US20060251654A1 - Method for treatment of malignant and infectious chronic diseases - Google Patents

Method for treatment of malignant and infectious chronic diseases Download PDF

Info

Publication number
US20060251654A1
US20060251654A1 US11/481,707 US48170706A US2006251654A1 US 20060251654 A1 US20060251654 A1 US 20060251654A1 US 48170706 A US48170706 A US 48170706A US 2006251654 A1 US2006251654 A1 US 2006251654A1
Authority
US
United States
Prior art keywords
vaccine
egf
treatment
antigens
immune
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/481,707
Inventor
Jose Casimiro
Rolando Rodriguez
Agustin Davila
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centro de Immunologia Molecular
Original Assignee
Centro de Immunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro de Immunologia Molecular filed Critical Centro de Immunologia Molecular
Priority to US11/481,707 priority Critical patent/US20060251654A1/en
Publication of US20060251654A1 publication Critical patent/US20060251654A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00113Growth factors
    • A61K39/001131Epidermal growth factor [EGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2815Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD8
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP

Definitions

  • the cancer immunology is based on the premise of tumor-associated antigens, which are expressed by human tumors and not in normal tissues.
  • An alternative to control the division and proliferation of the malignant cells has been to isolate these antigens and present them so that they are recognized by the immune system as non-self antigens and this way to induce a specific immune response.
  • most of the intents of inducing an effective tumoral regression in humans has not been successful.
  • the poor induction of a specific immune response in cancer patients has been the main trouble.
  • EGF Epidermal Growth Factor
  • the EGF system has been target for the active immunotherapy specific for cancer.
  • An example of it constitutes the use of a vaccine that contains one of the main ligands of the EGF-R, the EGF, linked to a carrier protein (U.S. Pat. No. 5,984,018).
  • This vaccine is able to induce an antibody response specific against the autologous or heterologous EGF and to inhibit the binding to its receptor, being blocked mechanisms of proliferation triggered by this binding.
  • Preclinical studies have shown that the immunization of mice with autologous or heterologous EGF linked to a carrier protein in adjuvant increase the survival of mice bearing the Ehrlich ascitic tumor (EAT) (González G. et al. (1996) Vaccine Research 5 (4): 233-243; González G. Et al. (1997) Vaccine Research 6 (2): 91-100)
  • the cancer vaccine development represents an alternative to chemotherapy and together with radiotherapy constitutes the conventional weapons in the treatment of cancer.
  • radiotherapy constitutes the conventional weapons in the treatment of cancer.
  • an early therapy involves the administration of as much of radiations as of a combination of drugs like 5-Fu and Cisplatine among others.
  • the treatment involves the administration of an antibody against the Her-2 receptor, like the Herceptin together with chemotherapy that can be Taxol. Nevertheless, combining specific active immunotherapy with chemotherapy has poor success, in this sense, lymphopenia in cancer patients induced by chemotherapy has been reported (Mackall CL. Oncologist 1999; 4(5):370-8; Mackall CL, Hakim FT, Gress RE. Semin Immunol 1997 December; 9(6):339-46; Hakim FT, Cepeda R, Kaimei S, Mackall CL, McAtee N, Zujewski J, Cowan K, Gress RE. Blood 1997 Nov.
  • the aim of many clinical trials using specific active immunotherapy in advanced cancer patients is to stabilize the objective clinical response induced by chemotherapy, in other words, responder patients are treated with a vaccination schema after chemotherapy (Shawler D L, Bartholomew R M, Garrett M A, Trauger R J, Dorigo O, Van Beveren C, Marchese A, Ferre F, Duffy C, Carlo D J, Sherman L A, Gold D P, Sobol R E. Clin Exp Immunol 2002 July; 129(1):99-106; Musselli C, Ragupathi G, Gilewski T, Panageas K S, Spinat Y, Livingston P O. Int J Cancer 2002 Feb.
  • the present invention provides a method of treating a subject bearing a malignant or infectious chronic disease comprising the following steps: (1.1) immunizing the subject with a vaccine containing a self antigen associated with said malignant or infectious chronic disease, which is coupled to a carrier protein; (1.2) treating said subject with an immune modulator agent; and (1.3) immunizing said subject again with the vaccine of the step 1.1.
  • the subject can be treated with the vaccine by means of a vaccine cycle to raise titers of measurable serum antibodies until obtaining at least the double of the initial titer measured before beginning the immunizations, preferably three times and even more preferably at least higher than 4 times the initial titer.
  • the vaccine contains the self antigen associated with said malignant or infectious chronic disease contains EGF coupled to the carrier protein p64K from Neisseria meningitidis and an appropriate adjuvant selected from aluminum hydroxide and Montanide ISA 51.
  • the concentration of EGF in said vaccine is in the range between 50 and 250 ⁇ g per dose.
  • the immuno modulator agent can be a monoclonal antibody raised against mammalian T cells, such as, for example, an anti-CD25 monoclonal antibody.
  • the immuno modulator agent is used in a concentration range between 0.5 to 100 mg per dose.
  • the methods provided herein can be utilized for the treatment of tumors of epidermoid origin such as, for example, for the treatment of lung, breast and head and neck carcinomas.
  • the present invention relates to methods of treatment useful in chronic diseases, by means of the rupture of tolerance to self-antigens and increasing autoimmune response against these antigens. More particularly, the present invention relates to methods useful in the treatment of tumors that are growth dependent on the Epidermal Growth Factor, including non-small cell lung carcinoma.
  • FIG. 1 The transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the human EGF and it depends on the treatment scheme.
  • Y-axis represents serum dilution;
  • X-axis corresponds to different treatment schemes. Bars correspond to the average value obtained for each animals group, asterisk means p ⁇ 0.05.
  • FIG. 2 The transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the autologous EGF. Idem to FIG. 1 .
  • FIG. 3 The immune response against the self-antigen used for vaccination decreases in immunized subjects bearing tumors.
  • Figure represents antibody values in serum for individual animals in each group.
  • FIG. 4 The vaccination before the poly chemotherapy treatment induces a higher immune response against self-antigens in immunized subjects bearing tumors.
  • Figure represents antibody values in serum for individual animals in each group.
  • Q-V the treatment scheme, chemotherapy followed by vaccination.
  • V-Q-V the treatment scheme, chemotherapy between two vaccination cycles, Asterisk p ⁇ 0.05.
  • FIG. 5 The treatment using immune modulators combined with immunization using cancer vaccines based on self-antigens increases survival of mice bearing tumors. Y-axis represents alive mice in %. Immune modulation using Cyclophosphamide (CY).
  • FIG. 6 The treatment using immune modulators combined with immunization using cancer vaccines based on self-antigens increases survival of mice bearing tumors. Y-axis represents alive mice in %. Immune modulation using anti-CD25 monoclonal antibody.
  • FIG. 7 The treatment using immune modulators combined with cancer vaccines based on self-antigens decreases occurrence of spontaneous lung metastases in mice bearing tumor.
  • Y-axis represents the lung weight.
  • X-axis represents different treatment schemes.
  • Bars correspond to the average weight for each group. Asterisk indicates p ⁇ 0.05.
  • the invention is related to a therapeutic treatment of chronic diseases like cancer and chronic infectious diseases, in which immune system has an important role.
  • the present invention includes the combination in said treatment of vaccines against self-antigens with immune modulators; immune modulators could be chemotherapy or monoclonal antibodies that have this effect on the immune system with a sequence of vaccination-immune modulation-vaccination (VIV).
  • the immune modulators are drugs currently used for chemotherapy, so the sequence must be vaccination-chemotherapy-vaccination (VQV, Spanish abbreviation) opposite to the current trend, which is to administer vaccination just after chemotherapy.
  • the method of treatment of the present invention comprises the following steps:
  • the method includes a first immunization with a vaccine containing, as self antigen associated with said malignant or infectious chronic disease the EGF, which is used range between 50 and 250 ⁇ g per dose and it is coupled to the carrier protein p64K from Neisseria meningitidis .
  • the vaccine also contains additionally an appropriate adjuvant such as, for example, aluminum hydroxide or Montanide ISA 51.
  • a subject is treated with the vaccine by means of a vaccine cycle to raise titers of measurable serum antibodies until obtaining at least the double of the initial titer measured before beginning the immunizations, preferably three times and even more preferably at least higher than 4 times the initial titer.
  • the method of treatment includes as immune modulator agent a monoclonal antibody raised against mammalian T cells, which is used in a concentration range between 0.5 to 100 mg per doses, and it is preferably an anti-CD25 monoclonal antibody.
  • chemotherapeutic drugs which are employed in a range of concentration between 10 and 200 mg per Kg of body weight. Within these chemotherapeutic agents they are preferably selected cyclophosphamide, 5 Fluorouracil (5-FU), Taxol, Cisplatine and Adriamicine.
  • the method of the invention is particularly useful for the treatment of tumors of epidermoid origin, such as lung, breast and head and neck carcinomas.
  • the expression vaccines against self-antigens talks about to a useful agent for active immunotherapy so that it rise a measurable autoimmune response in the subject receiving the treatment, which recognizes the self antigen used for vaccination.
  • the auto antibodies titers can be detected in serum by whichever of the methods available in the state-of-the-art for the measurement of auto antibodies or by detection of the specific immune response in peripheral blood, as much by measurement of specific antibodies as by measurement of specific T cells.
  • the vaccine used in the invention contains as self-antigen the autologous or heterologous EGF.
  • the expression EGF vaccine talks about a useful agent to raise measurable titers of autoantibodies against the autologous or heterologous EGF in the subject receiving the vaccine.
  • EGF talks about the Epidermal Growth Factor, a 53 amino acids polypeptide whose sequence has been reported by Cohen S., Proc. Natl. Acad. Sci. The USA 1975, 72 (1): 317. It also includes analogs and fragments of this molecule that when they are administered as a vaccine, it is able to raise in the receiving subject a particular EGF-vaccine response, as it is the increase of antibody titers against EGF in serum of patients.
  • the vaccine includes human EGF (hu-EGF).
  • this vaccine includes in addition to hu-EGF a carrier protein to increase the immune response in the receiving subject.
  • carrier proteins can be among others tetanic toxoid, chain B of the cholera toxin, the protein p64 of the membrane protein complex of the Neisseria meningitidis , monoclonal antibodies or very small size proteoliposomes (VSSP) derivatives of the external membrane proteins of the Neisseria meningitidis bacterium, that contain powerful ligands of the innate immunity and gangliosides.
  • the vaccine includes the self-antigens associated to VSSP.
  • the vaccine against EGF includes. in the formulation in addition to the EGF and the carrier protein an adjuvant.
  • an adjuvant including for example, aluminum hydroxide, QS 21 or Montanide ISA 51.
  • the vaccine contains EGF/p64 with Montanide ISA 51.
  • the vaccine against the EGF is suitably for parenteral administration.
  • the administration route can be intra-dermic, subcutaneously or preferably by intramuscular route.
  • immune modulators agent talks about those molecules able to contribute or to facilitate a rupture of the tolerance to self-antigens in the subjects receiving the therapeutic combination.
  • Monoclonal antibodies could be anti-CD4, anti-CD6, anti-CD8, anti-CD52, anti-CD25 among others, also could be used as immune modulators, chemotherapeutic agents as cyclophosphamide, Cisplatine, Adriamicine and 5-Fu (5 fluoracil), Taxol.
  • as immune modulator agent can be used a mixture that contains several chemotherapeutic drugs.
  • the therapeutic combination includes the treatment with cyclophosphamide and more preferably with an anti-CD25 monoclonal antibody.
  • the immune modulator agent suitably formulated for its parenteral administration.
  • the administration route can preferably be intra-peritoneal, oral or by intravenous route.
  • the subject is treated with the vaccine using a scheme of the suitable doses to raise titers of measurable serum antibodies, can be made repetitive administrations until obtaining the desired titers.
  • the antibody titers are in relative terms, at least the double of the initial liter measured before beginning the immunizations; preferably the triple and even more preferably at least higher than 4 times. Expressed numerically in dilution terms, they must be at least 1 in 200, preferably 1 in 500 and even more preferably 1 in 1000.
  • the subjects receiving immunotherapy with the vaccine against self-antigens also are treated with immune modulator agents.
  • immune modulator agents As much the patients who suffer cancer or chronic infectious diseases are susceptible of the therapeutic combination disclosed in the present invention, where to break the tolerance of the immune system to self-antigens is very important.
  • cancer patients are treated with EGF vaccine combined with conventional chemotherapy available in the market, preferably cyclophosphamide.
  • the useful immune modulator treatment with the combination disclosed in the present invention can involve the administration of one or several chemotherapeutic drugs.
  • the subject is treated with an anti-CD25 antibody.
  • the patient could be treated with cyclophosphamide.
  • the immune modulator agent is administered between two vaccination cycles.
  • the immune modulator is administered when measurable titers of antibodies against the self antigen in the serum of the patients are detected, at last and after the administration of the immune modulator agent another cycle of vaccination is administered, preferably this second cycle of vaccination will be administered at the moment in which the regeneration of T cells of the peripheral system begins, obtaining a significant increase of the antibody titers against the self antigen.
  • the immune modulator agent is administered when the antibody titer against EGF, measured in the serum of the patient, reveals an autoimmune response against the EGF after vaccination.
  • the patient bearing a tumor whose growth and proliferation are EGF depended first is vaccinated with the EGF/p64 vaccine in one or more dose, until the expected antibody liters could be measured and then the patient is treated with immune modulators, the immune modulators can be a monoclonal antibody anti-T cells or a chemotherapy, with a conventional drug or a mix of those used for cancer treatment and that has a well-known immune modulator effect, this immune modulator treatment becomes in one or more dose until a depletion of peripheral T cells is obtained; later the patient is treated again with the EGF/p64 vaccine, this second cycle of vaccination begins preferably at the moment at which the regeneration of peripheral T cells begins, as a result a reduction of the volume and size of the tumor is obtained, consequently increased survival in the treated patients is observed.
  • the subjects that can be treated with the therapeutic combination of the present invention include mammals and particularly humans.
  • the vaccine used in the present invention uses as active principle autologous or heterologous antigens in relation with the receptor subject.
  • the present therapeutic combination With the therapeutic combination of the present invention an unexpected and significant increase of the levels of antibodies against self-antigens is obtained, and as a consequence the control of the disease by the immune system is achieved.
  • the present therapeutic combination causes an increase of the titers of antibodies against the autologous or heterologous EGF which is higher than that obtained when the vaccine is used alone, this significant increase of the antibody titers is associated to a anti-tumor effect, expressed in terms of reduction of the volume and size of the tumor and with an increased survival.
  • the transitory immune modulation with anti-CD4 and anti-CD8 Monoclonal Antibodies increases the antibody response against Epidermal Growth Factor and it depends on the treatment scheme used.
  • mice were injected by subcutaneous route with 50 ⁇ g of human Epidermal Growth Factor (hu-EGF) in Complete Freund Adjuvant and two weeks later treated by intravenous route with a dose about 0.5 mg of anti-CD4 or anti-CD8 monoclonal antibodies (Mabs). After five days the mice were re-immunized by subcutaneous route with a second dose of 50 ⁇ g of hu-EGF in Incomplete Freund Adjuvant (IFA).
  • IFA Incomplete Freund Adjuvant
  • the transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the autologous Epidermal Growth Factor.
  • FIG. 2 shows that the immune modulation with both anti-CD4 and anti-CD8 Mabs using the scheme (2) also increases the of IgG antibody response against the murine EGF, the one that was significantly higher than the response exhibited by the mice immunized twice with hu-EGF and treated with saline solution, which were used as control. It is shown the geometric average of the IgG antibody titers for each group at day 47 after the first immunization.
  • the immune response against vaccine containing self-antigens diminishes by the presence of tumor in the immunized subjects.
  • mice were injected by intramuscular route with a vaccine that contains 4 ⁇ g of human EGF conjugated to the P64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume) and two weeks later were re-immunized by intramuscular route with a second dose of said vaccine.
  • a group of these animals was inoculated with the syngeneic tumor 3LL-D122 (200 000 cells/animal) in the right plantar pad 2 days previous to the first immunization.
  • FIG. 3 shows that the presence of the syngeneic tumor influences negatively in the induction of the immune response against the vaccinal antigen.
  • the individual titers of IgG + IgM antibodies are shown for each group day 47 after the first immunization.
  • C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200,000 cells/animal) in the right plantar pad.
  • the evolution of the tumor was evaluated by measurement of its diameters every 3 days.
  • mice Four weeks later, the surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter, mice were treated with first-line conventional poly chemotherapy using Cyclophosphamide (600 mg/m 2 ) and Adriamicine (60 mg/m 2 ). After two weeks the animals were injected by intramuscular route with a vaccine that contains 4 ⁇ g of EGF conjugated with p64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume). A sub group of these animals received an additional vaccination cycle previous to poly chemotherapy treatment.
  • EGF-p64 EGF conjugated with p64 protein
  • FIG. 4 shows that immunization previous poly chemotherapy (group V-Q-V) have a positive influence on the development of the immune response against vaccine antigen. It is shown individual IgG + IgM antibody titers for each group at day 59 after inoculation of the primary tumor.
  • the combined treatment with immune modulators during immunization with vaccine antigens increase the survival of animals bearing tumors.
  • mice C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200,000 cells/animal) in the right plantar pad.
  • the evolution of the tumor was evaluated by measurement of its diameters every 3 days and surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter. Mice survival, which is depended of spontaneous lung metastases was measured.
  • mice Two days after the inoculation of the tumor mice were injected by intramuscular route with a vaccine that contains 4 ⁇ g of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume) and two weeks later they were treated with 50 mg/kg of Cyclophosphamide by intravenous route or with saline solution. After three days, the mice were re-immunized by intramuscular route with a second dose of the EGF-p64 vaccine.
  • EGF-p64 human EGF conjugated to the p64 protein
  • mice Two days after to the inoculation of the tumor, mice were injected by intramuscular route with a vaccine that contains 4 ⁇ g of human EGF conjugated to the P64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume) and two weeks later they were treated with 1 mg of anti-CD25 monoclonal antibody by intravenous route or with saline solution as control. After three days, the mice were re-immunized by intramuscular route with a second dose of the EGF-p64 vaccine. An animal group did not receive any treatment.
  • a vaccine that contains 4 ⁇ g of human EGF conjugated to the P64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume) and two weeks later they were treated with 1 mg of anti-CD25 monoclonal antibody by intravenous route or with saline solution as control.
  • mice were re-immunized by intramuscular route with a second dose of the EGF-p64 vaccine. An animal
  • FIG. 6 shows that a similar effect is obtained when Cyclophosphamide or anti-CD25 monoclonal antibody are used, enforcing the idea that the immune modulation in the course of the vaccination increases the survival of subjects bearing tumor, it was significantly higher than the survival of the immunized mice twice with the vaccine and treated with saline solution, groups which were used as control. It is shown the survival curves for each group after the surgery of the primary tumor.
  • the combined treatment with immune modulators during immunization with vaccine antigens decrease occurrence of spontaneous lung metastases in animals bearing tumor.
  • C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200 000 cells/animal) in the right plantar pad.
  • the evolution of the tumor was evaluated by measurement of its diameters every 3 days and surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter. Animals were sacrificed 21 days after the surgery of the primary tumor and metastases occurrence was measured.
  • mice were injected with 50 mg/kg of Cyclophosphamide by intravenous route or with saline solution. Three days later mice were injected by intramuscular route with a vaccine that contains 7 ⁇ g of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume). After two weeks they were re-immunized by intramuscular route with a second dose of the same vaccine.
  • EGF-p64 human EGF conjugated to the p64 protein
  • mice were injected by intramuscular route with a vaccine that contains 7 ⁇ g of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 ⁇ l final volume). After two weeks they were injected with 50 mg/kg of Cyclophosphamide or 1 mg of an anti-CD25 monoclonal antibody or with saline solution by intravenous route. Three days later mice were re-immunized with a second dose of EGF-p64 vaccine by intramuscular route.
  • EGF-p64 human EGF conjugated to the p64 protein
  • FIG. 7 shows a significant decrease in the occurrence of spontaneous lung metastases when mice, bearing the highly metastasic tumor 3LL-D122, are treated using the second scheme even with chemotherapy or antibodies are used as immune modulators.
  • NSCLC Non Small Cell Lung Cancer
  • the final diagnose was Metastatic Adenocarcinoma and consequently the prognosis was very poor.
  • a small tumor sample was evaluated for EGFR expression through an Immunohistochemical staining, which revealed a high membranous staining of about 80% of the tumor cells.
  • the first 4 doses were administered weekly while the fifth dose was applied 30 days after the fourth vaccine. Afterward, patient started the chemotherapy regimen. The patient received 6 cycles of the following combination: Cisplatine (80 mg/m 2 ) and Navelbine (Vinorelbine) (30 mg/m 2 )
  • the antibody response against the EGF has been measured since immunization begins.
  • the patient developed a very high antibody response (1:32000) after the use of the vaccine. During chemotherapy the antibody response decreased until 1:8000. During the tenth month, the antibody titers increased again up to 1:16000.

Abstract

The present invention relates to methods of treatment useful in chronic diseases, by means of breaking tolerance to self-antigens and increasing autoimmune response against these antigens. More particularly, the present invention relates to methods useful in the treatment of tumors that are growth dependent on the Epidermal Growth Factor. The present invention provides a therapeutic combination that includes the combination of a vaccine against self antigens with a monoclonal antibody against peripheral T cells or a chemotherapeutic drug able to induce a depletion of peripheral T cells. The present invention also provides a method of treatment of chronic diseases in which the rupture of the tolerance to self antigens is essential for the control of the disease, by administering an immune suppressor agent between two cycles of vaccination against a self antigen, for example EGF, for effective treatment for the reduction of tumors whose growth depends on EGF.

Description

    CROSS-REFERENCE
  • This application is a divisional application of Ser. No. 10/309,015, filed Dec. 4, 2002, which is incorporated herein by reference in its entirety, and to which application we claim priority under 35 USC § 121, which claims the benefit of foreign application Cuba CU 286/2001, filed Dec. 4, 2001, which is incorporated herein by reference in its entirety, and to which application we claim priority under 35 USC § 119(a).
  • BACKGROUND OF THE INVENTION
  • The cancer immunology is based on the premise of tumor-associated antigens, which are expressed by human tumors and not in normal tissues. An alternative to control the division and proliferation of the malignant cells has been to isolate these antigens and present them so that they are recognized by the immune system as non-self antigens and this way to induce a specific immune response. In spite of the several evaluations of this approach, most of the intents of inducing an effective tumoral regression in humans has not been successful. The poor induction of a specific immune response in cancer patients has been the main trouble.
  • Recently have been shown experimental datas that support the idea that the immune repertoire of cancer patients contains B and T cells that recognize the self-antigens expressed by the autologous tumor cells. Moreover, it has been established that deficiency of T cells or anergy is not the reason for the growth of the antigenic tumor cells.
  • Most of the antigens expressed by tumor cells, they reflect the differentiation state of the normal counterpart in the same differentiation state. Accordingly, the self-antigens are emerging like target for cancer immunotherapy. With little success various candidates have been evaluated as much in experimental protocols as in clinical trials.
  • It is known in the state-of-the-art that self-antigens require adjutants as key element in the induction of immune response. Different composed they have been used for cancer in clinical trials using therapeutic vaccines based on these antigens. In this sense the therapeutic strategies have been limited to the activation of peripheral lymphocytes by an increase in the accessory molecules availability (cytokines, etc) or by the use of modified self antigens, structurally homologous molecules expressed in insects or infectious pathogens (viral vectors) as “a danger signal”. Nevertheless this strategy in many cases does not increase substantially the immune response and in other cases it is abolished after the induction. Therefore the main problem to solve is the form to break the state of immune tolerance or what is same, the ignorance to the self-antigens contained in vaccines and this way to induce the tumor regression.
  • A variety of tumors exist whose proliferation depends on Epidermal Growth Factor (EGF). A strategy has been to use the active immunotherapy with vaccines that contain EGF to induce the immune response against this molecule and by this route to inhibit the proliferation effect of the EGF on these tumors. Generally these vaccines include an adjuvant in order to increase the specific immune response.
  • The EGF system has been target for the active immunotherapy specific for cancer. An example of it constitutes the use of a vaccine that contains one of the main ligands of the EGF-R, the EGF, linked to a carrier protein (U.S. Pat. No. 5,984,018). This vaccine is able to induce an antibody response specific against the autologous or heterologous EGF and to inhibit the binding to its receptor, being blocked mechanisms of proliferation triggered by this binding. Preclinical studies have shown that the immunization of mice with autologous or heterologous EGF linked to a carrier protein in adjuvant increase the survival of mice bearing the Ehrlich ascitic tumor (EAT) (González G. et al. (1996) Vaccine Research 5 (4): 233-243; González G. Et al. (1997) Vaccine Research 6 (2): 91-100)
  • Results in a Phase I clinical trial using a recombinant vaccine containing human EGF demonstrated the immunogenicity and the none-toxicity caused by the vaccination (Gonzalez G. et al. (1998) Annals of Oncology): 1-5).
  • The cancer vaccine development represents an alternative to chemotherapy and together with radiotherapy constitutes the conventional weapons in the treatment of cancer. For example the treatment established for patients with lung carcinomas, an early therapy involves the administration of as much of radiations as of a combination of drugs like 5-Fu and Cisplatine among others.
  • For breast cancer, the treatment involves the administration of an antibody against the Her-2 receptor, like the Herceptin together with chemotherapy that can be Taxol. Nevertheless, combining specific active immunotherapy with chemotherapy has poor success, in this sense, lymphopenia in cancer patients induced by chemotherapy has been reported (Mackall CL. Oncologist 1999; 4(5):370-8; Mackall CL, Hakim FT, Gress RE. Semin Immunol 1997 December; 9(6):339-46; Hakim FT, Cepeda R, Kaimei S, Mackall CL, McAtee N, Zujewski J, Cowan K, Gress RE. Blood 1997 Nov. 1; 90(9):3789-98.) The aim of many clinical trials using specific active immunotherapy in advanced cancer patients is to stabilize the objective clinical response induced by chemotherapy, in other words, responder patients are treated with a vaccination schema after chemotherapy (Shawler D L, Bartholomew R M, Garrett M A, Trauger R J, Dorigo O, Van Beveren C, Marchese A, Ferre F, Duffy C, Carlo D J, Sherman L A, Gold D P, Sobol R E. Clin Exp Immunol 2002 July; 129(1):99-106; Musselli C, Ragupathi G, Gilewski T, Panageas K S, Spinat Y, Livingston P O. Int J Cancer 2002 Feb. 10; 97(5):660-7; Ragupathi G, Cappello S, Yi S S, Canter D, Spassova M, Bornmann W G, Danishefsky S J, Livingston P O. Vaccine 2002 Jan. 15; 20(7-8):1030-8; Holmberg L A, Sandmaier BM. Expert Opin Biol Ther 2001 September; 1(5):881-91).
  • Although a variety of anti cancer agents are used or in development is increasing, the cancer prevalence imposes the need to continue developing and improving the therapeutic arms against this disease.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of treating a subject bearing a malignant or infectious chronic disease comprising the following steps: (1.1) immunizing the subject with a vaccine containing a self antigen associated with said malignant or infectious chronic disease, which is coupled to a carrier protein; (1.2) treating said subject with an immune modulator agent; and (1.3) immunizing said subject again with the vaccine of the step 1.1.
  • The subject can be treated with the vaccine by means of a vaccine cycle to raise titers of measurable serum antibodies until obtaining at least the double of the initial titer measured before beginning the immunizations, preferably three times and even more preferably at least higher than 4 times the initial titer. The vaccine contains the self antigen associated with said malignant or infectious chronic disease contains EGF coupled to the carrier protein p64K from Neisseria meningitidis and an appropriate adjuvant selected from aluminum hydroxide and Montanide ISA 51. In the present methods, the concentration of EGF in said vaccine is in the range between 50 and 250 μg per dose.
  • In the methods provided herein, the immuno modulator agent can be a monoclonal antibody raised against mammalian T cells, such as, for example, an anti-CD25 monoclonal antibody.
  • In the methods provided herein, the immuno modulator agent is used in a concentration range between 0.5 to 100 mg per dose.
  • The methods provided herein can be utilized for the treatment of tumors of epidermoid origin such as, for example, for the treatment of lung, breast and head and neck carcinomas.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to methods of treatment useful in chronic diseases, by means of the rupture of tolerance to self-antigens and increasing autoimmune response against these antigens. More particularly, the present invention relates to methods useful in the treatment of tumors that are growth dependent on the Epidermal Growth Factor, including non-small cell lung carcinoma.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1: The transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the human EGF and it depends on the treatment scheme. Y-axis represents serum dilution; X-axis corresponds to different treatment schemes. Bars correspond to the average value obtained for each animals group, asterisk means p<0.05.
  • FIG. 2: The transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the autologous EGF. Idem to FIG. 1.
  • FIG. 3: The immune response against the self-antigen used for vaccination decreases in immunized subjects bearing tumors. Figure represents antibody values in serum for individual animals in each group.
  • FIG. 4: The vaccination before the poly chemotherapy treatment induces a higher immune response against self-antigens in immunized subjects bearing tumors. Figure represents antibody values in serum for individual animals in each group.
  • Q-V: the treatment scheme, chemotherapy followed by vaccination.
  • V-Q-V: the treatment scheme, chemotherapy between two vaccination cycles, Asterisk p<0.05.
  • FIG. 5: The treatment using immune modulators combined with immunization using cancer vaccines based on self-antigens increases survival of mice bearing tumors. Y-axis represents alive mice in %. Immune modulation using Cyclophosphamide (CY).
  • FIG. 6: The treatment using immune modulators combined with immunization using cancer vaccines based on self-antigens increases survival of mice bearing tumors. Y-axis represents alive mice in %. Immune modulation using anti-CD25 monoclonal antibody.
  • FIG. 7: The treatment using immune modulators combined with cancer vaccines based on self-antigens decreases occurrence of spontaneous lung metastases in mice bearing tumor. Y-axis represents the lung weight. X-axis represents different treatment schemes.
  • Bars correspond to the average weight for each group. Asterisk indicates p<0.05.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
  • The invention is related to a therapeutic treatment of chronic diseases like cancer and chronic infectious diseases, in which immune system has an important role. The present invention includes the combination in said treatment of vaccines against self-antigens with immune modulators; immune modulators could be chemotherapy or monoclonal antibodies that have this effect on the immune system with a sequence of vaccination-immune modulation-vaccination (VIV). In a preferred embodiment the immune modulators are drugs currently used for chemotherapy, so the sequence must be vaccination-chemotherapy-vaccination (VQV, Spanish abbreviation) opposite to the current trend, which is to administer vaccination just after chemotherapy.
  • Thus, the method of treatment of the present invention comprises the following steps:
      • Immunizing a patient with a vaccine containing a self-antigen associated with said malignant or infectious chronic disease, being said self-antigen coupled to a carrier protein;
      • Treating said patient with an immune modulator agent; and finally
      • Immunizing said patient again with the vaccine of the initial step.
  • In a preferably embodiment of the invention the method includes a first immunization with a vaccine containing, as self antigen associated with said malignant or infectious chronic disease the EGF, which is used range between 50 and 250 μg per dose and it is coupled to the carrier protein p64K from Neisseria meningitidis. The vaccine also contains additionally an appropriate adjuvant such as, for example, aluminum hydroxide or Montanide ISA 51.
  • In the method of the invention a subject is treated with the vaccine by means of a vaccine cycle to raise titers of measurable serum antibodies until obtaining at least the double of the initial titer measured before beginning the immunizations, preferably three times and even more preferably at least higher than 4 times the initial titer.
  • In another preferably embodiment in this invention the method of treatment includes as immune modulator agent a monoclonal antibody raised against mammalian T cells, which is used in a concentration range between 0.5 to 100 mg per doses, and it is preferably an anti-CD25 monoclonal antibody.
  • Similarly as immune modulator agent can be used one or several chemotherapeutic drugs, which are employed in a range of concentration between 10 and 200 mg per Kg of body weight. Within these chemotherapeutic agents they are preferably selected cyclophosphamide, 5 Fluorouracil (5-FU), Taxol, Cisplatine and Adriamicine.
  • The method of the invention is particularly useful for the treatment of tumors of epidermoid origin, such as lung, breast and head and neck carcinomas.
  • In the treatment scheme that involves the administration of two compounds, they are administered as independent doses to the same patient in the course of the therapy.
  • The expression vaccines against self-antigens talks about to a useful agent for active immunotherapy so that it rise a measurable autoimmune response in the subject receiving the treatment, which recognizes the self antigen used for vaccination. The auto antibodies titers can be detected in serum by whichever of the methods available in the state-of-the-art for the measurement of auto antibodies or by detection of the specific immune response in peripheral blood, as much by measurement of specific antibodies as by measurement of specific T cells.
  • The vaccine used in the invention contains as self-antigen the autologous or heterologous EGF. The expression EGF vaccine talks about a useful agent to raise measurable titers of autoantibodies against the autologous or heterologous EGF in the subject receiving the vaccine.
  • The expression EGF talks about the Epidermal Growth Factor, a 53 amino acids polypeptide whose sequence has been reported by Cohen S., Proc. Natl. Acad. Sci. The USA 1975, 72 (1): 317. It also includes analogs and fragments of this molecule that when they are administered as a vaccine, it is able to raise in the receiving subject a particular EGF-vaccine response, as it is the increase of antibody titers against EGF in serum of patients.
  • Preferably the vaccine includes human EGF (hu-EGF). But more preferred this vaccine includes in addition to hu-EGF a carrier protein to increase the immune response in the receiving subject. Such carrier proteins can be among others tetanic toxoid, chain B of the cholera toxin, the protein p64 of the membrane protein complex of the Neisseria meningitidis, monoclonal antibodies or very small size proteoliposomes (VSSP) derivatives of the external membrane proteins of the Neisseria meningitidis bacterium, that contain powerful ligands of the innate immunity and gangliosides. Preferably the vaccine includes the self-antigens associated to VSSP.
  • The vaccine against EGF includes. in the formulation in addition to the EGF and the carrier protein an adjuvant. Anyone of commercially available adjuvants could be used, including for example, aluminum hydroxide, QS 21 or Montanide ISA 51. In a preferred embodiment the vaccine contains EGF/p64 with Montanide ISA 51.
  • The vaccine against the EGF is suitably for parenteral administration. The administration route can be intra-dermic, subcutaneously or preferably by intramuscular route.
  • Preferably the patient is treated with an immune modulator agent after one or more doses of vaccination and lastly, at the moment at which begins the regeneration of peripheral T cells the patient is reimmunized with the vaccine. Being that the response to the self-antigens is increased significantly.
  • The expression “immune modulators agent” talks about those molecules able to contribute or to facilitate a rupture of the tolerance to self-antigens in the subjects receiving the therapeutic combination. Preferably within them can be included monoclonal antibodies against mammalian T cells or chemotherapeutic agents to induce depletion of peripheral T cells. Monoclonal antibodies could be anti-CD4, anti-CD6, anti-CD8, anti-CD52, anti-CD25 among others, also could be used as immune modulators, chemotherapeutic agents as cyclophosphamide, Cisplatine, Adriamicine and 5-Fu (5 fluoracil), Taxol. In another embodiment of the present invention, as immune modulator agent can be used a mixture that contains several chemotherapeutic drugs.
  • In a preferred embodiment the therapeutic combination includes the treatment with cyclophosphamide and more preferably with an anti-CD25 monoclonal antibody. The immune modulator agent suitably formulated for its parenteral administration. The administration route can preferably be intra-peritoneal, oral or by intravenous route.
  • Actually, the subject is treated with the vaccine using a scheme of the suitable doses to raise titers of measurable serum antibodies, can be made repetitive administrations until obtaining the desired titers. Preferably the antibody titers are in relative terms, at least the double of the initial liter measured before beginning the immunizations; preferably the triple and even more preferably at least higher than 4 times. Expressed numerically in dilution terms, they must be at least 1 in 200, preferably 1 in 500 and even more preferably 1 in 1000.
  • In agreement with the present invention, the subjects receiving immunotherapy with the vaccine against self-antigens also are treated with immune modulator agents. As much the patients who suffer cancer or chronic infectious diseases are susceptible of the therapeutic combination disclosed in the present invention, where to break the tolerance of the immune system to self-antigens is very important. In a preferred embodiment of the present invention, cancer patients are treated with EGF vaccine combined with conventional chemotherapy available in the market, preferably cyclophosphamide.
  • The useful immune modulator treatment with the combination disclosed in the present invention can involve the administration of one or several chemotherapeutic drugs. In a preferred embodiment, the subject is treated with an anti-CD25 antibody. In a different embodiment the patient could be treated with cyclophosphamide.
  • In agreement with the therapeutic combination disclosed in the present invention, the immune modulator agent is administered between two vaccination cycles. Preferably the immune modulator is administered when measurable titers of antibodies against the self antigen in the serum of the patients are detected, at last and after the administration of the immune modulator agent another cycle of vaccination is administered, preferably this second cycle of vaccination will be administered at the moment in which the regeneration of T cells of the peripheral system begins, obtaining a significant increase of the antibody titers against the self antigen.
  • In a preferred embodiment, the therapeutic combination includes a vaccine whose active principle is the EGF, with the objective to raise auto antibody titers against this molecule, preferably EGF together with the protein p64 and an appropriate adjuvant, one that could be aluminum hydroxide or Montanide ISA 51. After the administration of one or more dose of the EGF/p64 vaccine, a dose of cyclophosphamide is administered and later another cycle of EGF/p64 vaccine is applied.
  • Preferably the immune modulator agent is administered when the antibody titer against EGF, measured in the serum of the patient, reveals an autoimmune response against the EGF after vaccination. In a preferred embodiment of the present invention, the patient bearing a tumor whose growth and proliferation are EGF depended, first is vaccinated with the EGF/p64 vaccine in one or more dose, until the expected antibody liters could be measured and then the patient is treated with immune modulators, the immune modulators can be a monoclonal antibody anti-T cells or a chemotherapy, with a conventional drug or a mix of those used for cancer treatment and that has a well-known immune modulator effect, this immune modulator treatment becomes in one or more dose until a depletion of peripheral T cells is obtained; later the patient is treated again with the EGF/p64 vaccine, this second cycle of vaccination begins preferably at the moment at which the regeneration of peripheral T cells begins, as a result a reduction of the volume and size of the tumor is obtained, consequently increased survival in the treated patients is observed.
  • The therapeutic combination of the present invention is useful in the treatment of the cancer and other chronic diseases like, the chronic infectious diseases, where it is important to break the tolerance of the immune system of the patient to self antigens. In another aspect of the present invention a suitable range of dose of the immune modulator is provided to obtain the immune modulation of the patient immune system. Such doses of the immune modulator in the case of a monoclonal antibody are used in a range of 0.5-100 mg/dose, preferably 1 mg/dose, the chemotherapeutic drugs preferably in the range of doses that usually are used in the clinical practice, between 10-200 mg/Kg of weight.
  • The subjects that can be treated with the therapeutic combination of the present invention include mammals and particularly humans. Preferably the vaccine used in the present invention uses as active principle autologous or heterologous antigens in relation with the receptor subject.
  • With the therapeutic combination of the present invention an unexpected and significant increase of the levels of antibodies against self-antigens is obtained, and as a consequence the control of the disease by the immune system is achieved. Particularly in the treatment of EGF dependent tumors, the present therapeutic combination causes an increase of the titers of antibodies against the autologous or heterologous EGF which is higher than that obtained when the vaccine is used alone, this significant increase of the antibody titers is associated to a anti-tumor effect, expressed in terms of reduction of the volume and size of the tumor and with an increased survival.
  • EXAMPLES Example 1 Comparison Between Two Treatment Schemes on the Induction of Antibodies Against Human EGF in Healthy Mice (VIV vs IVV). Immune Modulating with Anti-Mammalian T Cells Antibodies
  • The transitory immune modulation with anti-CD4 and anti-CD8 Monoclonal Antibodies increases the antibody response against Epidermal Growth Factor and it depends on the treatment scheme used.
  • BALB/c mice were immunized using two combined protocols: According to the scheme, (1) the mice were injected by intravenous route with a dose of 0.5 mg of anti-CD4 or anti-CD8 monoclonal antibodies (MAbs). Five days later mice were immunized by subcutaneous route with 50 μg of human Epidermal Growth Factor (hu-EGF) in Complete Freund Adjuvant, two weeks later, the mice were re-immunized by subcutaneous route with a second dose of 50 μg of hu-EGF in Incomplete Freund Adjuvant (IFA).
  • According to the scheme (2), the mice were injected by subcutaneous route with 50 μg of human Epidermal Growth Factor (hu-EGF) in Complete Freund Adjuvant and two weeks later treated by intravenous route with a dose about 0.5 mg of anti-CD4 or anti-CD8 monoclonal antibodies (Mabs). After five days the mice were re-immunized by subcutaneous route with a second dose of 50 μg of hu-EGF in Incomplete Freund Adjuvant (IFA). In FIG. 1 it is showed that the immune modulation with both MAbs anti-CD4 and anti-CD8 using the scheme (2) increases IgG antibody response against EGF, the one that was significantly higher than the response exhibited by the mice immunized twice with hu-EGF and treated with saline solution, which were used as control. It is shown the geometric average of the IgG antibody titers for each group at days 19, 33 and 47 after the first immunization.
  • Example 2 Comparison Between Two Treatment Schemes on the Induction of Antibodies Against Autologous EGF in Healthy Mice (VIV vs IVV). Immune Modulating with Anti-Mammalian T Cells Antibodies
  • The transitory immune modulation with anti-CD4 and anti-CD8 monoclonal antibodies increases the antibody response against the autologous Epidermal Growth Factor.
  • BALB/c mice were immunized using two protocols combined similar to that described in Example 1 and the IgG antibody response against murine EGF (autologous) was measured. FIG. 2 shows that the immune modulation with both anti-CD4 and anti-CD8 Mabs using the scheme (2) also increases the of IgG antibody response against the murine EGF, the one that was significantly higher than the response exhibited by the mice immunized twice with hu-EGF and treated with saline solution, which were used as control. It is shown the geometric average of the IgG antibody titers for each group at day 47 after the first immunization.
  • Example 3 Tumor Effect on the Induction of an Antibody Response Against Vaccine Antigens
  • The immune response against vaccine containing self-antigens diminishes by the presence of tumor in the immunized subjects.
  • C57BL/6 mice were injected by intramuscular route with a vaccine that contains 4 μg of human EGF conjugated to the P64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume) and two weeks later were re-immunized by intramuscular route with a second dose of said vaccine. A group of these animals was inoculated with the syngeneic tumor 3LL-D122 (200 000 cells/animal) in the right plantar pad 2 days previous to the first immunization.
  • FIG. 3 shows that the presence of the syngeneic tumor influences negatively in the induction of the immune response against the vaccinal antigen. The individual titers of IgG+IgM antibodies are shown for each group day 47 after the first immunization.
  • Example 4 Induction of Higher Serum Titers Against Human EGF by Combining Immune Modulation with Poly Chemotherapy and Vaccination
  • Immunization before poly chemotherapy treatment induces a higher immune response against vaccine antigens in mice bearing tumors.
  • C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200,000 cells/animal) in the right plantar pad. The evolution of the tumor was evaluated by measurement of its diameters every 3 days.
  • Four weeks later, the surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter, mice were treated with first-line conventional poly chemotherapy using Cyclophosphamide (600 mg/m2) and Adriamicine (60 mg/m2). After two weeks the animals were injected by intramuscular route with a vaccine that contains 4 μg of EGF conjugated with p64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume). A sub group of these animals received an additional vaccination cycle previous to poly chemotherapy treatment.
  • FIG. 4 shows that immunization previous poly chemotherapy (group V-Q-V) have a positive influence on the development of the immune response against vaccine antigen. It is shown individual IgG+IgM antibody titers for each group at day 59 after inoculation of the primary tumor.
  • Example 5 Inducing an Increase of the Survival in Animals Bearing Tumors by the Combination of Immune Modulation with Chemotherapy and Vaccination
  • The combined treatment with immune modulators during immunization with vaccine antigens increase the survival of animals bearing tumors.
  • C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200,000 cells/animal) in the right plantar pad. The evolution of the tumor was evaluated by measurement of its diameters every 3 days and surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter. Mice survival, which is depended of spontaneous lung metastases was measured.
  • Two days after the inoculation of the tumor mice were injected by intramuscular route with a vaccine that contains 4 μg of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume) and two weeks later they were treated with 50 mg/kg of Cyclophosphamide by intravenous route or with saline solution. After three days, the mice were re-immunized by intramuscular route with a second dose of the EGF-p64 vaccine.
  • An animal group just was treated by intravenous route with 50 mg/kg of Cyclophosphamide and another one was not treated.
  • FIG. 5 shows that the immune modulation with Cyclophosphamide in the course of the vaccination increases the mice survival even in subjects bearing tumor, it was significantly higher than the response in mice immunized twice with the vaccine and treated with saline solution or in those that only were treated with Cyclophosphamide, both groups were used as control. It is shown the survival curves for each group after the surgery of the primary tumor.
  • Example 6 Inducing an Increase of the Survival in Animals Bearing Tumors by the Combination of Immune Modulation with Anti-Mammalian T Cells Antibodies and Vaccination
  • C57BL/6 mice were injected with the syngenic tumor 3LL-D122 as it is described in Example 5.
  • Two days after to the inoculation of the tumor, mice were injected by intramuscular route with a vaccine that contains 4 μg of human EGF conjugated to the P64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume) and two weeks later they were treated with 1 mg of anti-CD25 monoclonal antibody by intravenous route or with saline solution as control. After three days, the mice were re-immunized by intramuscular route with a second dose of the EGF-p64 vaccine. An animal group did not receive any treatment.
  • FIG. 6 shows that a similar effect is obtained when Cyclophosphamide or anti-CD25 monoclonal antibody are used, enforcing the idea that the immune modulation in the course of the vaccination increases the survival of subjects bearing tumor, it was significantly higher than the survival of the immunized mice twice with the vaccine and treated with saline solution, groups which were used as control. It is shown the survival curves for each group after the surgery of the primary tumor.
  • Example 7 Comparison of the Effect of Two Treatment Schemes on the Metastases Occurrence in Mice Bearing Tumors. Immune Modulating with Anti-Mammalian T Cells Antibodies or Chemotherapy
  • The combined treatment with immune modulators during immunization with vaccine antigens decrease occurrence of spontaneous lung metastases in animals bearing tumor.
  • C57BL/6 mice were injected with the syngeneic tumor 3LL-D122 (200 000 cells/animal) in the right plantar pad. The evolution of the tumor was evaluated by measurement of its diameters every 3 days and surgery of the primary tumor was practiced (amputation) when it reached 8-9 mm of diameter. Animals were sacrificed 21 days after the surgery of the primary tumor and metastases occurrence was measured.
  • Two days after the inoculation of the tumors mice were treated according to two different schemes.
  • First scheme: mice were injected with 50 mg/kg of Cyclophosphamide by intravenous route or with saline solution. Three days later mice were injected by intramuscular route with a vaccine that contains 7 μg of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume). After two weeks they were re-immunized by intramuscular route with a second dose of the same vaccine.
  • Second scheme: mice were injected by intramuscular route with a vaccine that contains 7 μg of human EGF conjugated to the p64 protein (EGF-p64) in Montanide ISA 51 (100 μl final volume). After two weeks they were injected with 50 mg/kg of Cyclophosphamide or 1 mg of an anti-CD25 monoclonal antibody or with saline solution by intravenous route. Three days later mice were re-immunized with a second dose of EGF-p64 vaccine by intramuscular route.
  • FIG. 7 shows a significant decrease in the occurrence of spontaneous lung metastases when mice, bearing the highly metastasic tumor 3LL-D122, are treated using the second scheme even with chemotherapy or antibodies are used as immune modulators.
  • These effect was significantly superior to that obtained when mice were treated according the first scheme even with chemotherapy or antibodies. It is shown an average lung weight for each experimental group.
  • Example 8 Effect of the Treatment Schemes on a Cancer Patient
  • A patient of 62 years old that had a histologically confirmed Non Small Cell Lung Cancer (NSCLC) (Lung Adenocarcinoma) was selected for the trial. At moment of diagnosis, this patient had a lobectomy of the right Lung Superior Lobe. During 10 years, the patient remained disease free, with no respiratory symptoms.
  • After 10 years, patient suffered haemoptysis, asthenia, anorexia and weight loss. The imagenological methods (X-Rays and CT Scan) established the presence of multiple lesions in both lungs. The patient had a bronchoscopy that confirmed the metastatic origin of the lesions.
  • The final diagnose was Metastatic Adenocarcinoma and consequently the prognosis was very poor.
  • A small tumor sample was evaluated for EGFR expression through an Immunohistochemical staining, which revealed a high membranous staining of about 80% of the tumor cells.
  • The patient received 5 doses of the EGF vaccine (EGF/P64) adjuvanted in Montanide ISA 51.
  • The first 4 doses were administered weekly while the fifth dose was applied 30 days after the fourth vaccine. Afterward, patient started the chemotherapy regimen. The patient received 6 cycles of the following combination: Cisplatine (80 mg/m2) and Navelbine (Vinorelbine) (30 mg/m2)
  • Four weeks after finishing the oncospecific therapy, the patient continued receiving the EGF cancer vaccine. Reimmunization was done monthly thereafter.
  • The antibody response against the EGF has been measured since immunization begins.
  • The specific anti-EGF antibody titers are shown:
    Before vaccination 1:500
    First month- 1:2000
    Second month- 1:32000
    Third month- 1:16000
    Fourth month- 1:16000
    Fifth month- 1:8000
    Sixth month- 1:8000
    Tenth month- 1:8000 (before re-immunization)
    Thirteenth month- 1:16000
  • Before the chemotherapy regimen, the patient developed a very high antibody response (1:32000) after the use of the vaccine. During chemotherapy the antibody response decreased until 1:8000. During the tenth month, the antibody titers increased again up to 1:16000.
  • Fifteen months after the diagnosis of the multiple metastases, this patient remains alive and the metastases on both lungs remain stable.

Claims (11)

1. A method of treating a subject bearing a malignant or infectious chronic disease comprising the following steps:
1.1 immunizing the subject with a vaccine containing a self antigen associated with said malignant or infectious chronic disease, which is coupled to a carrier protein;
1.2 treating said subject with an immune modulator agent; and
1.3 immunizing said subject again with the vaccine of the step 1.1.
2. The method according to claim 1 wherein the subject is treated with the vaccine by means of a vaccine cycle to raise titers of measurable serum antibodies until obtaining at least the double of the initial titer measured before beginning the immunizations, preferably three times and even more preferably at least higher than 4 times the initial titer.
3. A method according to claim 1 wherein the vaccine containing the self antigen associated with said malignant or infectious chronic disease contains EGF coupled to the carrier protein p64K from Neisseria meningitidis and an appropriate adjuvant selected from aluminum hydroxide and Montanide ISA 51.
4. A method according to claim 3 wherein the concentration of EGF in said vaccine is in the range between 50 and 250 μg per dose.
5. A method according to claim 1 wherein the immuno modulator agent is a monoclonal antibody raised against mammalian T cells.
6. A method according to claim 5 wherein the immuno modulator agent is used in a concentration range between 0.5 to 100 mg per doses.
7. A method according to claim 6 wherein the immuno modulator agent is an anti-CD25 monoclonal antibody.
8. A method according to claim 1 for the treatment of tumors of epidermoid origin.
9. A method according to claim 8 for the treatment of lung, breast and head and neck carcinomas.
10. A method according to claim 2 wherein the vaccine containing the self antigen associated with said malignant or infectious chronic disease contains EGF coupled to the carrier protein p64K from Neisseria meningitidis and an appropriate adjuvant selected from aluminum hydroxide and Montanide ISA 51.
11. A method according to claim 10 wherein the concentration of EGF in said vaccine is in the range between 50 and 250 μg per dose.
US11/481,707 2001-04-12 2006-07-05 Method for treatment of malignant and infectious chronic diseases Abandoned US20060251654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/481,707 US20060251654A1 (en) 2001-04-12 2006-07-05 Method for treatment of malignant and infectious chronic diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CUCU286/2001 2001-12-04
CU20010286A CU22999A1 (en) 2001-12-04 2001-12-04 METHOD OF TREATMENT OF CHRONIC MALIGNAL AND INFECTIOUS DISEASES
US10/309,015 US8563003B2 (en) 2001-12-04 2002-12-04 Method for the treatment of malignant and infectious chronic diseases
US11/481,707 US20060251654A1 (en) 2001-04-12 2006-07-05 Method for treatment of malignant and infectious chronic diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/309,015 Division US8563003B2 (en) 2001-04-12 2002-12-04 Method for the treatment of malignant and infectious chronic diseases

Publications (1)

Publication Number Publication Date
US20060251654A1 true US20060251654A1 (en) 2006-11-09

Family

ID=5459613

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/309,015 Active 2025-08-22 US8563003B2 (en) 2001-04-12 2002-12-04 Method for the treatment of malignant and infectious chronic diseases
US11/481,707 Abandoned US20060251654A1 (en) 2001-04-12 2006-07-05 Method for treatment of malignant and infectious chronic diseases

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/309,015 Active 2025-08-22 US8563003B2 (en) 2001-04-12 2002-12-04 Method for the treatment of malignant and infectious chronic diseases

Country Status (2)

Country Link
US (2) US8563003B2 (en)
CU (1) CU22999A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184072A1 (en) * 2007-06-29 2010-05-12 Centro de Inmunologia Molecular Production of an homogeneous vaccine preparation for cancer treatment
WO2013076580A2 (en) 2011-11-23 2013-05-30 Bioven 3 Limited Recombinant proteins and their therapeutic uses
WO2019016597A2 (en) 2017-07-18 2019-01-24 Bioven 3 Limited Synthetic proteins and therapeutic uses thereof
WO2020260947A1 (en) 2019-06-25 2020-12-30 In3Bio Ltd. Stabilized chimeric synthetic proteins and therapeutic uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU23297A1 (en) * 2004-11-16 2008-07-24 Ct De Inmunologa A Molecular IMMUNOTHERAPY / 00UTICAL FORMULATIONS FOR THE INDUCTION OF BLOCKING AUTHORTIC BODIES OF THE INTERLEUCINE-2 UNION TO ITS RECEIVER. ITS USE IN THE TREATMENT OF CÃ NCER
US20090317407A1 (en) * 2006-05-02 2009-12-24 Lacelle Michael G Augmentation of immune response to cancer vaccine
WO2015117952A1 (en) * 2014-02-04 2015-08-13 Celltrend Gmbh Diagnosis of cancer by detecting auto-antibodies against epidermal growth factor (egf)
WO2017143062A1 (en) 2016-02-16 2017-08-24 Regeneron Pharmaceuticals, Inc. Non-human animals having a mutant kynureninase gene
WO2020006576A1 (en) * 2018-06-29 2020-01-02 City Of Hope Compositions and methods for treating autoimmune diseases

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717717A (en) * 1986-11-05 1988-01-05 Ethicon, Inc. Stabilized compositions containing epidermal growth factor
US4877611A (en) * 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
US5102663A (en) * 1988-10-18 1992-04-07 Sloan-Kettering Instutute For Cancer Research Vaccine for stimulating or enhancing production of antibodies against 9-O-acetyl GD3
US5158935A (en) * 1989-05-12 1992-10-27 Chiron Corporation Human epidermal growth factor having substitution at position 11
US5229289A (en) * 1988-03-11 1993-07-20 The Biomembrane Institute Monoclonal antibodies and vaccine development directed to human cancer-associated antigens by immunization with animal and human and with synthetic carbohydrate-carrier conjugates
US5334379A (en) * 1989-07-14 1994-08-02 American Cyanamid Company Cytokine and hormone carriers for conjugate vaccines
US5397770A (en) * 1990-06-04 1995-03-14 Levin; Robert H. Yeast-derived epidermal growth factor/urogastrone-like products
US5468494A (en) * 1993-11-12 1995-11-21 Aphton Corp. Immunogenic compositions against human gastrin 17
US5571894A (en) * 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5578482A (en) * 1990-05-25 1996-11-26 Georgetown University Ligand growth factors that bind to the erbB-2 receptor protein and induce cellular responses
US5728707A (en) * 1995-07-21 1998-03-17 Constantia Gruppe Treatment and prevention of primary and metastatic neoplasms with salts of aminoimidazole carboxamide
US5730977A (en) * 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US5894018A (en) * 1993-12-09 1999-04-13 Centro De Immunologia Molecular Vaccine composition comprising autologous epidermal growth factor or a fragment or a derivative thereof having anti-tumor activity and use thereof in the therapy of malignant diseases
US5984018A (en) * 1996-11-18 1999-11-16 Komatsu Ltd. Dozing system for controlling a cutting angle of a bulldozer blade during dozing operation
US6277368B1 (en) * 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US20020132979A1 (en) * 2000-04-01 2002-09-19 Wen-Tien Chen Compositions and methods for inhibition of cancer invasion and angiogenesis
US6994853B1 (en) * 1998-09-25 2006-02-07 Trion Pharma Gmbh Time-staggered utilization of tumor cells in combination with intact antibodies for immunization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN165717B (en) 1986-08-07 1989-12-23 Battelle Memorial Institute
JPH05502880A (en) 1989-12-22 1993-05-20 セラジェン・インコーポレーテッド Hybrid molecule with a translocation region and a cell binding region
US5597798A (en) * 1990-03-05 1997-01-28 The Regents Of The University Of California Taxol and epidermal growth factor used to enhance treatment of ovarian cancer
US6080399A (en) * 1998-04-23 2000-06-27 Arch Development Corporation Vaccine adjuvants for immunotherapy of melanoma

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877611A (en) * 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
US4717717A (en) * 1986-11-05 1988-01-05 Ethicon, Inc. Stabilized compositions containing epidermal growth factor
US5229289A (en) * 1988-03-11 1993-07-20 The Biomembrane Institute Monoclonal antibodies and vaccine development directed to human cancer-associated antigens by immunization with animal and human and with synthetic carbohydrate-carrier conjugates
US5102663A (en) * 1988-10-18 1992-04-07 Sloan-Kettering Instutute For Cancer Research Vaccine for stimulating or enhancing production of antibodies against 9-O-acetyl GD3
US5158935A (en) * 1989-05-12 1992-10-27 Chiron Corporation Human epidermal growth factor having substitution at position 11
US5334379A (en) * 1989-07-14 1994-08-02 American Cyanamid Company Cytokine and hormone carriers for conjugate vaccines
US5578482A (en) * 1990-05-25 1996-11-26 Georgetown University Ligand growth factors that bind to the erbB-2 receptor protein and induce cellular responses
US5397770A (en) * 1990-06-04 1995-03-14 Levin; Robert H. Yeast-derived epidermal growth factor/urogastrone-like products
US5571894A (en) * 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5468494A (en) * 1993-11-12 1995-11-21 Aphton Corp. Immunogenic compositions against human gastrin 17
US5894018A (en) * 1993-12-09 1999-04-13 Centro De Immunologia Molecular Vaccine composition comprising autologous epidermal growth factor or a fragment or a derivative thereof having anti-tumor activity and use thereof in the therapy of malignant diseases
US5728707A (en) * 1995-07-21 1998-03-17 Constantia Gruppe Treatment and prevention of primary and metastatic neoplasms with salts of aminoimidazole carboxamide
US5730977A (en) * 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US6277368B1 (en) * 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US5984018A (en) * 1996-11-18 1999-11-16 Komatsu Ltd. Dozing system for controlling a cutting angle of a bulldozer blade during dozing operation
US6994853B1 (en) * 1998-09-25 2006-02-07 Trion Pharma Gmbh Time-staggered utilization of tumor cells in combination with intact antibodies for immunization
US20020132979A1 (en) * 2000-04-01 2002-09-19 Wen-Tien Chen Compositions and methods for inhibition of cancer invasion and angiogenesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184072A1 (en) * 2007-06-29 2010-05-12 Centro de Inmunologia Molecular Production of an homogeneous vaccine preparation for cancer treatment
EP2184072A4 (en) * 2007-06-29 2010-09-15 Centro Inmunologia Molecular Production of an homogeneous vaccine preparation for cancer treatment
WO2013076580A2 (en) 2011-11-23 2013-05-30 Bioven 3 Limited Recombinant proteins and their therapeutic uses
EP3744343A1 (en) 2011-11-23 2020-12-02 In3Bio Ltd. Recombinant proteins and their therapeutic uses
WO2019016597A2 (en) 2017-07-18 2019-01-24 Bioven 3 Limited Synthetic proteins and therapeutic uses thereof
WO2020260947A1 (en) 2019-06-25 2020-12-30 In3Bio Ltd. Stabilized chimeric synthetic proteins and therapeutic uses thereof

Also Published As

Publication number Publication date
US20030104014A1 (en) 2003-06-05
US8563003B2 (en) 2013-10-22
CU22999A1 (en) 2004-10-12

Similar Documents

Publication Publication Date Title
US20060251654A1 (en) Method for treatment of malignant and infectious chronic diseases
US8444974B2 (en) Use of antibodies for the vaccination against cancer
ES2212638T3 (en) USE OF TUMOR CELLS IN STAGGED TIME IN COMBINATION WITH INTACT BODIES FOR IMMUNIZATION.
US5607676A (en) Immunogenic compositions against gastrin peptides
CA2943334A1 (en) Immunogenic glycopeptides, composition comprising the glycopeptides and use thereof
JP2005520853A (en) Antibody fusion proteins as effective adjuvants for protein vaccination
CA2325566A1 (en) Vaccine formulations comprising antiidiotypic antibodies which immunologically mimic group b streptococcal carbohydrates
KR100850473B1 (en) Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
JP2010150286A (en) Immunotherapy combined use for treatment of tumor
US6861510B1 (en) Immunogenic compositions against gastrin peptides
KR20010102556A (en) Compositions and methods for treating cancer and hyperproliferative disorders
JP2003514028A (en) New uses for antibodies as vaccines
US20050169929A1 (en) Use of a vaccine for active immunization against cancer
US20090274647A1 (en) Immunotherapeutic Formulations with Interleukin-2-Neutralizing Capacity
US20060246056A1 (en) Immunotherapy of rectal cancer
US20180264093A1 (en) Immunogenic glycopeptide compounds, pharmaceutical compositions and uses thereof
US20060018901A1 (en) Use of antibodies in a very low dose for the vaccination against cancer
US20150216956A1 (en) Peptide Vaccines Based On The EGFRvIII Sequence For The Treatment Of Tumors
US20040115208A1 (en) Method of using colloidal metal-protein composition for treatment of cancer
CN117860879A (en) Nanometer vaccine delivery system and preparation method and application thereof
Boliukh et al. EXPERIMENTAL STUDY OF HEAT SHOCK PROTEINS IN VACCINOTHERAPY OF MALIGNANCIES
US20040265318A1 (en) Use of antibodies for the vaccination against cancer

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION