US20060189894A1 - Method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and machine for performing the method - Google Patents

Method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and machine for performing the method Download PDF

Info

Publication number
US20060189894A1
US20060189894A1 US10/544,840 US54484005A US2006189894A1 US 20060189894 A1 US20060189894 A1 US 20060189894A1 US 54484005 A US54484005 A US 54484005A US 2006189894 A1 US2006189894 A1 US 2006189894A1
Authority
US
United States
Prior art keywords
machine
container
analysis
gastric juices
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/544,840
Inventor
Antonio Tucci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20060189894A1 publication Critical patent/US20060189894A1/en
Priority to US12/805,312 priority Critical patent/US8496584B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B2010/0061Alimentary tract secretions, e.g. biliary, gastric, intestinal, pancreatic secretions

Definitions

  • the present invention relates to a method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and to a machine for performing the method.
  • H. pylori Helicobacter pylori
  • fundal atrophic gastritis Both conditions are important from the clinical and pathological standpoint: the former ( H. pylori infection) because in addition to being widespread in the general population (20-90%) it is involved in determining the pathogenesis of many gastroduodenal disorders (ulcer, gastritis, lymphoma, et cetera), and the latter (atrophic gastritis) because it is a neoplastic risk factor.
  • endoscopy is usually complemented by complementary tests performed on biopsy samples taken during endoscopy. These tests are usually the urease test and histological examination.
  • the problem could be solved if one could, in some way, predict atrophy and H. pylori -status in individuals with normal endoscopic findings. In this manner, complementary diagnostic tests would be performed only in patients who are potentially affected by these pathologies and would be avoided in the others. Such a prediction might also allow a better and more suitable biopsy screening program (with many biopsy samples in the areas most at risk), so as to greatly contain the problem of lesion focality.
  • the aim of the present invention is to obviate the cited drawbacks and meet the mentioned requirements, by providing a method that can be performed with an electromedical machine connected to an ordinary endoscopic apparatus, which allows to determine the H. pylori -status and detect any fundal atrophic gastritis.
  • an object of the present invention is to provide a method that is simple, relatively easy to provide in practice, safe in use, effective in operation, and has a relatively low cost.
  • This method is performed by means of a machine that is characterized in that it comprises a measurement unit that is constituted by a container that is fed by a gastric juice suction pump in which an agitator for agitating the mixture of gastric juice, reagents and water operates, and at least one probe for detecting the values of the analyses, a hydraulic section that comprises a set of tanks for the reagents required for the analyses and for the water, which are connected to respective feed pumps of said measurement unit and to a pump for sending water into the stomach of the patient, a generator of heating air at a low temperature that is connected to said container, and an electrical section, which comprises a programmable control unit for operating and controlling said pumps and said measurement unit, which is suitable to determine the times and methods of execution of the analyses.
  • FIG. 1 is an installation diagram of a machine that performs the method according to the invention with respect to the endoscopic unit and to the vessel for collecting the aspirated material;
  • FIG. 2 is a schematic view of a possible embodiment of the machine that performs the method according to the invention
  • FIG. 3 is an exploded view of the container in which the process for analysis of the gastric juices occurs
  • FIG. 4 is a diagram of the electrical and electronic connections of the units assigned to the management, control and user interface of the machine that performs the method according to the invention
  • FIG. 5 is a functional block diagram of the machine that performs the method according to the invention.
  • the machine M is arranged between an endoscopy unit, designated by U, and a vessel R for collecting the aspirated liquids; in practice, the suction duct of the endoscopy unit U is connected to the inlet of the machine M and the outlet thereof is connected to the collection vessel R (which in turn is connected to the suction unit).
  • the machine M can be divided schematically into four sections: a measurement unit A, a hydraulic section B, an electrical section C, and a constant-temperature air generator D.
  • FIG. 2 illustrates the measurement unit A, the hydraulic section B and the constant-temperature air pump D.
  • the measurement unit A consists of a normally-open two-way electric valve 1 , which blocks (when activated) the suction on a line 2 for the intake of the gastric juice on the part of a general suction duct 3 ; a second normally-closed two-way electric valve 4 , which allows (when activated) to empty a measurement container 8 , a pH measurement probe 5 , an ammonia measurement probe 6 (the probe is an ammonia measurement probe; ammonium is measured indirectly by converting it into ammonia (gas) by adding ISA), a supporting panel 7 and a measurement container 8 inside which (measurement chamber) the analysis of the gastric juice occurs.
  • a normally-open two-way electric valve 1 which blocks (when activated) the suction on a line 2 for the intake of the gastric juice on the part of a general suction duct 3 ; a second normally-closed two-way electric valve 4 ,
  • This container is constituted by a cylinder 9 that is advantageously made of a material such as plexiglass, which is closed at its lower end by a thin disk 10 of a material such as polyvinyl chloride, referenced hereinafter with the abbreviation PVC, and at its upper end by a plug 11 , also made of PVC, which is crossed by seven ducts for introducing liquids 12 , two supporting guides 13 for the probes 5 and 6 , a duct 14 for introducing air at a constant temperature of 30-35° C. (depending on the type of probes used), and a venting hole 15 .
  • a cylinder 9 that is advantageously made of a material such as plexiglass, which is closed at its lower end by a thin disk 10 of a material such as polyvinyl chloride, referenced hereinafter with the abbreviation PVC, and at its upper end by a plug 11 , also made of PVC, which is crossed by seven ducts for introducing liquids 12 , two supporting guides
  • the supporting base of the container 8 is constituted by a small PVC cylinder 20 , inside which there is a receptacle for an agitator 21 .
  • the agitator 21 is constituted by a small DC motor 22 , on the rotating shaft of which a base 23 is mounted; said base supports a permanently magnetized bar 24 , the rotation of which is transmitted, by magnetic coupling, to an armature 25 (also permanently magnetized), which rests above the bottom 10 of the container 8 .
  • All the components of the measurement unit A are fixed to an upper face of the supporting panel 7 , which in addition to providing mechanical support also provides (by means of an electric circuit with conducting tracks formed on the surface of the panel 7 ) the connections between the various electrical components of the unit A and a connector 26 for connection to the electrical section C; an alarm sensor 27 also acts on the panel 7 , is suitable to detect and indicate the presence of liquids on the panel 7 , and is constituted by two parallel and closely spaced conducting tracks.
  • the hydraulic section B is substantially constituted by six tanks for liquids, eight peristaltic pumps and a network of ducts that connects the hydraulic section to the measurement unit and to the pneumatic-hydraulic input and output connectors of the machine.
  • Each tank is connected to a specific pump: a tank 28 for the max pH buffer solution is connected to a pump 29 , a tank 30 for the max NH4 calibration solution is connected to a pump 31 , a tank 32 for the min NH4 calibration solution is connected to a pump 33 , a tank 34 for the ISA (ionic strength adaptation) solution is connected to a pump 35 , a tank 36 for the min pH buffer solution is connected to a pump 37 , and a water tank 38 is connected to two pumps 39 and 40 : the first of these two pumps, i.e., the pump 39 , is designed to feed water into the measurement container 8 , and the second pump 40 is instead designed to pump water into the endoscope U (in order to wash mucous regions covered by mucus, blood or
  • the constant-temperature air generator D is designed to maintain a substantially constant temperature inside the measurement container 8 .
  • the generator D consists of an actual air pump 42 , which produces a low-pressure air stream, a controlled heating unit 43 , which warms (30-35° C.) the generated air, and a temperature sensor 17 , which is arranged inside the measurement container 8 and constantly informs the heating unit 43 regarding the temperature inside the measurement container 8 .
  • the electrical section C is summarized schematically in FIG. 4 and consists of a power supply unit 44 that supplies current to the entire section C.
  • the various power supply lines are guided on a motherboard 45 and distributed from there to the various user devices.
  • the motherboard 45 is the core of the entire section C; by way of suitable multipolar connectors, it is connected to electrical boards and to the various electromechanical devices (agitator 21 , electric valves 1 and 4 , pumps 29 , 31 , 33 , 35 , 37 , 39 , 40 and 41 ) and manages all the functions of the machine M by means of a microprocessor 46 .
  • agitator 21 , electric valves 1 and 4 , pumps 29 , 31 , 33 , 35 , 37 , 39 , 40 and 41 manages all the functions of the machine M by means of a microprocessor 46 .
  • the motherboard 45 receives the information acquired by the probes related to pH and NH 3 concentration sensing.
  • the signals emitted by the probes are processed by the board 47 and are sent to the microprocessor 46 of the motherboard 45 .
  • the motherboard 45 instead receives the indications related to the movement of the liquids inside the measurement container 8 (detected by the level sensors 18 and 19 ), and is informed, by way of six further level sensors 48 , regarding the filling status of the liquid tanks ( 28 , 30 , 32 , 34 , 36 and 38 ).
  • the only information it receives from the human operator is: power-on of the machine M (by means of the power-on button 49 ), start of test (by means of the start button 50 ), and power-off of the machine M (by means of the power-off button 51 ).
  • the activation of the electromechanical devices is managed by means of a driver board 52 ; all the electromechanical devices are controlled by the microprocessor 46 , except for the pump 40 , which is activated directly by a pedal 53 that is controlled by the operator.
  • a sound card 54 , a display card 55 and a card with luminous indicators 56 are instead used by the machine M to communicate with the outside world.
  • the sound card 54 is provided with a voice synthesis chip 54 a on which the messages are prerecorded digitally, an electronic integrated-circuit device 54 b , which acts as an intermediary between the microprocessor 46 and the voice synthesis chip, and an amplifier 54 c , which is connected to a loudspeaker 57 .
  • the display card 55 comprises two display devices 55 c and 55 d (7-segment bands), on which the microprocessor 46 shows the value of the pH and the value of the ammonium (in ppm), and two millivoltmeters 55 a and 55 b , which display continuously the operating conditions (signal sent to the microprocessor 46 ) of the pH measurement probe 5 and of the ammonium concentration measurement probe 6 .
  • the card with luminous indicators 56 instead comprises a system of eight two-color light-emitting diodes (known by the acronym LED), which informs the operator regarding the filling condition of the liquid tanks ( 28 , 30 , 32 , 34 , 36 and 38 ), the suitability for operation of the probes 5 and 6 , and the operational status of the machine M.
  • LED two-color light-emitting diodes
  • FIG. 5 illustrates the block diagram of the operation of the device.
  • the microprocessor 46 After power-on (by means of the button 49 ), the microprocessor 46 performs a self-test to check that the electromechanical devices (agitator 21 , electric valves 1 and 4 , pumps 29 , 31 , 33 , 35 , 37 , 39 , 40 and 41 ) are suitable for operation, to check the level of the liquids in the various tanks ( 28 , 30 , 32 , 34 , 36 and 38 ), and to detect any abnormal losses of liquids inside the machine M. If there are anomalies that are incompatible with correct execution of the tests, or if any loss of liquids is detected, the machine M reports verbally the faulty component or reports the loss of liquids and shuts down automatically.
  • the electromechanical devices agitator 21 , electric valves 1 and 4 , pumps 29 , 31 , 33 , 35 , 37 , 39 , 40 and 41
  • the machine M reports verbally the faulty component or reports the loss of liquids and shut
  • the machine M reports this shortage verbally to the operator, switches (from green to red) the LED that corresponds to the nearly empty tank on the display card 56 , and continues the sequence; in this case, the detected anomaly is in fact compatible with the regular operation of the machine M.
  • the microprocessor 46 empties (by activating the electric valve 4 ) and washes with water (deactivation of the electric valve 4 and activation of the water pump 39 ) the measurement container 8 , using the level sensors 18 and 19 as a reference for the movement of the liquids inside the container 8 .
  • the microprocessor then calibrates the probes 5 and 6 by introducing sequentially therein the max and min pH buffer solutions (for pH calibration) and the min and max NH4Cl solutions (for ammonium calibration), separating the various steps with a washing cycle and activating the agitator 21 at each measurement.
  • Ammonium measurement is performed after converting said ammonium into ammonia by means of the ISA (ionic strength adaptation) solution, which is added every time ammonium is to be measured; the function of the ISA solution is to increase the pH of the solution to be measured, so as to facilitate the conversion of ammonium into ammonia (gas), which can accordingly be detected by the ammonia probe 6 .
  • ISA ionic strength adaptation
  • the resulting ammonium and pH calibration values are compared with reference parameters (suggested by the probe manufacturer); if the operation of the probes 5 and 6 is found to be normal, the values are stored by the microprocessor 46 , which will then use them in calculating the measurements of the samples; if the comparison instead shows that one or both probes are not operating correctly, the device reports the anomaly to the operator, specifying that further operations are not possible (on penalty of inaccurate measurements), washes the measurement container 8 , introduces the preservation solution therein and shuts down automatically.
  • reference parameters suggested by the probe manufacturer
  • the machine M warns the operator of the drop in the performance of the probe or probes 5 and 6 , switches (from green to red) the corresponding LED on the display card 56 , stores the values and continues the sequence.
  • the microprocessor 46 again washes the measurement container 8 and introduces the solution, whose composition is related to the type of pH and ammonium probe used. The microprocessor then enters a standby condition (warning the operator of its “ready” condition) and cyclically monitors the start button 50 and the power-off button 51 .
  • the testing procedure begins when the operator presses the start button 50 (a few seconds before beginning the gastroscopy).
  • the microprocessor 46 produces the suction of the solution and a cycle for washing the container 8 ; then it activates the electric valve 1 and the pump 41 , so that the aspirated material (gastric juice) is diverted into the measurement container.
  • the operator merely has to aspirate at least 10 ml of gastric juice from the stomach of the patient.
  • the microprocessor deactivates the electric valve 1 and the pump 41 , so that any further aspirated material is guided toward the suction duct and then toward the container for collecting the aspirated material R
  • the microprocessor activates the agitator 21 and records the value detected by the pH probe 5 ; it then adds the ISA and, after 110 seconds of agitation, measures the value of the ammonia with the probe 6 .
  • the microprocessor calculates the value of pH and ammonium (in ppm) of the sample of gastric juice being tested and displays them on the specific displays of the card 56 ; it then compares these values with preset reference values and reports to the operator the results of the comparison, informing him as to the presence/absence of H. pylori infection and as to the acidity condition (normo-, hypo-achlorhydria) of the patient being tested, allowing to deduce in each instance the diagnostic procedure that is most suitable for the particular case. All this occurs in no more than 2 minutes, i.e., before the operator has ended the endoscopic test.
  • the device is again ready for a new test (start button 50 ) or for shutdown (button 51 ). If the 10-ml level is not reached (due to insufficient availability of gastric juice in the stomach of the patient), the operator presses the start button 50 again. At this point, the microprocessor checks the level sensor 18 , and if it finds it to be activated (i.e., there are at least 5 ml of juice), it conducts the test, warning the operator that the procedure is performed on a reduced sample. If instead the level indicator 18 is not activated (i.e., there are less than 5 ml of juice), the device warns the operator that the test cannot be performed and prepares itself for a new test.
  • start button 50 If the 10-ml level is not reached (due to insufficient availability of gastric juice in the stomach of the patient), the operator presses the start button 50 again.
  • the microprocessor checks the level sensor 18 , and if it finds it to be activated (i.e., there are at least 5 ml of juice
  • the microprocessor 46 activates the suction of the solution, washes the measurement container 8 , introduces therein the preservation solution, and switches off the machine M.
  • the preservation solution can be constituted by one of the four liquids (suitably modified) used for calibration or by a mixture thereof (in relation to the type of pH and NH3 probe used).
  • the operator can take advantage of the possibility to infuse water into the gastroscope or echoendoscope, in order to cleanse or fill the affected viscera. To do so, he merely has to press the pedal 53 that manages the water pump 40 and connect the water outlet duct to the instrument.

Abstract

A method for immediate identification and rapid comparative assessment of indicators of the presence of infections and/or risk situations related to gastroduodenal pathologies, comprising the steps of: aspirating, during an endoscopy, a preset quantity of gastric juices, and sending at least part of the aspirated gastric juices to a control unit, where it is subjected to at least one analysis, the outcome of which is provided before the endoscopy ends.

Description

    TECHNICAL FIELD
  • The present invention relates to a method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and to a machine for performing the method.
  • BACKGROUND ART
  • It is known that esophagogastroduodenoscopy is currently the main diagnostic technique for pathologies of the upper digestive tract: it also allows to obtain biopsy specimens for possible complementary tests.
  • While providing excellent macroscopic visualization of the explored viscera, endoscopy alone does not achieve a satisfactory diagnostic sensitivity, since several pathologies do not produce macroscopically detectable changes in the affected organs.
  • Pathologies frequently associated with normal endoscopic findings are infection with Helicobacter pylori (H. pylori) and fundal atrophic gastritis. Both conditions are important from the clinical and pathological standpoint: the former (H. pylori infection) because in addition to being widespread in the general population (20-90%) it is involved in determining the pathogenesis of many gastroduodenal disorders (ulcer, gastritis, lymphoma, et cetera), and the latter (atrophic gastritis) because it is a neoplastic risk factor.
  • In order to increase diagnostic possibilities, endoscopy is usually complemented by complementary tests performed on biopsy samples taken during endoscopy. These tests are usually the urease test and histological examination.
  • Actually, performing these tests does not provide full protection against possible diagnostic errors or omissions. The spot distribution of these pathologies can in fact cause falsely negative results due to the fact that the biopsy samples were taken in areas not affected by the disease. Moreover, falsely positive results are also possible.
  • The problem worsens if one considers that a substantial percentage of patients subjected to endoscopy is found to have neither H. pylori infection nor histological evidence of simple or atrophic gastritis. For these patients, performing the complementary tests leads to an unnecessary increase of the duration of the test (and therefore to greater invasiveness), to consumption of materials (biopsy forceps, test tubes, et cetera) and most of all to a considerable financial expenditure.
  • The problem could be solved if one could, in some way, predict atrophy and H. pylori-status in individuals with normal endoscopic findings. In this manner, complementary diagnostic tests would be performed only in patients who are potentially affected by these pathologies and would be avoided in the others. Such a prediction might also allow a better and more suitable biopsy screening program (with many biopsy samples in the areas most at risk), so as to greatly contain the problem of lesion focality.
  • DISCLOSURE OF THE INVENTION
  • The aim of the present invention is to obviate the cited drawbacks and meet the mentioned requirements, by providing a method that can be performed with an electromedical machine connected to an ordinary endoscopic apparatus, which allows to determine the H. pylori-status and detect any fundal atrophic gastritis.
  • Within this aim, an object of the present invention is to provide a method that is simple, relatively easy to provide in practice, safe in use, effective in operation, and has a relatively low cost.
  • This aim and this and other objects that will become better apparent hereinafter are achieved with the present method for immediate identification and rapid comparative assessment of indicators of the presence of infections and/or risk situations related to gastroduodenal pathologies, characterized in that it comprises the steps of: during an endoscopic test, aspirating a preset quantity of gastric juices; sending at least part of said aspirated gastric juices to a control unit, where it is subjected to at least one analysis, the outcome of which is provided before said endoscopic test ends.
  • This method is performed by means of a machine that is characterized in that it comprises a measurement unit that is constituted by a container that is fed by a gastric juice suction pump in which an agitator for agitating the mixture of gastric juice, reagents and water operates, and at least one probe for detecting the values of the analyses, a hydraulic section that comprises a set of tanks for the reagents required for the analyses and for the water, which are connected to respective feed pumps of said measurement unit and to a pump for sending water into the stomach of the patient, a generator of heating air at a low temperature that is connected to said container, and an electrical section, which comprises a programmable control unit for operating and controlling said pumps and said measurement unit, which is suitable to determine the times and methods of execution of the analyses.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further characteristics and advantages of the present invention will become better apparent from the following detailed description of a preferred but not exclusive embodiment of a method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and of the machine for performing the method according to the invention, illustrated by way of non-limiting example in the accompanying drawings, wherein:
  • FIG. 1 is an installation diagram of a machine that performs the method according to the invention with respect to the endoscopic unit and to the vessel for collecting the aspirated material;
  • FIG. 2 is a schematic view of a possible embodiment of the machine that performs the method according to the invention;
  • FIG. 3 is an exploded view of the container in which the process for analysis of the gastric juices occurs;
  • FIG. 4 is a diagram of the electrical and electronic connections of the units assigned to the management, control and user interface of the machine that performs the method according to the invention;
  • FIG. 5 is a functional block diagram of the machine that performs the method according to the invention.
  • WAYS OF CARRYING OUT THE INVENTION
  • The machine M according to the invention is arranged between an endoscopy unit, designated by U, and a vessel R for collecting the aspirated liquids; in practice, the suction duct of the endoscopy unit U is connected to the inlet of the machine M and the outlet thereof is connected to the collection vessel R (which in turn is connected to the suction unit).
  • The machine M can be divided schematically into four sections: a measurement unit A, a hydraulic section B, an electrical section C, and a constant-temperature air generator D.
  • FIG. 2 illustrates the measurement unit A, the hydraulic section B and the constant-temperature air pump D. The measurement unit A consists of a normally-open two-way electric valve 1, which blocks (when activated) the suction on a line 2 for the intake of the gastric juice on the part of a general suction duct 3; a second normally-closed two-way electric valve 4, which allows (when activated) to empty a measurement container 8, a pH measurement probe 5, an ammonia measurement probe 6 (the probe is an ammonia measurement probe; ammonium is measured indirectly by converting it into ammonia (gas) by adding ISA), a supporting panel 7 and a measurement container 8 inside which (measurement chamber) the analysis of the gastric juice occurs. This container, as shown in the exploded view of FIG. 3, is constituted by a cylinder 9 that is advantageously made of a material such as plexiglass, which is closed at its lower end by a thin disk 10 of a material such as polyvinyl chloride, referenced hereinafter with the abbreviation PVC, and at its upper end by a plug 11, also made of PVC, which is crossed by seven ducts for introducing liquids 12, two supporting guides 13 for the probes 5 and 6, a duct 14 for introducing air at a constant temperature of 30-35° C. (depending on the type of probes used), and a venting hole 15. At the intersection between the bottom and the side wall of the container there is an emptying hole 16, which is connected to the suction system (which is not shown and is located downstream of the vessel R); just below the upper plug 11, in an internal point of the cylinder 9, there is instead a temperature sensor 17. At the level that corresponds to the internal volumes of 5 ml and 10 ml there are two electronic level sensors 18 and 19. The supporting base of the container 8 is constituted by a small PVC cylinder 20, inside which there is a receptacle for an agitator 21. The agitator 21 is constituted by a small DC motor 22, on the rotating shaft of which a base 23 is mounted; said base supports a permanently magnetized bar 24, the rotation of which is transmitted, by magnetic coupling, to an armature 25 (also permanently magnetized), which rests above the bottom 10 of the container 8.
  • All the components of the measurement unit A are fixed to an upper face of the supporting panel 7, which in addition to providing mechanical support also provides (by means of an electric circuit with conducting tracks formed on the surface of the panel 7) the connections between the various electrical components of the unit A and a connector 26 for connection to the electrical section C; an alarm sensor 27 also acts on the panel 7, is suitable to detect and indicate the presence of liquids on the panel 7, and is constituted by two parallel and closely spaced conducting tracks.
  • The hydraulic section B is substantially constituted by six tanks for liquids, eight peristaltic pumps and a network of ducts that connects the hydraulic section to the measurement unit and to the pneumatic-hydraulic input and output connectors of the machine. Each tank is connected to a specific pump: a tank 28 for the max pH buffer solution is connected to a pump 29, a tank 30 for the max NH4 calibration solution is connected to a pump 31, a tank 32 for the min NH4 calibration solution is connected to a pump 33, a tank 34 for the ISA (ionic strength adaptation) solution is connected to a pump 35, a tank 36 for the min pH buffer solution is connected to a pump 37, and a water tank 38 is connected to two pumps 39 and 40: the first of these two pumps, i.e., the pump 39, is designed to feed water into the measurement container 8, and the second pump 40 is instead designed to pump water into the endoscope U (in order to wash mucous regions covered by mucus, blood or clots, ingested material, et cetera) or into the echoendoscope (for filling the viscera to be explored). The reference numeral 41 designates a pump that introduces the gastric juice in the measurement container 8.
  • The constant-temperature air generator D is designed to maintain a substantially constant temperature inside the measurement container 8. The generator D consists of an actual air pump 42, which produces a low-pressure air stream, a controlled heating unit 43, which warms (30-35° C.) the generated air, and a temperature sensor 17, which is arranged inside the measurement container 8 and constantly informs the heating unit 43 regarding the temperature inside the measurement container 8.
  • The electrical section C is summarized schematically in FIG. 4 and consists of a power supply unit 44 that supplies current to the entire section C. The various power supply lines are guided on a motherboard 45 and distributed from there to the various user devices. The motherboard 45 is the core of the entire section C; by way of suitable multipolar connectors, it is connected to electrical boards and to the various electromechanical devices (agitator 21, electric valves 1 and 4, pumps 29, 31, 33, 35, 37, 39, 40 and 41) and manages all the functions of the machine M by means of a microprocessor 46. By way of a probe interface board 47, the motherboard 45 receives the information acquired by the probes related to pH and NH3 concentration sensing. The signals emitted by the probes are processed by the board 47 and are sent to the microprocessor 46 of the motherboard 45. From the measurement unit supporting panel 7, the motherboard 45 instead receives the indications related to the movement of the liquids inside the measurement container 8 (detected by the level sensors 18 and 19), and is informed, by way of six further level sensors 48, regarding the filling status of the liquid tanks (28, 30, 32, 34, 36 and 38). The only information it receives from the human operator is: power-on of the machine M (by means of the power-on button 49), start of test (by means of the start button 50), and power-off of the machine M (by means of the power-off button 51). The activation of the electromechanical devices (agitator 21, electric valves 1 and 4, pumps 29, 31, 33, 35, 37, 39, 40 and 41) is managed by means of a driver board 52; all the electromechanical devices are controlled by the microprocessor 46, except for the pump 40, which is activated directly by a pedal 53 that is controlled by the operator. A sound card 54, a display card 55 and a card with luminous indicators 56 are instead used by the machine M to communicate with the outside world. The sound card 54 is provided with a voice synthesis chip 54 a on which the messages are prerecorded digitally, an electronic integrated-circuit device 54 b, which acts as an intermediary between the microprocessor 46 and the voice synthesis chip, and an amplifier 54 c, which is connected to a loudspeaker 57. The display card 55 comprises two display devices 55 c and 55 d (7-segment bands), on which the microprocessor 46 shows the value of the pH and the value of the ammonium (in ppm), and two millivoltmeters 55 a and 55 b, which display continuously the operating conditions (signal sent to the microprocessor 46) of the pH measurement probe 5 and of the ammonium concentration measurement probe 6. The card with luminous indicators 56 instead comprises a system of eight two-color light-emitting diodes (known by the acronym LED), which informs the operator regarding the filling condition of the liquid tanks (28, 30, 32, 34, 36 and 38), the suitability for operation of the probes 5 and 6, and the operational status of the machine M.
  • FIG. 5 illustrates the block diagram of the operation of the device. After power-on (by means of the button 49), the microprocessor 46 performs a self-test to check that the electromechanical devices (agitator 21, electric valves 1 and 4, pumps 29, 31, 33, 35, 37, 39, 40 and 41) are suitable for operation, to check the level of the liquids in the various tanks (28, 30, 32, 34, 36 and 38), and to detect any abnormal losses of liquids inside the machine M. If there are anomalies that are incompatible with correct execution of the tests, or if any loss of liquids is detected, the machine M reports verbally the faulty component or reports the loss of liquids and shuts down automatically. If instead the levels in the tanks (28, 30, 32, 34, 36 and 38) are found to be nearly empty, the machine M reports this shortage verbally to the operator, switches (from green to red) the LED that corresponds to the nearly empty tank on the display card 56, and continues the sequence; in this case, the detected anomaly is in fact compatible with the regular operation of the machine M.
  • After the self-test, the microprocessor 46 empties (by activating the electric valve 4) and washes with water (deactivation of the electric valve 4 and activation of the water pump 39) the measurement container 8, using the level sensors 18 and 19 as a reference for the movement of the liquids inside the container 8. The microprocessor then calibrates the probes 5 and 6 by introducing sequentially therein the max and min pH buffer solutions (for pH calibration) and the min and max NH4Cl solutions (for ammonium calibration), separating the various steps with a washing cycle and activating the agitator 21 at each measurement. Ammonium measurement is performed after converting said ammonium into ammonia by means of the ISA (ionic strength adaptation) solution, which is added every time ammonium is to be measured; the function of the ISA solution is to increase the pH of the solution to be measured, so as to facilitate the conversion of ammonium into ammonia (gas), which can accordingly be detected by the ammonia probe 6. The resulting ammonium and pH calibration values are compared with reference parameters (suggested by the probe manufacturer); if the operation of the probes 5 and 6 is found to be normal, the values are stored by the microprocessor 46, which will then use them in calculating the measurements of the samples; if the comparison instead shows that one or both probes are not operating correctly, the device reports the anomaly to the operator, specifying that further operations are not possible (on penalty of inaccurate measurements), washes the measurement container 8, introduces the preservation solution therein and shuts down automatically. If instead the resulting values indicate an initial alteration of the probe or probes 5 and 6, the machine M warns the operator of the drop in the performance of the probe or probes 5 and 6, switches (from green to red) the corresponding LED on the display card 56, stores the values and continues the sequence.
  • After calibration, the microprocessor 46 again washes the measurement container 8 and introduces the solution, whose composition is related to the type of pH and ammonium probe used. The microprocessor then enters a standby condition (warning the operator of its “ready” condition) and cyclically monitors the start button 50 and the power-off button 51.
  • The testing procedure begins when the operator presses the start button 50 (a few seconds before beginning the gastroscopy). When the button is pressed, the microprocessor 46 produces the suction of the solution and a cycle for washing the container 8; then it activates the electric valve 1 and the pump 41, so that the aspirated material (gastric juice) is diverted into the measurement container. At this point, the operator merely has to aspirate at least 10 ml of gastric juice from the stomach of the patient. When the level of the gastric juice inside the measurement container reaches the level sensor 19, the microprocessor deactivates the electric valve 1 and the pump 41, so that any further aspirated material is guided toward the suction duct and then toward the container for collecting the aspirated material R After this, the microprocessor activates the agitator 21 and records the value detected by the pH probe 5; it then adds the ISA and, after 110 seconds of agitation, measures the value of the ammonia with the probe 6. Then, on the basis of the previously stored calibration parameters, the microprocessor calculates the value of pH and ammonium (in ppm) of the sample of gastric juice being tested and displays them on the specific displays of the card 56; it then compares these values with preset reference values and reports to the operator the results of the comparison, informing him as to the presence/absence of H. pylori infection and as to the acidity condition (normo-, hypo-achlorhydria) of the patient being tested, allowing to deduce in each instance the diagnostic procedure that is most suitable for the particular case. All this occurs in no more than 2 minutes, i.e., before the operator has ended the endoscopic test. During the testing procedure, no visual monitoring on the part of the operator is required; the reaching of the 10-ml level of suitably aspirated gastric juice, the acidity condition, the presence/absence of H. pylori and the diagnostic procedure to be followed are all reported verbally by the microprocessor 46 by way of the sound card 54 and the loudspeaker 57.
  • Analysis of the data and their reporting by way of voice messages is followed by the emptying of the measurement container 8, by its washing and then by the reintroduction of the solution. After this, the device is again ready for a new test (start button 50) or for shutdown (button 51). If the 10-ml level is not reached (due to insufficient availability of gastric juice in the stomach of the patient), the operator presses the start button 50 again. At this point, the microprocessor checks the level sensor 18, and if it finds it to be activated (i.e., there are at least 5 ml of juice), it conducts the test, warning the operator that the procedure is performed on a reduced sample. If instead the level indicator 18 is not activated (i.e., there are less than 5 ml of juice), the device warns the operator that the test cannot be performed and prepares itself for a new test.
  • When the operator has ended the session of tests, he presses the power-off button 51. The microprocessor 46 activates the suction of the solution, washes the measurement container 8, introduces therein the preservation solution, and switches off the machine M. The preservation solution can be constituted by one of the four liquids (suitably modified) used for calibration or by a mixture thereof (in relation to the type of pH and NH3 probe used).
  • During any step of the test, and even outside of said test, the operator can take advantage of the possibility to infuse water into the gastroscope or echoendoscope, in order to cleanse or fill the affected viscera. To do so, he merely has to press the pedal 53 that manages the water pump 40 and connect the water outlet duct to the instrument.
  • It has thus been shown that the invention achieves the intended aim and object.
  • The invention thus conceived is susceptible of numerous modifications and variations, all of which are within the scope of the appended claims.
  • All the details may further be replaced with other technically equivalent ones.
  • In the embodiments cited above, individual characteristics, given in relation to specific examples, may actually be interchanged with other different characteristics that exist in other embodiments.
  • Moreover, it is noted that anything found to be already known during the patenting process is understood not to be claimed and to be the subject of a disclaimer.
  • In practice, the materials used, as well as the shapes and dimensions, may be any according to requirements without thereby abandoning the scope of the protection of the appended claims.
  • The disclosures in Italian Patent Application No. BO2003A000091 from which this application claims priority are incorporated herein by reference.

Claims (16)

1-15. (canceled)
16. A method for immediate identification and rapid comparative assessment of indicators of the presence of infections and/or risk situations related to gastroduodenal pathologies, comprising the steps of: during an endoscopic test, aspirating a preset quantity of gastric juices and sending at least part of said aspirated gastric juices to a control unit, where said part of aspirated gastric juices is subjected to at least one analysis, the outcome of which is provided before said endoscopic test ends.
17. The method of claim 16, wherein said analysis identifies the presence of Helicobacter pylori.
18. The method of claim 17, wherein said analysis determines the concentration of ammonium.
19. The method of claim 18, wherein said analysis is a measurement of the quantity of ammonia that is present and is preceded by the addition of an ISA solution to the gastric juices to convert the ammonium into ammonia.
20. The method of claim 16, wherein said analysis identifies fundal atrophic gastritis.
21. The method of claim 20, wherein said analysis is a measurement of the pH of gastric juice.
22. A machine for performing the method for identification and assestment of indicators of the presence of infections and/or risk situations related to gastroduodenal pathologies, comprising a measurement unit that is constituted by a container supplied by means for aspirating gastric juices in which an agitator of the mixture of gastric juice, reagents and water operates, and at least one probe for sensing the values of the analyses, a hydraulic section that comprises a set of tanks for the reagents required for the analyses and for the water, which are connected to respective apparatuses for feeding said measurement unit and to a pump for feeding water into the stomach of the patient, an apparatus for controlling the temperature of said container, and an electrical section, which comprises a programmable control unit for actuating and controlling said feeder apparatuses and said measurement unit and is suitable to determine the test execution methods.
23. The machine of claim 22, wherein said means for aspirating gastric juices comprise at least one pump.
24. The machine of claim 22, wherein said means for feeding fluids for the measurement unit comprise at least one pump for sending said reagents and water and/or air.
25. The machine of claim 22, wherein said apparatus for controlling the temperature of said container is a generator of heating air at an adjustable temperature.
26. The machine of claim 22, wherein said container of said measurement unit is of a substantially closed type and is provided with connections for a plurality of ducts for the flow of liquids and/or air and for access of probes.
27. The machine of claim 26, wherein said container is substantially cylindrical and comprises at least one temperature sensor and at least one level sensor suitable to indicate the presence of certain volumes of liquids within said container.
28. The machine of claim 26, wherein said container comprises, on its side wall, an emptying hole to which an intake is connected.
29. The machine of claim 26, wherein said container contains at least one temperature sensor and a plurality of level sensors that are suitable to indicate the presence of certain volumes of liquids within the container.
30. The machine of claim 22, wherein said agitator comprises a driving motor to a shaft of which a disk is rigidly coupled, said disk supporting a permanently magnetized bar, and an armature, which is also permanently magnetized and rests above a bottom of said container.
US10/544,840 2003-02-25 2004-02-24 Method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and machine for performing the method Abandoned US20060189894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/805,312 US8496584B2 (en) 2003-02-25 2010-07-26 Machine for rapid identification of infections and/or risk situations related to gastroduodenal pathologies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITBO2003A000091 2003-02-25
IT000091A ITBO20030091A1 (en) 2003-02-25 2003-02-25 PROCEDURE FOR THE RAPID IDENTIFICATION OF INFECTIONS AND / OR SITUATIONS AT RISK OF GASTRODUODENAL PATHOLOGIES AND MACHINE TO IMPLEMENT THE PROCEDURE.
PCT/EP2004/001814 WO2004075758A1 (en) 2003-02-25 2004-02-24 Method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and machine for performing the method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/805,312 Division US8496584B2 (en) 2003-02-25 2010-07-26 Machine for rapid identification of infections and/or risk situations related to gastroduodenal pathologies

Publications (1)

Publication Number Publication Date
US20060189894A1 true US20060189894A1 (en) 2006-08-24

Family

ID=32923018

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/544,840 Abandoned US20060189894A1 (en) 2003-02-25 2004-02-24 Method for rapid identification of infections and/or risk situations related to gastroduodenal pathologies and machine for performing the method
US12/805,312 Active US8496584B2 (en) 2003-02-25 2010-07-26 Machine for rapid identification of infections and/or risk situations related to gastroduodenal pathologies

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/805,312 Active US8496584B2 (en) 2003-02-25 2010-07-26 Machine for rapid identification of infections and/or risk situations related to gastroduodenal pathologies

Country Status (8)

Country Link
US (2) US20060189894A1 (en)
EP (1) EP1596722B1 (en)
AT (1) ATE451059T1 (en)
DE (1) DE602004024504D1 (en)
DK (1) DK1596722T3 (en)
ES (1) ES2338655T3 (en)
IT (1) ITBO20030091A1 (en)
WO (1) WO2004075758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100274225A1 (en) * 2007-07-19 2010-10-28 Vasu Nishtala Ng tube with gastric volume detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100004034A1 (en) * 2021-02-22 2022-08-22 Niso Biomed S R L SEPARATION CELL FOR SEPARATING DROPS OF BIOLOGICAL LIQUID FROM CARRYING AIR

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981594A (en) * 1975-10-01 1976-09-21 Xerox Corporation Optical absorption cell with magnetic stirring
US4109505A (en) * 1974-07-22 1978-08-29 Primary Children's Hospital Automated blood analysis system
US4773430A (en) * 1985-01-06 1988-09-27 Yissim Research Development Company Method and apparatus for the localization of bleeding in the gastrointestinal tract
US5158868A (en) * 1987-07-17 1992-10-27 Iniziative Marittime 1991, S.R.L. Method of sample analysis
US5477854A (en) * 1993-09-16 1995-12-26 Synectics Medical, Inc. System and method to monitor gastrointestinal Helicobacter pylori infection
US5902253A (en) * 1996-06-11 1999-05-11 Siemens-Elema Ab Apparatus for analyzing body fluids
US5989840A (en) * 1997-05-29 1999-11-23 Americare International Diagnostics, Inc. Estimation of active infection by heliobacter pylori
US6134462A (en) * 1992-10-16 2000-10-17 Instrumentarium Corp. Method and apparatus for analyzing a sample
US6241688B1 (en) * 1996-03-01 2001-06-05 Universidad Nacional Autonoma De Mexico Portable equipment for obtaining and analyzing ruminal liquid and urine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1261279B (en) * 1963-04-23 1968-02-15 Presna Mechanika Narodny Podni Automatic device for continuous quantitative removal of gastric secretions
US4304488A (en) * 1977-10-26 1981-12-08 Toshio Asakura Blood oxygen analyzer
US4532936A (en) * 1981-08-21 1985-08-06 Leveen Eric G Automatic urine flow meter
US5343863A (en) * 1988-05-11 1994-09-06 Lunar Corporation Ultrasonic densitometer device and method
JP2917995B2 (en) * 1988-05-25 1999-07-12 株式会社東芝 Endoscope device
US5507289A (en) * 1993-09-16 1996-04-16 Synectics Medical, Inc. System and method to diagnose bacterial growth
US20010027269A1 (en) * 2000-03-29 2001-10-04 Yousuke Tanaka Liquid sampler and blood analyzer using the same
FI20011918A0 (en) 2001-10-01 2001-10-01 Mirhava Ltd Automatic vascular connection control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109505A (en) * 1974-07-22 1978-08-29 Primary Children's Hospital Automated blood analysis system
US3981594A (en) * 1975-10-01 1976-09-21 Xerox Corporation Optical absorption cell with magnetic stirring
US4773430A (en) * 1985-01-06 1988-09-27 Yissim Research Development Company Method and apparatus for the localization of bleeding in the gastrointestinal tract
US5158868A (en) * 1987-07-17 1992-10-27 Iniziative Marittime 1991, S.R.L. Method of sample analysis
US6134462A (en) * 1992-10-16 2000-10-17 Instrumentarium Corp. Method and apparatus for analyzing a sample
US5477854A (en) * 1993-09-16 1995-12-26 Synectics Medical, Inc. System and method to monitor gastrointestinal Helicobacter pylori infection
US6241688B1 (en) * 1996-03-01 2001-06-05 Universidad Nacional Autonoma De Mexico Portable equipment for obtaining and analyzing ruminal liquid and urine
US5902253A (en) * 1996-06-11 1999-05-11 Siemens-Elema Ab Apparatus for analyzing body fluids
US5989840A (en) * 1997-05-29 1999-11-23 Americare International Diagnostics, Inc. Estimation of active infection by heliobacter pylori

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100274225A1 (en) * 2007-07-19 2010-10-28 Vasu Nishtala Ng tube with gastric volume detection
US8986230B2 (en) * 2007-07-19 2015-03-24 C. R. Bard, Inc. NG tube with gastric volume detection

Also Published As

Publication number Publication date
EP1596722A1 (en) 2005-11-23
WO2004075758A1 (en) 2004-09-10
ES2338655T3 (en) 2010-05-11
EP1596722B1 (en) 2009-12-09
ITBO20030091A1 (en) 2004-08-26
DE602004024504D1 (en) 2010-01-21
US8496584B2 (en) 2013-07-30
ATE451059T1 (en) 2009-12-15
DK1596722T3 (en) 2010-04-26
US20100292612A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
EP0670673B1 (en) Examination of ruminant animals
US7686761B2 (en) Method of detecting proper connection of an endoscope to an endoscope processor
AU2006233273B2 (en) Apparatus and method for providing flow to endoscope channels
US5882931A (en) Method and apparatus for performing urinalysis in real time
AU2008296521B2 (en) Automated endoscope reprocessor
US20100278691A1 (en) Automated Endoscope Reprocessor Self-Disinfection Connection
US8496584B2 (en) Machine for rapid identification of infections and/or risk situations related to gastroduodenal pathologies
CN208399465U (en) Formaldehyde testing equipment
EP1563292B1 (en) Method and apparatus for detecting mastitis
CN108627502B (en) Chemiluminescence analyzer, blood purification device, and blood purification system
KR102014948B1 (en) Liquid Sample Circulation Type Urine Analyzer Using Motor Pump
CN103718048B (en) The detection of impaired streamline in Laboratory Instruments
JP4065199B2 (en) Method for use in testing a liquid sample, test unit utilizing the method, and system comprising the test unit
RU2373850C2 (en) Diagnostic system for analysis of gas composition of exhaled air
SE443285B (en) Apparatus for the diagnosis of milk secretion diseases
WO2007015226A2 (en) Method and apparatus for detection of milk characteristics during milking
CN215780452U (en) Waste liquid monitoring device based on breast biopsy system
CN216434130U (en) Blood gas-immunity combined detection device
CN215404286U (en) Online real-time detection system for biological samples
CN112041677B (en) Fecal sample inspection device and fecal sample inspection method
TWI713055B (en) Remote monitoring system for pH value of fluid
KR20230032543A (en) Real-time urine volume measurement and urination system
CN113403199A (en) Online real-time detection system and method for biological sample
WO2024069600A1 (en) A fluid collection device
JP2009284836A (en) Automatic milk sampling apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION