US20060212051A1 - Constriction device including reinforced suture holes - Google Patents

Constriction device including reinforced suture holes Download PDF

Info

Publication number
US20060212051A1
US20060212051A1 US11/403,542 US40354206A US2006212051A1 US 20060212051 A1 US20060212051 A1 US 20060212051A1 US 40354206 A US40354206 A US 40354206A US 2006212051 A1 US2006212051 A1 US 2006212051A1
Authority
US
United States
Prior art keywords
sleeve
suture
constriction
body tissue
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/403,542
Inventor
Leslie Snyder
Joseph Pearce
Martin Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyrus ACMI Inc
Original Assignee
Leslie Snyder
Pearce Joseph R
Adams Martin N
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leslie Snyder, Pearce Joseph R, Adams Martin N filed Critical Leslie Snyder
Priority to US11/403,542 priority Critical patent/US20060212051A1/en
Publication of US20060212051A1 publication Critical patent/US20060212051A1/en
Assigned to GYRUS ACMI, INC. reassignment GYRUS ACMI, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SPIRATION, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery

Definitions

  • the present invention is generally directed to a constriction device that constricts body tissue.
  • the present invention is more particularly directed to a constriction device that includes reinforced suture holes to permit a suture to maintain the constriction device from being dislodged from the constricted body tissue while protecting the integrity of the constriction device.
  • Constriction devices have been contemplated for constricting body tissue. Such devices have been considered for use, for example, in tissue resection procedures and in treating pulmonary disease.
  • COPD Chronic Obstructive Pulmonary Disease
  • COPD chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
  • Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled ⁇ -agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, Ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pheumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
  • Lung transplantation is also an option.
  • COPD is the most common diagnosis for which lung transplantation is considered.
  • this consideration is given for only those with advanced COPD.
  • lung transplant is far from being available to all patients.
  • LVRS lung volume reduction surgery
  • Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.
  • Air leaks in lungs can be caused by other causes. With increasing age, a patient may develop a weakened section of lung which may then rupture due to an extreme pressure differential, such as may result from simply a hard sneeze. AIDS patients can suffer from air leaks in their lungs. Air leaks in lungs can further be caused by a puncture from a broken rib or a stab wound.
  • the invention disclosed and claimed in copending U.S. application Ser. No. 09/534,244, incorporated herein by reference, provides an improved therapy for treating COPD and air leaks in lungs.
  • the therapy includes a constriction device which, when deployed on a lung, suppresses air leaks in the lung tissue without requiring any suturing of the effected lung tissue. Still further, by constricting a large enough portion of a lung with the device, lung volume reduction with the concomitant improved pulmonary function may be obtained without the need for any suturing of lung tissue at all.
  • the lung constriction device includes a jacket or sheath of flexible material configured to cover at least a portion of a lung.
  • the jacket has a pair of opened ends to permit the lung portion to be drawn into the jacket.
  • the jacket is dimensioned to constrict the lung portion after the lung portion is drawn therein.
  • the lung constriction device is preferably formed of expandable, such as elastic, material for receiving the lung tissue while the device is in an expanded or enlarged condition, and then contractible about the lung portion upon release of the expanded condition for constricting the lung tissue.
  • Devices and methods similar to those disclosed in U.S. application Ser. No. 09/534,244 may be employed to advantage in other and different procedures such as in general resection procedures and for body tissue other than lung tissue.
  • Resection procedures are commonly performed for such body tissue as, for example, atrial appendage tissue, ovarian tissue, gall bladder tissue, pancreatic tissue, appendix tissue and spleen tissue.
  • Resection procedures may be required to treat cancer, organ damage, or organ disease, for example.
  • U.S. application Ser. No. 09/534,244 also discloses and claims various methods and apparatus for deploying the constricting device on body tissue such as lung tissue.
  • One apparatus and method contemplates mechanically expanding the device in a transverse dimension while physically pulling the tissue to be constricted into the device.
  • Another method contemplates mounting the device over a vacuum chamber and pulling the tissue into the vacuum chamber by engaging the tissue with an opened end of the chamber and then drawing a vacuum in the chamber. This draws the tissue into the chamber. Then, the chamber is withdrawn from the device, leaving the tissue constricted in the device.
  • a further method contemplates inserting the device into a vacuum chamber and sealing the opened end of the chamber to the device. The opened end of the chamber and the tissue are then brought into sealing engagement. A vacuum is next pulled in the chamber and the device to pull the tissue into the device and chamber. Once the tissue is within the device, the chamber is removed from over the device leaving the tissue constricted in the device.
  • constriction devices may become dislodged due to the nature of the soft tissue on which they are deployed. More specifically, soft body tissue has a tendency to expand at the proximal end of the device causing longitudinal slippage of the device on the body tissue. This may eventually lead to the device slipping totally free from the tissue.
  • One disclosed device includes a plurality of fixation elements on the inner surface of the sleeve that grasp the body tissue upon release of the sleeve from the expanded condition. More particularly, the fixation elements are adjacent to one of the opposed openings and arranged in a side-by-side relation to grasp the body tissue between adjacent fixation elements when the sleeve is released from the expanded condition.
  • the fixation elements may be integral to the longitudinal-side wall or adhered to the inner surface of the sleeve. Still further, the inner surfaces of the fixation elements may have roughened surfaces to further assist in grasping the constricted body tissue.
  • fixation structures disclosed and claimed in the aforementioned U.S. application Ser. No. 09/902,821 are believed to be sufficient alone for maintaining the constriction device on the constricted body tissue, it is contemplated herein that other forms of fixation may be further employed alone or in combination with the above described fixation structures for maintaining the constriction device on the constricted body tissue.
  • fixation structures disclosed and claimed in the aforementioned U.S. application Ser. No. 09/902,821 are believed to be sufficient alone for maintaining the constriction device on the constricted body tissue, it is contemplated herein that other forms of fixation may be further employed alone or in combination with the above described fixation structures for maintaining the constriction device on the constricted body tissue.
  • One additional form of fixation widely practiced in the medical field is suturing.
  • the present invention provides a constriction device that constricts body tissue, and which is configured to be sutured to constricted body tissue while protecting the integrity of the device.
  • the device includes an elongated sleeve including at least one opened end and being formed from elastic material to receive, when in an expanded condition, body tissue to be constricted and to constrict the body tissue when released from the expanded condition.
  • the device further includes at least one suture hole that receives a suture to maintain the sleeve on the body tissue and a reinforcement structure about the at least one suture hole.
  • the reinforcement structure may be an increased thickness of the sleeve about the at least one suture hole.
  • the sleeve may include a plurality of suture holes and the increased thickness may be about each of the suture holes.
  • the suture holes are distributed about the sleeve near to the at least one opened end.
  • the increased thickness of the sleeve may be formed as a band circumscribing the sleeve with the sutures holes extending through the band.
  • the increased thickness may further have a tapered cross-section for guiding a suture needle into the suture holes.
  • the increased thickness may extend from the inner surface of the sleeve or from the outer surface of the sleeve.
  • the reinforcement structure may alternatively be a layer of elastic material having a higher tear strength than the elastic material of the sleeve and which is disposed about each of the suture holes.
  • the layer of elastic material may be a continuous band about the sleeve.
  • the present invention further provides a constriction device that constricts body tissue.
  • the device includes a generally cylindrical elastic sleeve including opposed opened ends and having a wall of substantially uniform thickness that receives body tissue therein to constrict the body tissue and at least one suture hole to receive a suture to maintain the sleeve on tissue constricted by the sleeve.
  • the sleeve wall has an increased thickness, greater than the substantially uniform thickness, about the at least one suture hole.
  • the present invention still further provides a constriction device that constricts body tissue, and including sleeve means formed of elastic material including at least one opened end for constricting body tissue received therein, suture hole means for receiving a suture to maintain the sleeve means on the body tissue, and suture hole reinforcing means about the suture hole means for reinforcing the suture hole means.
  • FIG. 1 is a simplified sectional view of a thorax illustrating a respiratory system having a constricting device embodying the present invention deployed on a portion of a lung to effect lung volume reduction;
  • FIG. 2 is a sectional view similar to FIG. 1 but illustrating the respiratory system after the constricted lung portion has been resectioned;
  • FIG. 3 is a perspective view illustrating a constricting device embodying the present invention
  • FIG. 4 is a cross-sectional view of a suture hole of the device of FIG. 3 and a suture hole reinforcement structure embodying the present invention
  • FIG. 5 is a perspective view of another constriction device embodying the present invention.
  • FIG. 6 is a cross-sectional view of a suture hole of the device of FIG. 5 and a suture hole reinforcement structure configured in accordance with another embodiment of the present invention
  • FIG. 7 is a perspective view of another constriction device embodying the present invention.
  • FIG. 8 is a cross-sectional view of a suture hole of the constriction device of FIG. 7 and illustrating its reinforcing structure in accordance with a still further embodiment of the present invention.
  • FIG. 1 it is a sectional view of a respiratory system 20 .
  • the respiratory system 20 resides within the thorax 22 which occupies a space defined by the chest wall 24 and the diaphragm 26 .
  • the respiratory system 20 includes the trachea 28 , the left mainstem bronchus 30 , the right mainstem bronchus 32 , and the bronchial branches 34 , 36 , 38 , 40 , and 42 .
  • the respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56 , 58 , and 60 .
  • Each bronchial branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof.
  • a healthy respiratory system has an arched or inwardly arcuate diaphragm 26 .
  • the diaphragm 26 straightens to increase the volume of the thorax 22 . This causes a negative pressure within the thorax.
  • the negative pressure within the thorax in turn causes the lung lobes to fill with air to an inflated condition.
  • the diaphragm returns to its original arched condition to decrease the volume of the thorax.
  • the decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.
  • FIG. 1 also shows a constriction device 70 embodying the present invention deployed on lobe 58 .
  • the device 70 is configured as a sleeve or sheath formed of a sheet of elastic biocompatible material.
  • the material may be formed from silicone rubber, polyurethane, expanded polytetraflouroethylene, polyester and polyurethane, or nylon and polyurethane, for example.
  • the sleeve is preferably opened at both ends and may be generally cylindrical in configuration.
  • the sleeve may be applied to the lung lobe while in an expanded condition. This may be accomplished by expanding the sleeve with a vacuum and then pulling the lung portion into the sleeve with the vacuum. When the lung portion is within the sleeve, the expansion of the device is released. With the expansion released, the sleeve is permitted to contract or collapse about the lung portion to constrict the lung portion.
  • the device 70 may be employed, for example, to suppress air leakages in lungs. It may also find use to advantage in constricting a lung portion suffering from COPD to simulate or achieve lung volume reduction. All of the beneficial effects of lung volume reduction surgery may be realized and, most importantly, without requiring suturing of lung tissue.
  • the constriction device 70 is fixed on the constricted lung tissue by a suture 71 .
  • the device 70 preferably includes at least one suture hole, and more preferably at least two suture holes.
  • the suture holes are reinforced as will be described subsequently so that when the device is sutured to the lung tissue, neither the suture needle nor the suture tears or adversely affects the integrity of the device 70 .
  • FIG. 2 shows the respiratory system 20 after the constricted lung portion has been resectioned.
  • the device 70 is preferably formed of severable material, such as, any of the materials previously described. This enables the device 70 to be severed or cut intermediate its ends with a suitable bladed instrument to resection the lung lobe 58 . The portion of the device 70 remaining on the lobe 58 continues to constrict the lung tissue therein to form an effective seal from leakage. The suture 71 continues to maintain the device 70 on the remaining constricted tissue. Hence, lung volume reduction is rendered an available treatment while negating the need of conventional lung sectioning and avoiding the potentially severe complications which accompany such a procedure.
  • FIG. 3 illustrates a constriction device 80 embodying the present invention.
  • the device 80 is a generally cylindrical sleeve 81 having a longitudinal dimension 82 and a transverse dimension 84 .
  • the device 80 is preferably formed of an elastic material permitting the device to expand in the longitudinal dimension and more importantly in the transverse dimension.
  • the device 80 has opposed opened ends 86 and 88 .
  • the device may further include at one end, for example, end 88 an integral rim 90 .
  • the device 80 further includes a plurality of suture holes 92 .
  • the suture holes 92 are preferably distributed about the device closely adjacent the opened end 88 .
  • a suture hole reinforcement structure 94 about each suture hole 92 is a suture hole reinforcement structure 94 .
  • the suture hole reinforcement structure 94 of each suture hole 92 is an increased thickness or thickened portion 96 in the sleeve wall 98 from the generally uniform thinner wall thickness 99 .
  • the increased thickness extends outwardly from the outer surface 100 of the sleeve 81 to define a ring shaped structure about each suture hole 92 .
  • the reinforcement structure 94 of each suture hole 92 defines a tapered surface 102 . The tapered surface serves to help guide a suture needle through its corresponding suture hole.
  • the suture holes 92 may be preformed so as to initially extend through the sleeve.
  • the suture holes may be defined by the reinforcement structures 94 and more particularly the tapered surfaces 102 without being preformed. This leaves the suture holes to be punched through during the suturing process. However, by virtue of the suture hole reinforcement structures, such punching through can be accomplished safely without damage to the device 80 .
  • FIG. 5 illustrates another constriction device 110 embodying the present invention.
  • the device 110 is a generally cylindrical sleeve 111 having a longitudinal dimension 112 and a transverse dimension 110 .
  • the device 110 is preferably formed of an elastic material permitting the device to expand in the longitudinal dimension and more importantly in the transverse dimension.
  • the device 110 has opposed opened ends 116 and 118 and an integral rim 120 and end 118 .
  • the device 110 includes a plurality of suture holes 122 distributed about the sleeve 111 closely adjacent the opened end 118 .
  • a suture hole reinforcement structure 124 is about each suture hole 122 .
  • each reinforcement structure 124 is an increased thickness or thickened portion 126 in the sleeve wall 128 from the generally uniform wall thickness 129 .
  • the increased thickness extends inwardly from the inner surface 130 of the sleeve 111 to define a ring shaped structure about each suture hole 122 .
  • the reinforcement structure 124 of each suture hole 122 defines a tapered surface 132 . The tapered surface serves to help guide a suture needle through its corresponding suture hole.
  • suture holes may be preformed so as to initially extend through the sleeve.
  • the suture holes may be defined by the reinforcement structures without being preformed. While this leaves the suture holes to be punched through during the suturing process, however, such punching through can be accomplished safely without damage to the device by virtue of the suture hole reinforcement structures.
  • FIGS. 7 and 8 illustrate another constriction device 140 embodying the present invention.
  • the device 140 again is a generally cylindrical sleeve 141 having opposed opened ends 142 and 144 . Adjacent the opened end 144 and extending about the sleeve is a continuous band 146 .
  • the band 146 may be a thickened portion of the sleeve from its substantially uniform thickness 147 or preferably is an additional layer of elastic material but having a higher tear resistance than the material forming the sleeve 141 that is bonded to the sleeve 141 .
  • the band includes a plurality of apertures 148 defining suture holes for the sleeve 141 .
  • the apertures 148 include tapered surfaces 150 to guide a suture needle through the apertures and the sleeve.
  • the suture holes are thus reinforced by the band 146 against tearing or the like by the suture or suture needle.
  • the wall thickness of the sleeve 141 must be punched through by the suture needle passing through the suture holes 148 .

Abstract

A constriction device that constricts body tissue is configured to be safely sutured to constricted body tissue. The device includes a generally cylindrical elastic sleeve including opposed opened ends and having a wall of substantially uniform thickness that receives body tissue therein to be constricted. The sleeve includes a plurality of suture holes to receive a suture to maintain the sleeve the tissue constricted by the sleeve. The sleeve includes a suture hole reinforcement structure, as for example an increased wall thickness, about each suture hole to permit the device to be sutured to constricted body tissue without damaging the device.

Description

    BACKGROUND OF THE INVENTION
  • The present invention is generally directed to a constriction device that constricts body tissue. The present invention is more particularly directed to a constriction device that includes reinforced suture holes to permit a suture to maintain the constriction device from being dislodged from the constricted body tissue while protecting the integrity of the constriction device.
  • Constriction devices have been contemplated for constricting body tissue. Such devices have been considered for use, for example, in tissue resection procedures and in treating pulmonary disease.
  • Chronic Obstructive Pulmonary Disease (COPD) has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.
  • The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991 COPD was the fourth leading cause of death in the United States and had increased 33% since 1979.
  • COPD affects the patient's whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking up hill. Later, it may be noticed when simply walking in the kitchen. Over time, it may occur with less and less effort until it is present all of the time.
  • COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
  • The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.
  • Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled β-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, Ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pheumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
  • Lung transplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.
  • About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the procedure was abandoned.
  • The lung volume reduction surgery (LVRS) was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure has fallen out of favor due to the fact that Medicare stopped remitting for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. However, what data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life.
  • Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.
  • The improvements in pulmonary function resulting from LVRS cannot be ignored. However, the surgery is very invasive and fraught with complications. Among the complications is the potential for lung air leaks. Lung tissue is very thin, and fragile hence difficult to suture together. After a lung portion is sectioned and removed, the remaining lung is most often restructured with suture staples. In about thirty percent (30w) of the cases, the difficulty with suturing lung tissue results in air leaks. Treatment for such air leaks depends upon their severity and often, in the most serious cases, requires further open chest surgery.
  • Air leaks in lungs can be caused by other causes. With increasing age, a patient may develop a weakened section of lung which may then rupture due to an extreme pressure differential, such as may result from simply a hard sneeze. AIDS patients can suffer from air leaks in their lungs. Air leaks in lungs can further be caused by a puncture from a broken rib or a stab wound.
  • The invention disclosed and claimed in copending U.S. application Ser. No. 09/534,244, incorporated herein by reference, provides an improved therapy for treating COPD and air leaks in lungs. The therapy includes a constriction device which, when deployed on a lung, suppresses air leaks in the lung tissue without requiring any suturing of the effected lung tissue. Still further, by constricting a large enough portion of a lung with the device, lung volume reduction with the concomitant improved pulmonary function may be obtained without the need for any suturing of lung tissue at all.
  • The lung constriction device includes a jacket or sheath of flexible material configured to cover at least a portion of a lung. The jacket has a pair of opened ends to permit the lung portion to be drawn into the jacket. The jacket is dimensioned to constrict the lung portion after the lung portion is drawn therein. The lung constriction device is preferably formed of expandable, such as elastic, material for receiving the lung tissue while the device is in an expanded or enlarged condition, and then contractible about the lung portion upon release of the expanded condition for constricting the lung tissue.
  • An important aspect of the device and method disclosed in U.S. application Ser. No. 09/534,244 is the ability to sever the constricting device intermediate its ends. This allows a significant portion of the constricted lung tissue to be removed altogether while permitting a portion of the constricting device to remain in the body for continued suppression of air leaks and maintenance of the remaining lung tissue integrity.
  • Devices and methods similar to those disclosed in U.S. application Ser. No. 09/534,244 may be employed to advantage in other and different procedures such as in general resection procedures and for body tissue other than lung tissue. Resection procedures are commonly performed for such body tissue as, for example, atrial appendage tissue, ovarian tissue, gall bladder tissue, pancreatic tissue, appendix tissue and spleen tissue. Resection procedures may be required to treat cancer, organ damage, or organ disease, for example.
  • U.S. application Ser. No. 09/534,244 also discloses and claims various methods and apparatus for deploying the constricting device on body tissue such as lung tissue. One apparatus and method contemplates mechanically expanding the device in a transverse dimension while physically pulling the tissue to be constricted into the device.
  • Another method contemplates mounting the device over a vacuum chamber and pulling the tissue into the vacuum chamber by engaging the tissue with an opened end of the chamber and then drawing a vacuum in the chamber. This draws the tissue into the chamber. Then, the chamber is withdrawn from the device, leaving the tissue constricted in the device.
  • A further method contemplates inserting the device into a vacuum chamber and sealing the opened end of the chamber to the device. The opened end of the chamber and the tissue are then brought into sealing engagement. A vacuum is next pulled in the chamber and the device to pull the tissue into the device and chamber. Once the tissue is within the device, the chamber is removed from over the device leaving the tissue constricted in the device.
  • Although various methods and apparatus have been conceived for effectively deploying constriction devices on body tissue, the constriction devices, over time, may become dislodged due to the nature of the soft tissue on which they are deployed. More specifically, soft body tissue has a tendency to expand at the proximal end of the device causing longitudinal slippage of the device on the body tissue. This may eventually lead to the device slipping totally free from the tissue.
  • To meet the needs for fixation, U.S. application Ser. No. 09/902,821, filed Jul. 10, 2001, and incorporated herein by reference, discloses and claims a constriction device having positive fixation structure for maintaining the constriction device deployed on the body tissue.
  • One disclosed device includes a plurality of fixation elements on the inner surface of the sleeve that grasp the body tissue upon release of the sleeve from the expanded condition. More particularly, the fixation elements are adjacent to one of the opposed openings and arranged in a side-by-side relation to grasp the body tissue between adjacent fixation elements when the sleeve is released from the expanded condition. The fixation elements may be integral to the longitudinal-side wall or adhered to the inner surface of the sleeve. Still further, the inner surfaces of the fixation elements may have roughened surfaces to further assist in grasping the constricted body tissue.
  • While the fixation structures disclosed and claimed in the aforementioned U.S. application Ser. No. 09/902,821 are believed to be sufficient alone for maintaining the constriction device on the constricted body tissue, it is contemplated herein that other forms of fixation may be further employed alone or in combination with the above described fixation structures for maintaining the constriction device on the constricted body tissue. One additional form of fixation widely practiced in the medical field is suturing.
  • While suturing would appear to be an option, simply suturing the constriction device to the constricted body tissue would pose a number of problems. Such problems would arise because the material from which the constriction device is formed is relatively thin elastic material. The suturing of such material could easily cause tearing of the device by the suture. Moreover, the very act of puncturing the device material with a suture needle could readily cause tearing of the device material. Hence, there is a need in the art for a constriction device configured to permit the suturing of the device to constricted body tissue which is structured to protect against the tearing of the device material by either the suture or a suture needle. The present invention addresses that need. the device material by either the suture or a suture needle. The present invention addresses that need.
  • SUMMARY OF THE INVENTION
  • The present invention provides a constriction device that constricts body tissue, and which is configured to be sutured to constricted body tissue while protecting the integrity of the device. The device includes an elongated sleeve including at least one opened end and being formed from elastic material to receive, when in an expanded condition, body tissue to be constricted and to constrict the body tissue when released from the expanded condition. The device further includes at least one suture hole that receives a suture to maintain the sleeve on the body tissue and a reinforcement structure about the at least one suture hole.
  • The reinforcement structure may be an increased thickness of the sleeve about the at least one suture hole. The sleeve may include a plurality of suture holes and the increased thickness may be about each of the suture holes.
  • Preferably, the suture holes are distributed about the sleeve near to the at least one opened end.
  • The increased thickness of the sleeve may be formed as a band circumscribing the sleeve with the sutures holes extending through the band. The increased thickness may further have a tapered cross-section for guiding a suture needle into the suture holes. The increased thickness may extend from the inner surface of the sleeve or from the outer surface of the sleeve.
  • The reinforcement structure may alternatively be a layer of elastic material having a higher tear strength than the elastic material of the sleeve and which is disposed about each of the suture holes. The layer of elastic material may be a continuous band about the sleeve.
  • In accordance with further aspects, the present invention further provides a constriction device that constricts body tissue. The device includes a generally cylindrical elastic sleeve including opposed opened ends and having a wall of substantially uniform thickness that receives body tissue therein to constrict the body tissue and at least one suture hole to receive a suture to maintain the sleeve on tissue constricted by the sleeve. The sleeve wall has an increased thickness, greater than the substantially uniform thickness, about the at least one suture hole.
  • The present invention still further provides a constriction device that constricts body tissue, and including sleeve means formed of elastic material including at least one opened end for constricting body tissue received therein, suture hole means for receiving a suture to maintain the sleeve means on the body tissue, and suture hole reinforcing means about the suture hole means for reinforcing the suture hole means.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
  • FIG. 1 is a simplified sectional view of a thorax illustrating a respiratory system having a constricting device embodying the present invention deployed on a portion of a lung to effect lung volume reduction;
  • FIG. 2 is a sectional view similar to FIG. 1 but illustrating the respiratory system after the constricted lung portion has been resectioned;
  • FIG. 3 is a perspective view illustrating a constricting device embodying the present invention;
  • FIG. 4 is a cross-sectional view of a suture hole of the device of FIG. 3 and a suture hole reinforcement structure embodying the present invention;
  • FIG. 5 is a perspective view of another constriction device embodying the present invention;
  • FIG. 6 is a cross-sectional view of a suture hole of the device of FIG. 5 and a suture hole reinforcement structure configured in accordance with another embodiment of the present invention;
  • FIG. 7 is a perspective view of another constriction device embodying the present invention; and
  • FIG. 8 is a cross-sectional view of a suture hole of the constriction device of FIG. 7 and illustrating its reinforcing structure in accordance with a still further embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Referring now to FIG. 1, it is a sectional view of a respiratory system 20. The respiratory system 20 resides within the thorax 22 which occupies a space defined by the chest wall 24 and the diaphragm 26.
  • The respiratory system 20 includes the trachea 28, the left mainstem bronchus 30, the right mainstem bronchus 32, and the bronchial branches 34, 36, 38, 40, and 42. The respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56, 58, and 60. Each bronchial branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof.
  • A healthy respiratory system has an arched or inwardly arcuate diaphragm 26. As the individual inhales, the diaphragm 26 straightens to increase the volume of the thorax 22. This causes a negative pressure within the thorax. The negative pressure within the thorax in turn causes the lung lobes to fill with air to an inflated condition. When the individual exhales, the diaphragm returns to its original arched condition to decrease the volume of the thorax. The decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.
  • FIG. 1 also shows a constriction device 70 embodying the present invention deployed on lobe 58. The device 70 is configured as a sleeve or sheath formed of a sheet of elastic biocompatible material. The material may be formed from silicone rubber, polyurethane, expanded polytetraflouroethylene, polyester and polyurethane, or nylon and polyurethane, for example. The sleeve is preferably opened at both ends and may be generally cylindrical in configuration.
  • The sleeve may be applied to the lung lobe while in an expanded condition. This may be accomplished by expanding the sleeve with a vacuum and then pulling the lung portion into the sleeve with the vacuum. When the lung portion is within the sleeve, the expansion of the device is released. With the expansion released, the sleeve is permitted to contract or collapse about the lung portion to constrict the lung portion.
  • The device 70 may be employed, for example, to suppress air leakages in lungs. It may also find use to advantage in constricting a lung portion suffering from COPD to simulate or achieve lung volume reduction. All of the beneficial effects of lung volume reduction surgery may be realized and, most importantly, without requiring suturing of lung tissue. In accordance with the present invention, the constriction device 70 is fixed on the constricted lung tissue by a suture 71. To that end, the device 70 preferably includes at least one suture hole, and more preferably at least two suture holes. The suture holes are reinforced as will be described subsequently so that when the device is sutured to the lung tissue, neither the suture needle nor the suture tears or adversely affects the integrity of the device 70.
  • FIG. 2 shows the respiratory system 20 after the constricted lung portion has been resectioned. The device 70 is preferably formed of severable material, such as, any of the materials previously described. This enables the device 70 to be severed or cut intermediate its ends with a suitable bladed instrument to resection the lung lobe 58. The portion of the device 70 remaining on the lobe 58 continues to constrict the lung tissue therein to form an effective seal from leakage. The suture 71 continues to maintain the device 70 on the remaining constricted tissue. Hence, lung volume reduction is rendered an available treatment while negating the need of conventional lung sectioning and avoiding the potentially severe complications which accompany such a procedure.
  • FIG. 3 illustrates a constriction device 80 embodying the present invention. The device 80 is a generally cylindrical sleeve 81 having a longitudinal dimension 82 and a transverse dimension 84. As previously mentioned, the device 80 is preferably formed of an elastic material permitting the device to expand in the longitudinal dimension and more importantly in the transverse dimension. The device 80 has opposed opened ends 86 and 88. The device may further include at one end, for example, end 88 an integral rim 90.
  • In accordance with the present invention, the device 80 further includes a plurality of suture holes 92. The suture holes 92 are preferably distributed about the device closely adjacent the opened end 88. As may best be seen in FIG. 4, about each suture hole 92 is a suture hole reinforcement structure 94. In accordance with this embodiment, the suture hole reinforcement structure 94 of each suture hole 92 is an increased thickness or thickened portion 96 in the sleeve wall 98 from the generally uniform thinner wall thickness 99. The increased thickness extends outwardly from the outer surface 100 of the sleeve 81 to define a ring shaped structure about each suture hole 92. As will further be noted in FIG. 4, the reinforcement structure 94 of each suture hole 92 defines a tapered surface 102. The tapered surface serves to help guide a suture needle through its corresponding suture hole.
  • The suture holes 92 may be preformed so as to initially extend through the sleeve. Alternatively, the suture holes may be defined by the reinforcement structures 94 and more particularly the tapered surfaces 102 without being preformed. This leaves the suture holes to be punched through during the suturing process. However, by virtue of the suture hole reinforcement structures, such punching through can be accomplished safely without damage to the device 80.
  • FIG. 5 illustrates another constriction device 110 embodying the present invention. Again, the device 110 is a generally cylindrical sleeve 111 having a longitudinal dimension 112 and a transverse dimension 110. As previously mentioned, the device 110 is preferably formed of an elastic material permitting the device to expand in the longitudinal dimension and more importantly in the transverse dimension. The device 110 has opposed opened ends 116 and 118 and an integral rim 120 and end 118.
  • Like the device 8 of FIG. 3, the device 110 includes a plurality of suture holes 122 distributed about the sleeve 111 closely adjacent the opened end 118. About each suture hole 122 is a suture hole reinforcement structure 124. As best seen in FIG. 6, each reinforcement structure 124 is an increased thickness or thickened portion 126 in the sleeve wall 128 from the generally uniform wall thickness 129. Here, however, the increased thickness extends inwardly from the inner surface 130 of the sleeve 111 to define a ring shaped structure about each suture hole 122. As will further be noted in FIG. 6, the reinforcement structure 124 of each suture hole 122 defines a tapered surface 132. The tapered surface serves to help guide a suture needle through its corresponding suture hole.
  • Again the suture holes may be preformed so as to initially extend through the sleeve. Alternatively, the suture holes may be defined by the reinforcement structures without being preformed. While this leaves the suture holes to be punched through during the suturing process, however, such punching through can be accomplished safely without damage to the device by virtue of the suture hole reinforcement structures.
  • FIGS. 7 and 8 illustrate another constriction device 140 embodying the present invention. The device 140 again is a generally cylindrical sleeve 141 having opposed opened ends 142 and 144. Adjacent the opened end 144 and extending about the sleeve is a continuous band 146. The band 146 may be a thickened portion of the sleeve from its substantially uniform thickness 147 or preferably is an additional layer of elastic material but having a higher tear resistance than the material forming the sleeve 141 that is bonded to the sleeve 141. The band includes a plurality of apertures 148 defining suture holes for the sleeve 141. The apertures 148 include tapered surfaces 150 to guide a suture needle through the apertures and the sleeve. The suture holes are thus reinforced by the band 146 against tearing or the like by the suture or suture needle. Here, however, the wall thickness of the sleeve 141 must be punched through by the suture needle passing through the suture holes 148.
  • While the invention has been described by means of specific embodiments and applications thereof, it is understood that numerous modifications and variations could be made thereto by those skilled in the art without departing from the spirit and scope of the invention. It is therefore to be understood that within the scope of the claims, the invention may be practiced otherwise than as specifically described herein.

Claims (9)

1.-38. (canceled)
39. A constriction sleeve for constricting body tissue when applied thereto, the sleeve comprising a generally cylindrical portion and an opening at one end for application to the body tissue, said sleeve further comprising a resilient sheet of elastic biocompatible material, said sleeve further comprising at least one suture aperture extending through the sleeve for affixing said sleeve to the body tissue, and said sleeve further comprising a reinforcement structure, whereby the sleeve may be resiliently expanded to an expanded configuration for application to the body tissue and released to a constricted configuration to constrict the body tissue therein.
40. The constriction sleeve of claim 39, wherein the reinforcement structure is positioned proximate the suture aperture.
41. The constriction sleeve of claim 39, wherein the reinforcement structure comprises a band of material extending at least partially radially about the sleeve and added to the sleeve in such a manner as to structurally reinforce the sleeve for purposes of enhancing its application to the tissue.
42. The constriction sleeve of claim 41, wherein the band comprises a layer of resilient material having a higher tear strength than the resilient material of the sleeve.
43. The constriction sleeve of claims 41, wherein the band is made integrally with the sleeve wall.
44. The constriction sleeve of claims 39, wherein the sleeve comprises a plurality of suture apertures spaced radially about the sleeve.
45. The constriction sleeve of claims 39, wherein one or more of the apertures has a tapered entry configured to guide a suture needle into the aperture.
46. The constriction sleeve of claim 39 further comprising a second opening.
US11/403,542 2001-10-02 2006-04-13 Constriction device including reinforced suture holes Abandoned US20060212051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/403,542 US20060212051A1 (en) 2001-10-02 2006-04-13 Constriction device including reinforced suture holes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/969,949 US6632239B2 (en) 2001-10-02 2001-10-02 Constriction device including reinforced suture holes
US10/665,174 US20040097983A1 (en) 2001-10-02 2003-09-17 Constriction device including reinforced suture holes
US11/403,542 US20060212051A1 (en) 2001-10-02 2006-04-13 Constriction device including reinforced suture holes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/665,174 Continuation US20040097983A1 (en) 2001-10-02 2003-09-17 Constriction device including reinforced suture holes

Publications (1)

Publication Number Publication Date
US20060212051A1 true US20060212051A1 (en) 2006-09-21

Family

ID=25516217

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/969,949 Expired - Lifetime US6632239B2 (en) 2001-10-02 2001-10-02 Constriction device including reinforced suture holes
US10/665,174 Abandoned US20040097983A1 (en) 2001-10-02 2003-09-17 Constriction device including reinforced suture holes
US11/403,542 Abandoned US20060212051A1 (en) 2001-10-02 2006-04-13 Constriction device including reinforced suture holes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/969,949 Expired - Lifetime US6632239B2 (en) 2001-10-02 2001-10-02 Constriction device including reinforced suture holes
US10/665,174 Abandoned US20040097983A1 (en) 2001-10-02 2003-09-17 Constriction device including reinforced suture holes

Country Status (6)

Country Link
US (3) US6632239B2 (en)
EP (1) EP1435848A1 (en)
JP (1) JP2005504578A (en)
AU (1) AU2002362449B2 (en)
CA (1) CA2462635A1 (en)
WO (1) WO2003028560A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070250085A1 (en) * 2004-03-08 2007-10-25 Endoart Sa Closure System for Tubular Organs
US7682332B2 (en) 2003-07-15 2010-03-23 Portaero, Inc. Methods to accelerate wound healing in thoracic anastomosis applications
US7686013B2 (en) 2006-01-17 2010-03-30 Portaero, Inc. Variable resistance pulmonary ventilation bypass valve
US7753052B2 (en) 2003-06-05 2010-07-13 Portaero, Inc. Intra-thoracic collateral ventilation bypass system
US7789083B2 (en) 2003-05-20 2010-09-07 Portaero, Inc. Intra/extra thoracic system for ameliorating a symptom of chronic obstructive pulmonary disease
US7811274B2 (en) 2003-05-07 2010-10-12 Portaero, Inc. Method for treating chronic obstructive pulmonary disease
US7824366B2 (en) 2004-12-10 2010-11-02 Portaero, Inc. Collateral ventilation device with chest tube/evacuation features and method
US7896008B2 (en) 2003-06-03 2011-03-01 Portaero, Inc. Lung reduction system
US7909803B2 (en) 2008-02-19 2011-03-22 Portaero, Inc. Enhanced pneumostoma management device and methods for treatment of chronic obstructive pulmonary disease
US7931641B2 (en) 2007-05-11 2011-04-26 Portaero, Inc. Visceral pleura ring connector
US8062315B2 (en) 2007-05-17 2011-11-22 Portaero, Inc. Variable parietal/visceral pleural coupling
US8104474B2 (en) 2005-08-23 2012-01-31 Portaero, Inc. Collateral ventilation bypass system with retention features
US8163034B2 (en) 2007-05-11 2012-04-24 Portaero, Inc. Methods and devices to create a chemically and/or mechanically localized pleurodesis
US8220460B2 (en) 2004-11-19 2012-07-17 Portaero, Inc. Evacuation device and method for creating a localized pleurodesis
US8236023B2 (en) 2004-03-18 2012-08-07 Allergan, Inc. Apparatus and method for volume adjustment of intragastric balloons
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US8308630B2 (en) 2006-01-04 2012-11-13 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US8317677B2 (en) 2008-10-06 2012-11-27 Allergan, Inc. Mechanical gastric band with cushions
US8336540B2 (en) 2008-02-19 2012-12-25 Portaero, Inc. Pneumostoma management device and method for treatment of chronic obstructive pulmonary disease
US8347881B2 (en) 2009-01-08 2013-01-08 Portaero, Inc. Pneumostoma management device with integrated patency sensor and method
US8382780B2 (en) 2002-08-28 2013-02-26 Allergan, Inc. Fatigue-resistant gastric banding device
US8475389B2 (en) 2008-02-19 2013-07-02 Portaero, Inc. Methods and devices for assessment of pneumostoma function
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US8518053B2 (en) 2009-02-11 2013-08-27 Portaero, Inc. Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease
AU2010286117B2 (en) * 2009-08-17 2014-03-13 Covidien Lp Articulating patch deployment device and method of use
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US8845513B2 (en) 2002-08-13 2014-09-30 Apollo Endosurgery, Inc. Remotely adjustable gastric banding device
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8900117B2 (en) 2004-01-23 2014-12-02 Apollo Endosurgery, Inc. Releasably-securable one-piece adjustable gastric band
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
US9028394B2 (en) 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US9050165B2 (en) 2010-09-07 2015-06-09 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
USRE45921E1 (en) 2000-03-23 2016-03-15 Spiration, Inc. Tissue resection device, system, and method
US9295573B2 (en) 2010-04-29 2016-03-29 Apollo Endosurgery, Inc. Self-adjusting gastric band having various compliant components and/or a satiety booster
US10470839B2 (en) 2016-06-02 2019-11-12 Covidien Lp Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line
US20220054250A1 (en) * 2018-04-12 2022-02-24 Axogen Corporation Tissue grafts with pre-made attachment points

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997189B2 (en) * 1998-06-05 2006-02-14 Broncus Technologies, Inc. Method for lung volume reduction
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US20080109030A1 (en) 2001-04-24 2008-05-08 Houser Russell A Arteriotomy closure devices and techniques
US9345460B2 (en) 2001-04-24 2016-05-24 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US8961541B2 (en) 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US6491706B1 (en) * 2001-07-10 2002-12-10 Spiration, Inc. Constriction device including fixation structure
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
US6632239B2 (en) 2001-10-02 2003-10-14 Spiration, Inc. Constriction device including reinforced suture holes
US6589161B2 (en) * 2001-10-18 2003-07-08 Spiration, Inc. Constriction device including tear resistant structures
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US10098640B2 (en) 2001-12-04 2018-10-16 Atricure, Inc. Left atrial appendage devices and methods
US20050149069A1 (en) * 2001-12-04 2005-07-07 Bertolero Arthur A. Left atrial appendage devices and methods
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
US7100616B2 (en) 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US7775968B2 (en) 2004-06-14 2010-08-17 Pneumrx, Inc. Guided access to lung tissues
US7766891B2 (en) 2004-07-08 2010-08-03 Pneumrx, Inc. Lung device with sealing features
WO2006014567A2 (en) 2004-07-08 2006-02-09 Pneumrx, Inc. Pleural effusion treatment device, method and material
EP1816945B1 (en) 2004-11-23 2019-08-21 PneumRx, Inc. Steerable device for accessing a target site
US9402633B2 (en) 2006-03-13 2016-08-02 Pneumrx, Inc. Torque alleviating intra-airway lung volume reduction compressive implant structures
US8157837B2 (en) 2006-03-13 2012-04-17 Pneumrx, Inc. Minimally invasive lung volume reduction device and method
US8888800B2 (en) 2006-03-13 2014-11-18 Pneumrx, Inc. Lung volume reduction devices, methods, and systems
US8721734B2 (en) 2009-05-18 2014-05-13 Pneumrx, Inc. Cross-sectional modification during deployment of an elongate lung volume reduction device
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
US20080283065A1 (en) * 2007-05-15 2008-11-20 Portaero, Inc. Methods and devices to maintain patency of a lumen in parenchymal tissue of the lung
US20080287878A1 (en) * 2007-05-15 2008-11-20 Portaero, Inc. Pulmonary visceral pleura anastomosis reinforcement
US20080295829A1 (en) * 2007-05-30 2008-12-04 Portaero, Inc. Bridge element for lung implant
US8632605B2 (en) 2008-09-12 2014-01-21 Pneumrx, Inc. Elongated lung volume reduction devices, methods, and systems
US8468836B2 (en) 2008-11-12 2013-06-25 General Mills, Inc. Portable thermoelectric cooling/heating unit and related merchandizing system
US8517073B2 (en) * 2009-07-16 2013-08-27 Covidien Lp Apparatus and method for joining similar or dissimilar suture products
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
USD708745S1 (en) * 2013-03-05 2014-07-08 Anchor Orthopedics Xt Inc. Suture trap
US10390838B1 (en) 2014-08-20 2019-08-27 Pneumrx, Inc. Tuned strength chronic obstructive pulmonary disease treatment
US10413635B2 (en) * 2015-08-17 2019-09-17 Vivex Biomedical, Inc. Umbilical cord transplant product
WO2020210211A1 (en) * 2019-04-08 2020-10-15 Lifecell Corporation Composite tissue product anchor bolster for three-dimensional biologic scaffolds and related methods
US11576666B2 (en) 2019-10-04 2023-02-14 Arthrex, Inc Surgical constructs for tissue fixation and methods of tissue repairs

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075959A (en) * 1977-04-06 1978-02-28 The Singer Company Pneumatic thread and fiber feeding devices
US4204282A (en) * 1978-05-08 1980-05-27 Bolt Richard A Implantable artificial sphincter
US4205282A (en) * 1978-08-21 1980-05-27 Westinghouse Electric Corp. Phase shifting circuit element
US4267839A (en) * 1979-09-12 1981-05-19 Repromed, Inc. Surgical instrument for use in reversible sterilization or permanent occlusion procedures
US4700311A (en) * 1984-01-25 1987-10-13 Hahn-Meitner-Institut Fur Kernforschung Berlin Gmbh System for optimizing process parameters in photoactive semiconductor manufacturing in-situ
US4881939A (en) * 1985-02-19 1989-11-21 The Johns Hopkins University Implantable helical cuff
US5127412A (en) * 1990-03-14 1992-07-07 Cosmetto Aristodeme J Skin tensioning
US5226429A (en) * 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5503638A (en) * 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5513652A (en) * 1992-07-13 1996-05-07 Schwartz; Alan N. Male erection facilitation sheaths and methods of using same
US5593413A (en) * 1990-05-14 1997-01-14 Medisys Technologies, Inc. Device for assisting childbirth
US5681271A (en) * 1995-09-25 1997-10-28 Nelson; Ronald E. Ankle brace with relief
US5769982A (en) * 1995-07-31 1998-06-23 Compagnie Generale des Etablissements Michelin--Michelin & Cie Tire with reinforced beads
US5810855A (en) * 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5870779A (en) * 1998-02-05 1999-02-16 Heron; Rodney Undergarment with a testicle pouch and genital space
US5902312A (en) * 1995-07-03 1999-05-11 Frater; Dirk A. System for mounting bolster material on tissue staplers
US6036698A (en) * 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6193648B1 (en) * 1999-09-21 2001-02-27 Acorn Cardiovascular, Inc. Cardiac constraint with draw string tensioning
US6230714B1 (en) * 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6298496B1 (en) * 2000-04-18 2001-10-09 Idamae Francesina Evans Protective surgical sock (feet) protective surgical covering for the arm, hand
US6308709B1 (en) * 2000-11-22 2001-10-30 Robert M. Paul Erection-facilitating condom
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6491706B1 (en) * 2001-07-10 2002-12-10 Spiration, Inc. Constriction device including fixation structure
US6620095B2 (en) * 2000-12-22 2003-09-16 Syde A. Taheri Cradle-assisted myocardial repair and treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212028A (en) * 1987-02-26 1988-09-05 Matsutani Seisakusho:Kk String fitting device for eyeless needle
US5769892A (en) * 1996-10-22 1998-06-23 Mitroflow International Inc. Surgical stapler sleeve for reinforcing staple lines
FR2773702B1 (en) 1998-01-16 2000-04-07 Johnson & Johnson Internationa COMPRESSION DEVICE FOR HEMOSTASIS OF AN ORGAN, SUCH AS LIVER
ES2272225T3 (en) 1999-08-24 2007-05-01 Spiration, Inc. LUNG VOLUME REDUCTION KIT.
US6632239B2 (en) 2001-10-02 2003-10-14 Spiration, Inc. Constriction device including reinforced suture holes

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075959A (en) * 1977-04-06 1978-02-28 The Singer Company Pneumatic thread and fiber feeding devices
US4204282A (en) * 1978-05-08 1980-05-27 Bolt Richard A Implantable artificial sphincter
US4205282A (en) * 1978-08-21 1980-05-27 Westinghouse Electric Corp. Phase shifting circuit element
US4267839A (en) * 1979-09-12 1981-05-19 Repromed, Inc. Surgical instrument for use in reversible sterilization or permanent occlusion procedures
US4700311A (en) * 1984-01-25 1987-10-13 Hahn-Meitner-Institut Fur Kernforschung Berlin Gmbh System for optimizing process parameters in photoactive semiconductor manufacturing in-situ
US4881939A (en) * 1985-02-19 1989-11-21 The Johns Hopkins University Implantable helical cuff
US5127412A (en) * 1990-03-14 1992-07-07 Cosmetto Aristodeme J Skin tensioning
US5593413A (en) * 1990-05-14 1997-01-14 Medisys Technologies, Inc. Device for assisting childbirth
US5226429A (en) * 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5513652A (en) * 1992-07-13 1996-05-07 Schwartz; Alan N. Male erection facilitation sheaths and methods of using same
US5503638A (en) * 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5902312A (en) * 1995-07-03 1999-05-11 Frater; Dirk A. System for mounting bolster material on tissue staplers
US5810855A (en) * 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5769982A (en) * 1995-07-31 1998-06-23 Compagnie Generale des Etablissements Michelin--Michelin & Cie Tire with reinforced beads
US5681271A (en) * 1995-09-25 1997-10-28 Nelson; Ronald E. Ankle brace with relief
US5870779A (en) * 1998-02-05 1999-02-16 Heron; Rodney Undergarment with a testicle pouch and genital space
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6036698A (en) * 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6230714B1 (en) * 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6193648B1 (en) * 1999-09-21 2001-02-27 Acorn Cardiovascular, Inc. Cardiac constraint with draw string tensioning
US6298496B1 (en) * 2000-04-18 2001-10-09 Idamae Francesina Evans Protective surgical sock (feet) protective surgical covering for the arm, hand
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6308709B1 (en) * 2000-11-22 2001-10-30 Robert M. Paul Erection-facilitating condom
US6620095B2 (en) * 2000-12-22 2003-09-16 Syde A. Taheri Cradle-assisted myocardial repair and treatment
US6491706B1 (en) * 2001-07-10 2002-12-10 Spiration, Inc. Constriction device including fixation structure

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45921E1 (en) 2000-03-23 2016-03-15 Spiration, Inc. Tissue resection device, system, and method
US8845513B2 (en) 2002-08-13 2014-09-30 Apollo Endosurgery, Inc. Remotely adjustable gastric banding device
US8382780B2 (en) 2002-08-28 2013-02-26 Allergan, Inc. Fatigue-resistant gastric banding device
US7811274B2 (en) 2003-05-07 2010-10-12 Portaero, Inc. Method for treating chronic obstructive pulmonary disease
US8029492B2 (en) 2003-05-07 2011-10-04 Portaero, Inc. Method for treating chronic obstructive pulmonary disease
US7828789B2 (en) 2003-05-07 2010-11-09 Portaero, Inc. Device and method for creating a localized pleurodesis and treating a lung through the localized pleurodesis
US7789083B2 (en) 2003-05-20 2010-09-07 Portaero, Inc. Intra/extra thoracic system for ameliorating a symptom of chronic obstructive pulmonary disease
US7896008B2 (en) 2003-06-03 2011-03-01 Portaero, Inc. Lung reduction system
US7753052B2 (en) 2003-06-05 2010-07-13 Portaero, Inc. Intra-thoracic collateral ventilation bypass system
US7682332B2 (en) 2003-07-15 2010-03-23 Portaero, Inc. Methods to accelerate wound healing in thoracic anastomosis applications
US8323230B2 (en) 2003-07-15 2012-12-04 Portaero, Inc. Methods and devices to accelerate wound healing in thoracic anastomosis applications
US8900117B2 (en) 2004-01-23 2014-12-02 Apollo Endosurgery, Inc. Releasably-securable one-piece adjustable gastric band
US7811299B2 (en) * 2004-03-08 2010-10-12 Allergan, Inc. Closure system for tubular organs
US20070250085A1 (en) * 2004-03-08 2007-10-25 Endoart Sa Closure System for Tubular Organs
US8377081B2 (en) 2004-03-08 2013-02-19 Allergan, Inc. Closure system for tubular organs
US8236023B2 (en) 2004-03-18 2012-08-07 Allergan, Inc. Apparatus and method for volume adjustment of intragastric balloons
US8220460B2 (en) 2004-11-19 2012-07-17 Portaero, Inc. Evacuation device and method for creating a localized pleurodesis
US7824366B2 (en) 2004-12-10 2010-11-02 Portaero, Inc. Collateral ventilation device with chest tube/evacuation features and method
US8623042B2 (en) 2005-04-13 2014-01-07 Mitchell Roslin Artificial gastric valve
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US8104474B2 (en) 2005-08-23 2012-01-31 Portaero, Inc. Collateral ventilation bypass system with retention features
US8308630B2 (en) 2006-01-04 2012-11-13 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US8323180B2 (en) 2006-01-04 2012-12-04 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
US7726305B2 (en) 2006-01-17 2010-06-01 Portaero, Inc. Variable resistance pulmonary ventilation bypass valve
US7686013B2 (en) 2006-01-17 2010-03-30 Portaero, Inc. Variable resistance pulmonary ventilation bypass valve
US8163034B2 (en) 2007-05-11 2012-04-24 Portaero, Inc. Methods and devices to create a chemically and/or mechanically localized pleurodesis
US7931641B2 (en) 2007-05-11 2011-04-26 Portaero, Inc. Visceral pleura ring connector
US8062315B2 (en) 2007-05-17 2011-11-22 Portaero, Inc. Variable parietal/visceral pleural coupling
US8348906B2 (en) 2008-02-19 2013-01-08 Portaero, Inc. Aspirator for pneumostoma management
US8474449B2 (en) 2008-02-19 2013-07-02 Portaero, Inc. Variable length pneumostoma management system for treatment of chronic obstructive pulmonary disease
US8347880B2 (en) 2008-02-19 2013-01-08 Potaero, Inc. Pneumostoma management system with secretion management features for treatment of chronic obstructive pulmonary disease
US8365722B2 (en) 2008-02-19 2013-02-05 Portaero, Inc. Multi-layer pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US8336540B2 (en) 2008-02-19 2012-12-25 Portaero, Inc. Pneumostoma management device and method for treatment of chronic obstructive pulmonary disease
US8231581B2 (en) 2008-02-19 2012-07-31 Portaero, Inc. Enhanced pneumostoma management device and methods for treatment of chronic obstructive pulmonary disease
US8430094B2 (en) 2008-02-19 2013-04-30 Portaero, Inc. Flexible pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US8453638B2 (en) 2008-02-19 2013-06-04 Portaero, Inc. One-piece pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US8453637B2 (en) 2008-02-19 2013-06-04 Portaero, Inc. Pneumostoma management system for treatment of chronic obstructive pulmonary disease
US8464708B2 (en) 2008-02-19 2013-06-18 Portaero, Inc. Pneumostoma management system having a cosmetic and/or protective cover
US8475389B2 (en) 2008-02-19 2013-07-02 Portaero, Inc. Methods and devices for assessment of pneumostoma function
US8021320B2 (en) 2008-02-19 2011-09-20 Portaero, Inc. Self-sealing device and method for delivery of a therapeutic agent through a pneumostoma
US8491602B2 (en) 2008-02-19 2013-07-23 Portaero, Inc. Single-phase surgical procedure for creating a pneumostoma to treat chronic obstructive pulmonary disease
US8506577B2 (en) 2008-02-19 2013-08-13 Portaero, Inc. Two-phase surgical procedure for creating a pneumostoma to treat chronic obstructive pulmonary disease
US7909803B2 (en) 2008-02-19 2011-03-22 Portaero, Inc. Enhanced pneumostoma management device and methods for treatment of chronic obstructive pulmonary disease
US7927324B2 (en) 2008-02-19 2011-04-19 Portaero, Inc. Aspirator and method for pneumostoma management
US8252003B2 (en) 2008-02-19 2012-08-28 Portaero, Inc. Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease
US8317677B2 (en) 2008-10-06 2012-11-27 Allergan, Inc. Mechanical gastric band with cushions
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8347881B2 (en) 2009-01-08 2013-01-08 Portaero, Inc. Pneumostoma management device with integrated patency sensor and method
US8518053B2 (en) 2009-02-11 2013-08-27 Portaero, Inc. Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease
AU2010286117B2 (en) * 2009-08-17 2014-03-13 Covidien Lp Articulating patch deployment device and method of use
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US9295573B2 (en) 2010-04-29 2016-03-29 Apollo Endosurgery, Inc. Self-adjusting gastric band having various compliant components and/or a satiety booster
US9028394B2 (en) 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US9050165B2 (en) 2010-09-07 2015-06-09 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
US10470839B2 (en) 2016-06-02 2019-11-12 Covidien Lp Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line
US20220054250A1 (en) * 2018-04-12 2022-02-24 Axogen Corporation Tissue grafts with pre-made attachment points

Also Published As

Publication number Publication date
WO2003028560A9 (en) 2004-05-06
US6632239B2 (en) 2003-10-14
US20040097983A1 (en) 2004-05-20
CA2462635A1 (en) 2003-04-10
US20030065339A1 (en) 2003-04-03
EP1435848A1 (en) 2004-07-14
AU2002362449B2 (en) 2008-04-24
WO2003028560A1 (en) 2003-04-10
JP2005504578A (en) 2005-02-17
AU2002362449A2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US6632239B2 (en) Constriction device including reinforced suture holes
US6589161B2 (en) Constriction device including tear resistant structures
AU2002362449A1 (en) Constriction device including reinforced suture holes
EP1078601B1 (en) Kit for lung volume reduction
US6491706B1 (en) Constriction device including fixation structure
AU2002353813A1 (en) Constriction device including tear resistant structures
US6328689B1 (en) Lung constriction apparatus and method
US6860847B2 (en) Constriction device viewable under X ray fluoroscopy
EP1437971A1 (en) Bronchial obstruction device deployment system and method
AU2002329218A1 (en) Constriction device including fixation structure
AU2002354640A1 (en) Construction device viewable under X ray fluoroscopy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GYRUS ACMI, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:SPIRATION, INC.;REEL/FRAME:052401/0484

Effective date: 20200401