US20060253270A1 - Model for modifying drill data to predict hole locations in a panel structure - Google Patents

Model for modifying drill data to predict hole locations in a panel structure Download PDF

Info

Publication number
US20060253270A1
US20060253270A1 US11/431,356 US43135606A US2006253270A1 US 20060253270 A1 US20060253270 A1 US 20060253270A1 US 43135606 A US43135606 A US 43135606A US 2006253270 A1 US2006253270 A1 US 2006253270A1
Authority
US
United States
Prior art keywords
panel
drill
data
layered
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/431,356
Inventor
Manh-Quan Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/431,356 priority Critical patent/US20060253270A1/en
Publication of US20060253270A1 publication Critical patent/US20060253270A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4638Aligning and fixing the circuit boards before lamination; Detecting or measuring the misalignment after lamination; Aligning external circuit patterns or via connections relative to internal circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09918Optically detected marks used for aligning tool relative to the PCB, e.g. for mounting of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Definitions

  • the present invention relates to a method of creating a mathematical model which is employed in the determination of at least one work location in a multi-layered laminated circuit panel. More particularly, the invention is directed to the creation of a mathematical model for modifying drill data which takes into consideration translational and rotational compensations caused by the encountered stretching or shrinking of the multi-layered panel subsequent to pressing or due to thermally processing, whereby the mathematical model may be utilized to modify drill data in order to accurately predict hole or via locations.
  • Whitcomb et al. U.S. Pat. No. 6,030,154 uses a search algorithm to find better holes locations; in fact, tries to find new location in the local of the existing one.
  • change increment it will vary only to scale shrinkage/growth about the panel center on either x- or y-direction (not both) along with other parameters: i.e. x and y translation, and rotation about the panel center. That means, the patent will establish a change increment in a matrix combination of either (T x , T y , S x , rotation) or (T x , T y , S y , rotation).
  • the present invention employs an exact mathematical model to predict the better locations for the holes.
  • the model includes translation and scaling (on both x- and y-directions) and rotational compensations, however, the term “rotation” in applicant's disclosure means the change of the angle between two parallel lines after completion of the pressing processes.
  • the resulting compensation factors can be very easily used to modify the data file before importing into the drill machine, for instance, such as to write a simple program that can modify every single point's coordinates using the exact mathematical model.
  • Kosmowski et al. U.S. Pat. No. 5,529,441 differs from the present invention in that different mathematical modes are used to predict hole location; in effect, the patent uses the least squares best fit, while a simple mathematical model is used in my disclosure.
  • each panel is being analyzed to determine the compensation factors and drilled with modified data on the same apparatus.
  • Statistical data gathering from a batch of panels is suggested to be used for improving other process registrations, such as lamination registration.
  • a batch of panels is being analyzed to determine the compensation factors. Drill data is then modified and fed into drill machines that do not have an integrated vision system to drill the panels.
  • Amman et al. U.S. Pat. No. 5,206,820 discloses a method adapted to analyze panel misregistration in a printed circuit board. It requires a mean to align the center of the panel with the center of the master pattern etched on a glass reference. Then the detected corner offsets of the panel are measured and transformed into eight primary parameters, which are directional shifts ⁇ x and ⁇ y, rotation with respect to center of the panel ⁇ , directional distortions ⁇ and ⁇ , shear ⁇ , and directional expansions ⁇ x and ⁇ y .
  • U and V are the horizontal and vertical displacements of the detected corners.
  • a set of these eight primary parameters collected from a sampling of panels selected from a manufacturing lot is then used to calculate advanced parameters.
  • Such advanced parameters including the average, the standard deviation, and the range of the primary parameters are claimed as critical means to analyze panel misregistration.
  • this patent uses different mathematical models to understand the probable causes of panel misregistration, whereas the method of the present invention to modify data due to the shrinkage/stretch of the panels.
  • Araki U.S. Pat. No. 5,223,536 pertains to a method of perforating a printed circuit board with a pair of perforating devices. The distance between the two perforating devices is adjusted to be equal to the actual distance of two patterns on the panel, which is detected by an image processing device. Then the two perforating devices perforate the printed circuit board at the same time.
  • this patent is completely irrelevant to the present inventive concept.
  • Alzmann et al. U.S. Pat. No. 4,829,375 is directed to a method and apparatus for automatically punching tooling slots or holes into a panel.
  • the apparatus employs a vision system to locate two fiducial marks on the panel, wherein the vision system defines references for the fiducial targets and preset reference.
  • a positioning system moves the panel to position the fiducial marks on the panel directly in relationship to the preset references. After the positioning operation, tooling slots or holes are punched on the panel.
  • U.S. Pat. No. 5,111,406 discloses a method that engages a fixture on a multi-layered panel.
  • the fixture is carefully prepared with fixture holes that correspond to the locations of the fiducial pads on layers of the panels.
  • the patented apparatus uses x-rays to capture at the same time, coordinates of the measured locations of the fiducial pads on a multi-layered panel and coordinates of the ideal locations of the fixture holes. These coordinates from a sample of panels are then analyzed by a “Best Fit algorithm”.
  • the offsets are fitted to produce a single offset value that may be sent to a drilling machine to determine a position for drilled holes in the panel.
  • this patent mainly discusses the method and apparatus used to determine the fitted offsets that are added to each of the ideal drill coordinates.
  • Hale et al. U.S. Pat. No. 4,123,695 is directed to a method using a vision system to automatically position the drill bit to a desired location; therefore, is completely irreverent to the present invention.
  • Wilent et al U.S. Pat. No. 4,790,694 discloses a method and apparatus intended to determine locations of three fiducial marks on a multi-layered printed circuit board prior to drilling.
  • the patent employs the best least square fit to minimize any misaligning between four target areas on the board and the precisely located target holes on a template. After optimization, three fiducial marks are punched along one edge of the board. These three fiducial marks are then used to position the board in a drilling apparatus.
  • Japanese Patent JP 3136708 discloses a method of employing an image pickup device to obtain the coordinates of register marks at several positions in a work piece, then boring process will be adapted to geometrical distortions of the workpiece.
  • European Patent EPO 669792 is primarily a European version of U.S. Pat. No. 5,529,441 to Kosmowski et al., and the comments directed thereto are equally applicable to the European patent.
  • none of the prior art patent publications are adapted to provide a method of creating a mathematical model for modifying drill data employed in the drilling of holes or vias in a multi-layered panel or printed circuit board, which takes into account both translational and rotational compensations in x and y directional planes due to the stretching or shrinking of the panels encountered due to pressing or thermal processing of the panels.
  • the present invention is directed to the translation and scaling in both x and y directions, the rotational compensations generally are directed to meeting the change in the angle formed between two parallel lines subsequent to the pressing or thermal processing of the panels.
  • the inventive concept is essentially contemplated in applying the measurement of some features of a panel, generally, preferable for each panel prior to lamination; implementing lamination of the multi-layered panels; measuring these features subsequent to lamination; utilizing an algorithm to calculate the rotation and scale of coordinate offsets which are encountered in the x and y directions; modifying the data file; and finally drilling the panel based on the modified data file of the information conveyed to a drilling apparatus or machine.
  • the foregoing object is obtained by utilizing an algorithm for modifying drill data to locate a multi-layered circuit panel location fiducia utilizing panel rotation, shrinkage expansion and distortion subsequent to lamination of the various panel layers.
  • Another object is to utilize a drill machine with a vision system to measure the after-lamination position of the fiducial marks on the external layer of a multi-layered circuit panel, comparing the position of the fiducial with a drill data base, calculating the offsets and adjusting the drill data base so as to position the holes in compensated locations depending upon the hole coordinates in the multi-layered circuit panel, while utilizing rotational and scalar adjustments transmitted to the drill data base.
  • FIG. 1 illustrates a diagrammatic representation of the functions x and y which maps the points in a first panel-representing space to corresponding points in a second panel-representing space, before and subsequent to the pressing and/or thermal processing of the multi-layered panel;
  • FIG. 2 a illustrates the coordinates of the reference points on the panel prior to the pressing of thermal processing of the latter.
  • FIG. 2 b illustrates the actual coordinates of the points referred to in FIG. 2 a subsequent to the pressing or thermal processing of the panel.
  • a drill machine such as a so called SMART drill machine as widely utilized in the technology, is employed to drill laser fiducial holes, vias and slots in a circuit board or panel 12 .
  • An integrated vision system of the drilling machine measures the actual locations of four flower marks, as shown in FIG. 2 a of the drawings. Thereupon compensation factors are computed for each panel prior to drilling the laser fidicuary holes and slots, whereby the actual locations of the laser fiduciary slots and holes have been modified accordingly.
  • the aspects which are to be considered is the manner in which those hole locations have been modified.
  • the first panel space 12 contains the reference points in the data file (x i , y i )
  • the second panel space 14 contains the actual points in the panel (x′ i , y′ i ,).
  • FIGS. 2 a and 2 b of the drawings Considering to a particular example of the foregoing, in setting forth a model for modifying drill data, reference may now be made to FIGS. 2 a and 2 b of the drawings.
  • FIG. 2 a shows the coordinates of the reference points (1), (2), (3), and (4) before the panel 12 is pressed.
  • FIG. 2 b shows the actual coordinates of these points on panel 14 after pressing.
  • the foregoing should be implemented utilizing a method with the employment with at least 20 multi-layered circuit panels, but preferably not exceeding 4.1 panels in order to obtain an accurate determination of corrected drill data.
  • the coordinates of the reference points indicate to be 4 points on each panel, should be recorded prior to and subsequent to the pressing or thermal processing of the panels 12 , the latter of which upon the processing having been completed become actually the somewhat distorted panels 14 .
  • equations (3) and (4) should be employed in order to modify the drill data prior to inputting into the drill machine so as to derive the correct locations for the holes, vias or slots which are to be drilled into the panels.

Abstract

A method of creating a mathematical model which is employed in the determination of at least one work location in a multi-layered laminated circuit panel. The mathematical model for modifying drill data takes into consideration translational and rotational compensations caused by the encountered stretching or shrinking of the multi-layered panel subsequent to pressing or due to thermally processing, whereby the mathematical model may be utilized to modify drill data in order to accurately predict hole or via locations.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method of creating a mathematical model which is employed in the determination of at least one work location in a multi-layered laminated circuit panel. More particularly, the invention is directed to the creation of a mathematical model for modifying drill data which takes into consideration translational and rotational compensations caused by the encountered stretching or shrinking of the multi-layered panel subsequent to pressing or due to thermally processing, whereby the mathematical model may be utilized to modify drill data in order to accurately predict hole or via locations.
  • In the implementation of pressing and/or thermal processes employed in producing multi-layered panels for semiconductor packages, such panels frequently will stretch or shrink in non-uniformly translational and rotational aspects, and consequently may be the source of erroneous locations in the formation of holes or vias which are drilled into the panels, thereby rendering the panels unsuitable for installation in electronic packages, and subjecting the processes to economic losses for the manufactures.
  • At times, such positional errors in the formation of fiducial holes or vias and slots by means of laser drilling are encountered when utilizing the same machine, such as a drilling apparatus, with the same drilling location set up. Currently, the only translational compensation which is incorporated into the drilling data for drill machines employed in forming holes or vias in panels, such as those for electronic packages or printed circuits, fail to provide any integrated vision systems. This renders any corrections for distortions encountered in the multi-layered panels to be difficult to attain so as to be able to compensate precisely for distortional stretching or shrinkage conditions which are encountered during the pressing or thermal processing of the panels prior to effectuating their drilling.
  • 2. Discussion of the Prior Art
  • Although numerous publications are presently available, which direct themselves to providing for various types of error compensations, such through the utilization of algorithms and various mathematical programs adapted to compensate for misalignments and distortions in multi-layered printed circuit boards or panels in order to optimize hole or via drill positions, none of these have been able to adequately precisely overcome the distortion problems which are encountered, inasmuch as there is no accounting for encountered dimensional stability problems or compensation factor calculations in both translational and rotational position error considerations.
  • Whitcomb et al. U.S. Pat. No. 6,030,154 uses a search algorithm to find better holes locations; in fact, tries to find new location in the local of the existing one. However, while establishing change increment, it will vary only to scale shrinkage/growth about the panel center on either x- or y-direction (not both) along with other parameters: i.e. x and y translation, and rotation about the panel center. That means, the patent will establish a change increment in a matrix combination of either (Tx, Ty, Sx, rotation) or (Tx, Ty, Sy, rotation).
  • To the contrary, the present invention employs an exact mathematical model to predict the better locations for the holes. The model includes translation and scaling (on both x- and y-directions) and rotational compensations, however, the term “rotation” in applicant's disclosure means the change of the angle between two parallel lines after completion of the pressing processes.
  • Since U.S. Pat. No. 6,030,154 uses a numerical search algorithm, the obtained results cannot be used to modify the data file before importing into a drill machine, but must be manually input by the operators to the drill machine's controllers.
  • In the present disclosure, the resulting compensation factors can be very easily used to modify the data file before importing into the drill machine, for instance, such as to write a simple program that can modify every single point's coordinates using the exact mathematical model.
  • Forehand et al U.S. Pat. No. 5,710,063 discloses a method to prepare fiducials on a panel, whereby an optically-aligned drill, such as Dynamotion Drill with “Smart Drill” option, is positioned over the panel and adapted to precisely align the bit of the drill with these fiducials. This is not relevant to the present disclosure.
  • Kosmowski et al. U.S. Pat. No. 5,529,441 differs from the present invention in that different mathematical modes are used to predict hole location; in effect, the patent uses the least squares best fit, while a simple mathematical model is used in my disclosure. In the patent, each panel is being analyzed to determine the compensation factors and drilled with modified data on the same apparatus. Statistical data gathering from a batch of panels is suggested to be used for improving other process registrations, such as lamination registration. To the contrary, in the present invention a batch of panels is being analyzed to determine the compensation factors. Drill data is then modified and fed into drill machines that do not have an integrated vision system to drill the panels.
  • Amman et al. U.S. Pat. No. 5,206,820 discloses a method adapted to analyze panel misregistration in a printed circuit board. It requires a mean to align the center of the panel with the center of the master pattern etched on a glass reference. Then the detected corner offsets of the panel are measured and transformed into eight primary parameters, which are directional shifts Δx and Δy, rotation with respect to center of the panel θ, directional distortions α and β, shear γ, and directional expansions εx and εy. In fact, these eight parameters are the coefficient or a combination of the coefficients of the models:
    U=a o +a 1 x+a 2 y+a 3 xy,
    V=b o +b 1 x+b 2 y+b 3 yx.
    where U and V are the horizontal and vertical displacements of the detected corners. A set of these eight primary parameters collected from a sampling of panels selected from a manufacturing lot is then used to calculate advanced parameters. Such advanced parameters including the average, the standard deviation, and the range of the primary parameters are claimed as critical means to analyze panel misregistration.
  • Thus, this patent uses different mathematical models to understand the probable causes of panel misregistration, whereas the method of the present invention to modify data due to the shrinkage/stretch of the panels.
  • Araki U.S. Pat. No. 5,223,536 pertains to a method of perforating a printed circuit board with a pair of perforating devices. The distance between the two perforating devices is adjusted to be equal to the actual distance of two patterns on the panel, which is detected by an image processing device. Then the two perforating devices perforate the printed circuit board at the same time. Thus, this patent is completely irrelevant to the present inventive concept.
  • Alzmann et al. U.S. Pat. No. 4,829,375 is directed to a method and apparatus for automatically punching tooling slots or holes into a panel. The apparatus employs a vision system to locate two fiducial marks on the panel, wherein the vision system defines references for the fiducial targets and preset reference. A positioning system moves the panel to position the fiducial marks on the panel directly in relationship to the preset references. After the positioning operation, tooling slots or holes are punched on the panel. Thus, this patent has nothing in common with the present invention.
  • Zachman et al. U.S. Pat. No. 5,111,406 discloses a method that engages a fixture on a multi-layered panel. The fixture is carefully prepared with fixture holes that correspond to the locations of the fiducial pads on layers of the panels. The patented apparatus uses x-rays to capture at the same time, coordinates of the measured locations of the fiducial pads on a multi-layered panel and coordinates of the ideal locations of the fixture holes. These coordinates from a sample of panels are then analyzed by a “Best Fit algorithm”.
  • The offsets are fitted to produce a single offset value that may be sent to a drilling machine to determine a position for drilled holes in the panel. Thus, unlike the present invention, this patent mainly discusses the method and apparatus used to determine the fitted offsets that are added to each of the ideal drill coordinates. In addition, it is not known as to how the “Best Fit algorithm” actually works, and in any case ha nothing in common with the present invention.
  • Hale et al. U.S. Pat. No. 4,123,695 is directed to a method using a vision system to automatically position the drill bit to a desired location; therefore, is completely irreverent to the present invention.
  • Wilent et al U.S. Pat. No. 4,790,694 discloses a method and apparatus intended to determine locations of three fiducial marks on a multi-layered printed circuit board prior to drilling. The patent employs the best least square fit to minimize any misaligning between four target areas on the board and the precisely located target holes on a template. After optimization, three fiducial marks are punched along one edge of the board. These three fiducial marks are then used to position the board in a drilling apparatus.
  • Japanese Patent JP 3136708 discloses a method of employing an image pickup device to obtain the coordinates of register marks at several positions in a work piece, then boring process will be adapted to geometrical distortions of the workpiece.
  • Finally, European Patent EPO 669792 is primarily a European version of U.S. Pat. No. 5,529,441 to Kosmowski et al., and the comments directed thereto are equally applicable to the European patent.
  • SUMMARY OF THE INVENTION
  • In essence, none of the prior art patent publications are adapted to provide a method of creating a mathematical model for modifying drill data employed in the drilling of holes or vias in a multi-layered panel or printed circuit board, which takes into account both translational and rotational compensations in x and y directional planes due to the stretching or shrinking of the panels encountered due to pressing or thermal processing of the panels. Although the present invention is directed to the translation and scaling in both x and y directions, the rotational compensations generally are directed to meeting the change in the angle formed between two parallel lines subsequent to the pressing or thermal processing of the panels.
  • In particular, the inventive concept is essentially contemplated in applying the measurement of some features of a panel, generally, preferable for each panel prior to lamination; implementing lamination of the multi-layered panels; measuring these features subsequent to lamination; utilizing an algorithm to calculate the rotation and scale of coordinate offsets which are encountered in the x and y directions; modifying the data file; and finally drilling the panel based on the modified data file of the information conveyed to a drilling apparatus or machine.
  • Accordingly, it is an object of the present invention to derive a method for determining at least one work location in a multi-layered laminated circuit panel by providing a first circuitized core element having fiduciary marks, providing at least one additional metallic element, providing a data file having reference coordinates of the multi-layered circuit panel work locations and also having the reference coordinates of the fidicuary mark locations of the first circuitized core element with the reference coordinates of the fiduciary marks of the first circuitized core element, creating a modified work location by adjusting the data file with the rotational and scale coordinate offset of the fiduciary mark locations, and modifying the multi-layered circuit panel at the modified work location.
  • The foregoing object is obtained by utilizing an algorithm for modifying drill data to locate a multi-layered circuit panel location fiducia utilizing panel rotation, shrinkage expansion and distortion subsequent to lamination of the various panel layers.
  • Moreover, it is also an object to modify a drill data base so as to produce a drill machine fiducia in a multi-layered circuit panel subsequent to lamination thereof by providing measured rotation and scale offsets to the drill data base.
  • Another object is to utilize a drill machine with a vision system to measure the after-lamination position of the fiducial marks on the external layer of a multi-layered circuit panel, comparing the position of the fiducial with a drill data base, calculating the offsets and adjusting the drill data base so as to position the holes in compensated locations depending upon the hole coordinates in the multi-layered circuit panel, while utilizing rotational and scalar adjustments transmitted to the drill data base.
  • BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • Reference may now be made to the following detailed description of preferred embodiments of the invention, taken in conjunction with the accompanying drawings; in which:
  • FIG. 1 illustrates a diagrammatic representation of the functions x and y which maps the points in a first panel-representing space to corresponding points in a second panel-representing space, before and subsequent to the pressing and/or thermal processing of the multi-layered panel;
  • FIG. 2 a illustrates the coordinates of the reference points on the panel prior to the pressing of thermal processing of the latter; and
  • FIG. 2 b illustrates the actual coordinates of the points referred to in FIG. 2 a subsequent to the pressing or thermal processing of the panel.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Referring to detail to the inventive disclosure, a drill machine (not shown), such as a so called SMART drill machine as widely utilized in the technology, is employed to drill laser fiducial holes, vias and slots in a circuit board or panel 12. An integrated vision system of the drilling machine measures the actual locations of four flower marks, as shown in FIG. 2 a of the drawings. Thereupon compensation factors are computed for each panel prior to drilling the laser fidicuary holes and slots, whereby the actual locations of the laser fiduciary slots and holes have been modified accordingly. The aspects which are to be considered is the manner in which those hole locations have been modified.
  • Inasmuch as a four-point alignment algorithm is employed by the present invention, the following offsets are to be imposed.
      • X/Y offset between points in the panel and the reference points in the file
      • Panel rotation offset.
      • Scaling (stretch and shrink) along each axis.
      • Additional X and Y linear scaling, i.e. accounting for both X as a linear function of Y, and Y as a linear function of X.
  • Inasmuch as the introduction of the panel rotation offset is the primary reason for the encountered “rotational error”, the latter in actuality is not an error but is rather, a natural occurrence due to the four-point alignment algorithm.
  • Set forth hereinbelow is a model for the above-mentioned offsets.
  • Referring to FIG. 1 the following is indicated:
  • Consider two panel spaces: the first panel space 12 contains the reference points in the data file (xi, yi), the second panel space 14 contains the actual points in the panel (x′i, y′i,). A function f(x, y) maps the points in the first panel space 12 relative to corresponding points in the second panel space 14 (as shown in FIG. 1). That means,
    x′ i =f x(x i , y i)  (1)
    and
    y′ i =f y(x i , y i).  (2)
  • With regard to the foregoing, the following Table 1 summarizes the forms of functions f corresponding to the offsets.
    TABLE 1
    Offset
    fx fy
    X/Y offset between points Ax Ay
    rotation Dxy/x Dyy/x
    scaling Bxx Bxy
    additional scaling Cxy Cxx

    Thus,
    x′ i =A x +B x x i +C x y i +D x y i /x i  (3)
    and
    y′ i =A y +B y y i +C x x i +D y y i /x i.  (4)
    Determination of the Coefficients
  • It is possible then to easily determine the coefficients A, B, C, and D as follows. For i=1, 2, 3 and 4, writing equations (3) and (4) for x- and y-directions, wherein,
    A x +B x x 1 +C x y 1 +D x y 1 /x 1 =x′ 1
    A x +B x x 2 +C x y 2 +D x y 2 /x 2 =x′ 2
    A x +B x x 3 +C x y 3 +D x y 3 /x 3 =x′ 3
    A x +B x x 4 +C x y 4 +D x y 4 /x 4 =x′ 4
    and
    A y +B y y 1 +C y x 1 +D y y 1 /x 1 =y′ 1
    A y +B y y 2 +C y x 2 +D y y 2 /x 2 =y′ 2
    A y +B y y 3 +C y x 3 +D y y 3 /x 3 =y′ 3
    A y +B y y 4 +C y x 4 +D y y 4 /x 1 =y′ 4.
  • The above equations can be written in matrix form as, [ 1 x 1 y 1 y 1 / x 1 1 x 2 y 2 y 2 / x 2 1 x 3 y 3 y 3 / x 3 1 x 4 y 4 y 4 / x 3 ] [ A x B x C x D x ] = [ x 1 x 2 x 3 x 4 ] T x Γ x = Ω x and [ 1 y 1 x 1 y 1 / x 1 1 y 2 x 2 y 2 / x 2 1 y 3 x 3 y 3 / x 3 1 y 4 x 4 y 4 / x 4 ] [ A y B y C y D y ] = [ y 1 y 2 y 3 y 4 ] T y Γ y = Ω y
  • Thus,
    Γx T x −1Ωxand Γy =T y −1Ωy.  (5) & (6)
  • Considering to a particular example of the foregoing, in setting forth a model for modifying drill data, reference may now be made to FIGS. 2 a and 2 b of the drawings.
  • Example
  • FIG. 2 a shows the coordinates of the reference points (1), (2), (3), and (4) before the panel 12 is pressed. FIG. 2 b shows the actual coordinates of these points on panel 14 after pressing. Using equations (5) and (6) to determine the coefficients and substituting them into equations (3) and (4), there is obtained,
    x=−5.1895(10)−3+1.0011x−4.6942(10)−4 y−1.9595(10)−3 y/x,
    and
    y=−4.6562(10)−3+0.99991y+1.9599(10)−5 x−8.9194(10)−3 y/x.
  • For instance, it is now intended to drill 4 holes at the following locations: P (10, 10), Q(450,10), R(5,332.5), and S(455,322.5). The correct coordinates, in the drill program, should be: P′(9.9992, 9.9955), (Q′(450.4851, 9.9954), R′(4,7225, 32.7805), and S′(455.3425, 322.2203).
  • Computing the angle between the line P′Q′ and R′S′. Equation of the line passing P′Q′ is y=−2.2702 (10)−7 x+9.9955, and equation of the line passing R′S′ is y=1.2432 (10)−3x+322.78. Take two vectors: {1, −2.2702(a0)−7}T points along P′Q′ and {1, −1.2432 (10)−3}T points along R′S′. Then the angle between these two vector is 0.001243 radians.
  • The foregoing should be implemented utilizing a method with the employment with at least 20 multi-layered circuit panels, but preferably not exceeding 4.1 panels in order to obtain an accurate determination of corrected drill data. Basically, the coordinates of the reference points, indicate to be 4 points on each panel, should be recorded prior to and subsequent to the pressing or thermal processing of the panels 12, the latter of which upon the processing having been completed become actually the somewhat distorted panels 14.
  • Thereafter, the coefficients should be computed utilizing the above-referenced equations (5) and (6).
  • Thereafter equations (3) and (4) should be employed in order to modify the drill data prior to inputting into the drill machine so as to derive the correct locations for the holes, vias or slots which are to be drilled into the panels.
  • The foregoing, quite clearly provides for an extremely simple method in being able to correct the locations for proposed drill holes which are supplied to a drill machine, to thereby inexpensively optimize the production of the multi-layered circuit panels for the electronic packages.
  • While the invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (7)

1. A method of creating a mathematical model for determining at least one work location. in a multi-layered panel, wherein said mathematical model employs an algorithm considering translational and rotational compensations caused by panel rotation, shrinkage, stretching, expansions and distortions during pressing and thermal processing of said panel, said algorithm facilitating the accurate predication of the location of said at least work location subsequent to the processing of said panel.
2. A method as claimed in claim 1, wherein said algorithm modifies drill data for producing drill machine fiducia in the drilling of a hole, via or slot at said at least one work location.
3. A method as claimed in claim 2, wherein said drill data fiducia is produced in said multi-layered panel after lamination thereof by providing measured rotational, translational and scalar offset data to said drill data to modify said at least one work location in said panel.
4. A method as claimed in claim 1, wherein a plurality of said work locations are measured prior to lamination of the layers of said multi-layered panel; laminating said panel layers; measuring said work locations subsequent to lamination and resultant processing of said laminated panel; utilizing said algorithm to calculate rotational and scalar coordinate offsets resulting from said panel processing; modifying a data file of said measured values; and drilling said panel with the modified data file at optimized work locations.
5-11. (canceled)
12. A computer program device as claimed in claim 11, wherein said algorithm modifies drill data for producing drill machine fiducia in the drilling of a hole, via or slot at said at least one work location.
13-20. (canceled)
US11/431,356 2002-01-08 2006-05-10 Model for modifying drill data to predict hole locations in a panel structure Abandoned US20060253270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/431,356 US20060253270A1 (en) 2002-01-08 2006-05-10 Model for modifying drill data to predict hole locations in a panel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/042,539 US7089160B2 (en) 2002-01-08 2002-01-08 Model for modifying drill data to predict hole locations in a panel structure
US11/431,356 US20060253270A1 (en) 2002-01-08 2006-05-10 Model for modifying drill data to predict hole locations in a panel structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/042,539 Division US7089160B2 (en) 2002-01-08 2002-01-08 Model for modifying drill data to predict hole locations in a panel structure

Publications (1)

Publication Number Publication Date
US20060253270A1 true US20060253270A1 (en) 2006-11-09

Family

ID=21922477

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/042,539 Expired - Fee Related US7089160B2 (en) 2002-01-08 2002-01-08 Model for modifying drill data to predict hole locations in a panel structure
US11/431,356 Abandoned US20060253270A1 (en) 2002-01-08 2006-05-10 Model for modifying drill data to predict hole locations in a panel structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/042,539 Expired - Fee Related US7089160B2 (en) 2002-01-08 2002-01-08 Model for modifying drill data to predict hole locations in a panel structure

Country Status (1)

Country Link
US (2) US7089160B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817389B2 (en) 2013-03-05 2017-11-14 Rolls-Royce Corporation Adaptively machining component surfaces and hole drilling
US9817393B2 (en) 2013-03-08 2017-11-14 Rolls-Royce Corporation Adaptive machining of components
US10030524B2 (en) 2013-12-20 2018-07-24 Rolls-Royce Corporation Machined film holes
CN109068490A (en) * 2018-09-30 2018-12-21 东莞联桥电子有限公司 A kind of HDI substrate processing technology
US10162331B2 (en) 2015-03-02 2018-12-25 Rolls-Royce Corporation Removal of material from a surface of a dual walled component
CN109688736A (en) * 2019-01-29 2019-04-26 深圳市景旺电子股份有限公司 Multilayer circuit board and preparation method thereof
CN110708874A (en) * 2019-09-24 2020-01-17 珠海崇达电路技术有限公司 Method for rapidly judging hole deviation of OPE (optical connection edge) of HDI (high Density interconnect) plate
US20210360776A1 (en) * 2020-05-14 2021-11-18 Schmoll Maschinen Gmbh Machining Station and Method For Controlling or Identifying Platelike Workpieces

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161814A1 (en) * 2002-12-27 2005-07-28 Fujitsu Limited Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus
DE102004049439A1 (en) * 2004-10-08 2006-04-13 Feinfocus Gmbh Drilling device for drilling contacting bores for connecting contacting surfaces of multilayer printed circuit boards
GB0612805D0 (en) * 2006-06-28 2006-08-09 Xact Pcb Ltd Registration system and method
KR100882261B1 (en) * 2007-07-25 2009-02-06 삼성전기주식회사 Manufacturing method and system of printed circuit board
CN102189282B (en) * 2010-03-12 2013-03-06 宏恒胜电子科技(淮安)有限公司 System and method for making short slot hole of circuit board
IL210656A0 (en) * 2010-06-15 2011-03-31 Camtek Ltd System and method for aligning layers of a device
KR101175871B1 (en) * 2010-09-28 2012-08-21 삼성전기주식회사 Method for revision of printing error in pcb
KR101474859B1 (en) 2013-09-12 2014-12-30 주식회사 고영테크놀러지 Reference data generating method for inspecting a circuit
JP6498564B2 (en) * 2015-08-20 2019-04-10 日置電機株式会社 Processing apparatus, substrate inspection apparatus, processing method, and substrate inspection method
CN107295748B (en) * 2017-06-06 2019-04-23 深圳市旗众智能科技有限公司 Stage apparatus is exchanged in patch, hot pressing automatically
DE112018007557T5 (en) 2018-05-04 2021-01-14 Halliburton Energy Services, Inc. Self-correcting prediction of the entry and exit hole diameter
CN111698846B (en) * 2020-06-23 2022-01-04 重庆方正高密电子有限公司 Circuit board and manufacturing method thereof

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123695A (en) * 1974-10-04 1978-10-31 U.S. Philips Corporation Pattern recognition system
US4709694A (en) * 1986-07-28 1987-12-01 Connell Bonnie O Glove-like dynamic splint and method of using same
US4829375A (en) * 1986-08-29 1989-05-09 Multiline Technology, Inc. Method for punching in printed circuit board laminates and related apparatus and articles of manufacture
US5111406A (en) * 1990-01-05 1992-05-05 Nicolet Instrument Corporation Method for determining drill target locations in a multilayer board panel
US5206820A (en) * 1990-08-31 1993-04-27 At&T Bell Laboratories Metrology system for analyzing panel misregistration in a panel manufacturing process and providing appropriate information for adjusting panel manufacturing processes
US5233536A (en) * 1990-03-26 1993-08-03 Seikosha Co., Ltd. Method and apparatus for perforating a printed circuit board
US5325308A (en) * 1991-07-25 1994-06-28 Okuma Corporation Simulation method of machining steps
US5529441A (en) * 1994-02-28 1996-06-25 Cybernetics Products, Inc. Drill coordinate optimization for multi-layer printed circuit board
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
US5710063A (en) * 1996-06-06 1998-01-20 Sun Microsystems, Inc. Method for improving the alignment of holes with other elements on a printed circuit board
US5831854A (en) * 1995-01-17 1998-11-03 Omron Corporation Method and device for supporting the repair of defective substrates
US5850535A (en) * 1995-10-12 1998-12-15 Computervision Corporation Roll-back during regeneration on a computer-aided design system
US5949693A (en) * 1996-09-06 1999-09-07 Tandler; William Computer aided design (CAD) system for automatically constructing datum reference frame (DRF) and feature control frame (FCF) for machine part
US6000124A (en) * 1995-11-07 1999-12-14 Seiko Precision Inc. Method and apparatus for manufacturing multilayer printed circuit board
US6030154A (en) * 1998-06-19 2000-02-29 International Business Machines Corporation Minimum error algorithm/program
US6470301B1 (en) * 1999-10-08 2002-10-22 Dassault Systemes Optimization tool for assembly workcell layout
US6658375B1 (en) * 1999-03-15 2003-12-02 Isola Laminate Systems, Inc. Compensation model and registration simulation apparatus and method for manufacturing of printed circuit boards
US6678642B1 (en) * 1998-10-08 2004-01-13 Sandia Corporation Method of and apparatus for modeling interactions
US6683316B2 (en) * 2001-08-01 2004-01-27 Aspex, Llc Apparatus for correlating an optical image and a SEM image and method of use thereof
US6819974B1 (en) * 2000-03-29 2004-11-16 The Boeing Company Process for qualifying accuracy of a numerically controlled machining system
US6901809B2 (en) * 2000-11-17 2005-06-07 Battelle Memorial Institute Structural stress analysis
US7024343B2 (en) * 2000-12-07 2006-04-04 Visteon Global Technologies, Inc. Method for calibrating a mathematical model
US7149668B2 (en) * 2001-09-12 2006-12-12 Siemens Aktiengesellschaft Visualization of workpieces during simulation of milling processes
US7174225B2 (en) * 2003-11-12 2007-02-06 Siemens Aktiengesellschaft Method and system for simulating processing of a workpiece with a machine tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136708A (en) 1989-10-19 1991-06-11 Hitachi Seiko Ltd Boring system for print board boring machine and method of measuring coordinates of center of circle in boring system for print board boring machine

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123695A (en) * 1974-10-04 1978-10-31 U.S. Philips Corporation Pattern recognition system
US4709694A (en) * 1986-07-28 1987-12-01 Connell Bonnie O Glove-like dynamic splint and method of using same
US4829375A (en) * 1986-08-29 1989-05-09 Multiline Technology, Inc. Method for punching in printed circuit board laminates and related apparatus and articles of manufacture
US5111406A (en) * 1990-01-05 1992-05-05 Nicolet Instrument Corporation Method for determining drill target locations in a multilayer board panel
US5233536A (en) * 1990-03-26 1993-08-03 Seikosha Co., Ltd. Method and apparatus for perforating a printed circuit board
US5206820A (en) * 1990-08-31 1993-04-27 At&T Bell Laboratories Metrology system for analyzing panel misregistration in a panel manufacturing process and providing appropriate information for adjusting panel manufacturing processes
US5325308A (en) * 1991-07-25 1994-06-28 Okuma Corporation Simulation method of machining steps
US5529441A (en) * 1994-02-28 1996-06-25 Cybernetics Products, Inc. Drill coordinate optimization for multi-layer printed circuit board
US5831854A (en) * 1995-01-17 1998-11-03 Omron Corporation Method and device for supporting the repair of defective substrates
US5850535A (en) * 1995-10-12 1998-12-15 Computervision Corporation Roll-back during regeneration on a computer-aided design system
US6000124A (en) * 1995-11-07 1999-12-14 Seiko Precision Inc. Method and apparatus for manufacturing multilayer printed circuit board
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
US5710063A (en) * 1996-06-06 1998-01-20 Sun Microsystems, Inc. Method for improving the alignment of holes with other elements on a printed circuit board
US5949693A (en) * 1996-09-06 1999-09-07 Tandler; William Computer aided design (CAD) system for automatically constructing datum reference frame (DRF) and feature control frame (FCF) for machine part
US6507806B1 (en) * 1996-09-06 2003-01-14 William Tandler Computer aided design (CAD) system for automatically constructing datum reference frame (DRF) and feature control frame (FCF) for machine part
US6030154A (en) * 1998-06-19 2000-02-29 International Business Machines Corporation Minimum error algorithm/program
US6678642B1 (en) * 1998-10-08 2004-01-13 Sandia Corporation Method of and apparatus for modeling interactions
US6658375B1 (en) * 1999-03-15 2003-12-02 Isola Laminate Systems, Inc. Compensation model and registration simulation apparatus and method for manufacturing of printed circuit boards
US6470301B1 (en) * 1999-10-08 2002-10-22 Dassault Systemes Optimization tool for assembly workcell layout
US6819974B1 (en) * 2000-03-29 2004-11-16 The Boeing Company Process for qualifying accuracy of a numerically controlled machining system
US6901809B2 (en) * 2000-11-17 2005-06-07 Battelle Memorial Institute Structural stress analysis
US7024343B2 (en) * 2000-12-07 2006-04-04 Visteon Global Technologies, Inc. Method for calibrating a mathematical model
US6683316B2 (en) * 2001-08-01 2004-01-27 Aspex, Llc Apparatus for correlating an optical image and a SEM image and method of use thereof
US7149668B2 (en) * 2001-09-12 2006-12-12 Siemens Aktiengesellschaft Visualization of workpieces during simulation of milling processes
US7174225B2 (en) * 2003-11-12 2007-02-06 Siemens Aktiengesellschaft Method and system for simulating processing of a workpiece with a machine tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817389B2 (en) 2013-03-05 2017-11-14 Rolls-Royce Corporation Adaptively machining component surfaces and hole drilling
US9817393B2 (en) 2013-03-08 2017-11-14 Rolls-Royce Corporation Adaptive machining of components
US10030524B2 (en) 2013-12-20 2018-07-24 Rolls-Royce Corporation Machined film holes
US10162331B2 (en) 2015-03-02 2018-12-25 Rolls-Royce Corporation Removal of material from a surface of a dual walled component
CN109068490A (en) * 2018-09-30 2018-12-21 东莞联桥电子有限公司 A kind of HDI substrate processing technology
CN109688736A (en) * 2019-01-29 2019-04-26 深圳市景旺电子股份有限公司 Multilayer circuit board and preparation method thereof
CN110708874A (en) * 2019-09-24 2020-01-17 珠海崇达电路技术有限公司 Method for rapidly judging hole deviation of OPE (optical connection edge) of HDI (high Density interconnect) plate
CN110708874B (en) * 2019-09-24 2021-06-04 珠海崇达电路技术有限公司 Method for rapidly judging hole deviation of OPE (optical connection edge) of HDI (high Density interconnect) plate
US20210360776A1 (en) * 2020-05-14 2021-11-18 Schmoll Maschinen Gmbh Machining Station and Method For Controlling or Identifying Platelike Workpieces
US11877387B2 (en) * 2020-05-14 2024-01-16 Schmoll Maschinen Gmbh Machining station and method for controlling or identifying platelike workpieces

Also Published As

Publication number Publication date
US7089160B2 (en) 2006-08-08
US20030130826A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US20060253270A1 (en) Model for modifying drill data to predict hole locations in a panel structure
US6581202B1 (en) System and method for monitoring and improving dimensional stability and registration accuracy of multi-layer PCB manufacture
EP0473363B1 (en) Metrology system for analyzing panel misregistration in a panel manufacturing process and providing appropriate information for adjusting panel manufacturing processes
KR100955449B1 (en) Boring method and boring device
TW386047B (en) Drilling apparatus and method for printed circuit board
US6268920B1 (en) Registration of sheet materials using statistical targets and method
WO2002033492A1 (en) Nonlinear image distortion correction in printed circuit board manufacturing
CN101128776A (en) Image-drawing method, image-drawing apparatus, image-drawing system, and correction method
CN112069764A (en) Circuit board marking method and circuit board processing drilling machine
JPH1043917A (en) Boring method for plate-like work and boring device and boring position detecting method and boring position detecting device
JP4515814B2 (en) Mounting accuracy measurement method
CN100539810C (en) The method and apparatus that substrate and printing stencil are aimed at
JPH07130634A (en) Aligner
JP2004283998A (en) Working position correction method
CN114619514B (en) Secondary drilling process
JP3212368B2 (en) Automatic reference drilling machine for printed circuit boards
JP4649125B2 (en) Reference hole drilling machine and error correction method thereof
JPS62113206A (en) Position correcting method
JP2005183663A (en) Profiling method of printed wiring board
JPH0221671B2 (en)
JPH0657381B2 (en) Correction method of hole processing position
JPH06232564A (en) Wiring board boring method and borer
JP2680135B2 (en) Method for drilling holes in printed wiring boards
CN116828711A (en) Method for improving drilling precision of coupling hole
JPH10202598A (en) Drilling device for printed board

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION