US20060287644A1 - Tools and methods for biomedical surgery - Google Patents

Tools and methods for biomedical surgery Download PDF

Info

Publication number
US20060287644A1
US20060287644A1 US11/467,875 US46787506A US2006287644A1 US 20060287644 A1 US20060287644 A1 US 20060287644A1 US 46787506 A US46787506 A US 46787506A US 2006287644 A1 US2006287644 A1 US 2006287644A1
Authority
US
United States
Prior art keywords
surgical tool
tube
polymer
tool
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/467,875
Inventor
Olle Inganas
Edwin Jager
Anders Selbing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creganna Solutions Ltd
Original Assignee
Micromuscle AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micromuscle AB filed Critical Micromuscle AB
Priority to US11/467,875 priority Critical patent/US20060287644A1/en
Assigned to MICROMUSCLE AB reassignment MICROMUSCLE AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INGANAS, OLLE, JAGER, EDWIN, SELBING, ANDERS
Publication of US20060287644A1 publication Critical patent/US20060287644A1/en
Priority to US11/797,564 priority patent/US20070299422A1/en
Assigned to CREGANNA MEDICAL DEVICES LTD. reassignment CREGANNA MEDICAL DEVICES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROMUSCLE AB
Assigned to CREGANNA SOLUTIONS reassignment CREGANNA SOLUTIONS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CREGANNA MEDICAL DEVICES LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/128Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips
    • A61B17/1285Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • A61B2017/00871Material properties shape memory effect polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/1209Details concerning the detachment of the occluding device from the introduction device detachable by electrical current or potential, e.g. electroactive polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents

Definitions

  • This invention concerns micro-surgical tools that can be delivered by or on an elongated medical device, such as a catheter or needle.
  • These tools or microstructures can be used to adapt, assemble, separate, fortify, dilate, close and hold biological or non-biological structures inside the body during and after surgery.
  • the tools may be stents, valves, clips, nets, knives, scissors, dilators, clamps, tweezers etc.
  • microstructures to assemble, fortify or dilate biological structures inside the body during and after surgery can help the surgeon in a number of ways.
  • the operation of electrically actuated tools can help the surgeon to simultaneously position, operate manually, and observe.
  • external control i.e. footswitch, voice control, other software-control
  • microactuators has been spurred by the desire to be able to use tools before or during invasive surgical procedures. Because tools may be used for cutting, drilling, holding, dilating, suturing, adapting or supporting, the tools must have specific size and shape. For example, a certain tool might be needed during a surgery and may be introduced through, placed inside, on, or located at the end of a catheter or needle. Thus, the tool must be designed within the specific dimension of the catheter or needle.
  • microactuators used to position a catheter.
  • U.S. Pat. No. 5,771,902 and U.S. Pat. No. 5,819,749 disclose micromachined actuators and sensors for intratubular positioning and steering of for instance catheters in blood flows.
  • the microcantilever actuators that may comprise conducting polymers, are used as rudders or valves in order to provide navigation means for catheters and the like that utilize the blood flow direction for positioning or steering.
  • WO9837816A1 discloses microfabricated therapeutic actuators that are fabricated using shape memory polymers. The actuators are used as a microtubing release mechanism to set free an object.
  • WO9739688A2 describes a method and apparatus for delivery of a clip appliance in a vessel.
  • the clip is configured from a wire like bendable material, preferably #420 stainless steel, having a W-like sinusoidal shape.
  • an external biasing apparatus such as an actuator arm and balloon.
  • the publication WO9739674A1 discloses a spring based multi-purpose medical instrument. Spring jaws at the distal end are operated through a remote actuator.
  • the preferred embodiment of this jaw actuator is a very thin (pull) wire.
  • U.S. Pat. No. 5,855,565 describes a cardiovascular mechanically expanding catheter apparatus as an alternative to conventional balloon angioplasty devices.
  • the catheter comprises a dilation means that includes a mechanical expander which provides means for casing radial expansion of the dilation means against the vessel walls upon longitudinal contraction of the mechanical expander.
  • the longitudinal contraction of the mechanical expander may preferably be achieved by a cable mechanism, however the use of an “artificial muscle” as the contraction means is also claimed.
  • a device for biomedical surgery comprising an elongate tube-like structure which is insertable into a body lumen, a surgical tool, arranged on the elongate tube-like structure, and a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the layered polymer microactuator being arranged for external electrical actuation.
  • a guide-wire may be insertable into the elongate tube-like structure.
  • the layered polymer microactuator may comprise a bi-layered polymer.
  • the layered polymer microactuator may comprise at least one non-polymer layer.
  • the layered polymer microactuator may comprise a conjugated polymer layer.
  • the conjugated polymer layer may comprise a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • the layered polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
  • the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
  • the surgical tool may be an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • the surgical tool may be releasable from the tube-like structure.
  • a tool array comprising a device according to the first aspect, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • a number of identical tools may be located on the array extending along the tube-like structure, and where each tool is individually actuatable.
  • a number of identical tools may be located on the array extending along the tube-like structure, and said tools are simultaneously actuatable.
  • a tool array comprising a tool according to the first aspect, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • a device for biomedical surgery comprising an elongate tube-like structure, which is insertable into a body lumen, a carrier which is insertable into the elongate tube-like structure, a surgical tool, arranged on the carrier, and a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the polymer microactuator being arranged for external electrical actuation.
  • the polymer microactuator may comprise a conjugated polymer.
  • the conjugated polymer may comprise a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • the polymer microactuator may be a layered polymer microactuator.
  • the polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
  • the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
  • the surgical tool may be an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • the surgical tool may be releasable from the tube-like structure.
  • a tool array comprising a device according to the fourth aspect, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and is to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • a number of identical tools may be located on the array extending along the tube-like structure, and where said tools are individually actuatable.
  • a number of identical tools may be located on the array extending along the tube-like structure, and where said tools are simultaneously actuatable.
  • a tool array comprising a tool according to the fourth aspect, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • a method of biomedical surgery comprising steps of:
  • the elongate tube-like structure having a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator;
  • said geometrical changes or movements may cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
  • a method of biomedical surgery comprising steps of:
  • the carrier having a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator;
  • said geometrical changes or movements may cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
  • the necessary elements to accomplish these functions may be the electrochemically activated microactuators, built by micromachining thin metal and polymer layers (Elisabeth Smela, Olle Inganäs and Ingemar Lundström: “Controlled Folding of Micron-size Structures”, Science 268 (1995) pp. 1735-1738), non-metal and polymer layers, or only polymer layers.
  • These actuators can be produced in sizes fom micrometers to centimeters, and operate well in biological fluids such as blood plasma, blood, buffer and urine. They are therefore suitable tools for micro invasive surgery inside the body.
  • FIGS. 1 a - 1 c are a perspective view of a first embodiment.
  • FIGS. 2 a - 2 g are a perspective view of other tools in which microactuators are used.
  • FIGS. 3 a - 3 b are a perspective view of another embodiment.
  • FIGS. 4 a - 4 b are perspective views of yet another embodiment.
  • FIGS. 5 a - 5 b are perspective views of a further embodiment.
  • FIGS. 6 a - c are perspective views of other tools in which microactuators are used
  • microactuators based on conjugated polymers being electrically operated and mounted in or on an elongated medical device for insertion into the body, such as a catheter or needle.
  • These microactuators are positioned with the help of the catheter, and then these microactuator structures that are carried by, in, or on the catheter or needle are activated.
  • the microfabrication of such microactuators renders possible a number of geometries and a size as small as 10 ⁇ m, which is difficult to produce by mechanical production techniques. They may be produced by use of the method presented in patent WO96/28841 and then mounted in or on the needle or catheter, or they might be produced by novel manufacturing methods. With the invention described herein completely novel microsurgery tools are now available.
  • electrical contacts may be supplied to actuate each microactuator separately. This can be done by wiring the single microactuator, to be used as the working electrode; the catheter may then be used as the counter-electrode, and will be able to supply all the charge that is needed to actuate all those microactuators.
  • wires may easily be produced in width down to 10 ⁇ m with photolithography or with soft lithography, thus by providing parallel conducting wires, at least 50 microactuators may be placed along the tool array located in/on a needle of 1 mm width. Should more wires be necessary, more elaborate addressing schemes might be used.
  • microfabricated reference electrodes or macrosize reference electrodes carried on the catheter housing can be used as a third electrode.
  • a first embodiment of the present invention is clips and clip arrays, where the clips are mounted in sequence, used for surgery. These clips are sub-millimetre to millimetre structures, used two hold two separated biological or non-biological structures joined, for example during a healing period. Also a biological and a non-biological structure may be held together.
  • FIGS. 1 a - 1 c show an example of a clip tool in which microactuators may be used. Clips may be used in surgery to hold together two separated biological structures, such as tissue, skin, membranes, vessel walls etc; or to fixate a biological structure to a non-biological structure.
  • FIG. 1 a shows a clip 1 that is individually activated by a microactuator in its opened stated and a structure 2 , which is interconnected as shown in FIGS. 1 a - 1 b or having to separated parts.
  • the clip 1 is in its closed state and is used to join the structure 2 to hold it closed.
  • the clips may be assembled into clip arrays, where the clips 1 , 4 are mounted in sequence 5 , and are confined by a cylindrical housing 3 .
  • the clip 1 is attached to a second clip 4 , which in its turn is attached to a third clip 6 , etc thus building a chain of clips 5 that are confined by the cylindrical housing 3 .
  • the cylindrical housing 3 may be a catheter or a hollow needle.
  • Activation of the outermost clip 1 opens up the clip 1 to join the open structure 2 , and then being set free by the simultaneous or sequential operation of the second clip 4 .
  • the clip 1 is left at the structure 2 , holding the structures together as illustrated in FIGS. 1 a - 1 b.
  • Another embodiment is a structure for controlling the flow through blood vessels.
  • the simplest example is that of a clip used to prevent or regulate the amount of blood flow to a biological structure downstream in the blood vessel.
  • a clip, or series of clips would be mounted and left to hold a firm grip on the blood vessel and thus to prevent or regulate the flow of blood.
  • An array of tools may be collectively addressed, and the tool array may be designed to set free the outermost clip 1 on actuation of all the clips 5 , a mechanism of confining the movements of all but the outermost clip 1 is needed. This is done by assembling the clip array 5 into a cylindrical housing 3 , preferably a catheter, prior to insertion in the body.
  • the cylindrical housing 3 confines the motion of microactuators, which search in vain to expand the strong metal casing on operation.
  • the clip is opened; likewise is the next-to-the outermost clip 4 partially free to move as it is protruding outside the cylindrical housing 3 . Therefore the partial opening of the next-to-the outermost clip 4 sets the outermost clip 1 free, as well as opens it up for subsequent spontaneous closing on the site to be clipped.
  • the array of clips 5 may be pushed forward, out of the cyclindrical housing 3 by a wire, rod, or plunger (as illustrated by part 370 in FIGS. 4 a - 4 b ) thus releasing one clip at the time.
  • FIGS. 2 a - 2 g shows tubular tweezers 100 , tweezers 110 knifes 120 , scissors 122 , needles 124 , dilators 126 , and clamps 128 based on microactuators.
  • the indicated movement is driven by microactuators properly mounted and designed.
  • the tools are housed in a cyclindrical housing 140 , which for example may be a needle or a catheter. These tools or micro-structures can be used to adapt, assemble, separate, fortify, dilate, close and hold biological structures inside the body during and after surgery.
  • FIGS. 3 a - 3 b show a another embodiment 230 of the present invention.
  • Arrays of fingers could be used to hold cylindrical objects, such as nerves and nerve fibers, or blood vessels.
  • adjacent microstructures may operate, such as neural sensing or activating electrodes, may enable recording signals from or activating nerves.
  • they could be used as a synthetic neural connectors, bridging a severed nerve or nerve fiber.
  • a neural connector 230 with a number of small fingers 220 coil around two cylindrical nerves 200 , 210 to tightly hold the nerve 240 together.
  • Two separate nerves 200 , 210 are here joined with the help of a common neural connector 230 . This procedure is used to regrow the nerves.
  • small electrodes (not shown) can be fashioned along with the microfingers 220 , and be used to sense or excite nerve signals.
  • FIGS. 4 a - 4 b show a further embodiment 300 of the present invention.
  • An insertion device 330 for making a temporally hole in a membrane 330 is housed in a catheter/cannula/needle 310 and is inserted through the membrane 320 so as to make the device 330 form a hole 350 through the membrane.
  • the device 330 may be pushed forward, out of the catheter/cannula/needle 310 by a wire, rod or plunger 370 , thus releasing it into the membrane 320 .
  • Simultanously or sequentially on insertion into the membran 320 flaps or petals 360 may fold out in order to anchor the device 330 into the membrane.
  • FIGS. 5 a - 5 a show a stent device 400 .
  • This embodiment is somewhat more complex with structures built with a geometry where they could be used inside or outside tube-like structures 410 , as so called stents 420 to dilate a stenotic area 430 or to internally or externally fortify or join the structure(s) ( FIGS. 5 a and 5 b ).
  • Stents 420 are of particular interest since they are to be inserted inside the tube 410 , then to be left there to expand a stenotic (examples: blood vessel, biliary duct) or to fortify a weak (examples: blood vessel with aneurysm, divided biliary duct) part of a tubular structure 410 .
  • the structures 420 are preferably addressed as microanastomosis devices of grafts.
  • the stent device 400 may be formed/designed as a tool array comprising several stents, microanastomis devices, or grafts, that can be set free one at a time.
  • the stent 420 or array of stents may be pushed forward, out of the cyclindrical housing 440 by a wire, rod, or plunger (as illustrated by part 370 in FIGS. 4 a - 4 b ), thus releasing one stent at the time.
  • FIGS. 6 a - 6 c illustrate tools or tool arrays that are mounted on an elongated medical device 540 such as a catheter.
  • the elongated medical devices comprising the tool or tool arrays are introduced into the body by sliding it over a guidewire 510 as is known to those skilled in the art.
  • Examples of such tools or tool arrays are tubular tweezers 500 ( FIG. 6 a ), knives 520 ( FIG. 6 b ), or stents 550 ( FIG. 6 c ).
  • FIG. 6 c shows only one stent 550 on the device 540 , however, as mentioned above and illustrated in FIG. 1 c , the device may comprise several such tools (stents, clips, grafts, coils) forming a tool array.
  • Clips, stents, finger arrays and insertion devices once applied, could thus be resorbable or permanent. They could express various degrees of stimulation or repression of cell growth on its surfaces, various degrees of anti-thrombotic activity as well as different antibiotic activities. They can also be carriers of various biochemical or biological components.
  • a device for biomedical surgery comprising an elongate tube-like structure which is insertable into a body lumen, a surgical tool, arranged on the elongate tube-like structure, and a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the layered polymer microactuator being arranged for external electrical actuation.
  • a device for biomedical surgery comprising an elongate tube-like structure, which is insertable into a body lumen, a carrier which is insertable into the elongate tube-like structure, a surgical tool, arranged on the carrier, and a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the polymer microactuator being arranged for external electrical actuation.
  • a conductor may be arranged on the carrier.
  • the carrier may be elongate.
  • the carrier may be a needle.
  • the elongate tube-like structure may be a catheter or a cannula.
  • the surgical tool may a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector or a graft.
  • a guide-wire may be insertable into the elongate tube-like structure.
  • the elongate tube-like structure may be a catheter or cannula.
  • the polymer microactuator may be arranged for external electrical actuation through the elongate tube-like structure.
  • the layered polymer may comprise comprises at least one polymer layer.
  • this is not necessary.
  • the layered polymer may comprise a bi-layered polymer.
  • the layered polymer may comprise at least one non-polymer layer.
  • the layered polymer microactuator may comprise a conjugated polymer layer.
  • the conjugated polymer layer may comprise a polymer is selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • the layered polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged t cause a bending of said layered polymer actuator.
  • the device may comprise a multilayered polymer, wherein an electrically activated volume change of said conjugated polymer is arranged to cause a bending of said layered polymer microactuator.
  • the surgical tool may comprise a clip arranged to join biological tissues or tissue parts, and arranged to hold the said tissues or tissue parts to allow healing.
  • the surgical tool may comprise a clip arranged to join a biological tissue or tissue part to a non-biological part.
  • the surgical tool may comprise an expandable cylindrical object designed to be inserted, in a contracted state, into a biological tube, and arranged to become expanded to keep said tube in an expanded state or to join two or more biological tubes.
  • the surgical tool may comprise a knife, which is arranged for linear and/or angular movement.
  • the surgical tool may comprise a needle that is arranged on an actuator being arranged for linear and/or angular movement.
  • the surgical tool may comprise a nerve connector.
  • the surgical tool may comprise an insertion device for making a temporary permanent hole through a membrane.
  • the insertion device may comprise a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • the surgical tool may be releasable from the tube-like structure.
  • a tool array comprising a device according to either of the first and second variants, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and is to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a nerve connector and a graft.
  • the surgical tool may comprise a clip arranged to join biological tissues or tissue parts, and arranged to hold the said tissues or tissue parts to allow healing.
  • the surgical tool may comprise an insertion device for making a temporary permanent hole through a membrane.
  • the insertion device may comprise a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane or tissue.
  • a number of identical tools may be located on the array extending along the tube-like structure, and where each tool is individually actuatable.
  • a number of identical tools may be located on the array extending along the tube-like structure, and each tool may be simultaneously actuatable.
  • a number of non-identical tools may be arranged as an array extending along a length of the carrier or tube-like structure, and each tool may be individually actuatable.
  • a method of biomedical surgery comprising steps of inserting an elongate tube-like structure comprising a surgical tool arranged thereo, into a body lumen; the elongate tube-like structure having a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and supplying an electrical charge for electrical actuation of the polymer microactuator, whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • a guide-wire may be inserted into the elongate tube-like structure.
  • a catheter or cannula may be used as the elongate tube-like.
  • the polymer microactuator may be externally electrically actuated through the elongate tube-like structure.
  • a method of biomedical surgery comprising steps of inserting an elongate tube-like structure into a body lumen; inserting a carrier with a surgical tool arranged thereon, into said tube-like structure, the carrier having a polymer, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and supplying an electrical charge for electrical actuation of the polymer microactuator, whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • said electrical charge may be supplied through a conductor arranged on the carrier.
  • an elongate carrier may be used.
  • a needle may be used as a carrier.
  • the elongate tube-like structure may be a catheter or a cannula.
  • the geometrical changes or movements may cause the surgical tool to position a structure.
  • the geometrical changes or movements may cause the surgical tool to hold a biological or non-biological structure.
  • the geometrical changes or movements may cause the surgical tool to cut a biological or non-biological structure.
  • the geometrical changes or movements may cause the surgical tool to dilate a biological or non-biological structure.
  • the geometrical changes or movements may cause the surgical tool to fortify a biological or non-biological structure.
  • the geometrical changes or movements may cause the surgical tool to implant a biological or non-biological structure.
  • the geometrical changes or movements cause the surgical tool to position a structure.

Abstract

A tool for biomedical surgery comprises an elongate tube-like structure which is insertable into a body lumen, a surgical tool, arranged on the elongate tube-like structure, and a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the layered polymer microactuator. The layered polymer microactuator is arranged for external electrical actuation.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of U.S. application Ser. No. 10/018,985, filed Dec. 19, 2001.
  • TECHNICAL FIELD
  • This invention concerns micro-surgical tools that can be delivered by or on an elongated medical device, such as a catheter or needle. These tools or microstructures can be used to adapt, assemble, separate, fortify, dilate, close and hold biological or non-biological structures inside the body during and after surgery. The tools may be stents, valves, clips, nets, knives, scissors, dilators, clamps, tweezers etc.
  • BACKGROUND
  • The use of microstructures to assemble, fortify or dilate biological structures inside the body during and after surgery can help the surgeon in a number of ways. The operation of electrically actuated tools can help the surgeon to simultaneously position, operate manually, and observe. By positioning the tool by hand and separately operating the tool through external control (i.e. footswitch, voice control, other software-control) a much higher degree of precision is achieved. In microsurgery, this is especially desired.
  • The development of microactuators has been spurred by the desire to be able to use tools before or during invasive surgical procedures. Because tools may be used for cutting, drilling, holding, dilating, suturing, adapting or supporting, the tools must have specific size and shape. For example, a certain tool might be needed during a surgery and may be introduced through, placed inside, on, or located at the end of a catheter or needle. Thus, the tool must be designed within the specific dimension of the catheter or needle.
  • The application of structures in/on or introduced through a catheter or needle is of particular interest in connection with the application of tools, which are to be left at the site after insertion, and which have to execute their function for some limited time duration after, and which may thereafter be extracted.
  • The combination of microactuators and catheters is not well documented in the literature. No patents describe the use of microactuators as tools housed inside or on a catheter. However, some examples of microactuators used to position a catheter have been found.
  • U.S. Pat. No. 5,771,902 and U.S. Pat. No. 5,819,749 disclose micromachined actuators and sensors for intratubular positioning and steering of for instance catheters in blood flows. The microcantilever actuators, that may comprise conducting polymers, are used as rudders or valves in order to provide navigation means for catheters and the like that utilize the blood flow direction for positioning or steering.
  • WO9837816A1 discloses microfabricated therapeutic actuators that are fabricated using shape memory polymers. The actuators are used as a microtubing release mechanism to set free an object.
  • WO9739688A2 describes a method and apparatus for delivery of a clip appliance in a vessel. The clip is configured from a wire like bendable material, preferably #420 stainless steel, having a W-like sinusoidal shape. Upon delivery the clip is bent so as to be secured to tissue by an external biasing apparatus, such as an actuator arm and balloon.
  • The publication WO9739674A1 discloses a spring based multi-purpose medical instrument. Spring jaws at the distal end are operated through a remote actuator. The preferred embodiment of this jaw actuator is a very thin (pull) wire.
  • U.S. Pat. No. 5,855,565 describes a cardiovascular mechanically expanding catheter apparatus as an alternative to conventional balloon angioplasty devices. The catheter comprises a dilation means that includes a mechanical expander which provides means for casing radial expansion of the dilation means against the vessel walls upon longitudinal contraction of the mechanical expander. The longitudinal contraction of the mechanical expander may preferably be achieved by a cable mechanism, however the use of an “artificial muscle” as the contraction means is also claimed.
  • There is a need for improved or alternative tools that may be introduced through or on a catheter or needle and used before, during or after surgical procedures.
  • SUMMARY OF THE INVENTION
  • It is an object of the present disclosure to provide tools that overcome or alleviate disadvantages of prior art tools.
  • According to a first aspect, there is provided a device for biomedical surgery, comprising an elongate tube-like structure which is insertable into a body lumen, a surgical tool, arranged on the elongate tube-like structure, and a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the layered polymer microactuator being arranged for external electrical actuation.
  • In an embodiment, a guide-wire may be insertable into the elongate tube-like structure.
  • In an embodiment, the layered polymer microactuator may comprise a bi-layered polymer.
  • In an embodiment, the layered polymer microactuator may comprise at least one non-polymer layer.
  • In an embodiment, the layered polymer microactuator may comprise a conjugated polymer layer.
  • In an embodiment, the conjugated polymer layer may comprise a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • In an embodiment, the layered polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
  • In an embodiment, the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
  • In an embodiment, the surgical tool may be an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • In an embodiment, the surgical tool may be releasable from the tube-like structure.
  • According to a second aspect, there is provided a tool array comprising a device according to the first aspect, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • In an embodiment, a number of identical tools may be located on the array extending along the tube-like structure, and where each tool is individually actuatable.
  • In an embodiment, a number of identical tools may be located on the array extending along the tube-like structure, and said tools are simultaneously actuatable.
  • According to a third aspect, there is provided a tool array comprising a tool according to the first aspect, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • According to a fourth aspect, there is provided a device for biomedical surgery, comprising an elongate tube-like structure, which is insertable into a body lumen, a carrier which is insertable into the elongate tube-like structure, a surgical tool, arranged on the carrier, and a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the polymer microactuator being arranged for external electrical actuation.
  • In an embodiment, the polymer microactuator may comprise a conjugated polymer.
  • In an embodiment, the conjugated polymer may comprise a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • In an embodiment, the polymer microactuator may be a layered polymer microactuator.
  • In an embodiment, the polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
  • In an embodiment, the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
  • In an embodiment, the surgical tool may be an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • In an embodiment, the surgical tool may be releasable from the tube-like structure.
  • According to a fifth aspect, there is provided a tool array comprising a device according to the fourth aspect, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and is to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • In an embodiment, a number of identical tools may be located on the array extending along the tube-like structure, and where said tools are individually actuatable.
  • In an embodiment, a number of identical tools may be located on the array extending along the tube-like structure, and where said tools are simultaneously actuatable.
  • According to a sixth aspect, there is provided a tool array comprising a tool according to the fourth aspect, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • According to a seventh aspect, there is provided a method of biomedical surgery, comprising steps of:
  • inserting an elongate tube-like structure comprising a surgical tool arranged thereon, into a body lumen;
  • the elongate tube-like structure having a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator;
  • and supplying an electrical charge for electrical actuation of the polymer microactuator,
  • whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • In the above method, said geometrical changes or movements may cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
  • According to an eighth aspect, there is provided a method of biomedical surgery, comprising steps of:
  • inserting an elongate tube-like structure into a body lumen;
  • inserting a carrier with a surgical tool arranged thereon, into said tube-like structure,
  • the carrier having a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and
  • supplying an electrical charge for electrical actuation of the polymer microactuator,
  • whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • In the above method, said geometrical changes or movements may cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
  • The necessary elements to accomplish these functions may be the electrochemically activated microactuators, built by micromachining thin metal and polymer layers (Elisabeth Smela, Olle Inganäs and Ingemar Lundström: “Controlled Folding of Micron-size Structures”, Science 268 (1995) pp. 1735-1738), non-metal and polymer layers, or only polymer layers. These actuators can be produced in sizes fom micrometers to centimeters, and operate well in biological fluids such as blood plasma, blood, buffer and urine. They are therefore suitable tools for micro invasive surgery inside the body.
  • The versatility of construction and the speed of response, as well as the force of these actuators render them as one of the best types of microactuators inside the body. WO96/28841 discloses one route of fabrication of such devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The different aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIGS. 1 a-1 c are a perspective view of a first embodiment.
  • FIGS. 2 a-2 g are a perspective view of other tools in which microactuators are used.
  • FIGS. 3 a-3 b are a perspective view of another embodiment.
  • FIGS. 4 a-4 b are perspective views of yet another embodiment.
  • FIGS. 5 a-5 b are perspective views of a further embodiment.
  • FIGS. 6 a-c are perspective views of other tools in which microactuators are used
  • DESCRIPTION OF EMBODIMENTS
  • Our novelty and innovation resides in the use of microactuators based on conjugated polymers being electrically operated and mounted in or on an elongated medical device for insertion into the body, such as a catheter or needle. These microactuators are positioned with the help of the catheter, and then these microactuator structures that are carried by, in, or on the catheter or needle are activated. The microfabrication of such microactuators renders possible a number of geometries and a size as small as 10 μm, which is difficult to produce by mechanical production techniques. They may be produced by use of the method presented in patent WO96/28841 and then mounted in or on the needle or catheter, or they might be produced by novel manufacturing methods. With the invention described herein completely novel microsurgery tools are now available.
  • The production of individually actuated tool arrays render little difficulty beyond producing the individual tool. Electrical contacts may be supplied to actuate each microactuator separately. This can be done by wiring the single microactuator, to be used as the working electrode; the catheter may then be used as the counter-electrode, and will be able to supply all the charge that is needed to actuate all those microactuators. As wires may easily be produced in width down to 10 μm with photolithography or with soft lithography, thus by providing parallel conducting wires, at least 50 microactuators may be placed along the tool array located in/on a needle of 1 mm width. Should more wires be necessary, more elaborate addressing schemes might be used.
  • If a three electrode system is necessary in any application, microfabricated reference electrodes or macrosize reference electrodes carried on the catheter housing can be used as a third electrode.
  • A first embodiment of the present invention is clips and clip arrays, where the clips are mounted in sequence, used for surgery. These clips are sub-millimetre to millimetre structures, used two hold two separated biological or non-biological structures joined, for example during a healing period. Also a biological and a non-biological structure may be held together.
  • FIGS. 1 a-1 c show an example of a clip tool in which microactuators may be used. Clips may be used in surgery to hold together two separated biological structures, such as tissue, skin, membranes, vessel walls etc; or to fixate a biological structure to a non-biological structure.
  • FIG. 1 a shows a clip 1 that is individually activated by a microactuator in its opened stated and a structure 2, which is interconnected as shown in FIGS. 1 a-1 b or having to separated parts. In FIG. 1 b, the clip 1 is in its closed state and is used to join the structure 2 to hold it closed.
  • As shown in FIG. 1 c the clips may be assembled into clip arrays, where the clips 1, 4 are mounted in sequence 5, and are confined by a cylindrical housing 3. The clip 1 is attached to a second clip 4, which in its turn is attached to a third clip 6, etc thus building a chain of clips 5 that are confined by the cylindrical housing 3. The cylindrical housing 3 may be a catheter or a hollow needle. Activation of the outermost clip 1 opens up the clip 1 to join the open structure 2, and then being set free by the simultaneous or sequential operation of the second clip 4. The clip 1 is left at the structure 2, holding the structures together as illustrated in FIGS. 1 a-1 b.
  • Another embodiment is a structure for controlling the flow through blood vessels. The simplest example is that of a clip used to prevent or regulate the amount of blood flow to a biological structure downstream in the blood vessel. Such a clip, or series of clips, would be mounted and left to hold a firm grip on the blood vessel and thus to prevent or regulate the flow of blood.
  • An array of tools may be collectively addressed, and the tool array may be designed to set free the outermost clip 1 on actuation of all the clips 5, a mechanism of confining the movements of all but the outermost clip 1 is needed. This is done by assembling the clip array 5 into a cylindrical housing 3, preferably a catheter, prior to insertion in the body. The cylindrical housing 3 confines the motion of microactuators, which search in vain to expand the strong metal casing on operation. When the outermost clip 1 is actuated, the clip is opened; likewise is the next-to-the outermost clip 4 partially free to move as it is protruding outside the cylindrical housing 3. Therefore the partial opening of the next-to-the outermost clip 4 sets the outermost clip 1 free, as well as opens it up for subsequent spontaneous closing on the site to be clipped.
  • The array of clips 5 may be pushed forward, out of the cyclindrical housing 3 by a wire, rod, or plunger (as illustrated by part 370 in FIGS. 4 a-4 b) thus releasing one clip at the time.
  • FIGS. 2 a-2 g shows tubular tweezers 100, tweezers 110 knifes 120, scissors 122, needles 124, dilators 126, and clamps 128 based on microactuators. The indicated movement is driven by microactuators properly mounted and designed. The tools are housed in a cyclindrical housing 140, which for example may be a needle or a catheter. These tools or micro-structures can be used to adapt, assemble, separate, fortify, dilate, close and hold biological structures inside the body during and after surgery.
  • FIGS. 3 a-3 b show a another embodiment 230 of the present invention. Arrays of fingers could be used to hold cylindrical objects, such as nerves and nerve fibers, or blood vessels. With the help of microactuators holding the structures (FIGS. 3 a-3 b), adjacent microstructures may operate, such as neural sensing or activating electrodes, may enable recording signals from or activating nerves. Furthermore, they could be used as a synthetic neural connectors, bridging a severed nerve or nerve fiber. A neural connector 230, with a number of small fingers 220 coil around two cylindrical nerves 200, 210 to tightly hold the nerve 240 together. Two separate nerves 200, 210 are here joined with the help of a common neural connector 230. This procedure is used to regrow the nerves. In addition, small electrodes (not shown) can be fashioned along with the microfingers 220, and be used to sense or excite nerve signals.
  • Tools with some temporary mechanical function could also be inserted in membranes (FIGS. 4 a-4 b) or inserted or anchored into any type of tissue. Insertion devices with temporary mechanical functions could be used for mounting a hole through a membrane, such as commonly used in ear surgery for pressure equilibration. Making these as microdevices will much decrease the effort to place and remove the inserted devices and to keep them in place during the desired time period. FIGS. 4 a-4 b show a further embodiment 300 of the present invention. An insertion device 330, for making a temporally hole in a membrane 330 is housed in a catheter/cannula/needle 310 and is inserted through the membrane 320 so as to make the device 330 form a hole 350 through the membrane. The device 330 may be pushed forward, out of the catheter/cannula/needle 310 by a wire, rod or plunger 370, thus releasing it into the membrane 320. Simultanously or sequentially on insertion into the membran 320 flaps or petals 360 may fold out in order to anchor the device 330 into the membrane.
  • FIGS. 5 a-5 a show a stent device 400. This embodiment is somewhat more complex with structures built with a geometry where they could be used inside or outside tube-like structures 410, as so called stents 420 to dilate a stenotic area 430 or to internally or externally fortify or join the structure(s) (FIGS. 5 a and 5 b). Stents 420 are of particular interest since they are to be inserted inside the tube 410, then to be left there to expand a stenotic (examples: blood vessel, biliary duct) or to fortify a weak (examples: blood vessel with aneurysm, divided biliary duct) part of a tubular structure 410. In the latter case the structures 420 are preferably addressed as microanastomosis devices of grafts.
  • Likewise the clip arrays (FIG. 1 c) the stent device 400 (FIGS. 5 a-5 b) may be formed/designed as a tool array comprising several stents, microanastomis devices, or grafts, that can be set free one at a time. Also, similar to the medical device of FIGS. 4 a-4 b, the stent 420 or array of stents may be pushed forward, out of the cyclindrical housing 440 by a wire, rod, or plunger (as illustrated by part 370 in FIGS. 4 a-4 b), thus releasing one stent at the time.
  • FIGS. 6 a-6 c illustrate tools or tool arrays that are mounted on an elongated medical device 540 such as a catheter. The elongated medical devices comprising the tool or tool arrays are introduced into the body by sliding it over a guidewire 510 as is known to those skilled in the art. Examples of such tools or tool arrays are tubular tweezers 500 (FIG. 6 a), knives 520 (FIG. 6 b), or stents 550 (FIG. 6 c). FIG. 6 c shows only one stent 550 on the device 540, however, as mentioned above and illustrated in FIG. 1 c, the device may comprise several such tools (stents, clips, grafts, coils) forming a tool array.
  • The application of structures in/on or introduced through a catheter or needle is of particular interest at the application of tools, which are to be left at the site after insertion, and which have to execute their function for some limited time duration after. Such structures may optionally be removed or replaced after such limited time.
  • Clips, stents, finger arrays and insertion devices, once applied, could thus be resorbable or permanent. They could express various degrees of stimulation or repression of cell growth on its surfaces, various degrees of anti-thrombotic activity as well as different antibiotic activities. They can also be carriers of various biochemical or biological components.
  • It should be emphasized that the above-described embomdiments of the present invention are merely possible examples of implementations, merely set forth for clear understanding fo the priniciples of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variantions are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
  • In summary, according to a first variant, there is provided a device for biomedical surgery, comprising an elongate tube-like structure which is insertable into a body lumen, a surgical tool, arranged on the elongate tube-like structure, and a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the layered polymer microactuator being arranged for external electrical actuation.
  • According to a second variant, there is provided a device for biomedical surgery, comprising an elongate tube-like structure, which is insertable into a body lumen, a carrier which is insertable into the elongate tube-like structure, a surgical tool, arranged on the carrier, and a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator, the polymer microactuator being arranged for external electrical actuation.
  • In the second variant, a conductor may be arranged on the carrier.
  • In the second variant, the carrier may be elongate.
  • In the second variant, the carrier may be a needle.
  • In the second variant, the elongate tube-like structure may be a catheter or a cannula.
  • In either of the first and second variants, the surgical tool may a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector or a graft.
  • a guide-wire may be insertable into the elongate tube-like structure.
  • In either of the first and second variants, the elongate tube-like structure may be a catheter or cannula.
  • In either of the first and second variants, the polymer microactuator may be arranged for external electrical actuation through the elongate tube-like structure.
  • In either of the first and second variants, the layered polymer may comprise comprises at least one polymer layer. However, in the second variant, this is not necessary.
  • In either of the first and second variants, the layered polymer may comprise a bi-layered polymer.
  • In either of the first and second variants, the layered polymer may comprise at least one non-polymer layer.
  • In either of the first and second variants, the layered polymer microactuator may comprise a conjugated polymer layer.
  • In either of the first and second variants, the conjugated polymer layer may comprise a polymer is selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
  • In either of the first and second variants, the layered polymer microactuator may comprise at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged t cause a bending of said layered polymer actuator.
  • In either of the first and second variants, the device may comprise a multilayered polymer, wherein an electrically activated volume change of said conjugated polymer is arranged to cause a bending of said layered polymer microactuator.
  • In either of the first and second variants, the surgical tool may comprise a clip arranged to join biological tissues or tissue parts, and arranged to hold the said tissues or tissue parts to allow healing.
  • In either of the first and second variants, the surgical tool may comprise a clip arranged to join a biological tissue or tissue part to a non-biological part.
  • In either of the first and second variants, the surgical tool may comprise an expandable cylindrical object designed to be inserted, in a contracted state, into a biological tube, and arranged to become expanded to keep said tube in an expanded state or to join two or more biological tubes.
  • In either of the first and second variants, the surgical tool may comprise a knife, which is arranged for linear and/or angular movement.
  • In either of the first and second variants, the surgical tool may comprise a needle that is arranged on an actuator being arranged for linear and/or angular movement.
  • In either of the first and second variants, the surgical tool may comprise a nerve connector.
  • In either of the first and second variants, the surgical tool may comprise an insertion device for making a temporary permanent hole through a membrane.
  • In either of the first and second variants, the insertion device may comprise a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
  • In either of the first and second variants, the surgical tool may be releasable from the tube-like structure.
  • Furthermore, there is provided a tool array comprising a device according to either of the first and second variants, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and is to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
  • In the array, the surgical tool may be selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a nerve connector and a graft.
  • In the array, the surgical tool may comprise a clip arranged to join biological tissues or tissue parts, and arranged to hold the said tissues or tissue parts to allow healing.
  • In the array, the surgical tool may comprise an insertion device for making a temporary permanent hole through a membrane.
  • In the array, the insertion device may comprise a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane or tissue.
  • In the array, a number of identical tools may be located on the array extending along the tube-like structure, and where each tool is individually actuatable.
  • In the array, a number of identical tools may be located on the array extending along the tube-like structure, and each tool may be simultaneously actuatable.
  • In the array, a number of non-identical tools may be arranged as an array extending along a length of the carrier or tube-like structure, and each tool may be individually actuatable.
  • Furthermore, there is provided a method of biomedical surgery, comprising steps of inserting an elongate tube-like structure comprising a surgical tool arranged thereo, into a body lumen; the elongate tube-like structure having a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and supplying an electrical charge for electrical actuation of the polymer microactuator, whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • In the method, a guide-wire may be inserted into the elongate tube-like structure.
  • In the method, a catheter or cannula may be used as the elongate tube-like.
  • In the method, the polymer microactuator may be externally electrically actuated through the elongate tube-like structure.
  • Finally, there is provided a method of biomedical surgery, comprising steps of inserting an elongate tube-like structure into a body lumen; inserting a carrier with a surgical tool arranged thereon, into said tube-like structure, the carrier having a polymer, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and supplying an electrical charge for electrical actuation of the polymer microactuator, whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
  • In the method, said electrical charge may be supplied through a conductor arranged on the carrier.
  • In the method, an elongate carrier may be used.
  • In the method, a needle may be used as a carrier.
  • In the methods, the elongate tube-like structure may be a catheter or a cannula.
  • In the methods, the geometrical changes or movements may cause the surgical tool to position a structure.
  • In the methods, the geometrical changes or movements may cause the surgical tool to hold a biological or non-biological structure.
  • In the methods, the geometrical changes or movements may cause the surgical tool to cut a biological or non-biological structure.
  • In the methods, the geometrical changes or movements may cause the surgical tool to dilate a biological or non-biological structure.
  • In the methods, the geometrical changes or movements may cause the surgical tool to fortify a biological or non-biological structure.
  • In the methods, the geometrical changes or movements may cause the surgical tool to implant a biological or non-biological structure.
  • In the methods, the geometrical changes or movements cause the surgical tool to position a structure.

Claims (30)

1. A device for biomedical surgery, comprising:
an elongate tube-like structure which is insertable into a body lumen,
a surgical tool, arranged on the elongate tube-like structure, and
a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator,
the layered polymer microactuator being arranged for external electrical actuation.
2. The device as claimed in claim 1, wherein a guide-wire is insertable into the elongate tube-like structure.
3. The device as claimed in claim 1, wherein the layered polymer microactuator comprises a bi-layered polymer.
4. The device as claimed in claim 1, wherein the layered polymer microactuator comprises at least one non-polymer layer.
5. The device as claimed in claim 1, wherein the layered polymer microactuator comprises a conjugated polymer layer.
6. The device as claimed in claim 5, wherein the conjugated polymer layer comprises a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
7. The device as claimed in claim 5, wherein the layered polymer microactuator comprises at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
8. The device as claimed in claim 1, wherein the surgical tool is selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
9. The device as claimed in claim 8, wherein the surgical tool is an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
10. The device as claimed in claim 1, wherein the surgical tool is releasable from the tube-like structure.
11. A tool array comprising a device as claimed in claim 1, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
12. The tool array as claimed in claim 11, wherein a number of identical tools are located on the array extending along the tube-like structure, and where each tool is individually actuatable.
13. The tool array as claimed in claim 11, wherein a number of identical tools are located on the array extending along the tube-like structure, and said tools are simultaneously actuatable.
14. A tool array comprising a device as claimed in claim 1, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
15. A device for biomedical surgery, comprising:
an elongate tube-like structure, which is insertable into a body lumen,
a carrier which is insertable into the elongate tube-like structure,
a surgical tool, arranged on the carrier, and
a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator,
the polymer microactuator being arranged for external electrical actuation.
16. The device as claimed in claim 15, wherein the polymer microactuator comprises a conjugated polymer.
17. The device as claimed in claim 16, wherein the conjugated polymer comprises a polymer selected from the group consisting of pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers, including substituted forms of the different monomers.
18. The device as claimed in claim 15, wherein the polymer microactuator is a layered polymer microactuator.
19. The device as claimed in claim 18, wherein the polymer microactuator comprises at least two layers, where an electrically activated volume change of said at least one conjugated polymer layer is arranged to cause a bending of said layered polymer actuator.
20. The device as claimed in claim 15, wherein the surgical tool is selected from a group consisting of a knife, a needle, a dilator, a forceps, a scissors, a tweezers, a clamp, a clip, a stent, a connector, a graft, a nerve connector, and an insertion device.
21. The device as claimed in claim 20, wherein the surgical tool is an insertion device for making a temporary permanent hole through a membrane, the insertion device comprising a central member and a number of anchoring members, which are bendable between an insertion position, wherein the insertion device is insertable through a hole in the membrane, and an anchoring position, wherein the anchoring members are in fixating engagement with the membrane.
22. The device as claimed in claim 15, wherein the surgical tool is releasable from the tube-like structure.
23. A tool array comprising a device as claimed in claim 15, wherein a number of identical surgical tools are arranged as an array extending on the carrier or tube-like structure, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and is to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
24. The tool array as claimed in claim 23, wherein a number of identical tools are located on the array extending along the tube-like structure, and where said tools are individually actuatable.
25. The tool array as claimed in claim 23, wherein a number of identical tools are located on the array extending along the tube-like structure, and where said tools are simultaneously actuatable.
26. A tool array comprising a device as claimed in claim 15, wherein a number of non-identical surgical tools are arranged as an array extending along a length of the carrier or tube-like structure, and wherein said tools are individually actuatable, and wherein the actuation of a surgical tool closest to the exit of the tube-like structure is arranged to release the surgical tool from the array and to leave it at the point of exit of the tube-like structure in order to mount the surgical tool at or in a biological structure.
27. A method of biomedical surgery, comprising steps of:
inserting an elongate tube-like structure comprising a surgical tool arranged thereon, into a body lumen;
the elongate tube-like structure having a layered polymer microactuator, arranged in or on the elongate tube-like structure, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator;
and supplying an electrical charge for electrical actuation of the polymer microactuator,
whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
28. The method as claimed in claim 27, wherein said geometrical changes or movements are cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
29. A method of biomedical surgery, comprising steps of:
inserting an elongate tube-like structure into a body lumen;
inserting a carrier with a surgical tool arranged thereon, into said tube-like structure,
the carrier having a polymer microactuator, arranged in or on the carrier, for inducing geometrical changes or movements to the surgical tool via an electrochemically induced change of volume of the polymer microactuator; and
supplying an electrical charge for electrical actuation of the polymer microactuator,
whereby said geometrical changes or movements cause the tool to act upon a biological structure in said body lumen.
30. The method as claimed in claim 29, wherein said geometrical changes or movements cause the surgical tool to perform an activity selected from a group consisting of positioning a stucture, holding a structure, cutting a structure, dilating a structure, fortifying a structure and implanting a structure.
US11/467,875 1999-06-21 2006-08-28 Tools and methods for biomedical surgery Abandoned US20060287644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/467,875 US20060287644A1 (en) 1999-06-21 2006-08-28 Tools and methods for biomedical surgery
US11/797,564 US20070299422A1 (en) 1999-06-21 2007-05-04 Surgical device, method for operation thereof and body-implantable device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE9902348-3 1999-06-21
SE9902348A SE519023C2 (en) 1999-06-21 1999-06-21 Catheter-borne microsurgical tool kit
PCT/SE2000/001286 WO2000078222A1 (en) 1999-06-21 2000-06-18 Micro tools
US1898501A 2001-12-19 2001-12-19
US11/467,875 US20060287644A1 (en) 1999-06-21 2006-08-28 Tools and methods for biomedical surgery

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/SE2000/001286 Continuation-In-Part WO2000078222A1 (en) 1999-06-21 2000-06-18 Micro tools
US1898501A Continuation-In-Part 1999-06-21 2001-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/797,564 Continuation-In-Part US20070299422A1 (en) 1999-06-21 2007-05-04 Surgical device, method for operation thereof and body-implantable device

Publications (1)

Publication Number Publication Date
US20060287644A1 true US20060287644A1 (en) 2006-12-21

Family

ID=20416174

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/018,985 Expired - Fee Related US7331969B1 (en) 1999-06-21 2000-06-18 Micro tools
US11/467,875 Abandoned US20060287644A1 (en) 1999-06-21 2006-08-28 Tools and methods for biomedical surgery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/018,985 Expired - Fee Related US7331969B1 (en) 1999-06-21 2000-06-18 Micro tools

Country Status (11)

Country Link
US (2) US7331969B1 (en)
EP (1) EP1194072B9 (en)
JP (1) JP4263405B2 (en)
AT (1) ATE373990T1 (en)
AU (1) AU777277B2 (en)
BR (1) BR0011808A (en)
CA (1) CA2377368C (en)
DE (1) DE60036547T2 (en)
ES (1) ES2293909T3 (en)
SE (1) SE519023C2 (en)
WO (1) WO2000078222A1 (en)

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
CN101953724A (en) * 2010-04-19 2011-01-26 杭州启明医疗器械有限公司 Bracket fixing head used for loading artificial valve replacement device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
CN106214249A (en) * 2016-09-12 2016-12-14 肖玉根 A kind of medical nerve monitoring electric knife
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9636173B2 (en) 2010-10-21 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956103B2 (en) 2013-03-11 2018-05-01 DePuy Synthes Products, Inc. Stent delivery system and method
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10166069B2 (en) 2014-01-27 2019-01-01 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
US10172734B2 (en) 2013-03-13 2019-01-08 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
US10188829B2 (en) 2012-10-22 2019-01-29 Medtronic Ardian Luxembourg S.A.R.L. Catheters with enhanced flexibility and associated devices, systems, and methods
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10736690B2 (en) 2014-04-24 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture

Families Citing this family (480)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827502B1 (en) 2001-07-17 2004-04-09 Univ Joseph Fourier MICROMUSCLE IN A BIOLOGICAL ENVIRONMENT
SE525649C2 (en) 2001-11-07 2005-03-29 Micromuscle Ab Microactuator comprising a carrier substrate, a volume-changing layer and a reinforcing structure
US8843216B2 (en) 2001-12-10 2014-09-23 Cochlear Limited Control of shape of an implantable electrode array
US7695427B2 (en) 2002-04-26 2010-04-13 Torax Medical, Inc. Methods and apparatus for treating body tissue sphincters and the like
US7063671B2 (en) 2002-06-21 2006-06-20 Boston Scientific Scimed, Inc. Electronically activated capture device
US6969395B2 (en) * 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
US7530963B2 (en) 2003-04-24 2009-05-12 Wisconsin Alumni Research Foundation Method of maintaining patency of opening in third ventricle floor
US20040215323A1 (en) * 2003-04-24 2004-10-28 Medtronic Ave, Inc. Membrane eyelet
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8398693B2 (en) * 2004-01-23 2013-03-19 Boston Scientific Scimed, Inc. Electrically actuated medical devices
US7744619B2 (en) * 2004-02-24 2010-06-29 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US7922740B2 (en) 2004-02-24 2011-04-12 Boston Scientific Scimed, Inc. Rotatable catheter assembly
DE102004026617B4 (en) * 2004-06-01 2006-06-14 Siemens Ag Device for clamping tissue
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8057508B2 (en) * 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
WO2007112864A1 (en) 2006-03-30 2007-10-11 Micromuscle Ab Electrode configurations for electrochemically activated systems
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US9242073B2 (en) 2006-08-18 2016-01-26 Boston Scientific Scimed, Inc. Electrically actuated annelid
US8075576B2 (en) * 2006-08-24 2011-12-13 Boston Scientific Scimed, Inc. Closure device, system, and method
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8133199B2 (en) 2008-08-27 2012-03-13 Boston Scientific Scimed, Inc. Electroactive polymer activation system for a medical device
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9955974B2 (en) 2014-03-10 2018-05-01 Empire Technology Development Llc Inverted diverticulum treatment devices
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10603195B1 (en) 2015-05-20 2020-03-31 Paul Sherburne Radial expansion and contraction features of medical devices
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634913A (en) * 1996-01-23 1997-06-03 Stinger; Florence Softening conduit for carrying fluids into and out of the human body
US5771902A (en) * 1995-09-25 1998-06-30 Regents Of The University Of California Micromachined actuators/sensors for intratubular positioning/steering
US5855585A (en) * 1996-06-11 1999-01-05 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US5855565A (en) * 1997-02-21 1999-01-05 Bar-Cohen; Yaniv Cardiovascular mechanically expanding catheter
US6102897A (en) * 1996-11-19 2000-08-15 Lang; Volker Microvalve
US6587250B2 (en) * 2001-03-07 2003-07-01 Acreo Ab Electrochromic device
US6663821B2 (en) * 2000-03-09 2003-12-16 The Regents Of The University Of California Bistable microvalve and microcatheter system
US20030236445A1 (en) * 2002-06-21 2003-12-25 Couvillon Lucien Alfred Universal programmable guide catheter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9500849D0 (en) 1995-03-10 1995-03-10 Pharmacia Ab Methods for the manufacture of micromachined structures and micromachined structures manufactured using such methods
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US5782747A (en) 1996-04-22 1998-07-21 Zimmon Science Corporation Spring based multi-purpose medical instrument
US5911737A (en) * 1997-02-28 1999-06-15 The Regents Of The University Of California Microfabricated therapeutic actuators
DE602006017080D1 (en) 2005-08-01 2010-11-04 Stora Enso Ab A PACKAGING

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771902A (en) * 1995-09-25 1998-06-30 Regents Of The University Of California Micromachined actuators/sensors for intratubular positioning/steering
US5819749A (en) * 1995-09-25 1998-10-13 Regents Of The University Of California Microvalve
US5634913A (en) * 1996-01-23 1997-06-03 Stinger; Florence Softening conduit for carrying fluids into and out of the human body
US5855585A (en) * 1996-06-11 1999-01-05 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US6102897A (en) * 1996-11-19 2000-08-15 Lang; Volker Microvalve
US5855565A (en) * 1997-02-21 1999-01-05 Bar-Cohen; Yaniv Cardiovascular mechanically expanding catheter
US6663821B2 (en) * 2000-03-09 2003-12-16 The Regents Of The University Of California Bistable microvalve and microcatheter system
US6587250B2 (en) * 2001-03-07 2003-07-01 Acreo Ab Electrochromic device
US20030236445A1 (en) * 2002-06-21 2003-12-25 Couvillon Lucien Alfred Universal programmable guide catheter

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8029504B2 (en) 2007-02-15 2011-10-04 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US9375268B2 (en) 2007-02-15 2016-06-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US10478248B2 (en) 2007-02-15 2019-11-19 Ethicon Llc Electroporation ablation apparatus, system, and method
US8449538B2 (en) 2007-02-15 2013-05-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US11399834B2 (en) 2008-07-14 2022-08-02 Cilag Gmbh International Tissue apposition clip application methods
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US9220526B2 (en) 2008-11-25 2015-12-29 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US9011431B2 (en) 2009-01-12 2015-04-21 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10004558B2 (en) 2009-01-12 2018-06-26 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
CN101953724A (en) * 2010-04-19 2011-01-26 杭州启明医疗器械有限公司 Bracket fixing head used for loading artificial valve replacement device
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US10342612B2 (en) 2010-10-21 2019-07-09 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US9855097B2 (en) 2010-10-21 2018-01-02 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US9636173B2 (en) 2010-10-21 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US10278761B2 (en) 2011-02-28 2019-05-07 Ethicon Llc Electrical ablation devices and methods
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9402684B2 (en) 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US11284918B2 (en) 2012-05-14 2022-03-29 Cilag GmbH Inlernational Apparatus for introducing a steerable camera assembly into a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US10342598B2 (en) 2012-08-15 2019-07-09 Ethicon Llc Electrosurgical system for delivering a biphasic waveform
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US11147948B2 (en) 2012-10-22 2021-10-19 Medtronic Ardian Luxembourg S.A.R.L. Catheters with enhanced flexibility and associated devices, systems, and methods
US10188829B2 (en) 2012-10-22 2019-01-29 Medtronic Ardian Luxembourg S.A.R.L. Catheters with enhanced flexibility and associated devices, systems, and methods
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US11484191B2 (en) 2013-02-27 2022-11-01 Cilag Gmbh International System for performing a minimally invasive surgical procedure
US10792173B2 (en) 2013-03-11 2020-10-06 DePuy Synthes Products, Inc. Stent delivery system and method
US9956103B2 (en) 2013-03-11 2018-05-01 DePuy Synthes Products, Inc. Stent delivery system and method
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US10172734B2 (en) 2013-03-13 2019-01-08 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
US10786378B2 (en) 2013-03-13 2020-09-29 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US10166069B2 (en) 2014-01-27 2019-01-01 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
US11154353B2 (en) 2014-01-27 2021-10-26 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10736690B2 (en) 2014-04-24 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US11464563B2 (en) 2014-04-24 2022-10-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
CN106214249A (en) * 2016-09-12 2016-12-14 肖玉根 A kind of medical nerve monitoring electric knife

Also Published As

Publication number Publication date
US7331969B1 (en) 2008-02-19
EP1194072A1 (en) 2002-04-10
DE60036547D1 (en) 2007-11-08
CA2377368A1 (en) 2000-12-28
WO2000078222A1 (en) 2000-12-28
SE519023C2 (en) 2002-12-23
JP4263405B2 (en) 2009-05-13
SE9902348D0 (en) 1999-06-21
EP1194072B1 (en) 2007-09-26
ES2293909T3 (en) 2008-04-01
EP1194072B9 (en) 2008-02-20
AU777277B2 (en) 2004-10-07
AU5863100A (en) 2001-01-09
ATE373990T1 (en) 2007-10-15
CA2377368C (en) 2009-04-14
BR0011808A (en) 2002-04-23
JP2003502095A (en) 2003-01-21
DE60036547T2 (en) 2008-06-26
SE9902348L (en) 2000-12-22

Similar Documents

Publication Publication Date Title
US20060287644A1 (en) Tools and methods for biomedical surgery
US20070299422A1 (en) Surgical device, method for operation thereof and body-implantable device
AU2007204738B2 (en) A medical delivery system of a medically useful payload
JP4465359B2 (en) Apparatus and method for implanting catheter-based fasteners using graft force degradation
US6969395B2 (en) Electroactive polymer actuated medical devices
US6293955B1 (en) Percutaneous bypass graft and securing system
US7182771B1 (en) Vascular couplers, techniques, methods, and accessories
US7300455B2 (en) Intravascular device for axially stretching blood vessels
US6328727B1 (en) Transluminal anastomosis method and apparatus
EP2647338B1 (en) Device to close openings in body tissue
JP4276939B2 (en) Micromuscles in biological media
MXPA06012765A (en) Lumen traversing device.
JP2002518082A (en) Sutureless anastomosis system
US20050043708A1 (en) Anastomosis device and method
IES20030539A2 (en) Stents and stent delivery system
JPH09507777A (en) Endovascular prostheses such as cardiovascular stents
US20070027519A1 (en) Devices and methods for stent deployment
CN112543619A (en) Vascular fixation for establishing a percutaneous fistula
AU2001287076B2 (en) Heart support to prevent ventricular remodeling
MXPA06008305A (en) Anastomotic ring applier for use in colorectal applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROMUSCLE AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INGANAS, OLLE;JAGER, EDWIN;SELBING, ANDERS;REEL/FRAME:018182/0162

Effective date: 20060823

AS Assignment

Owner name: CREGANNA SOLUTIONS, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CREGANNA MEDICAL DEVICES LTD.;REEL/FRAME:023122/0317

Effective date: 20090511

Owner name: CREGANNA MEDICAL DEVICES LTD., IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROMUSCLE AB;REEL/FRAME:023122/0034

Effective date: 20081109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION