120325019A1 (en) * 2011-06-21 2012-12-27 Industrial Technology Research Institute Force sensing device and force sensing system
JP2013059357A (en) * 2011-09-10 2013-04-04 Denso Corp Footwear
US10759247B2 (en) 2011-09-12 2020-09-01 Fox Factory, Inc. Methods and apparatus for suspension set up
US10413019B2 (en) 2011-10-13 2019-09-17 Boa Technology Inc Reel-based lacing system
WO2013056263A1 (en) * 2011-10-14 2013-04-18 Bishop, Roger Sport performance monitoring apparatus, process, and method of use
US20180008864A1 (en) * 2011-10-14 2018-01-11 Chris Norcross Bender Sport-boot pressure monitor and method of use
US9078485B2 (en) 2011-10-14 2015-07-14 Chris Norcross Bender Sport performance monitoring apparatus including a flexible boot pressure sensor communicable with a boot pressure sensor input, process and method of use
US20190022461A1 (en) * 2011-10-14 2019-01-24 Chris Norcross Bender Sport-boot pressure monitor and method of use
US10420984B2 (en) * 2011-10-14 2019-09-24 Chris Norcross Bender Sport-boot pressure monitor and method of use
US10080921B2 (en) * 2011-10-14 2018-09-25 Chris Norcross Bender Sport-boot pressure monitor and method of use
US20130104277A1 (en) * 2011-10-28 2013-05-02 Geoff McCue Stabilizer apparatus and method
US8819863B2 (en) * 2011-10-28 2014-09-02 Geoff McCue Stabilizer apparatus and method
US9424397B2 (en) 2011-12-22 2016-08-23 Adidas Ag Sports monitoring system using GPS with location beacon correction
US10625118B2 (en) 2011-12-22 2020-04-21 Adidas Ag Fitness activity monitoring systems and methods
US9814937B2 (en) 2011-12-22 2017-11-14 Adidas Ag Sports monitoring system with location beacon
US10252107B2 (en) 2011-12-22 2019-04-09 Adidas Ag Fitness activity monitoring systems and methods
US11385354B2 (en) 2011-12-22 2022-07-12 Adidas Ag Fitness activity monitoring systems and methods
US9643050B2 (en) 2011-12-22 2017-05-09 Adidas Ag Fitness activity monitoring systems and methods
US10596417B2 (en) 2011-12-22 2020-03-24 Adidas Ag Fitness activity monitoring systems and methods
US11636939B2 (en) 2011-12-22 2023-04-25 Adidas Ag Fitness activity monitoring systems and methods
EP2918227A2 (en) 2012-01-04 2015-09-16 NIKE Innovate C.V. Athletic watch
WO2013103570A1 (en) 2012-01-04 2013-07-11 Nike International Ltd. Athletic watch
EP2612595A2 (en) 2012-01-04 2013-07-10 Nike International Ltd. Athletic watch
US10220259B2 (en) 2012-01-05 2019-03-05 Icon Health & Fitness, Inc. System and method for controlling an exercise device
EP4220660A1 (en) 2012-01-18 2023-08-02 Nike Innovate C.V. Wearable device assembly having athletic functionality
WO2013109577A2 (en) 2012-01-18 2013-07-25 Nike International Ltd. Wearable device assembly having athletic functionality
EP2838045A1 (en) 2012-01-18 2015-02-18 NIKE Innovate C.V. Wearable device assembly having athletic functionality
EP2618282A2 (en) 2012-01-18 2013-07-24 Nike International Ltd. Wearable device assembly having athletic functionality
WO2013109940A2 (en) 2012-01-19 2013-07-25 Nike International Ltd. Power management in an activity monitoring device
US11760150B2 (en) 2012-01-25 2023-09-19 Fox Factory, Inc. Suspension damper with by-pass valves
US11279199B2 (en) 2012-01-25 2022-03-22 Fox Factory, Inc. Suspension damper with by-pass valves
ITPD20120042A1 (en) * 2012-02-21 2013-08-22 Alessio Saviolo DESIGN OF A PAIR OF TECHNOLOGICAL SHOES.
US9763489B2 (en) 2012-02-22 2017-09-19 Nike, Inc. Footwear having sensor system
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US10151648B2 (en) 2012-02-22 2018-12-11 Nike, Inc. Footwear having sensor system
US9756895B2 (en) 2012-02-22 2017-09-12 Nike, Inc. Footwear having sensor system
US11793264B2 (en) 2012-02-22 2023-10-24 Nike, Inc. Footwear having sensor system
US11071345B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Footwear having sensor system
US10568381B2 (en) 2012-02-22 2020-02-25 Nike, Inc. Motorized shoe with gesture control
US10357078B2 (en) 2012-02-22 2019-07-23 Nike, Inc. Footwear having sensor system
US8739639B2 (en) 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US9375053B2 (en) 2012-03-15 2016-06-28 Boa Technology, Inc. Tightening mechanisms and applications including the same
US11097156B2 (en) 2012-04-13 2021-08-24 Adidas Ag Wearable athletic activity monitoring methods and systems
US10922383B2 (en) 2012-04-13 2021-02-16 Adidas Ag Athletic activity monitoring methods and systems
US9737261B2 (en) 2012-04-13 2017-08-22 Adidas Ag Wearable athletic activity monitoring systems
US10244984B2 (en) 2012-04-13 2019-04-02 Adidas Ag Wearable athletic activity monitoring systems
US9504414B2 (en) 2012-04-13 2016-11-29 Adidas Ag Wearable athletic activity monitoring methods and systems
US11839489B2 (en) 2012-04-13 2023-12-12 Adidas Ag Wearable athletic activity monitoring systems
US10765364B2 (en) 2012-04-13 2020-09-08 Adidas Ag Wearable athletic activity monitoring systems
US9257054B2 (en) 2012-04-13 2016-02-09 Adidas Ag Sport ball athletic activity monitoring methods and systems
US10369411B2 (en) 2012-04-13 2019-08-06 Adidas Ag Sport ball athletic activity monitoring methods and systems
US10369410B2 (en) 2012-04-13 2019-08-06 Adidas Ag Wearable athletic activity monitoring methods and systems
US11931624B2 (en) 2012-04-13 2024-03-19 Adidas Ag Wearable athletic activity monitoring methods and systems
US20190159529A1 (en) * 2012-04-18 2019-05-30 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
EP2839359A4 (en) * 2012-04-18 2016-01-13 Frampton E Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
US20230086698A1 (en) * 2012-04-18 2023-03-23 Frampton E. Ellis Medical system or tool to counteract the adverse anatomical and medical effects of unnatural supination of the subtalar joint
US11896077B2 (en) * 2012-04-18 2024-02-13 Frampton E. Ellis Medical system or tool to counteract the adverse anatomical and medical effects of unnatural supination of the subtalar joint
US10172396B2 (en) * 2012-04-18 2019-01-08 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US11120909B2 (en) * 2012-04-18 2021-09-14 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US10012969B2 (en) * 2012-04-18 2018-07-03 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a web-based cloud computer system using a smartphone device
US9030335B2 (en) * 2012-04-18 2015-05-12 Frampton E. Ellis Smartphones app-controlled configuration of footwear soles using sensors in the smartphone and the soles
US10226082B2 (en) * 2012-04-18 2019-03-12 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US11715561B2 (en) * 2012-04-18 2023-08-01 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US9375047B2 (en) * 2012-04-18 2016-06-28 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a web-based cloud computer system using a smartphone device
US20230335276A1 (en) * 2012-04-18 2023-10-19 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
US9063529B2 (en) 2012-04-18 2015-06-23 Frampton E. Ellis Configurable footwear sole structures controlled by a smartphone app algorithm using sensors in the smartphone and the soles
US9504291B2 (en) * 2012-04-18 2016-11-29 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a web-based cloud computer system using a smartphone device
US9877523B2 (en) * 2012-04-18 2018-01-30 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a computer system using big data techniques and a smartphone device
US20160037855A1 (en) * 2012-04-18 2016-02-11 Frampton E. Ellis Bladders, Compartments, Chambers or Internal Sipes Controlled by a Web-Based Cloud Computer System Using a Smartphone Device
US11901072B2 (en) * 2012-04-18 2024-02-13 Frampton E. Ellis Big data artificial intelligence computer system used for medical care connected to millions of sensor-equipped smartphones connected to their users' configurable footwear soles with sensors and to body sensors
US9100495B2 (en) * 2012-04-18 2015-08-04 Frampton E. Ellis Footwear sole structures controlled by a web-based cloud computer system using a smartphone device
US20130278436A1 (en) * 2012-04-18 2013-10-24 Frampton E. Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
US20130278435A1 (en) * 2012-04-18 2013-10-24 Frampton E. Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
US11432615B2 (en) 2012-04-18 2022-09-06 Frampton E. Ellis Sole or sole insert including concavely rounded portions and flexibility grooves
US20170135415A1 (en) * 2012-04-18 2017-05-18 Frampton E. Ellis Bladders, Compartments, Chambers or Internal Sipes Controlled by a Computer System Using Big Data Techniques and a Smartphone Device
US9207660B2 (en) 2012-04-18 2015-12-08 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a web-based cloud computer system using a smartphone device
US20140285311A1 (en) * 2012-04-18 2014-09-25 Frampton E. Ellis Footwear soles with one or more chambers, compartments, bladders or internal sipes controlled by a smartphone
US20210375453A1 (en) * 2012-04-18 2021-12-02 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
US10568369B2 (en) * 2012-04-18 2020-02-25 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US20170308044A1 (en) * 2012-04-18 2017-10-26 Frampton E. Ellis Bladders, Compartments, Chambers or Internal Sipes Controlled by a Web-Based Cloud Computer System Using a Smartphone Device
US9709971B2 (en) * 2012-04-18 2017-07-18 Frampton E. Ellis Bladders, compartments, chambers or internal sipes controlled by a web-based cloud computer system using a smartphone device
WO2013158809A1 (en) 2012-04-18 2013-10-24 Ellis Frampton E Smartphone-controlled active configuration of footwear including with concavely rounded soles
US10859133B2 (en) 2012-05-10 2020-12-08 Fox Factory, Inc. Method and apparatus for an adjustable damper
US11629774B2 (en) 2012-05-10 2023-04-18 Fox Factory, Inc. Method and apparatus for an adjustable damper
US9247784B2 (en) 2012-06-22 2016-02-02 Jeffrey David Stewart Wearable exercise apparatuses
US10426997B2 (en) 2012-06-22 2019-10-01 Jeffrey D. Stewart Wearable exercise apparatuses
WO2014009503A1 (en) * 2012-07-11 2014-01-16 Brim Brothers Limited Device and method for measuring forces applied to a cycling shoe
WO2014032181A1 (en) * 2012-08-27 2014-03-06 Université Du Québec À Chicoutimi Method to determine physical properties of the ground, foot-worn sensor therefore, and method to advise a user of a risk of falling based thereon
US10024660B2 (en) 2012-08-27 2018-07-17 Universite Du Quebec A Chicoutimi Method to determine physical properties of the ground
US11191322B2 (en) 2012-08-31 2021-12-07 Nike, Inc. Motorized tensioning system with sensors
US11000099B2 (en) 2012-08-31 2021-05-11 Nike, Inc. Motorized tensioning system with sensors
US11166525B2 (en) 2012-08-31 2021-11-09 Nike, Inc. Footwear having removable motorized adjustment system
US11044968B2 (en) 2012-08-31 2021-06-29 Nike, Inc. Footwear having removable motorized adjustment system
EP2871994B1 (en) * 2012-08-31 2020-08-26 NIKE Innovate C.V. Motorized tensioning system with sensors
US11786013B2 (en) 2012-08-31 2023-10-17 Nike, Inc. Motorized tensioning system with sensors
US9546882B2 (en) * 2012-09-03 2017-01-17 Seiko Instruments Inc. Electronic apparatus and program
US20150226574A1 (en) * 2012-09-03 2015-08-13 Seiko Instruments Inc. Electronic apparatus and program
JP2014046087A (en) * 2012-09-03 2014-03-17 Seiko Instruments Inc Electronic equipment and program
US9587959B2 (en) 2012-09-26 2017-03-07 Stmicroelectronics S.R.L. Step counter device with energy-scavenging functionality, and step-counting method
US11583223B2 (en) * 2012-10-05 2023-02-21 Reqbo Aps Appliance for people with reduced sense of touch or disabled people
US9516923B2 (en) 2012-11-02 2016-12-13 Boa Technology Inc. Coupling members for closure devices and systems
US10327513B2 (en) 2012-11-06 2019-06-25 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
US9737115B2 (en) 2012-11-06 2017-08-22 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
US10051912B2 (en) * 2012-11-30 2018-08-21 Vans, Inc. Tuning elements for footwear
US20150313309A1 (en) * 2012-11-30 2015-11-05 Vans, Inc. Tuning elements for footwear
US9839394B2 (en) 2012-12-13 2017-12-12 Nike, Inc. Apparel having sensor system
US9841330B2 (en) 2012-12-13 2017-12-12 Nike, Inc. Apparel having sensor system
US10139293B2 (en) 2012-12-13 2018-11-27 Nike, Inc. Apparel having sensor system
US10704966B2 (en) 2012-12-13 2020-07-07 Nike, Inc. Apparel having sensor system
US11946818B2 (en) 2012-12-13 2024-04-02 Nike, Inc. Method of forming apparel having sensor system
US11320325B2 (en) 2012-12-13 2022-05-03 Nike, Inc. Apparel having sensor system
US11793272B2 (en) 2012-12-17 2023-10-24 Nike, Inc. Electronically controlled bladder assembly
US9439477B2 (en) 2013-01-28 2016-09-13 Boa Technology Inc. Lace fixation assembly and system
USRE48215E1 (en) 2013-01-28 2020-09-22 Boa Technology Inc. Lace fixation assembly and system
USRE49092E1 (en) 2013-01-28 2022-06-07 Boa Technology Inc. Lace fixation assembly and system
USRE49358E1 (en) 2013-01-28 2023-01-10 Boa Technology, Inc. Lace fixation assembly and system
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US10327672B2 (en) 2013-02-01 2019-06-25 Nike, Inc. System and method for analyzing athletic activity
US11918854B2 (en) 2013-02-01 2024-03-05 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US10702409B2 (en) 2013-02-05 2020-07-07 Boa Technology Inc. Closure devices for medical devices and methods
US9694247B2 (en) 2013-02-15 2017-07-04 Adidas Ag Ball for a ball sport
EP2770454A1 (en) 2013-02-22 2014-08-27 NIKE Innovate C.V. Activity monitoring, tracking and synchronization
WO2014130805A1 (en) 2013-02-22 2014-08-28 Nike, Inc. Activity monitoring, tracking and synchronization
US11717056B2 (en) 2013-03-05 2023-08-08 Boa Technology, Inc. Closure devices including incremental release mechanisms and methods therefor
US9610185B2 (en) * 2013-03-05 2017-04-04 Boa Technology Inc. Systems, methods, and devices for automatic closure of medical devices
WO2014138297A1 (en) * 2013-03-05 2014-09-12 Boa Technology Inc. Systems, methods, and devices for automatic closure of medical devices
US10251451B2 (en) 2013-03-05 2019-04-09 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US20140257156A1 (en) * 2013-03-05 2014-09-11 Boa Technology, Inc. Systems, methods, and devices for automatic closure of medical devices
US10959492B2 (en) 2013-03-05 2021-03-30 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US9500464B2 (en) 2013-03-12 2016-11-22 Adidas Ag Methods of determining performance information for individuals and sports objects
US10279212B2 (en) 2013-03-14 2019-05-07 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US9279734B2 (en) 2013-03-15 2016-03-08 Nike, Inc. System and method for analyzing athletic activity
US10024740B2 (en) 2013-03-15 2018-07-17 Nike, Inc. System and method for analyzing athletic activity
US9810591B2 (en) 2013-03-15 2017-11-07 Nike, Inc. System and method of analyzing athletic activity
US9410857B2 (en) 2013-03-15 2016-08-09 Nike, Inc. System and method for analyzing athletic activity
US10914645B2 (en) 2013-03-15 2021-02-09 Nike, Inc. System and method for analyzing athletic activity
US9297709B2 (en) 2013-03-15 2016-03-29 Nike, Inc. System and method for analyzing athletic activity
WO2014147066A1 (en) * 2013-03-18 2014-09-25 Iee International Electronics & Engineering S.A. Performance sensing system for pedal powered vehicles
CN105050443A (en) * 2013-03-18 2015-11-11 Iee国际电子工程股份公司 Performance sensing system for pedal powered vehicles
US10342294B2 (en) 2013-04-01 2019-07-09 Boa Technology Inc. Methods and devices for retrofitting footwear to include a reel based closure system
US9532626B2 (en) 2013-04-01 2017-01-03 Boa Technology, Inc. Methods and devices for retrofitting footwear to include a reel based closure system
US9770070B2 (en) 2013-06-05 2017-09-26 Boa Technology Inc. Integrated closure device components and methods
US10772388B2 (en) 2013-06-05 2020-09-15 Boa Technology Inc. Integrated closure device components and methods
US10076160B2 (en) 2013-06-05 2018-09-18 Boa Technology Inc. Integrated closure device components and methods
US9629417B2 (en) 2013-07-02 2017-04-25 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US10039348B2 (en) 2013-07-02 2018-08-07 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US9706814B2 (en) 2013-07-10 2017-07-18 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US11253028B2 (en) 2013-09-05 2022-02-22 Boa Technology Inc. Guides and components for closure systems and methods therefor
US9700101B2 (en) 2013-09-05 2017-07-11 Boa Technology Inc. Guides and components for closure systems and methods therefor
US10477922B2 (en) 2013-09-05 2019-11-19 Boa Technology Inc. Guides and components for closure systems and methods therefor
US10952503B2 (en) 2013-09-13 2021-03-23 Boa Technology Inc. Failure compensating lace tension devices and methods
US9681705B2 (en) 2013-09-13 2017-06-20 Boa Technology Inc. Failure compensating lace tension devices and methods
US9872790B2 (en) 2013-11-18 2018-01-23 Boa Technology Inc. Methods and devices for providing automatic closure of prosthetics and orthotics
US10188890B2 (en) 2013-12-26 2019-01-29 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
CN103720115A (en) * 2014-01-08 2014-04-16 南京物联传感技术有限公司 Intelligent shoe
USD835976S1 (en) 2014-01-16 2018-12-18 Boa Technology Inc. Coupling member
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US20150260542A1 (en) * 2014-03-13 2015-09-17 Stmicroelectronics S.R.L. Energy scavenging step-counter device and related step-counting method
US9724000B2 (en) 2014-03-27 2017-08-08 Industrial Technology Research Institute Exercise guiding system, exercise guiding method and anaerobic threshold measuring method
CN106455747A (en) * 2014-04-22 2017-02-22 耐克创新有限合伙公司 Article of footwear with dynamic support
US20150296922A1 (en) * 2014-04-22 2015-10-22 Nike, Inc. Article of Footwear with Dynamic Support
US11206892B2 (en) * 2014-04-22 2021-12-28 Nike, Inc. Article of footwear with dynamic support
US10034512B2 (en) 2014-04-22 2018-07-31 Nike, Inc. Article of footwear with dynamic support
US20190082773A1 (en) * 2014-04-22 2019-03-21 Nike, Inc. Article of footwear with dynamic support
US10986888B2 (en) * 2014-04-22 2021-04-27 Nike, Inc. Article of footwear with dynamic support
US9380834B2 (en) * 2014-04-22 2016-07-05 Nike, Inc. Article of footwear with dynamic support
US20210219651A1 (en) * 2014-04-22 2021-07-22 Nike, Inc. Article of footwear with dynamic support
US10070683B2 (en) 2014-04-22 2018-09-11 Nike, Inc. Article of footwear with dynamic support
US9849361B2 (en) 2014-05-14 2017-12-26 Adidas Ag Sports ball athletic activity monitoring methods and systems
US10523053B2 (en) 2014-05-23 2019-12-31 Adidas Ag Sport ball inductive charging methods and systems
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US9789371B2 (en) 2014-06-20 2017-10-17 Karsten Manufacturing Corporation Golf club head or other ball striking device having impact-influencing body features
US9643064B2 (en) 2014-06-20 2017-05-09 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9776050B2 (en) 2014-06-20 2017-10-03 Karsten Manufacturing Corporation Golf club head or other ball striking device having impact-influencing body features
US9616299B2 (en) 2014-06-20 2017-04-11 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9610480B2 (en) 2014-06-20 2017-04-04 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US10226396B2 (en) 2014-06-20 2019-03-12 Icon Health & Fitness, Inc. Post workout massage device
US9889346B2 (en) 2014-06-20 2018-02-13 Karsten Manufacturing Corporation Golf club head or other ball striking device having impact-influencing body features
US9710711B2 (en) 2014-06-26 2017-07-18 Adidas Ag Athletic activity heads up display systems and methods
US10715759B2 (en) 2014-06-26 2020-07-14 Adidas Ag Athletic activity heads up display systems and methods
US10492568B2 (en) 2014-08-28 2019-12-03 Boa Technology Inc. Devices and methods for tensioning apparel and other items
US10575591B2 (en) 2014-10-07 2020-03-03 Boa Technology Inc. Devices, methods, and systems for remote control of a motorized closure system
US11562417B2 (en) 2014-12-22 2023-01-24 Adidas Ag Retail store motion sensor systems and methods
US9817473B2 (en) 2014-12-30 2017-11-14 Lg Electronics Inc. Portable device and method of controlling therefor
WO2016108325A1 (en) * 2014-12-30 2016-07-07 Lg Electronics Inc. Portable device and method of controlling therefor
USD835898S1 (en) 2015-01-16 2018-12-18 Boa Technology Inc. Footwear lace tightening reel stabilizer
US10258828B2 (en) 2015-01-16 2019-04-16 Icon Health & Fitness, Inc. Controls for an exercise device
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US9847006B2 (en) * 2015-03-05 2017-12-19 Shintaro Asano Fall detector and alert system
US20160260311A1 (en) * 2015-03-05 2016-09-08 Shintaro Asano Fall detector and alert system
US11328620B2 (en) * 2015-05-15 2022-05-10 Motion Metrics Limited System and method for physical activity performance analysis
US20160335913A1 (en) * 2015-05-15 2016-11-17 Motion Metrics, LLC System and method for physical activity performance analysis
WO2016185290A3 (en) * 2015-05-15 2017-02-09 Motion Metrics, LLC System and method for physical activity performance analysis
US11844393B2 (en) 2015-05-28 2023-12-19 Nike, Inc. Article of footwear and a charging system for an article of footwear
US20190261725A1 (en) * 2015-05-28 2019-08-29 Nike, Inc. Article of footwear and a charging system for an article of footwear
US10779605B2 (en) * 2015-05-28 2020-09-22 Nike, Inc. Article of footwear and a charging system for an article of footwear
US10966481B2 (en) 2015-05-28 2021-04-06 Nike, Inc. Article of footwear and a charging system for an article of footwear
US11096445B2 (en) * 2015-05-29 2021-08-24 Nike, Inc. Footwear including an incline adjuster
US20180035752A1 (en) * 2015-05-29 2018-02-08 Nike, Inc. Footwear Including an Incline Adjuster
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US11771180B2 (en) 2015-10-07 2023-10-03 Puma SE Article of footwear having an automatic lacing system
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
US10791798B2 (en) 2015-10-15 2020-10-06 Boa Technology Inc. Lacing configurations for footwear
US9635901B1 (en) 2015-10-20 2017-05-02 Nike, Inc. Footwear with interchangeable sole structure elements
US20170105476A1 (en) 2015-10-20 2017-04-20 Nike, Inc. Footwear with Interchangeable Sole Structure Elements
US9968159B2 (en) 2015-10-20 2018-05-15 Nike, Inc. Footwear with interchangeable sole structure elements
US10813407B2 (en) 2015-11-30 2020-10-27 Nike, Inc. Electrorheological fluid structure having strain relief element and method of fabrication
US11596200B2 (en) 2015-11-30 2023-03-07 Nike, Inc. Electrorheological fluid structure having strain relief element and method of fabrication
US11317678B2 (en) 2015-12-02 2022-05-03 Puma SE Shoe with lacing mechanism
US20190037070A1 (en) * 2016-02-29 2019-01-31 Digital Privacy Gmbh Method for call setup
EP3429415A4 (en) * 2016-03-15 2019-12-18 NIKE Innovate C.V. Foot presence signal processing systems and methods
US11044967B2 (en) * 2016-03-15 2021-06-29 Nike, Inc. Foot presence sensing using magnets in footwear
US10499711B2 (en) 2016-03-15 2019-12-10 Nike, Inc. Capacitive foot presence sensing for footwear
US11766095B2 (en) 2016-03-15 2023-09-26 Nike, Inc. Foot presence signal processing using velocity
EP3429406A4 (en) * 2016-03-15 2019-12-11 NIKE Innovate C.V. Capacitive foot presence sensing for footwear
US11026481B2 (en) 2016-03-15 2021-06-08 Nike, Inc. Foot presence signal processing using velocity
EP3429410A4 (en) * 2016-03-15 2020-04-08 NIKE Innovate C.V. Foot presence sensing using magnets in footwear
US10477923B2 (en) 2016-03-15 2019-11-19 Nike, Inc. Detector system for use with footwear
US11857029B2 (en) 2016-03-15 2024-01-02 Nike, Inc. Foot presence signal processing systems and methods
KR20220002707A (en) * 2016-03-15 2022-01-06 나이키 이노베이트 씨.브이. Foot presence signal processing systems and methods
KR102404494B1 (en) 2016-03-15 2022-06-07 나이키 이노베이트 씨.브이. Foot presence detection using magnets in footwear
WO2017160865A1 (en) 2016-03-15 2017-09-21 Nike Innovate C.V. Capacitive foot presence sensing for footwear
WO2017161000A3 (en) * 2016-03-15 2018-08-23 Nike Innovate C.V. Capacitive foot presence sensing devices for footwear
US11889900B2 (en) 2016-03-15 2024-02-06 Nike, Inc. Capacitive foot presence sensing for footwear
US11357290B2 (en) 2016-03-15 2022-06-14 Nike, Inc. Active footwear sensor calibration
US10448707B2 (en) 2016-03-15 2019-10-22 Nike, Inc. Capacitive foot presence sensing for footwear
US20210274888A1 (en) * 2016-03-15 2021-09-09 Nike, Inc. Foot presence sensing using magnets in footwear
US10758012B2 (en) 2016-03-15 2020-09-01 Nike, Inc. Sensing device for footwear
US20170265584A1 (en) * 2016-03-15 2017-09-21 Nike, Inc. Foot presence sensing using magnets in footwear
EP3795023A1 (en) * 2016-03-15 2021-03-24 Nike Innovate C.V. Foot presence sensing systems for active footwear
US10172423B2 (en) 2016-03-15 2019-01-08 Nike, Inc. Capacitive foot presence sensing devices for footwear
KR20180128010A (en) * 2016-03-15 2018-11-30 나이키 이노베이트 씨.브이. Detecting foot presence using a magnet in footwear
US11064768B2 (en) 2016-03-15 2021-07-20 Nike, Inc. Foot presence signal processing using velocity
KR20180125996A (en) * 2016-03-15 2018-11-26 나이키 이노베이트 씨.브이. Foot Existence Signal Processing System and Method
US10722000B2 (en) 2016-03-15 2020-07-28 Nike, Inc. Dynamic fit footwear
KR102345184B1 (en) 2016-03-15 2021-12-30 나이키 이노베이트 씨.브이. Foot Presence Signal Processing Systems and Methods
US20200352284A1 (en) * 2016-03-15 2020-11-12 Nike, Inc. Sensing device for footwear
EP3429416A4 (en) * 2016-03-15 2019-12-11 NIKE Innovate C.V. Foot presence sensing systems for active footwear
US11071355B2 (en) 2016-03-15 2021-07-27 Nike, Inc. Foot presence signal processing systems and methods
EP4098142A1 (en) * 2016-03-15 2022-12-07 Nike Innovate C.V. Capacitive foot presence sensing devices for footwear
US11213100B2 (en) * 2016-03-15 2022-01-04 Nike, Inc. Foot presence sensing systems for active footwear
US11925239B2 (en) 2016-03-15 2024-03-12 Nike, Inc. Foot presence sensing systems for active footwear
EP4218488A3 (en) * 2016-03-15 2023-08-30 Nike Innovate C.V. Foot presence signal processing systems and methods
KR102490819B1 (en) 2016-03-15 2023-01-19 나이키 이노베이트 씨.브이. Foot presence signal processing systems and methods
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US11472252B2 (en) 2016-04-08 2022-10-18 Fox Factory, Inc. Electronic compression and rebound control
US10159885B2 (en) 2016-05-02 2018-12-25 Nike, Inc. Swing analysis system using angular rate and linear acceleration sensors
US10226681B2 (en) 2016-05-02 2019-03-12 Nike, Inc. Golf clubs and golf club heads having a plurality of sensors for detecting one or more swing parameters
US10220285B2 (en) 2016-05-02 2019-03-05 Nike, Inc. Golf clubs and golf club heads having a sensor
US10137347B2 (en) 2016-05-02 2018-11-27 Nike, Inc. Golf clubs and golf club heads having a sensor
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US10441844B2 (en) 2016-07-01 2019-10-15 Icon Health & Fitness, Inc. Cooling systems and methods for exercise equipment
US10471299B2 (en) 2016-07-01 2019-11-12 Icon Health & Fitness, Inc. Systems and methods for cooling internal exercise equipment components
US11089837B2 (en) 2016-08-02 2021-08-17 Boa Technology Inc. Tension member guides for lacing systems
US10499709B2 (en) 2016-08-02 2019-12-10 Boa Technology Inc. Tension member guides of a lacing system
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10500473B2 (en) 2016-10-10 2019-12-10 Icon Health & Fitness, Inc. Console positioning
US10376736B2 (en) 2016-10-12 2019-08-13 Icon Health & Fitness, Inc. Cooling an exercise device during a dive motor runway condition
US10343017B2 (en) 2016-11-01 2019-07-09 Icon Health & Fitness, Inc. Distance sensor for console positioning
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
US11805854B2 (en) 2016-11-22 2023-11-07 Puma SE Method for fastening a shoe, in particular, a sports shoe, and shoe, in particular sports shoe
US11439192B2 (en) 2016-11-22 2022-09-13 Puma SE Method for putting on or taking off a piece of clothing or for closing, putting on, opening, or taking off a piece of luggage
US10543395B2 (en) 2016-12-05 2020-01-28 Icon Health & Fitness, Inc. Offsetting treadmill deck weight during operation
US10842230B2 (en) 2016-12-09 2020-11-24 Boa Technology Inc. Reel based closure system
US11738817B2 (en) 2017-01-05 2023-08-29 Sram, Llc Adjustable seatpost
US10358180B2 (en) 2017-01-05 2019-07-23 Sram, Llc Adjustable seatpost
US20180220937A1 (en) * 2017-02-09 2018-08-09 Seiko Epson Corporation Motion analysis system, motion analysis apparatus, motion analysis program, and motion analysis method
US11134865B2 (en) * 2017-02-09 2021-10-05 Seiko Epson Corporation Motion analysis system, motion analysis apparatus, motion analysis program, and motion analysis method
US11220030B2 (en) 2017-02-27 2022-01-11 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US10543630B2 (en) 2017-02-27 2020-01-28 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US11357279B2 (en) 2017-05-09 2022-06-14 Boa Technology Inc. Closure components for a helmet layer and methods for installing same
US10772384B2 (en) 2017-07-18 2020-09-15 Boa Technology Inc. System and methods for minimizing dynamic lace movement
US11451108B2 (en) 2017-08-16 2022-09-20 Ifit Inc. Systems and methods for axial impact resistance in electric motors
US11576464B2 (en) 2017-08-31 2023-02-14 Nike, Inc. Footwear including an incline adjuster
US10980314B2 (en) 2017-08-31 2021-04-20 Nike, Inc. Incline adjuster with multiple discrete chambers
US10980312B2 (en) 2017-08-31 2021-04-20 Nike, Inc. Footwear including an incline adjuster
US11666116B2 (en) 2017-08-31 2023-06-06 Nike, Inc. Incline adjuster with multiple discrete chambers
US11103027B2 (en) 2017-10-13 2021-08-31 Nike, Inc. Footwear midsole with electrorheological fluid housing
US10966638B2 (en) 2017-10-16 2021-04-06 Zhor Tech Miniaturized electronic unit for integration in any sole
US20200388190A1 (en) * 2017-12-19 2020-12-10 Sony Corporation Information processing apparatus, information processing method, and program
US10729965B2 (en) 2017-12-22 2020-08-04 Icon Health & Fitness, Inc. Audible belt guide in a treadmill
BE1025587B1 (en) * 2017-12-29 2019-04-24 Luckyunion(Shanghai) Technology Co., Ltd. SHOES WITH FEET TREATMENT FUNCTION
USD839564S1 (en) * 2018-05-21 2019-02-05 Nike, Inc. Shoe
USD839565S1 (en) * 2018-05-31 2019-02-05 Nike, Inc. Shoe
US11567463B2 (en) * 2018-08-17 2023-01-31 Frampton E. Ellis Smartphone-controlled active configuration of footwear, including with concavely rounded soles
US20200057418A1 (en) * 2018-08-17 2020-02-20 Frampton E. Ellis Smartphone-Controlled Active Configuration of Footwear, Including With Concavely Rounded Soles
US11350853B2 (en) 2018-10-02 2022-06-07 Under Armour, Inc. Gait coaching in fitness tracking systems
US11864548B1 (en) * 2018-10-22 2024-01-09 Bell Laboratories, Inc. Remote sensing repeating rodent trap
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
USD930960S1 (en) 2019-01-30 2021-09-21 Puma SE Shoe
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
US11492228B2 (en) 2019-05-01 2022-11-08 Boa Technology Inc. Reel based closure system
USD918544S1 (en) * 2019-06-27 2021-05-11 uFaktory Oy Shoe
US11930863B2 (en) * 2019-07-26 2024-03-19 Valerije Nezaj Anti-slip device
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
USD948184S1 (en) * 2019-10-25 2022-04-12 U-Invest S.R.L. Safety shoe
USD933342S1 (en) * 2020-04-04 2021-10-19 Ecco Sko A/S Footwear
USD960546S1 (en) * 2020-07-08 2022-08-16 Ecco Sko A/S Footwear
WO2024015235A1 (en) * 2022-07-13 2024-01-18 Nike Innovate C.V. Recursive footwear-based body presence detection

Also Published As

Publication number Publication date
EP1919318A1 (en) 2008-05-14
BRPI0612798A2 (en) 2010-11-30
JP5220600B2 (en) 2013-06-26
WO2007008352A1 (en) 2007-01-18
CN101217894B (en) 2011-06-15
CN101217894A (en) 2008-07-09
JP2009500141A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US20070006489A1 (en) Control systems and foot-receiving device products containing such systems
US20200221817A1 (en) Unitless activity assessment and associated methods
US11166523B2 (en) Adjustable foot support systems including fluid-filled bladder chambers
CN107411215B (en) Footwear with sensor system
US11653712B2 (en) Automatic inflation pump bladder system
KR101780654B1 (en) Footwear having sensor system
US7631382B2 (en) Intelligent footwear systems
CN105163619A (en) Support members with variable viscosity fluid for footwear
US20160150854A1 (en) Shoe Tuning System and Method
EP2021735A2 (en) Athletic or other performance sensing systems
KR102234796B1 (en) Fatigue Reduction Method Using Smart Footwear and Operation Method of User Terminal
CN110573075B (en) Walking teaching system and walking teaching method
KR101774810B1 (en) Apparatus and method for notifying walking condition
KR101949811B1 (en) Shoes

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKE, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASE, JR., CHARLES W.;SHUM, ALBERT;SCHROCK, ALLAN M.;REEL/FRAME:017107/0208;SIGNING DATES FROM 20051010 TO 20051012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION