US20060290853A1 - Wide-acceptance-angle circular polarizers - Google Patents

Wide-acceptance-angle circular polarizers Download PDF

Info

Publication number
US20060290853A1
US20060290853A1 US11/167,857 US16785705A US2006290853A1 US 20060290853 A1 US20060290853 A1 US 20060290853A1 US 16785705 A US16785705 A US 16785705A US 2006290853 A1 US2006290853 A1 US 2006290853A1
Authority
US
United States
Prior art keywords
phase retardation
polarizer
approximately
retardation film
uniaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/167,857
Inventor
Qi Hong
Ruibo Lu
Xinyu Zhu
Thomas Wu
Shin-Tson Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
University of Central Florida Research Foundation Inc UCFRF
Original Assignee
TPO Displays Corp
University of Central Florida Research Foundation Inc UCFRF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TPO Displays Corp, University of Central Florida Research Foundation Inc UCFRF filed Critical TPO Displays Corp
Priority to US11/167,857 priority Critical patent/US20060290853A1/en
Assigned to TOPPOLY OPTOELECTRONICS CORP. reassignment TOPPOLY OPTOELECTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONG, QI, LU, RUIBO, WU, SHIN-TSON, WU, THOMAS X., ZHU, XINYU
Publication of US20060290853A1 publication Critical patent/US20060290853A1/en
Assigned to RESEARCH FOUNDATION OF THE UNIVERSITY OF CENTRAL FLORIDA, INCORPORATED, TOPPOLY OPTOELECTRONICS CORP. reassignment RESEARCH FOUNDATION OF THE UNIVERSITY OF CENTRAL FLORIDA, INCORPORATED RE-RECORD TO CORRECT THE FIRST CONVEYING PARTY NAME AND THE RECEIVING PARTY NAMES, PREVIOUSLY RECORDED AT REEL 016743 FRAME 0394. THE ASSIGNORS HEREBY CONFIRM THE ASSIGNMENT OF THE ENTIRE INTEREST. Assignors: LU, RUIBO, QI, HONG, WU, SHIN-TSON, WU, THOMAS X., ZHU, XINYU
Priority to US12/148,491 priority patent/US8330911B2/en
Assigned to TPO DISPLAYS CORP. reassignment TPO DISPLAYS CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TOPPOLY OPTOELECTRONICS CORP.
Assigned to CHIMEI INNOLUX CORPORATION reassignment CHIMEI INNOLUX CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TPO DISPLAYS CORP.
Assigned to Innolux Corporation reassignment Innolux Corporation CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHIMEI INNOLUX CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Abstract

A circular polarizer comprising a single linear polarizer producing a linear state of polarization and at least one phase retardation film layered with the single linear polarizer. In a first embodiment, the at least one phase retardation film includes at least one uniaxial A-plate phase retardation film and at least one uniaxial C-plate phase retardation film. In a second embodiment of the invention, the circular polarizer includes a linear polarizer and at least one biaxial phase retardation film layered with the linear polarizer. In another example of the circular polarize of the second embodiment, at least one uniaxial A-plate phase retardation film and/or at least one uniaxial C-plate phase retardation film is also layer with the linear polarize and the biaxial phase retardation film.

Description

    FIELD OF THE INVENTION
  • This invention relates to circular polarizers, and more specifically, to the structure of circular polarizer with combinations of multi-layer phase retardation films to provide left-hand or right-hand circularly polarized light at wide-range of incident angle and at all azimuth of incident plane for a single wavelength or broadband light source for applications including liquid crystal displays, fiber optics, and optical remote sensors.
  • BACKGROUND AND PRIOR ART
  • Circular polarizers are an important optical component in many applications, such as fiber optics, imaging lenses, and liquid crystal displays, especially in the applications when the state of polarization is desired to be independent of the azimuthal angle of the incident light, or to be independent of the azimuthal angle of the slow axis of anisotropic media. Circular polarizer can be used in the studies of the properties of thin films, as described in to U.S. Pat. No. 6,219,139 issued to Lesniak on Apr. 17, 2001. Circular polarizers are also used in Liquid crystal displays (LCDs), as described in U.S. Pat. No. 6,549,335 B1 issued to Trapani et al. on Apr. 15, 2003, U.S. Pat. No. 6,583,833 B1 issued to Kashima on Jun. 24, 2003, U.S. Pat. No. 5,796,454 issued to Ma on Aug. 18, 1998, and U.S. Pat. No. 6,628,369 B2 issued to Kamagal on September, 2003.
  • Circularly polarized light is a polarized plane light with equal magnitude in its orthogonal components and the phase difference between the orthogonal components is ±π/2. Circularly polarized light can be generated by cholesteric liquid crystal, according to U.S. Pat. No. 5,796,454, or can be converted from linearly polarized light with a linear polarizer and a quarter-wave plate, of which the principal optical axes is 45 degrees with respect to the transmission axis of the linear polarizer, according to U.S. Pat. No. 6,788,462 B2 issued to Lesniak on Sep. 7, 2004. According to U.S. Pub. No. 2004/0109114 A1 filed on Jun. 10, 2004, a circularly polarized light can also be converted from a linearly polarized light with a substrate having a longitudinal direction and the combination of a half-wave plate and a quarter-wave plate, where the principal optical axes of the half-wave plate and the quarter-wave plate are +30 and −30 degrees with respect to the longitudinal direction of the substrate, respectively. A quarter-wave plate is an optical anisotropic element which induces π/2 phase difference between the orthogonal components of the light passing through. A half-wave plate is an optical anisotropic element which induces π phase difference between the orthogonal components of the light passing through.
  • However, when cholesteric liquid crystal is used, the induced circularly polarized light sustains blue shift at oblique incident angle. Furthermore, the fabrication of cholesteric liquid crystal cell is difficult. When the combination of a linear polarizer and a quarter-wave plate or using the combination of special substrates having a longitudinal direction and a half-wave plate together with a quarter-wave plate, the quarter-wave plate or half-wave plate only induces π/2 or π phase change at normal incident angle. At oblique incident angles, the phase change is varied with both incident angle and the azimuth of incident plane, which results in elliptically polarized light instead of the desired circularly polarized light.
  • FIG. 1 shows the structure of a conventional right-hand circular polarizer comprising one linear polarizer and one quarter-wave plate. Along the propagation direction of the incident light, the structure comprises one linear polarizer 101, and one quarter-wave phase retardation film 102. As shown in FIG. 2, at 85° incident angle and 45° azimuth of incident plane, the S3 of the state of polarization emerging from such a conventional circular polarizer is −0.829. However, the S3 of the desired right-hand circular state of polarization is −1. Therefore, the difference between the S3 of the desired circular state of polarization and the S3 of the state of polarization emerging from the conventional circular polarizer is 0.171 at 85° incident angle and at 45° azimuth of the incident plane. As a result, the optical performance for those applications having a wide range of incident angles is greatly deteriorated. For example, in a liquid crystal display, the non-ideal circular state of polarization emerging from conventional circular polarizer reduces the contrast ratio of the LCD at wide incident angles. Therefore, a need exists for a wide-acceptance-angle circular polarize for use in these applications.
  • SUMMARY OF THE INVENTION
  • A primary objective of this invention is to provide a new method, system, apparatus and device for a circular polarizer capable of inducing left-hand or right-hand circularly polarized light over wide ranges of incident angle and over all azimuths of incident plane.
  • A secondary objective of this invention is to provide a new method, system, apparatus and device for a wide-acceptance-angle circular polarizer that inducing left-hand or right-hand circularly polarized light either on the output surface of the circular polarizer or inside arbitrary media including air.
  • A third objective of this invention is to provide a new method, system, apparatus and device for a wide-acceptance-angle circular polarizer with achromatic behavior.
  • A fourth objective of this invention is to provide a new method, system, apparatus and device for a wide-acceptance-angle circular polarizer with a large error tolerance in the phase retardation of the phase retardation films.
  • A fifth objective of this invention is to provide a new method, system, apparatus and device for a wide-acceptance-angle circular polarizer with a large error tolerance in the angles between the absorption axis of the linear polarizer and the slow axes of the phase retardation films.
  • A sixth objective of this invention is to provide a wide-acceptance-angle circular polarizer at a low cost.
  • A first preferred embodiment of the invention is to provide a structure of a wide-acceptance angle left-hand or right-hand circular polarizer comprising a single linear polarizer producing a linear state of polarization and at least one phase retardation film layered with the single linear polarizer. In a first embodiment, the at least one phase retardation film includes at least one uniaxial A-plate phase retardation film and at least one uniaxial C-plate phase retardation film.
  • In a second embodiment of the invention, the left-hand or right-hand circular polarizer includes a linear polarizer and at least one biaxial phase retardation film layer with the linear polarizer. In another example of the circular polarize of the second embodiment, at least one phase retardation is layer with the linear polarize and the biaxial phase retardation film.
  • Further objectives, features, and advantages of this invention will be apparent from the following detailed descriptions of the presently preferred embodiments that are illustrated schematically in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic diagram showing an example of conventional prior art circular polarizer.
  • FIG. 2 is a schematic diagram showing the state of polarization emerging from the circular polarizer illustrated in FIG. 1.
  • FIG. 3 shows an example of the circular polarizer structure according to a first embodiment of the present invention.
  • FIG. 4 a shows the state of polarization emerging from the right-handed circular polarizer illustrated in FIG. 3.
  • FIG. 4 b shows the state of polarization emerging from the left-handed circular polarizer illustrated in FIG. 3
  • FIG. 5 shows another example of the circular polarizer structure according to the first embodiment of the present invention.
  • FIG. 6 a shows the state of polarization emerging from the right-handed circular polarizer illustrated in FIG. 5.
  • FIG. 6 b shows the state of polarization emerging from the left-handed circular polarizer illustrated in FIG. 5.
  • FIG. 7 shows another example of the circular polarizer structure according to the first embodiment of the present invention.
  • FIG. 8 a shows the state of polarization emerging from the right-handed circular polarizer illustrated in FIG. 7.
  • FIG. 8 b shows the state of polarization emerging from the left-handed circular polarizer illustrated in FIG. 7.
  • FIG. 9 shows another example of the circular polarizer structure according to the first embodiment of the present invention.
  • FIG. 10 a shows the state of polarization emerging from the right-handed circular polarizer illustrated in FIG. 9.
  • FIG. 10 b shows the state of polarization emerging from the left-handed circular polarizer illustrated in FIG. 9.
  • FIG. 11 shows an example of the circular polarizer structure according to a second embodiment of the present invention.
  • FIG. 12 shows another example of the circular polarizer structure of the second embodiment of the present invention.
  • FIG. 13 shows another example of the circular polarizer structure of the second embodiment of the present invention.
  • FIG. 14 shows another example of the circular polarizer structure of the second embodiment of the present invention.
  • FIG. 15 shows another example of the circular polarizer structure of the second embodiment of the present invention.
  • FIG. 16 shows yet another example of the circular polarizer structure of the second embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
  • The following is a list of the reference numbers used in the drawings and the detailed specification to identify components:
    • 101 linear polarizer 703 b C-plate phase retardation film
    • 102 quarter-wave phase retardation film 901 linear polarizer
    • 301 linear polarizer 902 a A-plate phase retardation film
    • 302 A-plate phase retardation film 902 b A-plate phase retardation film
    • 303 C-plate phase retardation film 902 c A-plate phase retardation film
    • 501 linear polarizer 902 d A-plate phase retardation film
    • 502 a A-plate phase retardation film 902 e A-plate phase retardation film
    • 502 b A-plate phase retardation film 903 a C-plate phase retardation film
    • 503 C-plate phase retardation film 903 b C-plate phase retardation film
    • 701 linear polarizer 903 c C-plate phase retardation film
    • 702 a A-plate phase retardation film 1101 linear polarizer
    • 702 b A-plate phase retardation film 1102 biaxial phase retardation film
    • 702 c A-plate phase retardation film 1201 linear polarizer
    • 703 a C-plate phase retardation film 1202 a biaxial phase retardation film
    • 1202 b biaxial phase retardation film 1503 C-plate phase retardation film
    • 1301 linear polarizer 1504 biaxial phase retardation film
    • 1302 A-plate phase retardation film 1601 linear polarizer
    • 1303 biaxial phase retardation film 1602 a A-plate phase retardation film
    • 1401 linear polarizer 1602 b A-plate phase retardation film
    • 1402 C-plate phase retardation film 15 1603 a C-plate phase retardation film
    • 1403 biaxial phase retardation film 1603 b C-plate phase retardation film
    • 1501 linear polarizer 1604 a biaxial phase retardation film
    • 1502 A-plate phase retardation film 1604 b biaxial phase retardation film
  • The method, system apparatus and device of the present invention provides a new device structure for producing left-hand or right-hand circular state of polarization over wide-range of incident angle and all azimuth of incident plane using the combinations of linear polarizer and multi-layer phase retardation films.
  • The state of polarization can be represented by Stokes parameters and plotted on Poincare sphere. FIG. 2 is a plot showing the state of polarization emerging from the circular polarizer illustrated in FIG. 1. The incident angle is 0°˜85° and the azimuth of incident plane is 0°˜360° with respect to the transmission axis of polarizer. Stokes parameters S1, S2, S3 are defined as:
    S 1=(|E |2 −|E |2)/(|E |2 +|E |2)
    S 2=(2·|E |2 ·|E |2·cos ∅)/(|E 2 +|E |2),
    S3=(2·|E |2 ·|E |2·sin ∅)/(|E 195|2 +|E |2),
    where E and E195 are the parallel and perpendicular components of the incident electrical field, respectively. ∅ is given by: ∅=∠E−∠E., where ∠E and ∠E195 are the phases of the parallel and perpendicular components of the incident electrical field, respectively.
  • The circular polarizer of the present invention includes a linear polarizer and at least one phase retardation film layer with the linear polarizer for achieving a state of polarization that is closer to a left-hand (S3 approximately equal to 1) or right-hand circular state of polarization (S3 approximately equal to −1) than that of a convention prior art circular polarizer.
  • First Embodiment:
  • FIG. 3 shows the structure of wide-acceptance-angle circular polarizer consisting of one uniaxial A-plate phase retardation film and one uniaxial C-plate phase retardation film according to the first preferred embodiment. A uniaxial A-plate phase retardation film is an optical component that is made of uniaxial anisotropic media with its optical axis parallel to the polarizer-retarder surface and a uniaxial C-plate phase retardation film is an optical component that is made of uniaxial anisotropic media with its optical axis perpendicular to the polarizer-retarder surface.
  • In an example of the first embodiment shown in FIG. 3, the structure comprises optical components along the propagation direction of the incident light, beginning with a polarizing film 301 producing linear state of polarization, followed by the combination of one uniaxial A-plate phase retardation film 302 and one uniaxial C-plate phase retardation film 303.
  • The displacements of the uniaxial A-plate phase retardation film 301 and the uniaxial C-plate phase retardation film 302 can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 302, the slow axis is approximately±(30 °˜60°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.2λ˜3.5λ), where λ is the incident light wavelength. For the uniaxial C-plate phase retardation film 303, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, the phase retardation of the uniaxial C-plate phase retardation film is zero.
  • The emerging state of polarization depends on the phase retardation of the uniaxial A-plate phase retardation film and the angle between the slow axis of the uniaxial A-plate phase retardation film and the transmission axis of polarizer. In the oblique incident case, the phase retardation of the uniaxial C-plate phase retardation film is nonzero, which reduces the difference between the expected circular state of polarization and the state of polarization emerging from the uniaxial A-plate phase retardation film.
  • When the structure in FIG. 3 induces right-handed circular state of polarization, the state of polarization emerging from the structure is shown in FIG. 4 a using Poincare sphere when the linear polarizer is modeled as uniaxial absorptive material, of which the refractive indices ne=1.5+i×3.251×10−3 and no=1.5+i×2.86×10−3. The structure in FIG. 3 may also be used to induce a left-handed state of polarization as shown in FIG. 4 b. For the left-handed circular polarizer, the slow axis of the uniaxial A-plate films is negative of that of the A-plate films in the right-handed circular polarizer shown in FIG. 3. The incident angle is between 0°˜85° and the azimuth of incident plane is between approximately 0° and approximately 360° with respect to the transmission axis of the polarizer. The difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is less than 0.05 over 0°˜85° incident angle and 0°˜360° azimuth of incident plane. Compared with the state of polarization emerging from conventional circular polarizer as shown in FIG. 2, the difference between the expected circular state of polarization and the produced state of polarization emerging from the structure shown in FIG. 3 is greatly reduced. Furthermore, the structure has the advantages of simple structure, easy fabrication and low cost.
  • FIG. 5 shows another example of the structure of the wide-acceptance-angle circular polarizer in which a second uniaxial A-plate retardation is included. In this example, the wide-acceptance-angle circular polarizer includes optical components along the propagation direction of the incident light, beginning with a polarizing film producing linear state of polarization 501, followed by two uniaxial A-plate phase retardation films 502 a and 502 b, and one uniaxial C-plate phase retardation film 503.
  • The displacements of the uniaxial A-plate phase retardation films and the uniaxial C-plate phase retardation film can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 502 a, the slow axis is ±(5°˜45°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation film 503, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial A-plate phase retardation film 502 b, the slow axis is ±(45 °˜85°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, the phase retardation of the uniaxial C-plate phase retardation film is zero.
  • The emerging state of polarization depends on the phase retardations of the uniaxial A-plate phase retardation films and the angles between the slow axes of the uniaxial A-plate phase retardation films and the transmission axis of polarizer. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial C-plate phase retardation film and the two uniaxial A-plate phase retardation films.
  • The structure in FIG. 5 can induce right-handed circular state of polarization, FIG. 6 a shows the state of polarization emerging from the structure using Poincare sphere when the linear polarizer is modeled as a uniaxial absorptive material, of which the refractive indices ne=1.5+i×3.251×10−3 and no=1.5+i×2.86×10 −3. The structure in FIG. 5 is applicable to left-hand circular polarizer as FIG. 6 b shows. For the left-handed circular polarizer, the slow axis of the uniaxial A-plate films is negative of that of the A-plate films in the right-handed circular polarizer in FIG. 5. The incident angle is between approximately 0° and approximately 85° and the azimuth of incident plane is approximately 0° and approximately 360° with respect to the transmission axis of polarizer. The difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is less than 0.008 over the 0° to approximately 85° incident angle and 0° to approximately 360° azimuth of incident plane. Comparing with the proposed wide-incident-angel circular polarizer shown in FIG. 3, the difference between the expected circular state of polarization and the produced state of polarization emerging from the structure shown in FIG. 5 is further reduced.
  • In another example of the first embodiment shown in FIG. 7, the structure of the wide-acceptance-angle circular polarizer includes a third uniaxial A-plate phase retardation films and a second uniaxial C-plate phase retardation films. The structure comprises optical components along the propagation direction of the incident light, beginning with a polarizing film 701 producing linear state of polarization, followed by three uniaxial A-plate phase retardation films 702 a, 702 b and 702 c, and two uniaxial C-plate phase retardation films 703 a and 703 b.
  • The displacements of the uniaxial A-plate phase retardation films and the uniaxial C-plate phase retardation films can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 702 a, the slow axis is approximately ±(0°˜85°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation film 703 a, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial A-plate phase retardation film 702 b, the slow axis is approximately ±(15°˜90°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation film 703 b, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial A-plate phase retardation film 702 c, the slow axis is approximately ±(5°˜85°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, the phase retardations of the uniaxial C-plate phase retardation films are zero.
  • The emerging state of polarization depends on the phase retardations of the uniaxial A-plate phase retardation films and the angles between the slow axes of the uniaxial A-plate phase retardation films and the transmission axis of polarizer. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial C-plate phase retardation film and those two uniaxial A-plate phase retardation films.
  • If the structure in FIG. 7 induces right-hand circular state of polarization, FIG. 8 a shows the state of polarization emerging from the structure using Poincare sphere when the linear polarizer is modeled as a uniaxial absorptive material, of which the refractive indices ne=1.5+i×3.251×10−3 and no=1.5+i×2.86×10 −3. The structure in FIG. 7 is also applicable to left-hand circular polarizer as shown in FIG. 8 b. The incident angle is between approximately 0° and approximately 85° and the azimuth of incident plane is between approximately 0° and approximately 360° with respect to the transmission axis of the polarizer. The difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is less than 0.001 over the approximately 0° and approximately 85° incident angle and approximately 0° and approximately 360° azimuth of incident plane. Compared with the proposed wide-acceptance-angel circular polarizers shown in FIG. 3 and FIG. 5, the difference between the expected circular state of polarization and the produced state of polarization emerging from the structure shown in FIG. 7 is further reduced.
  • In another example of the first embodiment shown in FIG. 9, the structure of the wide-acceptance-angle circular polarizer includes five uniaxial A-plate phase retardation films and three uniaxial C-plate phase retardation films. The structure comprises optical components along the propagation direction of the incident light, beginning with a polarizing film 901 producing linear state of polarization, followed by five uniaxial A-plate phase retardation films 902 a, 902 b, 902 c, 902 d and 902 e, and three uniaxial C-plate phase retardation films 903 a, 903 b and 903 c.
  • The displacements of the uniaxial A-plate phase retardation films and the uniaxial C-plate phase retardation films can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation films 902 a, 902 b, 902 c, 902 c, and 902 e, the slow axis is ±(0°˜89°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation films 903 a, 903 b and 903 c, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, the phase retardations of the uniaxial C-plate phase retardation films are zero.
  • The emerging state of polarization depends on the phase retardations of the uniaxial A-plate phase retardation films and the angles between the slow axes of the uniaxial A-plate phase retardation films and the transmission axis of polarizer. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial C-plate phase retardation film and those two uniaxial A-plate phase retardation films.
  • If the structure in FIG. 9 induces right-hand circular state of polarization, the FIG. 10 a shows the maximum S3 of the state of polarization emerging from the structure over 0°˜85° incident angles and 0°˜365° azimuth of incident plane when the linear polarizer is modeled as uniaxial absorptive material, of which the refractive indices ne=1.5+i×3.251×10−3 and no=1.5+i×2.86×10−3. The structure in FIG. 9 is applicable to left-hand circular polarizer as FIG. 10 b shows. For the left-handed circular polarizer, the slow axis of the uniaxial A-plate films is negative of that of the A-plate films in the right-handed circular polarizer in FIG. 9. The incident angle is between approximately 0° and approximately 85° and the azimuth of incident plane is between approximately 0° and approximately 360° with respect to the transmission axis of the polarizer. The difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is less than 0.005 over the approximately 0° and approximately 85° incident angle and approximately 0° and approximately 360° azimuth of incident plane between the 450 nm˜650 nm spectrum of the incident light. The produced state of polarization emerging from the structure shown in FIG. 9 is achromatic.
  • Second Embodiment:
  • The structure of the wide-acceptance-angle circular polarizer of the second embodiment is shown in FIG. 11 with one biaxial phase retardation film. Biaxial phase retardation film is an optical component that is made of biaxial anisotropic media with its optical axis either parallel to or perpendicular to the polarizer-retarder surface. The structure comprises optical components along the propagation direction of light, beginning with a polarizing film 1101 producing linear state of polarization, followed by one biaxial phase retardation film 1102, of which the slow axis on the plane parallel to the polarizer-retarder surface is ±(30°˜60°) with respect to the transmission direction of the linear polarizer. For the biaxial phase retardation film, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation film, the phase retardation perpendicular to the polarizer-retarder surface is zero.
  • In this example, the emerging state of polarization depends on the phase retardation parallel to the polarizer-retarder surface and the angle between the slow axis of the biaxial phase retardation film and the transmission axis of polarizer. In this example, the emerging state of polarization is almost circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardation of the biaxial phase retardation film.
  • Therefore, over wide-acceptance angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of a conventional circular polarizer. At the same time, the structure shown in FIG. 11 has the advantages of simple structure, easy fabrication and low cost.
  • FIG. 12 shows another example of the second embodiment, wherein the structure of the wide-acceptance-angle circular polarizer includes more than one biaxial phase retardation film. As shown, the structure includes optical components along the propagation direction of light, beginning with a polarizing film 1201 producing linear state of polarization, followed by two biaxial phase retardation films 1202 a and 1202 b.
  • For the biaxial phase retardation film 1202 a, the slow axis on the plane parallel to the polarizer-retarder surface is approximately ±(5°˜75°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1202 b, the slow axis on the plane parallel to the polarizer-retarder surface is approximately ±(25°˜85°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation films, the phase retardations perpendicular to the polarizer-retarder surface are zero.
  • The emerging state of polarization depends on the phase retardations parallel to the polarizer-retarder surface and the angles between the slow axes of the biaxial phase retardation films and the transmission axis of polarizer. In this example, the emerging state of polarization is almost circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the biaxial phase retardation films. Therefore, over wide-incident angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of a conventional circular polarizer.
  • FIG. 13 shows another example of the wide-acceptance-angle circular polarizer according to the second embodiment. In this example, the structures of the wide-acceptance-angle circular polarizer consisting of one biaxial phase retardation film and one uniaxial A-plate phase retardation film. The structure shown in FIG. 13 is comprises optical components along the propagation direction of light, beginning with a polarizing film 1301 producing linear state of polarization, followed by one uniaxial A-plate phase retardation film 1302 and one biaxial phase retardation film 1303.
  • The displacements of the uniaxial A-plate phase retardation film and the biaxial phase retardation film can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 1302, the slow axis is approximately ±(5°˜85°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1303, the slow axis on the plane parallel to the polarizer-retarder surface isapproximately ±(5°˜85°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation film, the phase retardation perpendicular to the polarizer-retarder surface is zero.
  • The emerging state of polarization is almost circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial A-plate phase retardation film and the biaxial phase retardation film. Therefore, over wide-acceptance angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of a conventional circular polarizer.
  • FIG. 14 shows another example of the structures of the wide-acceptance-angle circular polarizer consisting of one biaxial phase retardation film and one uniaxial C-plate phase retardation film. The structure shown in FIG. 14 comprise optical components along the propagation direction of light, beginning with a polarizing film 1401 producing linear state of polarization, followed by one uniaxial C-plate phase retardation film 1402 and one biaxial phase retardation film 1403.
  • The displacements of the uniaxial C-plate phase retardation film and the biaxial phase retardation film can be in any order along the propagation direction of the incident light. For the uniaxial C-plate phase retardation film 1402, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1403, the slow axis on the plane parallel to the polarizer-retarder surface is ±(5°λ˜85°). with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation film and the uniaxial C-plate phase retardation film, the phase retardations perpendicular to the polarizer-retarder surface are zero.
  • The emerging state of polarization in this example is almost circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial C-plate phase retardation film and the biaxial phase retardation film. Therefore, over wide-acceptance angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of a conventional circular polarizer.
  • FIG. 15 shows the structures of the proposed wide-acceptance-angle circular polarizer includes of one biaxial phase retardation film, one uniaxial A-plate phase retardation film and one uniaxial C-plate phase retardation film. The structures shown in FIG. 15 consist of optical components along the propagation direction of light, beginning with a polarizing film 1501 producing linear state of polarization, followed by one uniaxial A-plate phase retardation film 1502, one uniaxial C-plate phase retardation film 1503, and one biaxial phase retardation film 1504.
  • The displacements of the uniaxial A-plate phase retardation film, the uniaxial C-plate phase retardation film, and the biaxial phase retardation film can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 1502, the slow axis is approximately ±(5°˜75°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation film 1503, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1504, the slow axis on the plane parallel to the polarizer-retarder surface is approximately ±(25°˜85°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation film and the uniaxial C-plate phase retardation film, the phase retardations perpendicular to the polarizer-retarder surface are zero.
  • As in the previous example, the emerging state of polarization is almost circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial A-plate phase retardation film, the uniaxial C-plate phase retardation film, and the biaxial phase retardation film. Therefore, over wide-acceptance angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of a conventional circular polarizer.
  • FIG. 16 shows the structure a yet another example of the wide-acceptance-angle circular polarizer according to the second embodiment. In this example, wide-acceptance-angle circular polarizer includes a combination of more than one biaxial phase retardation films, more than one uniaxial A-plate phase retardation films and more than one uniaxial C-plate phase retardation films. The structure shown in FIG. 16 consists of optical components along the propagation direction of light, beginning with a polarizing film 1601 producing linear state of polarization, followed by two uniaxial A-plate phase retardation films 1602 a and 1602 b, two uniaxial C-plate phase retardation films 1603 a and 1603 b, and two biaxial phase retardation films l604 a and 1604 b.
  • The displacements of the uniaxial A-plate phase retardation films, the uniaxial C-plate phase retardation films, and the biaxial phase retardation films can be in any order along the propagation direction of the incident light. For the uniaxial A-plate phase retardation film 1602 a, the slow axis is ±(0.1°˜89.9°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase 1603 a, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1604 a , the slow axis on the plane parallel to the polarizer-retarder surface is ±(0.1°˜89.9°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial A-plate phase retardation film 1602 b, the slow axis is ±(0.1°˜89.9°) with respect to the transmission direction of the linear polarizer and the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the uniaxial C-plate phase retardation film 1603 b, the phase retardation satisfies condition d·Δn=±(0.05λ˜3.5λ). For the biaxial phase retardation film 1604 b , the slow axis on the plane parallel to the polarizer-retarder surface is approximately ±(0.1°˜89.9°) with respect to the transmission direction of the linear polarizer, the phase retardation on the plane parallel to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ), and the phase retardation perpendicular to the polarizer-retarder surface satisfies condition d·Δn=±(0.05λ˜3.5λ). In the normal incident case, for the biaxial phase retardation films and the uniaxial C-plate phase retardation films, the phase retardations perpendicular to the polarizer-retarder surface are zero.
  • Again, the emerging state of polarization is approximately circular. In the oblique incident case, the difference between the expected circular state of polarization and the state of polarization emerging from the structure is reduced by the phase retardations of the uniaxial A-plate phase retardation films, the uniaxial C-plate phase retardation films, and the biaxial phase retardation films. Therefore, over wide-acceptance angles, the difference between the S3 of the expected circular state of polarization and the S3 of the state of polarization emerging from the structure is much smaller than that of conventional circular polarizer.
  • While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

Claims (21)

1. A circular polarizer comprising:
a single linear polarizer producing a linear state of polarization;
at least one uniaxial A-plate phase retardation film; and
at least one uniaxial C-plate phase retardation film.
2. The circular polarizer of claim 1, wherein said circular polarizer induces a right-hand circularly polarized light over a range of incident angles between approximately 0° and approximately 85° and over an azimuth of incident plane between approximately 0° and approximately 360° with respect to a transmission axis of said linear polarizer at a single wavelength of incident light.
3. The circular polarizer of claim 1, wherein said circular polarizer induces a left-hand circularly polarized light over a range of incident angles between approximately 0° and approximately 85° and over an azimuth of incident plane between approximately 0° and approximately 360° with respect to a transmission axis of said linear polarizer at a single wavelength of incident light.
4. The circular polarizer of claim 1, wherein said circular polarizer induces a right-hand circularly polarized light over a range of incident angles between approximately 0° and approximately 85° and over an azimuth of incident plane between approximately 0° and approximately 360° with respect to a transmission axis of said linear polarizer in the 450-650 nm spectral range of the incident light.
5. The circular polarizer of claim 1, wherein said circular polarizer induces a left-hand circularly polarized light over a range of incident angles between approximately 0° and approximately 85° and over an azimuth of incident plane between approximately 0° and approximately 360° with respect to a transmission axis of said linear polarizer in the 450-650 nm spectral range of the incident light.
6. The circular polarizer of claim 1, wherein said at least one uniaxial A-plate phase retardation film comprises:
a slow axis between approximately between one of approximately +0.1° to approximately +89.9° and approximately −0.1° to approximately −89.9° with respect to the transmission direction of the said linear polarizer; and
a phase retardation of d·Δn=±(0.05λ˜3.5λ), where λ is the wave length of incident light.
7. The circular polarizer of claim 1, wherein the said at least one uniaxial C-plate phase retardation film comprises:
a phase retardation of approximately d·Δn=±(0.05λ˜3.5λ), where λ is the wave length of incident light.
8. The circular polarizer of claim 1 wherein said circular polarizer is right-hand circular polarized.
9. The circular polarizer of claim 1 wherein said circular polarizer is left-hand circular polarized.
10. A circular polarizer comprising:
a single linear polarizer producing a linear state of polarization; and
at least one biaxial phase retardation film.
11. The circular polarizer of claim 10, further comprising:
at least one uniaxial A-plate phase retardation film layered with said linear polarizer and said biaxial retardation film.
12. The circular polarizer of claim 11, further comprising:
at least one uniaxial C-plate phase retardation film layered with said linear polarizer and said biaxial retardation film.
13. The circular polarizer of claim 11, further comprising:
at least one uniaxial C-plate phase retardation film layered with said linear polarizer, said biaxial retardation film, and said at least one uniaxial A-plate phase retardation film.
14. The circular polarizer of claim 11, wherein said at least one biaxial phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one biaxial phase retardation film between one of approximately +0.1° to approximately +89.9° and approximately −0.1° to approximately 89.9° with respect to the transmission direction of the said linear polarizer; and
a phase retardation on the plane parallel to the polarizer-retarder surface of approximately d·Δn=±(0.05λ˜3.5λ); and
a phase retardation on the plane perpendicular to the polarizer-retarder surface of approximately d·Δn=±(0.05λ˜3.5λ) where λ is the wave length of incident light.
15. The circular polarizer of claim 12, wherein said at least one biaxial phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one biaxial phase retardation film between one of approximately +0.1° to approximately +89° and approximately −0.1° to approximately −89° with respect to the transmission direction of the said linear polarizer; and
a phase retardation on the plane parallel to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ); and
a phase retardation on the plane perpendicular to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ) where λ is the wave length of incident light.
16. The circular polarizer of claim 12, wherein said at least one uniaxial A-plate phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one uniaxial A-plate phase retardation film between one of approximately +0.1° to approximately +89.9° and approximately −0.1° to approximately −89.9° with respect to the transmission direction of the said linear polarizer; and
a phase retardation of approximately d.Δn=±(0.05λ˜3.5λ) on the plane parallel to said polarizer-retarder surface where λ is the wavelength of incident light.
17. The circular polarizer of claim 13, wherein said at least one biaxial phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one biaxial phase retardation film between one of approximately +0.1° to approximately +89° and approximately −0.1° to approximately −89° with respect to the transmission direction of the said linear polarizer; and
a phase retardation on the plane parallel to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ); and
a phase retardation on the plane perpendicular to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ) where λ is the wave length of incident light.
18. The circular polarizer of claim 13, wherein the said at least one uniaxial C-plate phase retardation film comprises:
a phase retardation of approximately d·Δn=±(0.05λ˜3.5λ), where λ is the wave length of incident light.
19. The circular polarizer of claim 14, wherein said at least one biaxial phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one biaxial phase retardation film between one of approximately +0.1° to approximately +89° and approximately −0.1° to approximately −89° with respect to the transmission direction of the said linear polarizer; and
a phase retardation on the plane parallel to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ); and
a phase retardation on the plane perpendicular to the polarizer-retarder surface of approximately d·Δn=±(0.2λ˜3.5λ) where λ is the wave length of incident light.
20. The circular polarizer of claim 14, wherein said at least one uniaxial A-plate phase retardation film comprises:
a slow axis on the plane parallel to a polarizer-retarder surface of said at least one uniaxial A-plate phase retardation film between one of approximately +0.1° to approximately +89.9° and approximately −0.1° to approximately −89.9° with respect to the transmission direction of the said linear polarizer; and
a phase retardation of approximately d·Δn=±(0.05λ˜3.5λ) on the plane parallel to said polarizer-retarder surface where λ is the wavelength of incident light.
21. The circular polarizer of claim 14, wherein the said at least one uniaxial C-plate phase retardation film comprises:
a phase retardation of approximately d·Δn=±(0.05λ˜3.5λ), where λ is the wave length of incident light.
US11/167,857 2005-06-27 2005-06-27 Wide-acceptance-angle circular polarizers Abandoned US20060290853A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/167,857 US20060290853A1 (en) 2005-06-27 2005-06-27 Wide-acceptance-angle circular polarizers
US12/148,491 US8330911B2 (en) 2005-06-27 2008-04-18 Wide-acceptance-angle circular polarizers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/167,857 US20060290853A1 (en) 2005-06-27 2005-06-27 Wide-acceptance-angle circular polarizers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/148,491 Division US8330911B2 (en) 2005-06-27 2008-04-18 Wide-acceptance-angle circular polarizers

Publications (1)

Publication Number Publication Date
US20060290853A1 true US20060290853A1 (en) 2006-12-28

Family

ID=37566866

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/167,857 Abandoned US20060290853A1 (en) 2005-06-27 2005-06-27 Wide-acceptance-angle circular polarizers
US12/148,491 Expired - Fee Related US8330911B2 (en) 2005-06-27 2008-04-18 Wide-acceptance-angle circular polarizers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/148,491 Expired - Fee Related US8330911B2 (en) 2005-06-27 2008-04-18 Wide-acceptance-angle circular polarizers

Country Status (1)

Country Link
US (2) US20060290853A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024792A1 (en) * 2005-07-29 2007-02-01 Lg Chem, Ltd. In-plane switching liquid crystal display having simple structure
WO2009120009A1 (en) * 2008-03-24 2009-10-01 주식회사 엘지화학 Polarizing plate with built-in viewing angle compensation film and ips-lcd comprising same
US8089590B2 (en) 2007-08-06 2012-01-03 Chimei Innolux Corporation Transflective liquid crystal display
JP2015079256A (en) * 2014-11-11 2015-04-23 大日本印刷株式会社 Optical film, transfer body for optical film, and image display device
US20170023826A1 (en) * 2015-01-22 2017-01-26 Boe Technology Group Co., Ltd. Display apparatus having mirror function and method for producing the same
JP2019530014A (en) * 2016-10-17 2019-10-17 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
US11391874B1 (en) 2019-09-16 2022-07-19 Apple Inc. Display having a compensation film with light absorbing dye

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110018776A (en) 2009-08-18 2011-02-24 삼성전자주식회사 Display apparatus
CN103267994B (en) * 2013-05-22 2015-06-17 深圳市华星光电技术有限公司 Polarizing component, liquid crystal display device and manufacturing method of polarizing component
CN104360484B (en) * 2014-12-02 2017-03-08 京东方科技集团股份有限公司 A kind of light wave medium, glasses and its imaging method
CN110892309B (en) 2017-03-08 2022-11-22 加里夏普创新有限责任公司 Wide-angle variable neutral density filter
US11294113B2 (en) 2017-07-17 2022-04-05 Gary Sharp Innovations, Llc Wide-angle compensation of uniaxial retarder stacks
US11249355B2 (en) 2018-01-29 2022-02-15 Gary Sharp Innovations, Llc Color switch for reduced color cross-talk
AU2019211498A1 (en) 2018-01-29 2020-08-20 Gary Sharp Innovations, Inc. Hollow triple-pass optical elements
CN115685432A (en) 2018-03-02 2023-02-03 加里夏普创新有限责任公司 Retarder stack pair for polarization basis vector conversion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233362A1 (en) * 2002-09-06 2004-11-25 Dai Nippon Prtg. Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
US20050068480A1 (en) * 2003-09-30 2005-03-31 Hitachi Displays, Ltd. Liquid crystal display apparatus
US20050140900A1 (en) * 2003-10-22 2005-06-30 Lg Chem, Ltd. In-plane switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
US20050206817A1 (en) * 2004-01-23 2005-09-22 Daisuke Kajita Polarizer and liquid-crystal display apparatus
US6995816B2 (en) * 2002-04-12 2006-02-07 Eastman Kodak Company Optical devices comprising high performance polarizer package
US20060033850A1 (en) * 2002-10-18 2006-02-16 Karl Skjonnemand Compensated liquid crystal display of the bend mode
US20060055854A1 (en) * 2004-09-15 2006-03-16 Far Eastern Textile Ltd. Optical compensator for a liquid crystal display
US20060244884A1 (en) * 2003-01-28 2006-11-02 Lg Chem, Ltd. Vertically aligned liquid crystal display having negative compensation film
US7527834B2 (en) * 2004-08-31 2009-05-05 Nitto Denko Corporation Retardation films for the elimination of leakage of light through cross polarizers in LCD

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329046A (en) 1976-08-30 1978-03-17 Nippon Telegr & Teleph Corp <Ntt> Wide band circular polarized wave generator
US5796454A (en) 1996-12-04 1998-08-18 Advanced Display Systems, Inc. Cholesteric liquid crystal display employing circular polarizer and methods of operation and manufacture therefor
US6055053A (en) 1997-06-02 2000-04-25 Stress Photonics, Inc. Full field photoelastic stress analysis
US5895106A (en) * 1997-06-13 1999-04-20 Ois Optical Imaging Systems, Inc. NW twisted nematic LCD with negative tilted retarders on one side of liquid crystal cell
US6147734A (en) 1998-12-17 2000-11-14 Dai Nippon Printing Co., Ltd. Bidirectional dichroic circular polarizer and reflection/transmission type liquid-crystal display device
US6403223B1 (en) 1999-01-05 2002-06-11 Telspan Services Inc. Circular polarizer comprising anti-reflection material
JP4633906B2 (en) 2000-05-23 2011-02-16 Jx日鉱日石エネルギー株式会社 Circularly polarizing plate and liquid crystal display device
US6549335B1 (en) 2000-07-28 2003-04-15 3M Innovative Properties Company High durability circular polarizer for use with emissive displays
JP2002148434A (en) * 2000-11-08 2002-05-22 Nitto Denko Corp Polarizing plate
US6788462B2 (en) 2002-01-03 2004-09-07 Jon R. Lesniak Achromatic circular polarizer
US7317498B2 (en) * 2002-04-24 2008-01-08 Nitto Denko Corporation Viewing angle magnification liquid crystal display unit
US20040109114A1 (en) 2002-08-07 2004-06-10 Fuji Photo Film Co., Ltd. Retarder and circular polarizer
KR100462327B1 (en) * 2003-01-28 2004-12-18 주식회사 엘지화학 Vertically aligned liquid crystal display having a bi-axial retardation compensation film
KR100601920B1 (en) * 2004-01-09 2006-07-14 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using negative biaxial retardation film and + c-plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995816B2 (en) * 2002-04-12 2006-02-07 Eastman Kodak Company Optical devices comprising high performance polarizer package
US20040233362A1 (en) * 2002-09-06 2004-11-25 Dai Nippon Prtg. Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
US20060033850A1 (en) * 2002-10-18 2006-02-16 Karl Skjonnemand Compensated liquid crystal display of the bend mode
US20060244884A1 (en) * 2003-01-28 2006-11-02 Lg Chem, Ltd. Vertically aligned liquid crystal display having negative compensation film
US20050068480A1 (en) * 2003-09-30 2005-03-31 Hitachi Displays, Ltd. Liquid crystal display apparatus
US20050140900A1 (en) * 2003-10-22 2005-06-30 Lg Chem, Ltd. In-plane switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
US20050206817A1 (en) * 2004-01-23 2005-09-22 Daisuke Kajita Polarizer and liquid-crystal display apparatus
US7527834B2 (en) * 2004-08-31 2009-05-05 Nitto Denko Corporation Retardation films for the elimination of leakage of light through cross polarizers in LCD
US20060055854A1 (en) * 2004-09-15 2006-03-16 Far Eastern Textile Ltd. Optical compensator for a liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024792A1 (en) * 2005-07-29 2007-02-01 Lg Chem, Ltd. In-plane switching liquid crystal display having simple structure
US7511792B2 (en) * 2005-07-29 2009-03-31 Lg Chem, Ltd. In-plane switching liquid crystal display having simple structure
US8089590B2 (en) 2007-08-06 2012-01-03 Chimei Innolux Corporation Transflective liquid crystal display
WO2009120009A1 (en) * 2008-03-24 2009-10-01 주식회사 엘지화학 Polarizing plate with built-in viewing angle compensation film and ips-lcd comprising same
US20110001906A1 (en) * 2008-03-24 2011-01-06 Chang Jun-Won Polarizing plate with built-in viewing angle compensation film and ips-lcd comprising same
US8368849B2 (en) 2008-03-24 2013-02-05 Lg Chem, Ltd. Polarizing plate with built-in viewing angle compensation film and IPS-LCD comprising same
JP2015079256A (en) * 2014-11-11 2015-04-23 大日本印刷株式会社 Optical film, transfer body for optical film, and image display device
US20170023826A1 (en) * 2015-01-22 2017-01-26 Boe Technology Group Co., Ltd. Display apparatus having mirror function and method for producing the same
JP2019530014A (en) * 2016-10-17 2019-10-17 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
US11391874B1 (en) 2019-09-16 2022-07-19 Apple Inc. Display having a compensation film with light absorbing dye

Also Published As

Publication number Publication date
US20080239490A1 (en) 2008-10-02
US8330911B2 (en) 2012-12-11

Similar Documents

Publication Publication Date Title
US20060290853A1 (en) Wide-acceptance-angle circular polarizers
JP4538096B2 (en) Liquid crystal display
JP4368608B2 (en) Optical element
JP5600379B2 (en) Single-layer birefringent crystal trim retarder
US8179508B2 (en) Liquid crystal display device having first and second polarizers and first and second birefringent layers
US20080309854A1 (en) Wide Viewing Angle and Broadband Circular Polarizers for Transflective Liquid Crystal Displays
US20050128391A1 (en) Trim retarders incorporating negative birefringence
US9104037B2 (en) Liquid crystal display device
JP4419959B2 (en) Liquid crystal display
JP2007094399A (en) Optimal clock type trim retarder
US20220260845A1 (en) Retarder stack pairs for polarization basis vector transformations
WO2009014231A1 (en) Liquid crystal display device
JP2009092738A (en) Liquid crystal display device
JP5193135B2 (en) Contrast compensation for microdisplay panels containing higher-order wave plates
JP4276392B2 (en) Circularly polarizing plate and liquid crystal display using the same
US20090002609A1 (en) Liquid crystal display device
KR101560216B1 (en) Multilayered optical film and display device
CN110967863B (en) Liquid crystal display device having a plurality of pixel electrodes
US7969543B2 (en) Retardation films having single retardation value with variation
JPH0215237A (en) Anisotropy-compensated twisted nematic liquid crystal display device
JP2008249915A (en) Liquid crystal display device
JP2010282212A (en) Polarizing plate
Kwok et al. L‐3: Late‐News Paper: Extremely Broadband Retardation Films
WO2012105428A1 (en) Liquid crystal display device
TW200538798A (en) Transflective liquid crystal display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOPPOLY OPTOELECTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, QI;LU, RUIBO;ZHU, XINYU;AND OTHERS;REEL/FRAME:016743/0394

Effective date: 20050617

AS Assignment

Owner name: TOPPOLY OPTOELECTRONICS CORP., TAIWAN

Free format text: RE-RECORD TO CORRECT THE FIRST CONVEYING PARTY NAME AND THE RECEIVING PARTY NAMES, PREVIOUSLY RECORDED AT REEL 016743 FRAME 0394. THE ASSIGNORS HEREBY CONFIRM THE ASSIGNMENT OF THE ENTIRE INTEREST.;ASSIGNORS:QI, HONG;LU, RUIBO;ZHU, XINYU;AND OTHERS;REEL/FRAME:020807/0603

Effective date: 20050617

Owner name: RESEARCH FOUNDATION OF THE UNIVERSITY OF CENTRAL F

Free format text: RE-RECORD TO CORRECT THE FIRST CONVEYING PARTY NAME AND THE RECEIVING PARTY NAMES, PREVIOUSLY RECORDED AT REEL 016743 FRAME 0394. THE ASSIGNORS HEREBY CONFIRM THE ASSIGNMENT OF THE ENTIRE INTEREST.;ASSIGNORS:QI, HONG;LU, RUIBO;ZHU, XINYU;AND OTHERS;REEL/FRAME:020807/0603

Effective date: 20050617

AS Assignment

Owner name: TPO DISPLAYS CORP., TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:TOPPOLY OPTOELECTRONICS CORP.;REEL/FRAME:025586/0195

Effective date: 20060605

AS Assignment

Owner name: CHIMEI INNOLUX CORPORATION, TAIWAN

Free format text: MERGER;ASSIGNOR:TPO DISPLAYS CORP.;REEL/FRAME:025918/0759

Effective date: 20100318

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHIMEI INNOLUX CORPORATION;REEL/FRAME:032672/0813

Effective date: 20121219