US20060287724A1 - Artificial bone - Google Patents

Artificial bone Download PDF

Info

Publication number
US20060287724A1
US20060287724A1 US11/390,967 US39096706A US2006287724A1 US 20060287724 A1 US20060287724 A1 US 20060287724A1 US 39096706 A US39096706 A US 39096706A US 2006287724 A1 US2006287724 A1 US 2006287724A1
Authority
US
United States
Prior art keywords
substrate
artificial bone
component
ray
suppression component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/390,967
Inventor
Mike Zeeff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/390,967 priority Critical patent/US20060287724A1/en
Publication of US20060287724A1 publication Critical patent/US20060287724A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates in general to an artificial bone, and more particularly, to a non-implantable, artificial bone which can be utilized for, among other things, demonstration and/or educational purposes.
  • the present invention is directed to an artificial bone.
  • the artificial bone comprises a substrate material and at least one of a suppression component and an x-ray component.
  • the substrate material comprises a plurality of closed cells.
  • the suppression component is impregnated into at least one of the plurality of closed cells.
  • the x-ray component dispersed within the substrate material.
  • the artificial bone further includes each of the suppression component and the x-ray component.
  • the suppression component comprises a polyurethane material having a plurality of closed cells.
  • the substrate material comprises one of the group consisting of: polyethylene, polypropylene and polymeric resins.
  • the x-ray component comprises a plurality of barium components.
  • the x-ray component comprises approximately 10% by weight of the substrate material.
  • the suppression component comprises a propylene glycol material.
  • the substrate material comprises one of the group consisting of: water, ethylene glycol, oils, polar and non-polar solvents, lotions and mixtures thereof.
  • the invention further comprises a method of manufacturing an artificial bone.
  • the method comprises the steps of: providing a substrate base material; optionally mixing an x-ray component into the substrate base material; curing the substrate base material into a substrate; and optionally impregnating the substrate with a suppression component. At least one of the steps of mixing and impregnating are executed such that the resulting artificial bone includes at least one of the x-ray component and the suppression component.
  • the step of impregnating comprises the steps of: placing the substrate within an autoclave; introducing the suppression component; and elevating the pressure within the autoclave for a predetermined period of time.
  • the method further comprises the step of placing the substrate base material into a mold prior to the step of curing.
  • the method further includes the step of finishing the outer surface of the substrate after the step of curing.
  • each of the steps of mixing and impregnating are executed such that the resulting artificial bone includes each of the x-ray component and the suppression component.
  • FIG. 1 of the drawings a perspective view of a portion of a bone fabricated in accordance with the present invention, wherein the bone has been severed to show a cross-sectional configuration.
  • artificial bone is shown generally at 12 .
  • artificial bone 12 exhibits substantially enhanced simulated realism, mechanical properties, as well as substantially diminished cracking, chipping, and/or dust generation due to their novel fabricated composition and associated process for preparing the same.
  • conventional artificial bones may be fabricated from a polyurethane resin, one of which is commercially available from BayOne Urethane Systems, LLC (formerly known as PolyOne) part number POLY RF1855-4LB and ISO 2000Y.
  • the polyurethane resin constituents are mixed as directed and poured into a mold. After approximately eight minutes, the cured polyurethane substrate is removed from the mold for final trimming and finishing using conventional techniques.
  • artificial bones fabricated in accordance with such a conventional method exhibit a plurality of poor, undesirable, physical characteristics—including, but not limited to, cracking, chipping, and/or excessive dust generation.
  • such bones are not suitable for use in an x-ray machine, as x-rays generally penetrate such a material.
  • bone 12 shown in FIG. 1 comprises substrate 14 and suppression component 16 , and x-ray component 18 . While a partial bone is shown in FIG. 1 , for purposes of illustration, it is contemplated that bone 12 is preferably sized and shaped so as to substantially mimic a bone of an animal or a human. Of course, the invention is not limited to any particular bone or set of bones, and, it is contemplated that the invention has broad application relative to a number of different bones of both humans and other animals.
  • Substrate 14 is shown as comprising a polyurethane material, such as the material described above relative to conventional bones, which when cured includes outer shell 22 and inner cells 24 (many of which are closed cells).
  • a polyurethane material such as the material described above relative to conventional bones, which when cured includes outer shell 22 and inner cells 24 (many of which are closed cells).
  • Such material generally comprises a cured substrate base material which is the result of a chemical reaction of constituents.
  • other materials are likewise contemplated for use.
  • such materials may include, but are not limited to, polyethylene, polypropylene, polymeric resins as well as other materials which are at least partially closed celled.
  • the polyurethane material while exemplary only, comprises what has become a material of choice for the fabrication of artificial bones.
  • Suppression component 16 comprises a propylene glycol which is impregnated into the bones after the curing process.
  • the suppression component can be combined with a dye (such as a red dye) to indicate the presence of a suppression component within the substrate.
  • a propylene glycol material is contemplated for use, it is likewise contemplated that other materials may be utilized, including but not limited to, water, ethylene glycol, oils, polar and non-polar solvents, lotions, mixtures thereof, among others.
  • X-ray component 18 is shown in FIG. 1 as comprising a plurality of small sized components (i.e., granular, particulate and/or powder) which are mixed into the substrate.
  • the components are sized so as to be readily able to mix with the substrate.
  • the x-ray component is, through mixing, substantially dispersed through the substrate.
  • One such material comprises barium components, which have been ground to a powder.
  • barium is a material which readily absorbs x-rays to a desired extent.
  • other materials which absorb x-rays, and which are capable of being integrated into the substrate are likewise contemplated for use (barium generally does not adversely affect operation of the suppression component).
  • Such materials may include, but are not limited to other metals, such as other heavy metals, among others.
  • other means by which the x-ray component may be introduced into the substrate i.e., co-molding, impregnating, etc. are likewise contemplated.
  • the x-ray component may be utilized without the suppression component. Such embodiments are useful when little to no machining is undertaken, but the properties of bones and the response thereof to x-rays is investigated.
  • the suppression component may be utilized without the x-ray component. Such a structure is particularly useful wherein the artificial bone will undergo machining processes, but wherein x-ray properties are not relevant.
  • Artificial bone 12 of the present invention is fabricated using the following process.
  • the substrate base material is mixed as directed.
  • the x-ray component is added to the mixture.
  • the x-ray component comprises barium powder which comprises about 10 wt % of the substrate material.
  • the x-ray component is generally dispersed substantially throughout the substrate.
  • the combination substrate and x-ray component is poured into a mold which is configured to render a bone of the desired configuration and dimension.
  • the combination substrate and x-ray component remain in the mold until the substrate is fully, or substantially fully cured (i.e., until the final shape is substantially retained).
  • the polyurethane is removed from the mold for final trimming and finishing using conventional techniques.
  • Such conventional techniques include cutting, grinding, polishing and sanding, among others.
  • the fabricated bone is placed into a pressure tank (autoclave). Subsequently, the suppression component (with optional dye) is introduced to submerge the bone. In the particular embodiment disclosed, propylene glycol tinted with red dye is introduced to submerge the bone. The pressure within the autoclave is raised, wherein the suppression component is forced into the closed cells of substrate 14 . Once complete, the resulting bone is removed from the autoclave and the excess propylene glycol allowed for drain off from the exterior of the artificial bone.
  • the particular time and pressure may depend on the materials used for the suppression component and the substrate, in the embodiment disclosed, the substrate remained in the autoclave for seven minutes at an elevated pressure of 90 psi.
  • the physical characteristics of artificial bone 12 was tested and remarkable improvements in dust reduction, chipping, as well as cracking were observed. Also, the bone was capable of absorbing x-rays to a predetermined extent, so as to render an image on conventional x-ray equipment, due to the x-ray component which was added to the substrate prior to curing. In addition, artificial bone 12 exhibited a substantial improvement in realism and feel.

Abstract

An artificial bone comprising a substrate material and at least one of a suppression component and an x-ray component. The substrate material comprises a plurality of closed cells. The suppression component is impregnated into at least one of the plurality of closed cells. The x-ray component is dispersed within the substrate material. The invention further comprises a method of manufacturing same.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 10/616,705 filed Jul. 10, 2003 which application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/412,274 entitled “Artificial Bone” which was filed Sep. 21, 2002. The disclosure of each application is incorporated herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates in general to an artificial bone, and more particularly, to a non-implantable, artificial bone which can be utilized for, among other things, demonstration and/or educational purposes.
  • 2. Background Art
  • Artificial bones have been known in the art for several years and are the subject of numerous United States Patents, including: U.S. Pat. No. 6,206,703 B1 entitled “Biofidelic Human Seating Surrogate Apparatus;” U.S. Pat. No. 6,116,911 entitled “Bone Substitute For Training And Testing;” U.S. Pat. No. 5,672,059 entitled “Orthopaedic Human Skeletal Demonstration Aids;” U.S. Pat. No. 5,607,311 entitled “Orthopaedic Human Skeletal Demonstration Aids;” U.S. Pat. No. 4,451,416 entitled Method Of Producing A Composite Foamed Resin Torso And Head Section Of A Human Summary For Medical Training Purposes;” U.S. Pat. No. 4,106,219 entitled “Plastic Bone Used For Training Purposes By Surgeons;” U.S. Pat. No. 2,995,833 entitled “Anatomical Device;” U.S. Pat. No. 2,988,823 entitled “Transparent Anatomical Model;” U.S. Pat. No. 2,483,034 entitled “Anatomical Instruction Device;” and U.S. Pat. No. 2,472,819 entitled “Mechanical Skeleton,” all of which are hereby incorporated herein by reference in their entirety. While such bones are known, there has been a constant struggle to improve the mechanical properties and the realism of the bones, to, in turn, increase the utility and the usefulness thereof for exemplary purposes.
  • One particularly problematic issue with conventional artificial bones is that when the bones are drilled, tapped, and/or gouged by hand or powered instruments, an undesirable amount of dust and/or debris is generated. Such dust and debris is rather unrealistic, as real bone does not exhibit such properties. Moreover, the debris and dust, obstructs or otherwise impairs viewing of the demonstrated procedure. As such, the usefulness of the artificial bone is compromised.
  • Another particularly problematic issue with conventional artificial bones is that the bones are generally penetrated by x-rays. As such, conventional artificial bones are of little utility for the purposes of instructing individuals as to the reading of x-ray films. Certain artificial bones have been coated or painted in a metal based material which absorbs x-rays. While such artificial bones are an improvement, the coatings and paintings generally alter the underlying artificial bone, and the realism of the bone is compromised in various operational capacities.
  • It is therefore an object of the present invention to provide an artificial bone which more accurately represents a real bone.
  • It is another object of the present invention to provide an artificial bone which exhibits desired mechanical properties during cutting, chipping, gouging, drilling, tapping, and when undergoing other material removing processes.
  • It is another object of the present invention to provide an artificial bone which reacts realistically under an x-ray procedure.
  • These and other objects will become apparent in light of the specification and claims appended hereto.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to an artificial bone. The artificial bone comprises a substrate material and at least one of a suppression component and an x-ray component. The substrate material comprises a plurality of closed cells. The suppression component is impregnated into at least one of the plurality of closed cells. The x-ray component dispersed within the substrate material.
  • In a preferred embodiment, the artificial bone further includes each of the suppression component and the x-ray component.
  • In another preferred embodiment, the suppression component comprises a polyurethane material having a plurality of closed cells. Preferably, the substrate material comprises one of the group consisting of: polyethylene, polypropylene and polymeric resins.
  • In another preferred embodiment, the x-ray component comprises a plurality of barium components. Preferably, the x-ray component comprises approximately 10% by weight of the substrate material.
  • In yet another preferred embodiment, the suppression component comprises a propylene glycol material. Preferably, the substrate material comprises one of the group consisting of: water, ethylene glycol, oils, polar and non-polar solvents, lotions and mixtures thereof.
  • The invention further comprises a method of manufacturing an artificial bone. The method comprises the steps of: providing a substrate base material; optionally mixing an x-ray component into the substrate base material; curing the substrate base material into a substrate; and optionally impregnating the substrate with a suppression component. At least one of the steps of mixing and impregnating are executed such that the resulting artificial bone includes at least one of the x-ray component and the suppression component.
  • In one embodiment of the method, the step of impregnating comprises the steps of: placing the substrate within an autoclave; introducing the suppression component; and elevating the pressure within the autoclave for a predetermined period of time.
  • In another embodiment of the method, the method further comprises the step of placing the substrate base material into a mold prior to the step of curing.
  • In yet another embodiment, the method further includes the step of finishing the outer surface of the substrate after the step of curing.
  • In another embodiment of the invention, each of the steps of mixing and impregnating are executed such that the resulting artificial bone includes each of the x-ray component and the suppression component.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The invention will now be described with reference to the drawing wherein:
  • FIG. 1 of the drawings a perspective view of a portion of a bone fabricated in accordance with the present invention, wherein the bone has been severed to show a cross-sectional configuration.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While this invention is susceptible of embodiment in many different forms, there is shown in the drawing and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.
  • It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters.
  • Referring now to the drawing and to FIG. 1 in particular, artificial bone is shown generally at 12. As will be explained in greater detail below, artificial bone 12 exhibits substantially enhanced simulated realism, mechanical properties, as well as substantially diminished cracking, chipping, and/or dust generation due to their novel fabricated composition and associated process for preparing the same.
  • For purposes of background, conventional artificial bones may be fabricated from a polyurethane resin, one of which is commercially available from BayOne Urethane Systems, LLC (formerly known as PolyOne) part number POLY RF1855-4LB and ISO 2000Y. The polyurethane resin constituents are mixed as directed and poured into a mold. After approximately eight minutes, the cured polyurethane substrate is removed from the mold for final trimming and finishing using conventional techniques. As was previously discussed, artificial bones fabricated in accordance with such a conventional method, exhibit a plurality of poor, undesirable, physical characteristics—including, but not limited to, cracking, chipping, and/or excessive dust generation. Moreover, such bones are not suitable for use in an x-ray machine, as x-rays generally penetrate such a material.
  • In comparison, bone 12 shown in FIG. 1 comprises substrate 14 and suppression component 16, and x-ray component 18. While a partial bone is shown in FIG. 1, for purposes of illustration, it is contemplated that bone 12 is preferably sized and shaped so as to substantially mimic a bone of an animal or a human. Of course, the invention is not limited to any particular bone or set of bones, and, it is contemplated that the invention has broad application relative to a number of different bones of both humans and other animals.
  • Substrate 14 is shown as comprising a polyurethane material, such as the material described above relative to conventional bones, which when cured includes outer shell 22 and inner cells 24 (many of which are closed cells). Such material generally comprises a cured substrate base material which is the result of a chemical reaction of constituents. Of course, other materials are likewise contemplated for use. In particular, such materials may include, but are not limited to, polyethylene, polypropylene, polymeric resins as well as other materials which are at least partially closed celled. The polyurethane material, while exemplary only, comprises what has become a material of choice for the fabrication of artificial bones.
  • Suppression component 16 comprises a propylene glycol which is impregnated into the bones after the curing process. In certain embodiments, the suppression component can be combined with a dye (such as a red dye) to indicate the presence of a suppression component within the substrate. While a propylene glycol material is contemplated for use, it is likewise contemplated that other materials may be utilized, including but not limited to, water, ethylene glycol, oils, polar and non-polar solvents, lotions, mixtures thereof, among others.
  • X-ray component 18 is shown in FIG. 1 as comprising a plurality of small sized components (i.e., granular, particulate and/or powder) which are mixed into the substrate. The components are sized so as to be readily able to mix with the substrate. The x-ray component is, through mixing, substantially dispersed through the substrate. One such material comprises barium components, which have been ground to a powder. As will be understood to one of skill in the art, barium is a material which readily absorbs x-rays to a desired extent. Of course, other materials which absorb x-rays, and which are capable of being integrated into the substrate are likewise contemplated for use (barium generally does not adversely affect operation of the suppression component). Such materials may include, but are not limited to other metals, such as other heavy metals, among others. Of course, other means by which the x-ray component may be introduced into the substrate (i.e., co-molding, impregnating, etc.) are likewise contemplated.
  • It will be understood that in certain preferred embodiments, the x-ray component may be utilized without the suppression component. Such embodiments are useful when little to no machining is undertaken, but the properties of bones and the response thereof to x-rays is investigated. In other embodiments, the suppression component may be utilized without the x-ray component. Such a structure is particularly useful wherein the artificial bone will undergo machining processes, but wherein x-ray properties are not relevant.
  • Artificial bone 12 of the present invention is fabricated using the following process. First, the substrate base material is mixed as directed. During the mixing step, the x-ray component is added to the mixture. In one embodiment, the x-ray component comprises barium powder which comprises about 10 wt % of the substrate material. Once fully mixed, the x-ray component is generally dispersed substantially throughout the substrate. The combination substrate and x-ray component is poured into a mold which is configured to render a bone of the desired configuration and dimension.
  • The combination substrate and x-ray component remain in the mold until the substrate is fully, or substantially fully cured (i.e., until the final shape is substantially retained). As such, after approximately eight minutes, the polyurethane is removed from the mold for final trimming and finishing using conventional techniques. Such conventional techniques include cutting, grinding, polishing and sanding, among others.
  • Once formed, the fabricated bone is placed into a pressure tank (autoclave). Subsequently, the suppression component (with optional dye) is introduced to submerge the bone. In the particular embodiment disclosed, propylene glycol tinted with red dye is introduced to submerge the bone. The pressure within the autoclave is raised, wherein the suppression component is forced into the closed cells of substrate 14. Once complete, the resulting bone is removed from the autoclave and the excess propylene glycol allowed for drain off from the exterior of the artificial bone.
  • The particular time and pressure may depend on the materials used for the suppression component and the substrate, in the embodiment disclosed, the substrate remained in the autoclave for seven minutes at an elevated pressure of 90 psi.
  • Once fabricated, the physical characteristics of artificial bone 12 was tested and remarkable improvements in dust reduction, chipping, as well as cracking were observed. Also, the bone was capable of absorbing x-rays to a predetermined extent, so as to render an image on conventional x-ray equipment, due to the x-ray component which was added to the substrate prior to curing. In addition, artificial bone 12 exhibited a substantial improvement in realism and feel.
  • The foregoing description merely explains and illustrates the invention and the invention is not limited thereto except insofar as the appended claims are so limited, as those skilled in the art who have the disclosure before them will be able to make modifications without departing the scope of the invention.

Claims (13)

1. An artificial bone comprising:
a substrate material, wherein the substrate material comprises a plurality of closed cells; and
at least one of a suppression component impregnated into at least one of the plurality of closed cells; and an x-ray component dispersed within the substrate material.
2. The artificial bone of claim 1 further comprising each of the suppression component and the x-ray component.
3. The artificial bone of claim 1 wherein the substrate material comprises a polyurethane material having a plurality of closed cells.
4. The artificial bone of claim 1 wherein the substrate material comprises one of the group consisting of: polyethylene, polypropylene and polymeric resins.
5. The artificial bone of claim 1 wherein the x-ray component comprises a plurality of barium components.
6. The artificial bone of claim 1 wherein the x-ray component comprises approximately 10% by weight of the substrate material.
7. The artificial bone of claim 1 wherein the suppression component comprises a propylene glycol material.
8. The artificial bone of claim 1 wherein the suppression component comprises one of the group consisting of: water, ethylene glycol, oils, polar and non-polar solvents, lotions and mixtures thereof.
9. A method of manufacturing an artificial bone comprising the steps of:
providing a substrate base material;
optionally mixing an x-ray component into the substrate base material;
curing the substrate base material into a substrate; and
optionally impregnating the substrate with a suppression component,
wherein at least one of the steps of mixing and impregnating are executed such that the resulting artificial bone includes at least one of the x-ray component and the suppression component.
10. The method of claim 9 wherein the step of impregnating comprises the steps of:
placing the substrate within an autoclave;
introducing the suppression component; and
elevating the pressure within the autoclave for a predetermined period of time.
11. The method of claim 9 further comprising the step of placing the substrate base material into a mold prior to the step of curing.
12. The method of claim 9 further comprising the step of finishing the outer surface of the substrate after the step of curing.
13. The method of claim 9 wherein each of the steps of mixing and impregnating are executed such that the resulting artificial bone includes each of the x-ray component and the suppression component.
US11/390,967 2002-09-21 2006-03-28 Artificial bone Abandoned US20060287724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/390,967 US20060287724A1 (en) 2002-09-21 2006-03-28 Artificial bone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41227402P 2002-09-21 2002-09-21
US10/616,705 US7018212B2 (en) 2002-09-21 2003-07-10 Artificial bone
US11/390,967 US20060287724A1 (en) 2002-09-21 2006-03-28 Artificial bone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/616,705 Continuation US7018212B2 (en) 2002-09-21 2003-07-10 Artificial bone

Publications (1)

Publication Number Publication Date
US20060287724A1 true US20060287724A1 (en) 2006-12-21

Family

ID=32110119

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/616,705 Expired - Fee Related US7018212B2 (en) 2002-09-21 2003-07-10 Artificial bone
US11/390,967 Abandoned US20060287724A1 (en) 2002-09-21 2006-03-28 Artificial bone

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/616,705 Expired - Fee Related US7018212B2 (en) 2002-09-21 2003-07-10 Artificial bone

Country Status (1)

Country Link
US (2) US7018212B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347623A (en) * 2003-03-26 2004-12-09 National Institute Of Advanced Industrial & Technology Human body model and method for manufacturing the same
US20080138781A1 (en) * 2006-12-08 2008-06-12 Warsaw Orthopedic, Inc. Surgical training model and method for use in facilitating training of a surgical procedure
US8210852B2 (en) 2007-04-11 2012-07-03 Pacific Research Laboratories, Inc. Artificial bones and methods of making same
GB0804788D0 (en) * 2008-03-14 2008-04-16 Invibio Ltd Implamtable prosthesis
US20100099066A1 (en) * 2008-10-21 2010-04-22 Warsaw Orthopedics, Inc. Surgical Training System and Model With Simulated Neural Responses and Elements
CA2882468A1 (en) 2014-02-19 2015-08-19 Samin Eftekhari Artificial bone nanocomposite and method of manufacture
CN106362204A (en) * 2016-08-30 2017-02-01 何仁英 High-strength artificial bone material and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106219A (en) * 1975-12-05 1978-08-15 Synthes Ag Chur Plastic bone used for training purposes by surgeons
US4200995A (en) * 1977-02-28 1980-05-06 Trella Phyllis L Joint construction for skeletal model
US4314380A (en) * 1980-09-26 1982-02-09 Koken Co., Ltd. Artificial bone
US4838795A (en) * 1984-11-19 1989-06-13 Klaus Draenert Artificial joint components for teaching, research and visual aids
US5030396A (en) * 1987-01-20 1991-07-09 Sumitomo Chemical Company, Limited Process for production of porous ceramic article
US5082803A (en) * 1989-09-21 1992-01-21 Asahi Kogaku Kogyo Kabushiki Kaisha Process for producing bone prosthesis
US5092888A (en) * 1989-05-19 1992-03-03 Tokuyama Soda Kabushiki Kaisha Hardening material
US6008430A (en) * 1991-01-30 1999-12-28 Interpore Orthopaedics, Inc. Three-dimensional prosthetic articles and methods for producing same
US6087024A (en) * 1996-12-17 2000-07-11 Whinnery; Leroy Louis Method for forming porous sintered bodies with controlled pore structure
US6379725B1 (en) * 1998-05-05 2002-04-30 Natural Polymer International Corporation Protein-based chewable pet toy
US6471519B1 (en) * 1997-03-27 2002-10-29 The Johns Hopkins University Bone substitute for training and testing and method for making
US6520775B2 (en) * 2001-05-03 2003-02-18 Charles Q. Lee Fixture and method for training and use of apical position locator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2472819A (en) 1945-01-26 1949-06-14 Josef H Giesen Mechanical skeleton
US2483034A (en) 1949-01-04 1949-09-27 Braeg Herman Emanuel Anatomical instruction device
US2995833A (en) 1959-06-10 1961-08-15 Superior Plastics Inc Anatomical device
US2988823A (en) 1959-08-12 1961-06-20 Renwal Toy Corp Transparent anatomical model
US4108219A (en) * 1977-05-25 1978-08-22 Joseph Shulsinger Aerosol dispenser with inner container and piston
CH650873A5 (en) 1980-08-13 1985-08-15 Zuercher Kantonalbank METHOD FOR PRODUCING THE HULL AND HEAD PART OF A HUMAN DOLL DETERMINED FOR MEDICAL EXERCISE PURPOSES.
GB9421362D0 (en) 1994-10-24 1994-12-07 Bronne Wilkinson Oliver Orthopaedic human bone demonstational aid
US5672059A (en) 1995-03-20 1997-09-30 Browne-Wilkinson; Oliver Orthopaedic human skeletal demonstration aids
US6206703B1 (en) 1999-03-01 2001-03-27 Lear Corporation Biofidelic human seating surrogate apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106219A (en) * 1975-12-05 1978-08-15 Synthes Ag Chur Plastic bone used for training purposes by surgeons
US4200995A (en) * 1977-02-28 1980-05-06 Trella Phyllis L Joint construction for skeletal model
US4314380A (en) * 1980-09-26 1982-02-09 Koken Co., Ltd. Artificial bone
US4838795A (en) * 1984-11-19 1989-06-13 Klaus Draenert Artificial joint components for teaching, research and visual aids
US5030396A (en) * 1987-01-20 1991-07-09 Sumitomo Chemical Company, Limited Process for production of porous ceramic article
US5092888A (en) * 1989-05-19 1992-03-03 Tokuyama Soda Kabushiki Kaisha Hardening material
US5082803A (en) * 1989-09-21 1992-01-21 Asahi Kogaku Kogyo Kabushiki Kaisha Process for producing bone prosthesis
US6008430A (en) * 1991-01-30 1999-12-28 Interpore Orthopaedics, Inc. Three-dimensional prosthetic articles and methods for producing same
US6087024A (en) * 1996-12-17 2000-07-11 Whinnery; Leroy Louis Method for forming porous sintered bodies with controlled pore structure
US6471519B1 (en) * 1997-03-27 2002-10-29 The Johns Hopkins University Bone substitute for training and testing and method for making
US6379725B1 (en) * 1998-05-05 2002-04-30 Natural Polymer International Corporation Protein-based chewable pet toy
US6520775B2 (en) * 2001-05-03 2003-02-18 Charles Q. Lee Fixture and method for training and use of apical position locator

Also Published As

Publication number Publication date
US20040082997A1 (en) 2004-04-29
US7018212B2 (en) 2006-03-28

Similar Documents

Publication Publication Date Title
US20060287724A1 (en) Artificial bone
CN104027953B (en) The multilayer core with foam core for golf
CN104700698B (en) Anthropomorphic phantom manufacturing method based on radiation detection
US4880233A (en) Game ball
CN104225882B (en) Golf with foam core and the outer core of thermoplasticity
KR102023205B1 (en) Method of making multi-color golf ball having discontinuous colored coating and resulting multi-color golf ball
DE102011084661A1 (en) Dynamic vehicle simulation system using a human lifelike doll and a seat pressure distribution sensor assembly
CN104689530B (en) The multi-layer golf ball of foamed core with optional distribution of weight
CN109529284A (en) Method polyurethane coating being applied on the golf with thermoplastic polyurethane cladding
CN108912654A (en) A kind of PPU glue and the production technology that dipped gloves are prepared using the PPU glue
CN110270065A (en) Golf with sandwich layer outside foaming inner core and thermosetting property
CN103495276B (en) Color golf ball
WO2019052608A1 (en) Dummy for accident research and forensic science
ATE925T1 (en) WAX-BASED PAINT MATTING AGENT, PROCESS FOR ITS PRODUCTION AND MATT PAINTS.
US20120231898A1 (en) Golf ball comprising fluorinated silane-treated filler to promote moisture resistance
EP2977977A1 (en) A composite structure for medical training and production method thereof
DE2402316A1 (en) LIMBS AND BODY PARTS FOR TOY FIGURES AND METHOD OF MANUFACTURING THEREOF
Howe Management of Sports and Physical Education
DE102020101589B4 (en) Phantom for measuring and checking a radiation dose emitted by an irradiation device
McClung Foam patterning and construction techniques: Turning 2D designs into 3D shapes
DE102018000862A1 (en) Apparatus and method for reshaping a tibial surface topography of a human lower leg and shin guards made by this method
JP4963086B2 (en) Method for producing a cured biological tissue
CN2101926U (en) Animal imitating mould
EP2422948A1 (en) Method for producing surfboard blanks from black cork
JPH06230718A (en) Bone model

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION