US20060189165A1 - Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films - Google Patents

Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films Download PDF

Info

Publication number
US20060189165A1
US20060189165A1 US11/372,118 US37211806A US2006189165A1 US 20060189165 A1 US20060189165 A1 US 20060189165A1 US 37211806 A US37211806 A US 37211806A US 2006189165 A1 US2006189165 A1 US 2006189165A1
Authority
US
United States
Prior art keywords
plasma
substrate
grid
deposition
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/372,118
Inventor
Christophe Jany
Michel Puech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CollabRx Inc
Original Assignee
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA filed Critical Alcatel SA
Priority to US11/372,118 priority Critical patent/US20060189165A1/en
Publication of US20060189165A1 publication Critical patent/US20060189165A1/en
Assigned to TEGAL CORPORATION reassignment TEGAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL LUCENT
Assigned to ALCATEL LUCENT reassignment ALCATEL LUCENT CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/932Boron nitride semiconductor

Definitions

  • the present invention relates to methods of fabricating semiconductor components in which at least one step of plasma-enhanced chemical vapor deposition is performed consisting in exposing a semiconductor substrate in a vacuum to a flow of particles generated by a plasma, the particles reacting to form a passivation layer on the substrate of a material that has dielectric properties.
  • PECVD plasma-enhanced chemical vapor deposition
  • ICP inductively-coupled plasma
  • Rapid and unacceptable aging is also observed on items having a fragile semiconductor substrate such as indium phosphide InP, gallium arsenide GaAs, or even substrates of silicon or of germanium.
  • PIN diodes for detecting light
  • the substrate is made of indium phosphide.
  • PIN diodes made by present-day methods lose their characteristic of being insulating in the absence of light. This leads to undesirable leakage current which reduces the overall detection ability of the diode and its sensitivity.
  • the present invention results from the observation whereby the progressive aging defects of certain semiconductor components such as PIN diodes are apparently due to degradation of the interface between the substrate and the deposited layer while the passivation layers are being deposited.
  • the substrate is bare and can itself be degraded by the action of the plasma.
  • the negative bias of the substrate is reduced, e.g. by putting it at a floating potential, that does not suffice to prevent the action of charged particles on the substrate.
  • the problem posed by the present invention is to further improve the aging properties of semiconductor components made using at least one step involving a plasma-enhanced chemical vapor deposition method, so that the resulting semiconductor component conserves its properties over time.
  • the invention seeks to find additional means for reducing the aggressive nature of the plasma relative to the substrate during steps of depositing a dielectric film on a substrate.
  • the invention seeks simultaneously to protect the substrate while not significantly reducing the speed at which the deposit is made on the substrate.
  • a first aspect of the invention provides a particular method of depositing dielectric films by plasma-enhanced chemical vapor deposition, in which a substrate is exposed in a vacuum to a flow of particles generated by a plasma, which particles react to form a passivation layer on the substrate.
  • a selective trap is interposed between the plasma and the substrate, thereby reducing the flow of charged particles towards the substrate while conserving the flow of neutral particles.
  • the selective trap avoids degrading the surface layer of the substrate, at least at the beginning of the deposition. Similarly, by conserving the flow of neutral particles, the selective trap avoids significantly reducing deposition rates.
  • the deposition method comprises two successive steps:
  • deposition is performed in a “non-aggressive” manner so as to avoid degrading the surface layer of the substrate.
  • a fast deposition step is performed by inhibiting the retarding effect of the selective trap, so as to further increase the rate at which the deposit is made.
  • a first operation consists in modifying the trap, e.g. by moving it.
  • a second operation consists in modifying the properties of the plasma, by causing the charged particles that are present in the plasma to be trapped during the initial step of non-aggressive deposition, while allowing the particles to pass through the trap without seeing it during a second step of rapid deposition.
  • the invention provides apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method as defined above, the apparatus comprising:
  • the selective trap may advantageously comprise a metal grid interposed between the plasma and the substrate.
  • the metal grid may be formed, for example, by metal wires crossed at a pitch P that is determined as a function of the characteristics of the plasma, so as to block the flow of charged particles, at least during the initial step of non-aggressive deposition.
  • the pitch P of the grid needs to be less than two or three times the Debye length ⁇ D of the plasma used, at least at the beginning of deposition.
  • the invention provides apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method as defined above, the apparatus comprising:
  • the apparatus comprises adaptation means for modifying the Debye length ⁇ D of the particles of the plasma, the grid remaining interposed permanently in the flow of particles during deposition, whereby the adaptation means provide a plasma having a Debye length ⁇ D that is greater than one-third or half the pitch of the grid during an initial step of non-aggressive deposition, and the adaptation means provide a plasma of Debye length ⁇ D that is considerably smaller than one-third or half the pitch of the grid during a following step of rapid deposition.
  • the apparatus may include a ring for clamping the substrate onto its support, and the grid may advantageously be insulated from the ring for clamping the substrate on its support, and may be biased to a potential that is different from the potential of the clamping ring.
  • FIG. 1 is an overall diagrammatic view of apparatus for plasma-enhanced chemical vapor deposition using an ICP type plasma source
  • FIG. 2 is a diagrammatic side view in diametral section showing a substrate support provided with a grid constituting an embodiment of the present invention
  • FIG. 3 is a plan view of the grid
  • FIG. 4 shows how Debye length varies as a function of substrate ion density and as a function of the electron temperature of the plasma.
  • Apparatus for plasma-enhanced chemical vapor deposition of a dielectric film comprises a plasma source 1 , preferably a high-density ion source in order to be capable of operating properly at a lower operating temperature, followed by a diffusion chamber 2 having a substrate support 3 adapted to hold the substrate for treatment and to be engaged in the diffusion chamber 2 , as shown in position 3 a.
  • a plasma source 1 preferably a high-density ion source in order to be capable of operating properly at a lower operating temperature
  • a diffusion chamber 2 having a substrate support 3 adapted to hold the substrate for treatment and to be engaged in the diffusion chamber 2 , as shown in position 3 a.
  • the plasma source 1 is constituted by an enclosure whose wall 4 is made of dielectric material, it is advantageously cylindrical in shape, being associated with a loop antenna 5 powered by a radiofrequency (RF) electrical generator 6 .
  • RF radiofrequency
  • a gas inlet 7 is provided at the proximal end of the plasma source 1 , i.e. at its end remote from the diffusion chamber 2 .
  • the plasma source 1 communicates with the diffusion chamber 2 which is itself adapted to direct the plasma towards a substrate held on the substrate support in position 3 a.
  • the diffusion chamber 2 also includes a post-discharge gas inlet 8 enabling gas to be introduced downstream from the plasma-creation zone, whereas the gas inlet 7 serves to introduce gas upstream from the plasma-creation zone.
  • a substrate is placed on the substrate support 3 which is fitted into position 3 a in the diffusion chamber.
  • a suitable vacuum is established inside the plasma source 1 and the diffusion chamber 2 , and nitrogen in the form of gaseous nitrogen N 2 or ammonia NH 3 is introduced at the upstream end via the gas inlet 7 , silicon is brought into the diffusion chamber in post-discharge via the post-discharge gas inlet 8 in the form of silane SiH 4 , and the plasma is generated by powering the RF generator 6 .
  • the plasma propagates into the diffusion chamber 2 as far as the substrate carried by the substrate support 3 .
  • a deposited layer of silicon nitride Si 3 N 4 is thus formed on the substrate.
  • the deposition layer passivates the substrate. However, it will be understood that, at the beginning of the procedure, the substrate is not yet protected by any deposited layer, and is therefore subjected to bombardment by particles of the plasma.
  • the invention seeks to reduce the harmful effects of bombardment with the charged particles present in the plasma by interposing a selective trap between the plasma and the substrate carried by the substrate support 3 .
  • FIGS. 2 and 3 show the substrate support 3 in an embodiment of the invention on a larger scale.
  • a substrate support plate 9 In general terms, there can be seen a substrate support plate 9 , an axial support column 10 secured to the substrate support plate 9 and carrying a substrate support block 11 , itself containing in conventional manner RF electrodes 12 , heater means 13 , and a clamping ring 14 adapted to hold the substrate 15 , e.g. a semiconductor wafer.
  • an insulating ring 16 is fitted to the clamping ring 14 , said ring itself holding a grid 17 which overlies the substrate 15 at a suitable distance therefrom and which is parallel to the substrate 15 , extending between the substrate 15 and the plasma.
  • the grid 17 is circular in shape, being similar in shape to the semiconductor wafer or substrate 15 , and it is formed by orthogonal metal wires crossed at a suitable pitch P.
  • the pitch P is determined as a function of the characteristics of the plasma, so as to block the flow of charged particles from the plasma and prevent them from reaching the substrate 15 , while allowing the neutral particles of the plasma to pass through.
  • a good selective trapping effect on the charged particles of the plasma is observed when the pitch P of the grid 17 is less than two or three times the Debye length ⁇ D of the plasma that is being used.
  • Debye length varies as a function of the characteristics of the plasma, in known manner and as shown in FIG. 4 .
  • the Debye length decreases with increasing density of ions in the plasma, and increases with increasing electron temperature of the plasma.
  • the curves plotted in FIG. 4 show how Debye length varies as a function of ion density for five values of plasma electron temperature varying progressively over the range 1.5 electron volts (eV) to 3.5 eV.
  • the pitch P of the grid is therefore selected as a function of the properties of the plasma in compliance with the characteristics shown by the curves of FIG. 4 .
  • N is ion density
  • Te is the electron temperature of the plasma
  • a pitch is selected having a value of about 100 microns ( ⁇ m) so as to ensure that the grid can be made easily.
  • Ion density may be about 1.00E+10 cm ⁇ 3 to 5.00E+10 cm ⁇ 3 .
  • the grid 17 which is insulated from the clamping ring 14 by the insulating ring 16 can be biased to a potential which is different from the potential of the clamping ring 14 .
  • Means are advantageously provided for selectively retracting the grid 17 .
  • the grid 17 is interposed in the particle flow during an initial step of non-aggressive deposition, so as to avoid charged particles passing through it, after which the grid is retracted out from the flow of particles during a following step of rapid deposition, enabling the plasma to act completely on the substrate 15 .
  • the apparatus may advantageously include adaptation means for modifying the Debye length ⁇ D of the particles of the plasma, the grid 17 remaining interposed permanently in the flow of particles during deposition.
  • the adaptation means may be means for modifying the ion density of the plasma, or more advantageously, means for modifying the electron temperature Te of the plasma, e.g. by modifying the power of the RF generator 6 .
  • the adaptation means generate a plasma having a Debye length ⁇ D that is greater than one-third or one half of the pitch P of the grid 17 , with the same adaptation means producing a plasma having a Debye length ⁇ D that is considerably less than one-third or one-half the pitch P of the grid 17 during a following step of rapid deposition.
  • the present invention may find advantageous applications, in particular in the use of the apparatus as described above for passivating a semiconductor substrate based on silicon Si, germanium Ge, indium phosphide InP, gallium arsenide GaAs, or a component in columns II to VI of the periodic table of the elements, by means of a passivation layer of the dielectric film type.
  • the passivation layer may be based on silicon SiO 2 , or on silicon nitride Si 3 N 4 , for example.

Abstract

While performing plasma-enhanced chemical vapor deposition on a substrate by exposing the substrate in a vacuum to a flow of particles generated by a plasma, which particles react to form a passivation layer on the substrate, a grid is interposed between the plasma and the substrate, thereby reducing the flow of charged particles towards the substrate while conserving a flow of neutral particles. The grid is formed of metal wires that are crossed at a pitch that is less than two or three times the Debye length (λD) of the plasma used, at least at the beginning of deposition. The aging properties of semiconductor components made by such a method is thereby improved.

Description

  • This is a divisional application of U.S. application Ser. No. 10/902,582, filed Jul. 30, 2004, the disclosure of which is incorporated herein.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to methods of fabricating semiconductor components in which at least one step of plasma-enhanced chemical vapor deposition is performed consisting in exposing a semiconductor substrate in a vacuum to a flow of particles generated by a plasma, the particles reacting to form a passivation layer on the substrate of a material that has dielectric properties.
  • Traditional chemical vapor deposition methods, which are in widespread use for depositing films on substrates, lead to the substrates becoming heated to high temperatures. Such methods can therefore be used only for substrates that withstand high temperatures without significant degradation.
  • To make deposits on substrates that are relatively fragile, it is common practice to use plasma-enhanced chemical vapor deposition (PECVD), during which method a substrate is exposed in a vacuum to a flow of particles generated by a plasma and which reacts to form a passivation layer on the substrate. Such a deposit can be applied at a lower temperature, of the order of 250° C. to 400° C. However, most plasma sources lead to performing the method at a temperature which is still too high for certain fragile semiconductor substrates, and the semiconductor components made in this way present progressive aging defects which rapidly make them unsuitable for use.
  • Proposals have also been made to use an inductively-coupled plasma (ICP) source which consists in generating the plasma by electromagnetic excitation by means of a loop antenna placed outside the plasma-generation compartment, the wall of the compartment being made of a dielectric material. Such an ICP source can allow operation to take place at a lower temperature without deliberately heating the substrate. The substrate is then at a temperature of about 50° C. during deposition. It is found that this improves the aging of the semiconductor component.
  • Rapid and unacceptable aging is also observed on items having a fragile semiconductor substrate such as indium phosphide InP, gallium arsenide GaAs, or even substrates of silicon or of germanium.
  • There continues to exist a need to improve the properties of semiconductor components over time so as to enable them to conserve their properties over a long lifetime.
  • For example, in positive intrinsic negative (PIN) diodes for detecting light, the substrate is made of indium phosphide. Over time, PIN diodes made by present-day methods lose their characteristic of being insulating in the absence of light. This leads to undesirable leakage current which reduces the overall detection ability of the diode and its sensitivity.
  • In order to improve the aging properties of the diode, attempts have been made to passivate the substrate by depositing silicon nitride using a PECVD method, with such a deposit serving in particular to counter the effect of moisture.
  • However, such a deposit does not have sufficient effectiveness over time, and the diode progressively loses its character of being insulating in the absence of light.
  • The present invention results from the observation whereby the progressive aging defects of certain semiconductor components such as PIN diodes are apparently due to degradation of the interface between the substrate and the deposited layer while the passivation layers are being deposited. At the beginning of the deposition step, the substrate is bare and can itself be degraded by the action of the plasma.
  • It is assumed that this degradation is produced by the action of charged particles in the plasma, bombarding the substrate and degrading its surface layer.
  • If the negative bias of the substrate is reduced, e.g. by putting it at a floating potential, that does not suffice to prevent the action of charged particles on the substrate.
  • The problem posed by the present invention is to further improve the aging properties of semiconductor components made using at least one step involving a plasma-enhanced chemical vapor deposition method, so that the resulting semiconductor component conserves its properties over time.
  • Since full advantage has been taken from reducing treatment temperature, the invention seeks to find additional means for reducing the aggressive nature of the plasma relative to the substrate during steps of depositing a dielectric film on a substrate.
  • The invention seeks simultaneously to protect the substrate while not significantly reducing the speed at which the deposit is made on the substrate.
  • SUMMARY OF THE INVENTION
  • In order to achieve these objects, and others, a first aspect of the invention provides a particular method of depositing dielectric films by plasma-enhanced chemical vapor deposition, in which a substrate is exposed in a vacuum to a flow of particles generated by a plasma, which particles react to form a passivation layer on the substrate. A selective trap is interposed between the plasma and the substrate, thereby reducing the flow of charged particles towards the substrate while conserving the flow of neutral particles.
  • It will be understood that by reducing the flow of charged particles, the selective trap avoids degrading the surface layer of the substrate, at least at the beginning of the deposition. Similarly, by conserving the flow of neutral particles, the selective trap avoids significantly reducing deposition rates.
  • According to the invention, the deposition method comprises two successive steps:
  • a) an initial step of non-aggressive deposition, during which the selective trap effectively reduces the flow of charges particles; and
  • b) a following step of rapid deposition, during which the selective trapping effect is inhibited, at least to a great extent.
  • It is found that degradation of the surface layer of the substrate takes place essentially at the beginning of deposition, a period during which the substrate is not protected by the deposited layer against aggression by particles of the plasma. Thus, during the initial deposition step, deposition is performed in a “non-aggressive” manner so as to avoid degrading the surface layer of the substrate. Subsequently, once a certain amount of deposition has been achieved, a fast deposition step is performed by inhibiting the retarding effect of the selective trap, so as to further increase the rate at which the deposit is made.
  • In practice, it is possible to inhibit the effect of the selective trap in particular by one or other of the following two operations: a first operation consists in modifying the trap, e.g. by moving it. A second operation consists in modifying the properties of the plasma, by causing the charged particles that are present in the plasma to be trapped during the initial step of non-aggressive deposition, while allowing the particles to pass through the trap without seeing it during a second step of rapid deposition.
  • In a second aspect, the invention provides apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method as defined above, the apparatus comprising:
      • a source of high-density ion plasma;
      • means for projecting plasma particles onto the substrate;
      • a selective trap for eliminating or significantly reducing the flow of charged particles towards the substrate, while conserving a flow of neutral particles which react to form a passivation layer on the substrate; and
      • means for selectively retracting the trap, such that the trap is interposed in the flow of particles during an initial step of non-aggressive deposition, and the trap is retracted from the flow of particles during a following step of rapid deposition.
  • In practice, the selective trap may advantageously comprise a metal grid interposed between the plasma and the substrate.
  • In order to have a selective trap effect, the metal grid may be formed, for example, by metal wires crossed at a pitch P that is determined as a function of the characteristics of the plasma, so as to block the flow of charged particles, at least during the initial step of non-aggressive deposition.
  • In practice, the pitch P of the grid needs to be less than two or three times the Debye length λD of the plasma used, at least at the beginning of deposition.
  • Alternatively, the invention provides apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method as defined above, the apparatus comprising:
      • a source of high-density ion plasma;
      • means for projecting plasma particles onto the substrate; and
      • a selective trap for eliminating or significantly reducing the flow of charged particles towards the substrate while conserving a flow of neutral particles which react to form a passivation layer on the substrate; in which the selective trap comprises a metal grid interposed between the plasma and the substrate, the grid being formed by metal wires crossed at a pitch P that is determined as a function of the characteristics of the plasma to block the flow of charged particles.
  • According to the invention, the apparatus comprises adaptation means for modifying the Debye length λD of the particles of the plasma, the grid remaining interposed permanently in the flow of particles during deposition, whereby the adaptation means provide a plasma having a Debye length λD that is greater than one-third or half the pitch of the grid during an initial step of non-aggressive deposition, and the adaptation means provide a plasma of Debye length λD that is considerably smaller than one-third or half the pitch of the grid during a following step of rapid deposition.
  • The apparatus may include a ring for clamping the substrate onto its support, and the grid may advantageously be insulated from the ring for clamping the substrate on its support, and may be biased to a potential that is different from the potential of the clamping ring.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, characteristics, and advantages of the present invention appear from the following description of particular implementations, made with reference to the accompanying figures, in which:
  • FIG. 1 is an overall diagrammatic view of apparatus for plasma-enhanced chemical vapor deposition using an ICP type plasma source;
  • FIG. 2 is a diagrammatic side view in diametral section showing a substrate support provided with a grid constituting an embodiment of the present invention;
  • FIG. 3 is a plan view of the grid; and
  • FIG. 4 shows how Debye length varies as a function of substrate ion density and as a function of the electron temperature of the plasma.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference is made initially to FIG. 1. Apparatus for plasma-enhanced chemical vapor deposition of a dielectric film comprises a plasma source 1, preferably a high-density ion source in order to be capable of operating properly at a lower operating temperature, followed by a diffusion chamber 2 having a substrate support 3 adapted to hold the substrate for treatment and to be engaged in the diffusion chamber 2, as shown in position 3 a.
  • The plasma source 1 is constituted by an enclosure whose wall 4 is made of dielectric material, it is advantageously cylindrical in shape, being associated with a loop antenna 5 powered by a radiofrequency (RF) electrical generator 6. A gas inlet 7 is provided at the proximal end of the plasma source 1, i.e. at its end remote from the diffusion chamber 2.
  • The plasma source 1 communicates with the diffusion chamber 2 which is itself adapted to direct the plasma towards a substrate held on the substrate support in position 3 a.
  • The diffusion chamber 2 also includes a post-discharge gas inlet 8 enabling gas to be introduced downstream from the plasma-creation zone, whereas the gas inlet 7 serves to introduce gas upstream from the plasma-creation zone.
  • To perform a plasma-enhanced chemical vapor deposition method, a substrate is placed on the substrate support 3 which is fitted into position 3 a in the diffusion chamber. A suitable vacuum is established inside the plasma source 1 and the diffusion chamber 2, and nitrogen in the form of gaseous nitrogen N2 or ammonia NH3 is introduced at the upstream end via the gas inlet 7, silicon is brought into the diffusion chamber in post-discharge via the post-discharge gas inlet 8 in the form of silane SiH4, and the plasma is generated by powering the RF generator 6. The plasma propagates into the diffusion chamber 2 as far as the substrate carried by the substrate support 3. A deposited layer of silicon nitride Si3N4 is thus formed on the substrate.
  • In the same manner, and by using other appropriate gases, it is possible to deposit different layers.
  • The deposition layer passivates the substrate. However, it will be understood that, at the beginning of the procedure, the substrate is not yet protected by any deposited layer, and is therefore subjected to bombardment by particles of the plasma.
  • The invention seeks to reduce the harmful effects of bombardment with the charged particles present in the plasma by interposing a selective trap between the plasma and the substrate carried by the substrate support 3.
  • Reference is now made to FIGS. 2 and 3 which show the substrate support 3 in an embodiment of the invention on a larger scale.
  • In general terms, there can be seen a substrate support plate 9, an axial support column 10 secured to the substrate support plate 9 and carrying a substrate support block 11, itself containing in conventional manner RF electrodes 12, heater means 13, and a clamping ring 14 adapted to hold the substrate 15, e.g. a semiconductor wafer.
  • In the invention, an insulating ring 16 is fitted to the clamping ring 14, said ring itself holding a grid 17 which overlies the substrate 15 at a suitable distance therefrom and which is parallel to the substrate 15, extending between the substrate 15 and the plasma.
  • As can be seen in FIG. 3 which is a plan view, the grid 17 is circular in shape, being similar in shape to the semiconductor wafer or substrate 15, and it is formed by orthogonal metal wires crossed at a suitable pitch P.
  • The pitch P is determined as a function of the characteristics of the plasma, so as to block the flow of charged particles from the plasma and prevent them from reaching the substrate 15, while allowing the neutral particles of the plasma to pass through.
  • A good selective trapping effect on the charged particles of the plasma is observed when the pitch P of the grid 17 is less than two or three times the Debye length λD of the plasma that is being used.
  • Debye length varies as a function of the characteristics of the plasma, in known manner and as shown in FIG. 4.
  • In particular, the Debye length decreases with increasing density of ions in the plasma, and increases with increasing electron temperature of the plasma. The curves plotted in FIG. 4 show how Debye length varies as a function of ion density for five values of plasma electron temperature varying progressively over the range 1.5 electron volts (eV) to 3.5 eV.
  • The pitch P of the grid is therefore selected as a function of the properties of the plasma in compliance with the characteristics shown by the curves of FIG. 4.
  • It is also possible to select the pitch P by taking the following formula into consideration for the Debye length: λ D = ( KTe Ne 2 ) 1 2
  • where N is ion density, and Te is the electron temperature of the plasma.
  • In practice, a pitch is selected having a value of about 100 microns (μm) so as to ensure that the grid can be made easily.
  • Ion density may be about 1.00E+10 cm−3 to 5.00E+10 cm−3.
  • Because of the presence of such a grid 17, only the chemical component of the plasma passes through the grid and reaches the substrate 15, while the electrical component formed by the electrically charged particles is trapped by the grid 17 and thus does not reach the substrate 15.
  • The grid 17 which is insulated from the clamping ring 14 by the insulating ring 16 can be biased to a potential which is different from the potential of the clamping ring 14.
  • Means are advantageously provided for selectively retracting the grid 17. As a result, the grid 17 is interposed in the particle flow during an initial step of non-aggressive deposition, so as to avoid charged particles passing through it, after which the grid is retracted out from the flow of particles during a following step of rapid deposition, enabling the plasma to act completely on the substrate 15.
  • In more advantageous manner, by taking into consideration the variation in Debye length as a function of the parameters of the plasma, as shown in FIG. 4, it is possible to modify the selective nature of the trap constituted by the grid 17 by modifying the characteristics of the plasma during the deposition procedure.
  • Thus, the apparatus may advantageously include adaptation means for modifying the Debye length λD of the particles of the plasma, the grid 17 remaining interposed permanently in the flow of particles during deposition. Under such circumstances, the adaptation means may be means for modifying the ion density of the plasma, or more advantageously, means for modifying the electron temperature Te of the plasma, e.g. by modifying the power of the RF generator 6. Thus, during an initial step of non-aggressive deposition, the adaptation means generate a plasma having a Debye length λD that is greater than one-third or one half of the pitch P of the grid 17, with the same adaptation means producing a plasma having a Debye length λD that is considerably less than one-third or one-half the pitch P of the grid 17 during a following step of rapid deposition.
  • It will be understood that regardless of whether the selective trapping effect is inhibited during the following step of rapid deposition by moving the grid or by modifying the plasma, it enables the plasma to take full effect in order to generate a deposit on the substrate 15.
  • The present invention may find advantageous applications, in particular in the use of the apparatus as described above for passivating a semiconductor substrate based on silicon Si, germanium Ge, indium phosphide InP, gallium arsenide GaAs, or a component in columns II to VI of the periodic table of the elements, by means of a passivation layer of the dielectric film type.
  • The passivation layer may be based on silicon SiO2, or on silicon nitride Si3N4, for example.
  • The present invention is not limited to the embodiments described explicitly, and it includes variants and generalizations which are within the competence of the person skilled in the art.

Claims (11)

1. Apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method, the apparatus comprising:
a source of high-density ion plasma;
means for projecting plasma particles onto the substrate; and
a selective trap for at least substantially reducing the flow of charged particles towards the substrate while conserving a flow of neutral particles which react to form a passivation layer on the substrate;
said apparatus further comprising means for selectively retracting the trap, such that the trap is interposed in the flow of particles during an initial step of non-aggressive deposition, and the trap is retracted from the flow of particles during a following step of rapid deposition wherein deposition occurs more rapidly than during said non-aggressive deposition said.
2. Apparatus according to claim 1, in which the selective trap comprises a metal grid interposed between the plasma and the substrate.
3. Apparatus according to claim 2, in which the metal grid is formed by metal wires crossed at a pitch that is determined as a function of the characteristics of the plasma to block the flow of charged particles.
4. Apparatus according to claim 3, in which the pitch of the grid is less than two to three times the Debye length λD of the plasma used, at least at the beginning of deposition.
5. Apparatus for depositing dielectric films on a substrate by a plasma-enhanced chemical vapor deposition method, the apparatus comprising:
a source of high-density ion plasma;
means for projecting plasma particles onto the substrate; and
a selective trap for at least substantially reducing the flow of charged particles towards the substrate while conserving a flow of neutral particles which react to form a passivation layer on the substrate;
in which the selective trap comprises a metal grid interposed between the plasma and the substrate, the grid being formed by metal wires crossed at a pitch that is determined as a function of the characteristics of the plasma to block the flow of charged particles; and
in which the apparatus includes adaptation means for modifying the Debye length λD of the particles of the plasma, the grid remaining interposed permanently in the flow of particles during deposition, whereby the adaptation means provide a plasma having a Debye length λD that is greater than one-third or half the pitch of the grid during an initial step of non-aggressive deposition, and the adaptation means provide a plasma of Debye length λD that is considerably smaller than one-third or half the pitch of the grid during a following step of rapid deposition where deposition occurs more rapidly than during said non-aggressive deposition.
6. Apparatus according to claim 1, including a clamping ring, in which the grid is insulated from the clamping ring and is biased to a potential different from the potential of the clamping ring.
7. Apparatus according to claim 5, including a clamping ring, in which the grid is insulated from the clamping ring and is biased to a potential different from the potential of the clamping ring.
8. The use of apparatus according to claim 1 for passivating a semiconductor substrate based on silicon, germanium, indium phosphide, gallium arsenide, or an II-VI compound, by means of a passivation layer of the dielectric film type.
9. The use of apparatus according to claim 5 for passivating a semiconductor substrate based on silicon, germanium, indium phosphide, gallium arsenide, or an II-VI compound, by means of a passivation layer of the dielectric film type.
10. Apparatus according to claim 5, including a clamping ring, in which the grid is insulated from the clamping ring and is biased to a potential different from the potential of the clamping ring.
11. The use of apparatus according to claim 5 for passivating a semiconductor substrate based on silicon, germanium, indium phosphide, gallium arsenide, or an II-VI compound, by means of a passivation layer of the dielectric film type.
US11/372,118 2003-07-31 2006-03-10 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films Abandoned US20060189165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/372,118 US20060189165A1 (en) 2003-07-31 2006-03-10 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0309422 2003-07-31
FR0309422A FR2858333B1 (en) 2003-07-31 2003-07-31 METHOD AND DEVICE FOR LOW-AGGRESSIVE DEPOSITION OF PLASMA-ASSISTED VAPOR PHASE DIELECTRIC FILMS
US10/902,582 US7056842B2 (en) 2003-07-31 2004-07-30 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films
US11/372,118 US20060189165A1 (en) 2003-07-31 2006-03-10 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/902,582 Division US7056842B2 (en) 2003-07-31 2004-07-30 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films

Publications (1)

Publication Number Publication Date
US20060189165A1 true US20060189165A1 (en) 2006-08-24

Family

ID=33523028

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/902,582 Active 2024-10-04 US7056842B2 (en) 2003-07-31 2004-07-30 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films
US11/372,118 Abandoned US20060189165A1 (en) 2003-07-31 2006-03-10 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/902,582 Active 2024-10-04 US7056842B2 (en) 2003-07-31 2004-07-30 Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films

Country Status (4)

Country Link
US (2) US7056842B2 (en)
EP (1) EP1502969A1 (en)
JP (1) JP2005057267A (en)
FR (1) FR2858333B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2593720B (en) * 2020-03-31 2022-03-23 Mcmurtry Automotive Ltd Vehicle seat

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987346A (en) * 1988-02-05 1991-01-22 Leybold Ag Particle source for a reactive ion beam etching or plasma deposition installation
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode
US5874705A (en) * 1994-07-19 1999-02-23 Ea Technology Limited Method of and apparatus for microwave-plasma production
US5894159A (en) * 1994-06-09 1999-04-13 Sony Corporation Semiconductor device having first and second insulating layers
US5958157A (en) * 1996-09-11 1999-09-28 Sandia Corporation Magnetic multipole redirector of moving plasmas
US6444327B1 (en) * 1997-05-21 2002-09-03 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
US20020185226A1 (en) * 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
US20030056726A1 (en) * 1999-10-18 2003-03-27 Mark Holst Abatement of effluent from chemical vapor deposition processes using ligand exchange resistant metal-organic precursor solutions
US20030232495A1 (en) * 2002-05-08 2003-12-18 Farhad Moghadam Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US20040048492A1 (en) * 2001-01-26 2004-03-11 Applied Materials, Inc. Apparatus for reducing plasma charge damage for plasma processes
US20040203177A1 (en) * 2003-04-11 2004-10-14 Applied Materials, Inc. Method and system for monitoring an etch process
US20050001555A1 (en) * 2001-12-10 2005-01-06 Tokyo Electron Limited Method and device for removing harmonics in semiconductor plasma processing systems
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987746A (en) * 1989-08-04 1991-01-29 Roberts Mark J Apparatus for transferring water from a container to a refrigerator ice maker
JPH04132219A (en) * 1990-09-24 1992-05-06 Sony Corp Plasma treatment apparatus and manufacture of semiconductor device using same
JP2888258B2 (en) * 1990-11-30 1999-05-10 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP3353514B2 (en) * 1994-12-09 2002-12-03 ソニー株式会社 Plasma processing apparatus, plasma processing method, and method for manufacturing semiconductor device
EP1198610A4 (en) * 1999-05-14 2004-04-07 Univ California Low-temperature compatible wide-pressure-range plasma flow device
JP3948857B2 (en) * 1999-07-14 2007-07-25 株式会社荏原製作所 Beam source
JP2001156056A (en) * 1999-11-22 2001-06-08 United Microelectronics Corp Apparatus for preventing plasma damage to wafer
JP4073174B2 (en) * 2001-03-26 2008-04-09 株式会社荏原製作所 Neutral particle beam processing equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987346A (en) * 1988-02-05 1991-01-22 Leybold Ag Particle source for a reactive ion beam etching or plasma deposition installation
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode
US5894159A (en) * 1994-06-09 1999-04-13 Sony Corporation Semiconductor device having first and second insulating layers
US5874705A (en) * 1994-07-19 1999-02-23 Ea Technology Limited Method of and apparatus for microwave-plasma production
US5958157A (en) * 1996-09-11 1999-09-28 Sandia Corporation Magnetic multipole redirector of moving plasmas
US6444327B1 (en) * 1997-05-21 2002-09-03 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
US20030056726A1 (en) * 1999-10-18 2003-03-27 Mark Holst Abatement of effluent from chemical vapor deposition processes using ligand exchange resistant metal-organic precursor solutions
US20020185226A1 (en) * 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
US20040048492A1 (en) * 2001-01-26 2004-03-11 Applied Materials, Inc. Apparatus for reducing plasma charge damage for plasma processes
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US20050001555A1 (en) * 2001-12-10 2005-01-06 Tokyo Electron Limited Method and device for removing harmonics in semiconductor plasma processing systems
US20030232495A1 (en) * 2002-05-08 2003-12-18 Farhad Moghadam Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US20040203177A1 (en) * 2003-04-11 2004-10-14 Applied Materials, Inc. Method and system for monitoring an etch process

Also Published As

Publication number Publication date
US20050026404A1 (en) 2005-02-03
FR2858333A1 (en) 2005-02-04
US7056842B2 (en) 2006-06-06
FR2858333B1 (en) 2006-12-08
JP2005057267A (en) 2005-03-03
EP1502969A1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
US5462898A (en) Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime
Claassen et al. Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers
Donnelly et al. Temperature dependence of InP and GaAs etching in a chlorine plasma
Park et al. Bulk and interface properties of low-temperature silicon nitride films deposited by remote plasma enhanced chemical vapor deposition
US6235650B1 (en) Method for improved semiconductor device reliability
KR100502945B1 (en) Cleaning method of plasma processing apparatus
JPH0580817B2 (en)
Sato Growth of GaAsN by low-pressure metalorganic chemical vapor deposition using plasma-cracked N2
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
Flemish et al. Low hydrogen content silicon nitride films from electron cyclotron resonance plasmas
Plais et al. Low Temperature Deposition of SiO2 by Distributed Electron Cyclotron Resonance Plasma‐Enhanced Chemical Vapor Deposition
Lishan et al. Dry etch induced damage in GaAs investigated using Raman scattering spectroscopy
US5861059A (en) Method for selective growth of silicon epitaxial film
US5045346A (en) Method of depositing fluorinated silicon nitride
US7056842B2 (en) Method and apparatus for non-aggressive plasma-enhanced vapor deposition of dielectric films
Van Den Oever et al. N, NH, and NH2 radical densities in a remote Ar–NH3–SiH4 plasma and their role in silicon nitride deposition
Nakashima et al. Low-temperature deposition of high-quality silicon dioxide films by sputtering-type electron cyclotron resonance plasma
Ohta et al. Effect of ions and radicals on formation of silicon nitride gate dielectric films using plasma chemical vapor deposition
Mizokuro et al. Mechanism of low temperature nitridation of silicon oxide layers by nitrogen plasma generated by low energy electron impact
Valco et al. Plasma deposited silicon nitride for indium phosphide encapsulation
US6472336B1 (en) Forming an encapsulating layer after deposition of a dielectric comprised of corrosive material
Khandelwal et al. Nitrogen incorporation in ultrathin gate dielectrics: A comparison of He/N 2 O and He/N 2 remote plasma processes
US6936310B1 (en) Plasma processing method
Su et al. Low-temperature growth of SiO2/InP structure prepared by photo-CVD
Aite et al. The relationship between intrinsic stress of silicon nitride films and ion generation in a 50 kHz RF discharge

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEGAL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:021805/0378

Effective date: 20080916

AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:ALCATEL;REEL/FRAME:021976/0763

Effective date: 20061130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION