US20060182965A1 - Water-permeability imparting agent and fiber having the agent applied thereto - Google Patents

Water-permeability imparting agent and fiber having the agent applied thereto Download PDF

Info

Publication number
US20060182965A1
US20060182965A1 US10/551,149 US55114905A US2006182965A1 US 20060182965 A1 US20060182965 A1 US 20060182965A1 US 55114905 A US55114905 A US 55114905A US 2006182965 A1 US2006182965 A1 US 2006182965A1
Authority
US
United States
Prior art keywords
fiber
water
group
aliphatic hydrocarbon
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/551,149
Inventor
Hidetoshi Kitaguchi
Yoshiharu Fujimoto
Haruhiko Komeda
Setsuo Kita
Yoshishige Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Assigned to MATSUMOTO YUSHI-SEIYAKU CO., LTD. reassignment MATSUMOTO YUSHI-SEIYAKU CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIMOTO, YOSHIHARU, KITA, SETSUO, KITAGUCHI, HIDETOSHI, KOMEDA, HARUHIKO, NAKAMURA, YOSHIGE
Publication of US20060182965A1 publication Critical patent/US20060182965A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/51113Topsheet, i.e. the permeable cover or layer facing the skin comprising an additive, e.g. lotion or odour control
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • D06M13/295Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof containing polyglycol moieties; containing neopentyl moieties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a treatment composition suitable for fiber products, especially for fiber processed into nonwoven fabric to be employed as topsheet of disposable diapers and sanitary napkins. More precisely the present invention relates to a water-permeable agent for improving fluid-absorbing performance and permanent water permeability of top sheet, and for decreasing wetback, which means the flow back of urine or menstrual flow through topsheet to wet wearers' skin after they have been absorbed in diaper or napkin through topsheet.
  • Absorbent articles such as disposable diapers and sanitary napkins usually have a construction comprising topsheet produced by imparting hydrophilicity to various nonwoven fabrics of strongly hydrophobic polyolefin fiber, triacetate fiber or polyester fiber; backsheet imparted with hydrophobic property; and a material comprising fibrous pulp or absorbent polymer being set between the sheets.
  • topsheet When urine or menstrual flow is absorbed into absorbent material through topsheet, topsheet must be fluid-permeable enough not to get wet, in other words, those fluids must be completely absorbed into absorbent material under topsheet in a possible shortest time.
  • absorbed fluid in absorbent material must not flow back onto topsheet surface, in other words, wetback of absorbed fluid must be decreased.
  • topsheet is required to have water permeability durable against repeated absorption of urine, in other words, permanent water permeability, because rapid decrease of water permeability of topsheet, which is caused from the wash off of a water permeable agent from topsheet with once or twice of urine absorption, increases the frequency of exchanging diapers, and is also required to have permanent water permeability, which is not deteriorated with time.
  • a water-permeable agent applied in the production process of spun-bonded nonwovens should distribute uniformly on nonwoven fabric, penetrate sufficiently into nonwoven fabric, and attain antistaticity for controlling static charge generated in winding nonwoven sheet; and a water-permeable agent applied in a process where fiber is carded and processed into nonwoven fabric is required to attain high carding performance, in other words, to prevent static charge on fiber and fiber wrapping on card cylinder, and to facilitate uniform web processing.
  • Japanese Patent Publication Sho 63-14081 discloses a method in which fiber is treated with potassium C 12 to C 22 linear alkyl phosphate.
  • Japanese Patent Laid-Open Sho 60-215870 discloses a treating composition formulated by blending a C 10 to C 30 alkylphosphate salt with a C 10 to C 30 betaine, sulfate salt, or sulfonate salt.
  • Japanese Patent Laid-Open Hei 4-82961 discloses a method in which an alkylphosphate salt is blended with a polyether-modified silicone.
  • Japanese Patent Laid Open 2000-170076 discloses a process wherein an alkylphosphate salt is blended with two different betaines.
  • Japanese Patent Laid-Open Sho 63-49158 discloses a method employing a mixture of sorbitan monooleate and polyoxyethylene sorbitan monooleate, which is different from the treating compositions mentioned above.
  • Japanese Patent Laid-Open Hei 3-82871 discloses a method employing an alkoxylated ricinolein and hydrogenated product thereof.
  • Japanese Patent Laid Open Hei 10-53955 discloses a method employing a combination of a polyether compound and a polyether-modified silicone.
  • Japanese Patent Laid-Open Hei 9-56748 discloses a method for decreasing wetback by modifying the construction of fiber products, in other words, disposable diapers and sanitary napkins.
  • Japanese Patent Laid-Open 2001-123366 discloses a method for decreasing wetback by modifying the construction of topsheet of fiber products.
  • the object of the present invention is to provide a water-permeable agent, which attains improved water permeability and remarkably improved permanent water permeability from those attained by conventional methods, decreases wetback and time-dependent change of permanent water permeability, and is applicable to fiber processed in high-speed carding.
  • Another object of the present invention is to provide fiber to which water permeability is imparted with the water permeable agent of the present invention.
  • a water permeable agent comprising (A) a quaternary ammonium salt represented by the following formula (I): (R 1 , R 2 , R 3 )N + —R 4 .X ⁇ (I) wherein R 1 is a C 8 to C 24 aliphatic hydrocarbon group; R 2 is a C 8 to C 18 aliphatic hydrocarbon group in the case that R 1 is a C 8 to C 18 aliphatic hydrocarbon group, and R 2 is a hydrogen atom, C 1 to C 3 aliphatic hydrocarbon group, or C 1 to C 3 hydroxyalkyl group in the case that R 1 is a C 19 to C 24 aliphatic hydrocarbon group; each of R 3 and R 4 is independently a hydrogen atom, C 1 to C 3 aliphatic hydrocarbon group, or C 1 to C 3 hydroxyalkyl group; and X is an ionic residue selected from the group consisting of halogen
  • the object and advantage of the present invention mentioned above are attained, second, by providing water-permeable fiber comprising fiber and a water-permeable agent of the present invention being incorporated on the fiber at an application level from 0.1 to 2.0 weight percent of the weight of the fiber.
  • the quaternary ammonium salt (the component A) employed in the present invention is represented by the formula (I) described above.
  • R 1 is a C 8 to C 24 aliphatic hydrocarbon group
  • R 2 is a C 8 to C 18 aliphatic hydrocarbon group in the case that R 1 is a C 8 to C 18 aliphatic hydrocarbon group
  • R 2 is a hydrogen atom, C 1 to C 3 aliphatic hydrocarbon group, or C 1 to C 3 hydroxyalkyl group in the case that R 1 is a C 19 to C 24 aliphatic hydrocarbon group
  • each of R 3 and R 4 is independently a hydrogen atom, C 1 to C 3 aliphatic hydrocarbon group, or C 1 to C 3 hydroxyalkyl group
  • X is an ionic residue selected from the group consisting of halogen ions, nitrate ion, acetate ion, methyl sulfate ion, ethyl sulfate ion and dimethyl phosphate ion.
  • One of or a combination of two or more of the quaternary ammonium salts represented by the formula (I) can be employed.
  • each of R 1 and R 2 is independently and preferably a C 8 to C 18 aliphatic hydrocarbon group.
  • R 1 or R 2 having carbon atoms equal to or smaller than 7 is not preferable, because such aliphatic hydrocarbon group accelerates the time-dependent deterioration of permanent water permeability, deteriorates fiber processability in carding, excessively increases hydrophilicity of fiber to decrease permanent water permeability, and increases wetback.
  • R 1 or R 2 having carbon atoms equal to or greater than 25 is not preferable, because such aliphatic hydrocarbon group is apt to decrease initial water permeability.
  • Each of R 3 and R 4 is preferably a C 1 to C 3 aliphatic hydrocarbon group.
  • R 3 or R 4 having carbon atoms equal to or greater than 4 is not preferable, because such aliphatic hydrocarbon group is apt to decrease the initial and permanent water permeability of resultant water-permeable agent.
  • the examples of the preferable component (A) are dioctyl dimethyl ammonium chloride, didecyl dimethyl ammonium chloride, dilauryl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, di-coco-alkyl dimethyl ammonium chloride, di-hydrogenated-tallow alkyl dimethyl ammonium chloride, behenyl trimethyl ammonium chloride, dilauryl dimethyl ammonium methosulfate, and dilauryl methylethyl ammonium ethosulfate.
  • Some components similar to the specific quaternary ammonium salt (A) employed for the water-permeable agent of the present invention have been disclosed, such as a quaternary ammonium phosphate being added to an antistatic component described in claim 1 of Japanese Patent Laid-Open Sho 61-289182, and soya-dimethylethyl ammonium ethosulfate being added to a finish for fiber processed in open-end spinning described in Examples 1 to 6 in the specification of U.S. Pat. No. 4816336.
  • the former contains a C 8 to C 18 hydrocarbon group bonded to a nitrogen atom of the quaternary ammonium, and the latter contains a C 16 to C 18 hydrocarbon group bonded to a nitrogen atom of the ammonium.
  • Both of those components have excessive hydrophilicity which fails to impart permanent hydrophilicity to fiber, because the former contain a C 8 to C 18 hydrocarbon group bonded to the nitrogen atom of a quaternary ammonium, the latter contain a C 16 to C 18 hydrocarbon group bonded to the nitrogen atom of an ammonium, and both of those components contain only one hydrocarbon group in one molecule.
  • the ratio of the component (A) is from 20 to 80 weight percent, preferably 25 to 75 weight percent, of the total of the components (A) and (B).
  • a ratio smaller than 20 weight percent results in poor permanent water permeability, which deteriorates greatly with time.
  • a ratio greater than 80 weight percent results in poor fiber processability in carding and increased wetback.
  • the phosphate salt (the component B) employed in the present invention is represented by the formula (II) described above.
  • R 5 is a C 6 to C 20 aliphatic hydrocarbon group
  • R 6 is an ethylene and/or propylene group
  • m is an integer from 0 to 15
  • Y is an ionic residue selected from the group consisting of hydrogen ion, sodium ion, potassium ion, ammonium ion, diethanol ammonium ion, and triethanol ammonium ion
  • n is an integer from 1 to 2.
  • One of or a combination of two or more of the phosphate salts represented by the formula (II) can be employed.
  • R 5 is preferably a C 8 to C 18 aliphatic hydrocarbon group.
  • R 5 having carbon atoms equal to or smaller than 5 is not preferable, because such aliphatic hydrocarbon group results in poor fiber processability in carding, decreased permanent water permeability of fiber due to its excessive hydrophilicity, and increased wetback.
  • R 5 having carbon atoms equal to or greater than 21 is not preferable, because such aliphatic hydrocarbon group decreases initial water permeability, and is apt to decrease permanent water permeability.
  • the number, m is preferably an integer ranging from 0 to 10, and a value of m greater than or equal to 6 is not preferable, because it leads to decreased initial water permeability and accelerates the solidification of the component (B) resulting in difficult handling of a water-permeable agent.
  • the examples of the preferable component B are sodium hexyl phosphate, sodium octyl phosphate, potassium octyl phosphate, potassium decyl phosphate, potassium lauryl phosphate, potassium myristyl phosphate, potassium cetyl phosphate, potassium stearyl phosphate, potassium behenyl phosphate, POE(4)sodium decyl phosphate, POE(3)sodium lauryl phosphate, POE(2)potassium cetyl phosphate, POE(15)potassium cetyl phosphate, EO(6)/PO(2)sodium lauryl phosphate, POE(3)diethanolamine lauryl phosphate, and POE(3)triethanolamine lauryl phosphate.
  • the ratio of the component (B) is from 20 to 80 weight percent, preferably from 25 to 75 weight percent, of the total of the components (A) and (B). A ratio smaller than 20 weight percent results in poor fiber processability in carding, and a ratio greater than 80 weight percent results in insufficient pickup of the component (A) on fiber leading to poor permanent water permeability.
  • Blending polyoxyalkylene-modified silicone (the component C) represented by the formula (III) shown below to the components (A) and (B) by 5 to 20 weight percent of the total of the components (A) and (B) improves the permanent water permeability and fiber processability in carding attained by the water-permeable agent of the present invention: in the formula (III), R 7 is a methylene group, ethylene group, propylene group, N-(aminoethyl) methylimino group, or N-(aminopropyl) propylimino group; Z is a polyoxyalkylene group containing at least 20 weight percent of polyoxyethylene; and p and q are integers selected within a range of numbers which produce a component (C) having a molecular weight of 1,000 to 100,000 and containing 20 to 70 weight percent of silicon.
  • polyoxyalkylene groups employable as Z are polyoxyethylene groups, polyoxypropylene groups, polyoxybutylene groups, and copolymers of those monomers.
  • a polyoxyalkylene group containing less than 20 weight percent of polyoxyethylene groups cannot attain sufficient initial and permanent water permeability.
  • Integers p and q resulting in less than 20 weight percent of silicon in a component (C) is not preferable because of insufficient carding performance and rarely improved permanent water permeability of fiber applied with resultant water-permeable agent, and integers p and q resulting in more than 70 weight percent of silicon in a component (C) is not preferable too because of the instability and high production cost of resultant water-permeable agent.
  • Integers p and q resulting in a molecular weight of a component (C) beyond the range of 1,000 to 10,000 are not preferable because of rarely improved initial and permanent water permeability of fiber applied with resultant water-permeable agent.
  • Blending the component (C) to the water-permeable agent of the present invention improves permanent water permeability and fiber processability in carding.
  • the preferable ratio of the component (C) in the water-permeable agent is from 5 to 20 weight percent as mentioned above. A ratio less than 5 weight percent cannot improve permanent water permeability and fiber processability in carding to a satisfactory level, and a ratio greater than 20 weight percent tends to produce unstable water-permeable agent and increases production cost though it contributes to improved permanent water permeability.
  • the water-permeable agent of the present invention is applied to synthetic fibers, natural fibers, and products thereof; preferably to hydrophobic synthetic fibers, for example, polyolefin, polyester, triacetate, nylon, and vinyl chloride, and products thereof; and to thermo-bondable synthetic fibers, such as fibrillated polyolefin, or those having sheath-core structure comprising polyester and polyethylene, polyester and polypropylene, polypropylene and polyethylene, low-melting-point polypropylene and polypropylene, or low-melting-point polyester and polyester, and products thereof.
  • Preferable examples of the products mentioned above are nonwoven fabric products, especially those applied as topsheet of disposable diapers and sanitary napkins.
  • the water-permeable agent of the present invention can be applied to fiber, which is processed into nonwoven fabric, at a stage optionally selected in fiber production process, such as spinning, drawing, and crimping, with a known application method, and can be applied in nonwoven fabric production process such as spun-bonding, water-needling, and melt-blowing, with an ordinary application method.
  • the water-permeable agent of the present invention can be applied to fiber from aqueous emulsion or dilution with solvent.
  • An aqueous emulsion of 5 to 30 weight percent concentration of the agent or a dilution of 5 to 30 weight percent concentration of the agent diluted with a low-viscosity hydrocarbon can be applied to fiber with known application method, such as kiss-roll application, spraying, and bath immersion.
  • the water-permeable agent of the present invention is applied to fiber usually from 0.1 to 2.0 weight percent, preferably from 0.3 to 0.7 weight percent of fiber weight.
  • An amount of said agent on fiber less than 0.1 weight percent results in insufficient initial and permanent water permeability, poor antistaticity, and poor lubricity.
  • An amount of said agent on fiber more than 2.0 weight percent increases fiber wrapping trouble in carding leading to significant decrease of fiber production efficiency, and gives sticky touch on fiber products, such as nonwovens, after water passes through fiber products.
  • Some components other than those described above can be added to the water-permeable agent of the present invention so far as they do not deteriorate the object of the present invention.
  • Components which can be added to said water-permeable agent are lubricants, such as emulsified carnauba wax, nonionic surfactants, anionic surfactants other than phosphates, anti-foaming agents, and antiseptics.
  • the water-permeable agent of the present invention enables the production of nonwoven fabrics having significantly improved initial and permanent permeability of urine and menstrual flow and decreased time-dependent deterioration of permanent water permeability and wetback by applying said water-permeable agent to nonwoven fabric or to fiber processed into nonwoven fabric.
  • said water-permeable agent significantly improves fiber separation and fiber processability in carding in nonwoven fabric production process, because it improves the antistaticity and lubricity of fiber.
  • each of the agents of Examples and Comparative Examples was applied to a fiber, which had been deoiled with hot water prior to the application of the agents with such a ratio that the active content of the applied agent was 0.5 weight percent of the fiber weight, and the fiber samples applied with the agents were dried. Then each of the fiber samples was processed through opening and carding to be processed into web having a density of 30 g/m 2 . The web samples were then heated at 130° C. in an air-through convection oven to fix single fibers of web samples. The resultant nonwoven fabric samples were tested with the following testing procedures to check their water permeability.
  • Carding performance The processability of a fiber sample in carding was evaluated by observing mainly the wrapping of the fiber sample on a card cylinder at 30° C. and 70% RH.
  • the antistaticity of the fiber sample was evaluated by determining the static charge on the sample at 20° C. and 45% RH.
  • Each of the performances was ranked as follows.
  • Antistaticity Forty grams of a fiber sample was processed into web with a carding machine at 20° C. and 45% RH, and the static charge on the web was determined and ranked as follows; 5 representing static charge lower than 100 V, 4 representing static charge ranging from 0.1 to 1.0 kV, 3 representing static charge ranging from 1.0 to 1.5 kV, 2 representing static charge ranging from 1.5 to 2.0 kV, and 1 representing static charge higher than 2.0 kV.
  • the ranks 5 and 4 are acceptable, and the rank 5 is the best.
  • a nonwoven fabric sample cut into 10 cm square was placed on a commercially available disposable diaper.
  • a tube of 70 mm inside diameter was set upright on the nonwoven fabric sample, and 100 ml of physiological salt solution was poured into the tube to be absorbed into the diaper through the nonwoven sample.
  • the tube was removed and twenty sheets of filter paper (Toyo Roshi, No. 5) previously weighed were piled up on the area of the absorption on the diaper. Then a 5-kg weight was placed on the piled filter paper. After 5 minutes, the 20 sheets of the filter paper were weighed and the increased weight was determined as the weight (g) of wetback solution.
  • a wetback quantity equal to or smaller than 1.5 g is acceptable, and preferable level is 1.0 g or less.
  • Initial water permeability of nonwoven fabric A sheet of a nonwoven fabric sample having a density of 30 g/m 2 was placed on filter paper (Toyo Roshi, No. 5). One drop (about 0.05 ml) of artificial urine was dropped onto the nonwoven fabric sample from the mouth of a burette fixed 10 mm above the nonwoven sample, and the time required for the drop disappearing from the nonwoven fabric surface was checked. The same operation was performed twenty times at different points of the nonwoven fabric surface, and the number of drops disappeared within 5 seconds was counted. The number of the counted drops equal to or greater than 18 represents that the nonwoven fabric sample has sufficient initial water permeability.
  • the area of the nonwoven fabric sample through which the artificial urine passed was tested in the testing procedure of the initial water permeability of nonwoven fabric by counting the number of drops of artificial urine disappeared within 5 seconds after placed on twenty different points on the area.
  • the number of the counted drops equal to or greater than 18 represents that the nonwoven fabric sample has sufficient water permeability.
  • the same area of the nonwoven fabric sample was repeatedly tested in the same manner, and a nonwoven fabric sample on which more artificial urine drops disappear within 5 seconds through the repeated testing is evaluated to have better permanent water permeability.
  • Water permeability after storage The 10-cm square nonwoven fabric sample described above was stored in a incubator at 40° C. and 70% RH for 30 days. After 30 days, the nonwoven fabric sample was taken out of the incubator, and the initial water permeability and permanent water permeability of the nonwoven fabric sample were tested. A nonwoven fabric sample exhibiting smaller difference in the initial water permeability and permanent water permeability before and after the storage in the incubator is evaluated to have permanent water permeability with lower degree of time-dependent change. Lower degree of the time-dependent change is preferable.
  • A1 is dilauryl-dimethyl ammonium chloride, A2, distearyl-dimethyl ammonium chloride, A3, behenyl-trimethyl ammonium chloride, A4, lauryl-trimethyl ammonium chloride, A5, trilauryl-methyl ammonium chloride, and A6, soya-dimethyl-ethyl ammonium ethosulfate.
  • B1 is POE(3)lauryl ether diethanol ammonium phosphate, B2, POE(3)decyl ether diethanol ammonium phosphate, B3, POE(2)cetyl ether potassium phosphate, B4, potassium butyl phosphate, B5, potassium behenyl phosphate, and B6, POE(20)lauryl ether diethanol ammonium phosphate.
  • C1 is polyoxyethylene-modified silicone of 10,000 molecular weight containing 65 weight percent of silicon.
  • the result proves the synergism of the components formulated in proper ratios. Any one or more of initial water permeability, permanent water permeability, wetback, water permeability after storage, fiber processability in carding, and stability and handling performance of an agent attained by each agent of Comparative Examples were inferior to those attained by each agent of Examples.
  • the water-permeable agent of the present invention being incorporated on hydrophobic fibers, such as polypropylene, or nonwoven fabric thereof with spraying or other methods, imparts initial and permanent water permeability, and decreases time-dependent change of water permeability and wetback of urine and menstrual flow.

Abstract

A water-permeable agent comprising at least one specific quaternary ammonium salt and at least one specific phosphate salt being formulated in specific ratios, and water-permeable fiber and fiber products produced by applying the water-permeable agent to fiber and fiber products by 0.1 to 2.0 weight percent. The present invention provides a water-permeable agent, which decreases wetback of disposable diapers and sanitary napkins, having been decreased by modifying their construction in conventional measures, with improved permanent water permeability, and decreased time-dependent deterioration of permanent water permeability, and is applicable to fibers processed in high-speed nonwoven production processes; and fiber and fiber products applied therewith.

Description

    FIELD OF INVENTION
  • The present invention relates to a treatment composition suitable for fiber products, especially for fiber processed into nonwoven fabric to be employed as topsheet of disposable diapers and sanitary napkins. More precisely the present invention relates to a water-permeable agent for improving fluid-absorbing performance and permanent water permeability of top sheet, and for decreasing wetback, which means the flow back of urine or menstrual flow through topsheet to wet wearers' skin after they have been absorbed in diaper or napkin through topsheet.
  • TECHNICAL BACKGROUND
  • Absorbent articles such as disposable diapers and sanitary napkins usually have a construction comprising topsheet produced by imparting hydrophilicity to various nonwoven fabrics of strongly hydrophobic polyolefin fiber, triacetate fiber or polyester fiber; backsheet imparted with hydrophobic property; and a material comprising fibrous pulp or absorbent polymer being set between the sheets. When urine or menstrual flow is absorbed into absorbent material through topsheet, topsheet must be fluid-permeable enough not to get wet, in other words, those fluids must be completely absorbed into absorbent material under topsheet in a possible shortest time. In addition, absorbed fluid in absorbent material must not flow back onto topsheet surface, in other words, wetback of absorbed fluid must be decreased. Furthermore, topsheet is required to have water permeability durable against repeated absorption of urine, in other words, permanent water permeability, because rapid decrease of water permeability of topsheet, which is caused from the wash off of a water permeable agent from topsheet with once or twice of urine absorption, increases the frequency of exchanging diapers, and is also required to have permanent water permeability, which is not deteriorated with time. For facilitating nonwoven fabric production, a water-permeable agent applied in the production process of spun-bonded nonwovens should distribute uniformly on nonwoven fabric, penetrate sufficiently into nonwoven fabric, and attain antistaticity for controlling static charge generated in winding nonwoven sheet; and a water-permeable agent applied in a process where fiber is carded and processed into nonwoven fabric is required to attain high carding performance, in other words, to prevent static charge on fiber and fiber wrapping on card cylinder, and to facilitate uniform web processing.
  • For wearing comfortable diaper, diaper topsheet must have superior initial water permeability with low wetback, and superior permanent water permeability. Several arts for improving those performances by use of treating compositions have been proposed. Japanese Patent Publication Sho 63-14081 discloses a method in which fiber is treated with potassium C12 to C22 linear alkyl phosphate. Japanese Patent Laid-Open Sho 60-215870 discloses a treating composition formulated by blending a C10 to C30 alkylphosphate salt with a C10 to C30 betaine, sulfate salt, or sulfonate salt. Japanese Patent Laid-Open Hei 4-82961 discloses a method in which an alkylphosphate salt is blended with a polyether-modified silicone. Japanese Patent Laid Open 2000-170076 discloses a process wherein an alkylphosphate salt is blended with two different betaines. Japanese Patent Laid-Open Sho 63-49158 discloses a method employing a mixture of sorbitan monooleate and polyoxyethylene sorbitan monooleate, which is different from the treating compositions mentioned above. Japanese Patent Laid-Open Hei 3-82871 discloses a method employing an alkoxylated ricinolein and hydrogenated product thereof. Japanese Patent Laid Open Hei 10-53955 discloses a method employing a combination of a polyether compound and a polyether-modified silicone. Further, Japanese Patent Laid-Open Hei 9-56748 discloses a method for decreasing wetback by modifying the construction of fiber products, in other words, disposable diapers and sanitary napkins. Japanese Patent Laid-Open 2001-123366 discloses a method for decreasing wetback by modifying the construction of topsheet of fiber products.
  • The water permeability, especially permanent water permeability, imparted to fiber by those conventional methods proposed above, is clearly insufficient for meeting the increasing demand in recent years. In addition, those conventional methods cannot provide sufficient fiber performance for high carding speed which is increasing with the recent increase of nonwoven production speed.
  • DISCLOSURE OF INVENTION
  • The object of the present invention is to provide a water-permeable agent, which attains improved water permeability and remarkably improved permanent water permeability from those attained by conventional methods, decreases wetback and time-dependent change of permanent water permeability, and is applicable to fiber processed in high-speed carding.
  • Another object of the present invention is to provide fiber to which water permeability is imparted with the water permeable agent of the present invention.
  • Further object and advantage of the present invention are clearly illustrated in the following description.
  • According to the present invention, the object and advantage of the present invention mentioned above are attained by a water permeable agent comprising (A) a quaternary ammonium salt represented by the following formula (I):
    (R1, R2, R3)N+—R4.X  (I)
    wherein R1 is a C8 to C24 aliphatic hydrocarbon group; R2 is a C8 to C18 aliphatic hydrocarbon group in the case that R1 is a C8 to C18 aliphatic hydrocarbon group, and R2 is a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group in the case that R1 is a C19 to C24 aliphatic hydrocarbon group; each of R3 and R4 is independently a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group; and X is an ionic residue selected from the group consisting of halogen ions, nitrate ion, acetate ion, methyl sulfate ion, ethyl sulfate ion and dimethyl phosphate ion; and (B) phosphate salt represented by the following formula (II):
    Figure US20060182965A1-20060817-C00001

    wherein R5 is a C6 to C20 aliphatic hydrocarbon group; R6 is an ethylene and/or propylene group; m is an integer from 0 to 15; Y is an ionic residue selected from the group consisting of hydrogen ion, sodium ion, potassium ion, ammonium ion, diethanol ammonium ion, and triethanol ammonium ion; and n is an integer from 1 to 2; each of which comprises 20 to 80 weight percent and 80 to 20 weight percent of the total weight of (A) a quaternary ammonium salt and (B) a phosphate salt.
  • According to the present invention, the object and advantage of the present invention mentioned above are attained, second, by providing water-permeable fiber comprising fiber and a water-permeable agent of the present invention being incorporated on the fiber at an application level from 0.1 to 2.0 weight percent of the weight of the fiber.
  • BEST MODE OF EMBODIMENT
  • The quaternary ammonium salt (the component A) employed in the present invention is represented by the formula (I) described above.
  • In the formula (I), R1 is a C8 to C24 aliphatic hydrocarbon group; R2 is a C8 to C18 aliphatic hydrocarbon group in the case that R1 is a C8 to C18 aliphatic hydrocarbon group, and R2 is a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group in the case that R1 is a C19 to C24 aliphatic hydrocarbon group; each of R3 and R4 is independently a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group; and X is an ionic residue selected from the group consisting of halogen ions, nitrate ion, acetate ion, methyl sulfate ion, ethyl sulfate ion and dimethyl phosphate ion.
  • One of or a combination of two or more of the quaternary ammonium salts represented by the formula (I) can be employed.
  • In the above formula (I), each of R1 and R2 is independently and preferably a C8 to C18 aliphatic hydrocarbon group. R1 or R2 having carbon atoms equal to or smaller than 7 is not preferable, because such aliphatic hydrocarbon group accelerates the time-dependent deterioration of permanent water permeability, deteriorates fiber processability in carding, excessively increases hydrophilicity of fiber to decrease permanent water permeability, and increases wetback. R1 or R2 having carbon atoms equal to or greater than 25 is not preferable, because such aliphatic hydrocarbon group is apt to decrease initial water permeability.
  • Each of R3 and R4 is preferably a C1 to C3 aliphatic hydrocarbon group. R3or R4 having carbon atoms equal to or greater than 4 is not preferable, because such aliphatic hydrocarbon group is apt to decrease the initial and permanent water permeability of resultant water-permeable agent.
  • The examples of the preferable component (A) are dioctyl dimethyl ammonium chloride, didecyl dimethyl ammonium chloride, dilauryl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, di-coco-alkyl dimethyl ammonium chloride, di-hydrogenated-tallow alkyl dimethyl ammonium chloride, behenyl trimethyl ammonium chloride, dilauryl dimethyl ammonium methosulfate, and dilauryl methylethyl ammonium ethosulfate.
  • Some components similar to the specific quaternary ammonium salt (A) employed for the water-permeable agent of the present invention have been disclosed, such as a quaternary ammonium phosphate being added to an antistatic component described in claim 1 of Japanese Patent Laid-Open Sho 61-289182, and soya-dimethylethyl ammonium ethosulfate being added to a finish for fiber processed in open-end spinning described in Examples 1 to 6 in the specification of U.S. Pat. No. 4816336. The former contains a C8 to C18 hydrocarbon group bonded to a nitrogen atom of the quaternary ammonium, and the latter contains a C16 to C18 hydrocarbon group bonded to a nitrogen atom of the ammonium. Both of those components have excessive hydrophilicity which fails to impart permanent hydrophilicity to fiber, because the former contain a C8 to C18 hydrocarbon group bonded to the nitrogen atom of a quaternary ammonium, the latter contain a C16 to C18 hydrocarbon group bonded to the nitrogen atom of an ammonium, and both of those components contain only one hydrocarbon group in one molecule.
  • The ratio of the component (A) is from 20 to 80 weight percent, preferably 25 to 75 weight percent, of the total of the components (A) and (B). A ratio smaller than 20 weight percent results in poor permanent water permeability, which deteriorates greatly with time. A ratio greater than 80 weight percent results in poor fiber processability in carding and increased wetback.
  • The phosphate salt (the component B) employed in the present invention is represented by the formula (II) described above. In the formula (II), R5 is a C6 to C20 aliphatic hydrocarbon group; R6 is an ethylene and/or propylene group; m is an integer from 0 to 15; Y is an ionic residue selected from the group consisting of hydrogen ion, sodium ion, potassium ion, ammonium ion, diethanol ammonium ion, and triethanol ammonium ion; and n is an integer from 1 to 2.
  • One of or a combination of two or more of the phosphate salts represented by the formula (II) can be employed.
  • In the formula (II) mentioned above, R5is preferably a C8 to C18 aliphatic hydrocarbon group. R5having carbon atoms equal to or smaller than 5 is not preferable, because such aliphatic hydrocarbon group results in poor fiber processability in carding, decreased permanent water permeability of fiber due to its excessive hydrophilicity, and increased wetback. R5 having carbon atoms equal to or greater than 21 is not preferable, because such aliphatic hydrocarbon group decreases initial water permeability, and is apt to decrease permanent water permeability.
  • The number, m, is preferably an integer ranging from 0 to 10, and a value of m greater than or equal to 6 is not preferable, because it leads to decreased initial water permeability and accelerates the solidification of the component (B) resulting in difficult handling of a water-permeable agent.
  • The examples of the preferable component B are sodium hexyl phosphate, sodium octyl phosphate, potassium octyl phosphate, potassium decyl phosphate, potassium lauryl phosphate, potassium myristyl phosphate, potassium cetyl phosphate, potassium stearyl phosphate, potassium behenyl phosphate, POE(4)sodium decyl phosphate, POE(3)sodium lauryl phosphate, POE(2)potassium cetyl phosphate, POE(15)potassium cetyl phosphate, EO(6)/PO(2)sodium lauryl phosphate, POE(3)diethanolamine lauryl phosphate, and POE(3)triethanolamine lauryl phosphate.
  • The ratio of the component (B) is from 20 to 80 weight percent, preferably from 25 to 75 weight percent, of the total of the components (A) and (B). A ratio smaller than 20 weight percent results in poor fiber processability in carding, and a ratio greater than 80 weight percent results in insufficient pickup of the component (A) on fiber leading to poor permanent water permeability.
  • Blending polyoxyalkylene-modified silicone (the component C) represented by the formula (III) shown below to the components (A) and (B) by 5 to 20 weight percent of the total of the components (A) and (B) improves the permanent water permeability and fiber processability in carding attained by the water-permeable agent of the present invention:
    Figure US20060182965A1-20060817-C00002

    in the formula (III), R7 is a methylene group, ethylene group, propylene group, N-(aminoethyl) methylimino group, or N-(aminopropyl) propylimino group; Z is a polyoxyalkylene group containing at least 20 weight percent of polyoxyethylene; and p and q are integers selected within a range of numbers which produce a component (C) having a molecular weight of 1,000 to 100,000 and containing 20 to 70 weight percent of silicon.
  • The examples of polyoxyalkylene groups employable as Z are polyoxyethylene groups, polyoxypropylene groups, polyoxybutylene groups, and copolymers of those monomers. A polyoxyalkylene group containing less than 20 weight percent of polyoxyethylene groups cannot attain sufficient initial and permanent water permeability.
  • Integers p and q resulting in less than 20 weight percent of silicon in a component (C) is not preferable because of insufficient carding performance and rarely improved permanent water permeability of fiber applied with resultant water-permeable agent, and integers p and q resulting in more than 70 weight percent of silicon in a component (C) is not preferable too because of the instability and high production cost of resultant water-permeable agent. Integers p and q resulting in a molecular weight of a component (C) beyond the range of 1,000 to 10,000 are not preferable because of rarely improved initial and permanent water permeability of fiber applied with resultant water-permeable agent.
  • Blending the component (C) to the water-permeable agent of the present invention improves permanent water permeability and fiber processability in carding. The preferable ratio of the component (C) in the water-permeable agent is from 5 to 20 weight percent as mentioned above. A ratio less than 5 weight percent cannot improve permanent water permeability and fiber processability in carding to a satisfactory level, and a ratio greater than 20 weight percent tends to produce unstable water-permeable agent and increases production cost though it contributes to improved permanent water permeability.
  • The water-permeable agent of the present invention is applied to synthetic fibers, natural fibers, and products thereof; preferably to hydrophobic synthetic fibers, for example, polyolefin, polyester, triacetate, nylon, and vinyl chloride, and products thereof; and to thermo-bondable synthetic fibers, such as fibrillated polyolefin, or those having sheath-core structure comprising polyester and polyethylene, polyester and polypropylene, polypropylene and polyethylene, low-melting-point polypropylene and polypropylene, or low-melting-point polyester and polyester, and products thereof. Preferable examples of the products mentioned above are nonwoven fabric products, especially those applied as topsheet of disposable diapers and sanitary napkins.
  • The water-permeable agent of the present invention can be applied to fiber, which is processed into nonwoven fabric, at a stage optionally selected in fiber production process, such as spinning, drawing, and crimping, with a known application method, and can be applied in nonwoven fabric production process such as spun-bonding, water-needling, and melt-blowing, with an ordinary application method.
  • The water-permeable agent of the present invention can be applied to fiber from aqueous emulsion or dilution with solvent. An aqueous emulsion of 5 to 30 weight percent concentration of the agent or a dilution of 5 to 30 weight percent concentration of the agent diluted with a low-viscosity hydrocarbon can be applied to fiber with known application method, such as kiss-roll application, spraying, and bath immersion.
  • The water-permeable agent of the present invention is applied to fiber usually from 0.1 to 2.0 weight percent, preferably from 0.3 to 0.7 weight percent of fiber weight. An amount of said agent on fiber less than 0.1 weight percent results in insufficient initial and permanent water permeability, poor antistaticity, and poor lubricity. An amount of said agent on fiber more than 2.0 weight percent increases fiber wrapping trouble in carding leading to significant decrease of fiber production efficiency, and gives sticky touch on fiber products, such as nonwovens, after water passes through fiber products.
  • Some components other than those described above can be added to the water-permeable agent of the present invention so far as they do not deteriorate the object of the present invention. Components which can be added to said water-permeable agent are lubricants, such as emulsified carnauba wax, nonionic surfactants, anionic surfactants other than phosphates, anti-foaming agents, and antiseptics.
  • The water-permeable agent of the present invention enables the production of nonwoven fabrics having significantly improved initial and permanent permeability of urine and menstrual flow and decreased time-dependent deterioration of permanent water permeability and wetback by applying said water-permeable agent to nonwoven fabric or to fiber processed into nonwoven fabric. In addition, said water-permeable agent significantly improves fiber separation and fiber processability in carding in nonwoven fabric production process, because it improves the antistaticity and lubricity of fiber.
  • EXAMPLES
  • The present invention is explained with the following examples though the present invention is not restricted within the scope of those examples. The tested properties and testing procedures for Examples and Comparative Examples are as follows. The formulae of the agents and test results of Examples and Comparative Examples are summarized in Table 1 and Table 2. The ratios of the components of the agents are represented by weight percent.
  • Each of the agents of Examples and Comparative Examples was applied to a fiber, which had been deoiled with hot water prior to the application of the agents with such a ratio that the active content of the applied agent was 0.5 weight percent of the fiber weight, and the fiber samples applied with the agents were dried. Then each of the fiber samples was processed through opening and carding to be processed into web having a density of 30 g/m2. The web samples were then heated at 130° C. in an air-through convection oven to fix single fibers of web samples. The resultant nonwoven fabric samples were tested with the following testing procedures to check their water permeability.
  • Carding performance: The processability of a fiber sample in carding was evaluated by observing mainly the wrapping of the fiber sample on a card cylinder at 30° C. and 70% RH. The antistaticity of the fiber sample was evaluated by determining the static charge on the sample at 20° C. and 45% RH. Each of the performances was ranked as follows.
  • Processability in carding: Forty grams of a fiber sample was processed with a carding machine at 30° C. and 70% RH, and the cylinder of the carding machine was inspected after carding operation to evaluate and rank the processability of the fiber sample in carding as follows; 5 representing no wrapping, 4 representing fiber wrapping on 1/10 of the cylinder surface, 3 representing fiber wrapping on ⅕ of the cylinder surface, 2 representing fiber wrapping on ⅓ of the cylinder surface, and 1 representing fiber wrapping on the whole of the cylinder surface. The ranks 5 and 4 are acceptable, and the rank 5 is the best.
  • Antistaticity: Forty grams of a fiber sample was processed into web with a carding machine at 20° C. and 45% RH, and the static charge on the web was determined and ranked as follows; 5 representing static charge lower than 100 V, 4 representing static charge ranging from 0.1 to 1.0 kV, 3 representing static charge ranging from 1.0 to 1.5 kV, 2 representing static charge ranging from 1.5 to 2.0 kV, and 1 representing static charge higher than 2.0 kV. The ranks 5 and 4 are acceptable, and the rank 5 is the best.
  • Wetback through nonwoven fabric: A nonwoven fabric sample cut into 10 cm square was placed on a commercially available disposable diaper. A tube of 70 mm inside diameter was set upright on the nonwoven fabric sample, and 100 ml of physiological salt solution was poured into the tube to be absorbed into the diaper through the nonwoven sample. After all of the solution was absorbed into the diaper, the tube was removed and twenty sheets of filter paper (Toyo Roshi, No. 5) previously weighed were piled up on the area of the absorption on the diaper. Then a 5-kg weight was placed on the piled filter paper. After 5 minutes, the 20 sheets of the filter paper were weighed and the increased weight was determined as the weight (g) of wetback solution. A wetback quantity equal to or smaller than 1.5 g is acceptable, and preferable level is 1.0 g or less.
  • Initial water permeability of nonwoven fabric: A sheet of a nonwoven fabric sample having a density of 30 g/m2 was placed on filter paper (Toyo Roshi, No. 5). One drop (about 0.05 ml) of artificial urine was dropped onto the nonwoven fabric sample from the mouth of a burette fixed 10 mm above the nonwoven sample, and the time required for the drop disappearing from the nonwoven fabric surface was checked. The same operation was performed twenty times at different points of the nonwoven fabric surface, and the number of drops disappeared within 5 seconds was counted. The number of the counted drops equal to or greater than 18 represents that the nonwoven fabric sample has sufficient initial water permeability.
  • Permanent water permeability of nonwoven fabric: The 10-cm square nonwoven fabric sample described above was placed on a commercially available diaper. A tube of 70 mm inside diameter was set upright on the nonwoven fabric sample, and 50 ml of artificial urine was poured into the tube to be absorbed into the diaper through the nonwoven sample. After 3 minutes, the nonwoven fabric sample was sandwiched between ten sheets of filter paper (Toyo Roshi, No. 5). A 10-cm square board was placed on the filter paper, and a 3.7-kg weight was placed on the board for 3 minutes to dehydrate the nonwoven fabric sample. Then nonwoven fabric sample was dried at room temperature for 5 minutes. The area of the nonwoven fabric sample through which the artificial urine passed was tested in the testing procedure of the initial water permeability of nonwoven fabric by counting the number of drops of artificial urine disappeared within 5 seconds after placed on twenty different points on the area. The number of the counted drops equal to or greater than 18 represents that the nonwoven fabric sample has sufficient water permeability. The same area of the nonwoven fabric sample was repeatedly tested in the same manner, and a nonwoven fabric sample on which more artificial urine drops disappear within 5 seconds through the repeated testing is evaluated to have better permanent water permeability.
  • Water permeability after storage: The 10-cm square nonwoven fabric sample described above was stored in a incubator at 40° C. and 70% RH for 30 days. After 30 days, the nonwoven fabric sample was taken out of the incubator, and the initial water permeability and permanent water permeability of the nonwoven fabric sample were tested. A nonwoven fabric sample exhibiting smaller difference in the initial water permeability and permanent water permeability before and after the storage in the incubator is evaluated to have permanent water permeability with lower degree of time-dependent change. Lower degree of the time-dependent change is preferable.
  • Examples 1 to 8 and Comparative Examples 1 and 2
  • TABLE 1
    Test No.
    C. Ex. 1 Ex. 1 Ex. 2 C. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8
    Ratio Component A1 40 40 40 40 70 40 40 40
    (weight A2 40
    percent) A3 40
    B1 60 60 60 60 30 50 60 60
    B2 60
    B3 60
    C1 10
    O.P.U. (%) 0.1 0.5 1.0 2.2 0.5 0.5 0.5 0.5 0.5 0.5
    Carding Processability 5 5 5 2 5 5 5 5 5 5
    performance Antistaticity 2 5 5 5 5 5 5 5 5 5
    Water Initial 14 20 20 20 20 20 19 20 19
    permeability Permanent
    of nonwoven 1st 10 20 20 20 20 20 20 20 20
    fabric 2nd 3 20 20 20 20 20 20 20 20
    3rd 0 18 20 20 20 19 20 17 16
    4th 12 17 16 15 14 15 10 9
    5th 6 10 8 8 7 9 5 5
    Wetback (g) 0.5 0.9 1.2 1.0 1.0 0.8 0.7 1.0 0.7
    Water Initial 12 20 20 20 20 19 18 20 18
    permeability Permanent
    of nonwoven 1st 7 20 20 20 20 20 20 20 20
    fabric after 2nd 2 18 20 20 20 19 20 17 17
    storage 3rd 0 13 18 15 16 16 18 11 10
    4th 7 10 9 10 9 11 6 5
    5th 3 5 4 5 5 7 2 2

    Ex.: Example

    C. Ex.: Comparative Example
  • Comparative Examples 3 to 10
  • TABLE 2
    Test No.
    C. Ex. 3 C. Ex. 4 C. Ex. 5 C. Ex. 6 C. Ex. 7 C. Ex. 8 C. Ex. 9 C. Ex. 10
    Ratio Component A1 15 85 40 40 40
    (weight A4 40
    percent) A5 40
    A6 40
    B1 85 15 60 60 60
    B4 60
    B5 60
    B6 60
    O.P.U. (%) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
    Carding Processability 5 3 3 5 3 5 5 4
    performance Antistaticity 5 5 5 5 5 4 5 5
    Water Initial 19 20 20 14 20 12 15 20
    permeability Permanent
    of nonwoven 1st 20 20 20 17 20 12 20 19
    fabric 2nd 16 20 12 10 11 6 20 11
    3rd 7 20 5 4 3 2 10 4
    4th 3 17 0 0 0 0 4 0
    5th 0 12 0
    Wetback (g) 0.9 2.0 1.7 0.7 2.0 0.7 0.9 1.6
    Water Initial 18 20 20 10 20 10 14 17
    permeability Permanent
    of nonwoven 1st 17 20 16 15 16 10 20 16
    fabric after 2nd 10 20 8 6 8 5 18 7
    storage 3rd 5 18 2 0 0 0 8 0
    4th 0 10 0 3
    5th 6 0

    Ex.: Example

    C. Ex.: Comparative Example
  • The components described in Table 1 and Table 2 are as follows. A1 is dilauryl-dimethyl ammonium chloride, A2, distearyl-dimethyl ammonium chloride, A3, behenyl-trimethyl ammonium chloride, A4, lauryl-trimethyl ammonium chloride, A5, trilauryl-methyl ammonium chloride, and A6, soya-dimethyl-ethyl ammonium ethosulfate. B1 is POE(3)lauryl ether diethanol ammonium phosphate, B2, POE(3)decyl ether diethanol ammonium phosphate, B3, POE(2)cetyl ether potassium phosphate, B4, potassium butyl phosphate, B5, potassium behenyl phosphate, and B6, POE(20)lauryl ether diethanol ammonium phosphate. C1 is polyoxyethylene-modified silicone of 10,000 molecular weight containing 65 weight percent of silicon.
  • The agents of Examples 1 to 8, which were formulated according to the components and ratios specified in the present invention, exhibited satisfactory result, attaining sufficient permanent water permeability, small quantity of wetback, and low degree of time-dependent change of water permeability. On the contrary, the agents of Comparative Examples 1 to 9, which were formulated with the components and ratios out of the specification of the present invention, could not attain all of the required performance. The result proves the synergism of the components formulated in proper ratios. Any one or more of initial water permeability, permanent water permeability, wetback, water permeability after storage, fiber processability in carding, and stability and handling performance of an agent attained by each agent of Comparative Examples were inferior to those attained by each agent of Examples.
  • As described above, the water-permeable agent of the present invention, being incorporated on hydrophobic fibers, such as polypropylene, or nonwoven fabric thereof with spraying or other methods, imparts initial and permanent water permeability, and decreases time-dependent change of water permeability and wetback of urine and menstrual flow.

Claims (9)

1. A water-permeable agent for fiber comprising a quaternary ammonium salt (A) represented by the following formula (I);

(R1, R2, R3)N+—R4.X  (I)
wherein R1 is a C8 to C24 aliphatic hydrocarbon group; R2 is a C8 to C18 aliphatic hydrocarbon group when R1 is a C8 to C18 aliphatic hydrocarbon group, and a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group when R1 is a C19 to C24 aliphatic hydrocarbon group; each of R3 and R4 is, independently, a hydrogen atom, C1 to C3 aliphatic hydrocarbon group, or C1 to C3 hydroxyalkyl group; and X is an ionic residue selected from the group consisting of halogen ions, nitrate ion, acetate ion, methyl sulfate ion, ethyl sulfate ion and dimethyl phosphate ion; and a phosphate salt (B) represented by the following formula (II);
Figure US20060182965A1-20060817-C00003
wherein R5 is a C6-C20 aliphatic hydrocarbon group; R6 is an ethylene and/or propylene group; m is an integer from 0 to 15; Y is an ionic residue selected from the group consisting of hydrogen ion, sodium ion, potassium ion, ammonium ion, diethanol ammonium ion, and triethanol ammonium ion; and n is an integer from 1 to 2; one of which constitutes 20 to 80 weight percent and the other constitutes 80 to 20 weight percent of the total of said quaternary ammonium salt (A) and said phosphate salt (B).
2. A water-permeable agent for fiber according to claim 1, wherein each of R1 and R2 of the formula (I) is independently a C8 to C18 aliphatic hydrocarbon group, and each of R3 and R4 of the formula (I) is independently a C1 to C3 aliphatic hydrocarbon group.
3. A water-permeable agent for fiber according to claim 1 or 2, wherein R5 of the formula (II) is a C8 to C18 aliphatic hydrocarbon group and R6 of the formula (II) is an ethylene group.
4. A water-permeable agent for fiber according to claim 1, further comprising 5 to 20 weight percent of polyoxyalkylene-modified silicone represented by the formula (III);
Figure US20060182965A1-20060817-C00004
wherein R7 is a methylene group, ethylene group, propylene group, N-(aminoethyl)methylimino group, or N-(aminopropyl)propylimino group; Z is a polyoxyalkylene group containing at least 20 weight percent of polyoxyethylene moieties; and p and q are integers which attain a molecular weight of 1,000 to 100,000 and silicon content of 20 to 70 weight percent.
5. A water-permeable agent for fiber according to claim 1 to be applied to nonwoven fabric.
6. A water-permeable agent for fiber according to claim 1 to be applied to hydrophobic synthetic fiber or composite fiber thereof.
7. A water-permeable agent for fiber according to claim 6, wherein the hydrophobic synthetic fiber is polyolefin fiber.
8. Water-permeable fiber comprising fiber and the water-permeable agent according to claim 1 applied to the fiber by 0.1 to 2.0 weight percent.
9. Water-permeable fiber comprising fiber and the water-permeable agent according to claim 4 applied to the fiber by 0.1 to 2.0 weight percent.
US10/551,149 2003-04-01 2004-03-30 Water-permeability imparting agent and fiber having the agent applied thereto Abandoned US20060182965A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003130895 2003-04-01
JP2003-130895 2003-04-01
PCT/JP2004/004498 WO2004090221A1 (en) 2003-04-01 2004-03-30 Water permeability imparting agent and fiber having the agent applied thereto

Publications (1)

Publication Number Publication Date
US20060182965A1 true US20060182965A1 (en) 2006-08-17

Family

ID=33157118

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/551,149 Abandoned US20060182965A1 (en) 2003-04-01 2004-03-30 Water-permeability imparting agent and fiber having the agent applied thereto

Country Status (7)

Country Link
US (1) US20060182965A1 (en)
JP (1) JP4134165B2 (en)
KR (1) KR100958605B1 (en)
CN (1) CN100355978C (en)
DE (1) DE112004000559B4 (en)
TW (1) TW200424395A (en)
WO (1) WO2004090221A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150038618A1 (en) * 2012-02-29 2015-02-05 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
US20150292144A1 (en) * 2012-11-06 2015-10-15 Schill + Seilacher Gmbh Composition for permanently hydrophilizing polyolefin fibers and use thereof
US20170356126A1 (en) * 2014-12-17 2017-12-14 Kao Corporation Liquid film cleavage agent

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159534B2 (en) * 2008-09-18 2013-03-06 松本油脂製薬株式会社 Water permeability imparting agent, water permeable fiber to which it is attached, and method for producing nonwoven fabric
JP5277131B2 (en) * 2009-09-29 2013-08-28 松本油脂製薬株式会社 Water permeability imparting agent, water permeable fiber, and method for producing nonwoven fabric
JP5679895B2 (en) * 2011-04-28 2015-03-04 Esファイバービジョンズ株式会社 Fiber with improved discoloration resistance, and fiber molded body comprising the same
WO2013065794A1 (en) * 2011-11-02 2013-05-10 旭化成せんい株式会社 Permeable nonwoven fabric
JP6057489B1 (en) * 2016-05-25 2017-01-11 竹本油脂株式会社 Polyolefin synthetic fiber treatment agent, aqueous solution thereof, polyolefin synthetic fiber treatment method, polyolefin synthetic fiber, and thermal bond nonwoven fabric
JP7337508B2 (en) * 2019-02-13 2023-09-04 ミヨシ油脂株式会社 Fiber treatment agent

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919319A (en) * 1972-10-13 1975-11-11 Cassella Farbwerke Mainkur Ag Quaternary ammonium chlorides
US4118327A (en) * 1977-03-28 1978-10-03 Colgate Palmolive Company Fabric softener and anti-static compositions
US4291071A (en) * 1978-06-20 1981-09-22 The Procter & Gamble Company Washing and softening compositions
US4632767A (en) * 1985-06-14 1986-12-30 Takemoto Yushi Kabushiki Kaisha Antistatic agents for synthetic fibers
US4727177A (en) * 1984-10-31 1988-02-23 Takemoto Yushi Kabushiki Kaisha Quaternary ammonium alkyl phosphates and method for producing same
US4789588A (en) * 1986-08-01 1988-12-06 Chisso Corporation Surface materials for absorptive products
US4816336A (en) * 1986-04-04 1989-03-28 Hoechst Celanese Corporation Synthetic fiber having high neutralized alkyl phosphate ester finish level
US4920168A (en) * 1988-04-14 1990-04-24 Kimberly-Clark Corporation Stabilized siloxane-containing melt-extrudable thermoplastic compositions
US4921622A (en) * 1987-12-02 1990-05-01 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof: N,N-di-hydroxyethyl amide and polyoxyalkylene-modified silicone
US4977294A (en) * 1988-03-04 1990-12-11 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium phosphates based on amino-functional polyesters
US4988449A (en) * 1987-06-25 1991-01-29 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers
US5025076A (en) * 1988-02-27 1991-06-18 Shin-Etsu Chemical Co., Ltd. Silicone-based fabric finishing agent
US5045387A (en) * 1989-07-28 1991-09-03 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US5258129A (en) * 1987-12-02 1993-11-02 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof
US5472455A (en) * 1989-07-19 1995-12-05 Colgate Palmolive Co. Anionic/cationic surfactant mixtures
US5676660A (en) * 1995-02-08 1997-10-14 Sanyo Chemical Industries, Ltd. Absorbent product including absorbent layer treated with surface active agent
US6436855B1 (en) * 1999-09-24 2002-08-20 Chisso Corporation Hydrophilic fiber and non-woven fabric, and processed non-woven products made therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482961A (en) * 1990-07-26 1992-03-16 Miyoshi Oil & Fat Co Ltd Treating agent for producing nonwoven fabric
JP3222210B2 (en) * 1992-08-21 2001-10-22 松本油脂製薬株式会社 Oil for textile
JP3594413B2 (en) * 1996-07-18 2004-12-02 日華化学株式会社 Penetrant for high concentration alkali

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919319A (en) * 1972-10-13 1975-11-11 Cassella Farbwerke Mainkur Ag Quaternary ammonium chlorides
US4118327A (en) * 1977-03-28 1978-10-03 Colgate Palmolive Company Fabric softener and anti-static compositions
US4291071A (en) * 1978-06-20 1981-09-22 The Procter & Gamble Company Washing and softening compositions
US4727177A (en) * 1984-10-31 1988-02-23 Takemoto Yushi Kabushiki Kaisha Quaternary ammonium alkyl phosphates and method for producing same
US4632767A (en) * 1985-06-14 1986-12-30 Takemoto Yushi Kabushiki Kaisha Antistatic agents for synthetic fibers
US4816336A (en) * 1986-04-04 1989-03-28 Hoechst Celanese Corporation Synthetic fiber having high neutralized alkyl phosphate ester finish level
US4789588A (en) * 1986-08-01 1988-12-06 Chisso Corporation Surface materials for absorptive products
US4988449A (en) * 1987-06-25 1991-01-29 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers
US4921622A (en) * 1987-12-02 1990-05-01 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof: N,N-di-hydroxyethyl amide and polyoxyalkylene-modified silicone
US5258129A (en) * 1987-12-02 1993-11-02 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof
US5025076A (en) * 1988-02-27 1991-06-18 Shin-Etsu Chemical Co., Ltd. Silicone-based fabric finishing agent
US4977294A (en) * 1988-03-04 1990-12-11 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium phosphates based on amino-functional polyesters
US4920168A (en) * 1988-04-14 1990-04-24 Kimberly-Clark Corporation Stabilized siloxane-containing melt-extrudable thermoplastic compositions
US5472455A (en) * 1989-07-19 1995-12-05 Colgate Palmolive Co. Anionic/cationic surfactant mixtures
US5045387A (en) * 1989-07-28 1991-09-03 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US5676660A (en) * 1995-02-08 1997-10-14 Sanyo Chemical Industries, Ltd. Absorbent product including absorbent layer treated with surface active agent
US6436855B1 (en) * 1999-09-24 2002-08-20 Chisso Corporation Hydrophilic fiber and non-woven fabric, and processed non-woven products made therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150038618A1 (en) * 2012-02-29 2015-02-05 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
US9249052B2 (en) * 2012-02-29 2016-02-02 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
US20150292144A1 (en) * 2012-11-06 2015-10-15 Schill + Seilacher Gmbh Composition for permanently hydrophilizing polyolefin fibers and use thereof
US20170356126A1 (en) * 2014-12-17 2017-12-14 Kao Corporation Liquid film cleavage agent

Also Published As

Publication number Publication date
JP4134165B2 (en) 2008-08-13
DE112004000559B4 (en) 2014-05-28
TW200424395A (en) 2004-11-16
KR100958605B1 (en) 2010-05-18
DE112004000559T5 (en) 2006-03-02
CN100355978C (en) 2007-12-19
JPWO2004090221A1 (en) 2006-07-06
CN1771364A (en) 2006-05-10
KR20050113182A (en) 2005-12-01
WO2004090221A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP2908841B2 (en) Method for imparting antistatic properties and smoothness to polyolefin-containing fibers or filaments
US5540953A (en) Process of preparing fabric comprising hydrophobic polyolefin fibers
KR102106115B1 (en) Composition for permanently hydrophilizing polyolefin fibers and use thereof
JP4970058B2 (en) Water permeability-imparting agent and water-permeable fiber to which it is attached
EP0400622A2 (en) Rewettable polyolefin fiber and corresponding nonwovens
CA2242274A1 (en) Internal and topical treatment system for nonwoven materials
US20060182965A1 (en) Water-permeability imparting agent and fiber having the agent applied thereto
KR920000252B1 (en) Fluid-permeable agent for nonwoven sheet of polyolefin fibers and method of application thereof
US10017898B2 (en) Use of a surfactant composition for the hydrophilic finishing of textile fibers and textile products manufactured therefrom
DE102014119334A1 (en) Composition for permanent hydrophilic finishing of textile fibers and textile products
KR920000253B1 (en) Fluid-permeable agent for nonwoven sheets of polyolefin fibers and method of application thereof
JP2019218651A (en) Hydrophilizing agent
US10233589B2 (en) Composition for the permanent hydrophilic finishing of textile fibers and textile products
JPH0350030B2 (en)
JP4520631B2 (en) Durable water permeability-imparting agent and its fiber
US6436535B1 (en) Fiber having durable hydrophilicity and fabrics using the same
JP4468575B2 (en) Durable water permeability-imparting agent and its fiber
JPH02216265A (en) Cloth-like material having water permeability comprising polyolefine-based yarn
JPH1046470A (en) Highly water repelling fiber and nonwoven fabric
JP2799510B2 (en) Water repellent fiber
JPH0418068B2 (en)
JP2018154948A (en) Permeable agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUMOTO YUSHI-SEIYAKU CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KITAGUCHI, HIDETOSHI;FUJIMOTO, YOSHIHARU;KOMEDA, HARUHIKO;AND OTHERS;REEL/FRAME:017835/0042

Effective date: 20050914

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION