US20060179819A1 - System and method for reducing vehicle emissions and/or generating hydrogen - Google Patents

System and method for reducing vehicle emissions and/or generating hydrogen Download PDF

Info

Publication number
US20060179819A1
US20060179819A1 US11/056,233 US5623305A US2006179819A1 US 20060179819 A1 US20060179819 A1 US 20060179819A1 US 5623305 A US5623305 A US 5623305A US 2006179819 A1 US2006179819 A1 US 2006179819A1
Authority
US
United States
Prior art keywords
hydrogen
catalytic converter
thermoelectric generator
vehicle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/056,233
Inventor
John Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/056,233 priority Critical patent/US20060179819A1/en
Publication of US20060179819A1 publication Critical patent/US20060179819A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This invention relates to a system for reducing vehicle emissions in a vehicle having an internal combustion engine and a catalytic converter, and in particular to a system and method for rapidly bringing the catalytic converter to light-off temperature by introducing a hydrogen containing fluid into the exhaust stream.
  • the invention also relates to a system for reducing vehicle emissions by introducing a hydrogen containing fluid into the exhaust stream, and in which the hydrogen containing fluid is in the form of hydrogen gas generated by an on-board electrolysis device or reformer powered by the heat of the exhaust stream, for example by a thermo-electric generator secured to or integral with the catalytic converter.
  • the hydrogen gas may also be added to the fuel intake to boost fuel efficiency and further reduce emissions.
  • the invention further relates to a system for utilizing waste heat generated by an internal combustion engine to generate hydrogen for use by the internal combustion engine or to reduce emissions.
  • the invention relates to a method for reducing emissions and conserving energy, and to a catalytic converter capable of reducing emissions and at the same time improving fuel efficiency.
  • thermo-electric generator that generates electricity from the heat carried by the exhaust stream when pre-heating is not required.
  • electricity generated by the thermoelectric generator can be stored in a battery and used not only to power the heater, but also electrical systems and devices.
  • 5,968,456 is not the best use for the re-captured energy, and in fact negates a significant portion of the energy savings since (i) resistance heating is not very energy efficient, and (ii) the added electrical load on the engine at start-up requires a much higher system energy capacity, including higher capacity batteries. The need for higher capacity batteries increases the weight of the vehicle and decreases fuel efficiency.
  • the fluid injected into the exhaust stream is hydrogen gas generated within the vehicle using heat recovered from the catalytic converter, the engine block or engine cooling system, and/or elsewhere in the exhaust system, by a thermoelectric generator.
  • the electrical output of the thermo-electric generator is preferably used to perform electrolysis and/or to power a reformer in order to generate the hydrogen.
  • the hydrogen may be stored in a tank or in solid form (i.e., in a brick), and may be added to the engine fuel intake to improve burning efficiency. The addition of hydrogen to the fuel intake may be constant or only during acceleration.
  • an aqueous solution of at least 30% methanol may be used, rather than pure water.
  • filtered and de-ionized diesel fuel or other hydrocarbons may be supplied directly to the electrolysis generator. Use of filtered and de-ionized diesel fuel would be especially convenient in a vehicle in which the primary internal combustion engine is a diesel engine.
  • the hydrogen generator may be equipped with sensors to measure power consumption and water level.
  • the sensors may be connected to a wireless transmitter that conveys data gathered by the sensors to a central station in order to log the hydrogen produced in order, for example, to take advantage of energy tax credits offered by the U.S. government and/or to signal the need for maintenance.
  • the hydrogen may be externally generated and pumped into a small storage tank or supplied in brick form.
  • energy from waste heat may be used for other purposes, such as heating of fuel injectors to get better atomization and gas mileage (the use of energy generated from waste heat for this purpose results in a true increase in gas mileage, whereas using the conventional vehicle's electrical system would not result in a net savings), or the various purposes described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863.
  • the invention also provides an integrated catalytic converter designed to enhance thermoelectric generation, including providing a catalyst coated heat sink and integrated cooling pipes to enhance the thermal differential required for thermoelectric generation.
  • sensors such as an oxygen sensor and temperature sensor may be provided to assess converter performance and adjust the temperature differential to ensure that the temperature of the converter remains optimum. If the temperature is too hot, the life of the catalyst will be reduced, and therefore the catalyst should remain at about the light-off temperature.
  • the heat sink of the preferred catalytic converter may, for example, consist of a metal foil coated on both sides with a catalyst and arranged in a spiral “jelly roll” configuration such that heat may be conducted by the metal foil all the way from the interior of the spiral to the outside.
  • louvers or similar structures may extend from the foil to provide spacing, equalize pressure, trap soot, create turbulence in the exhaust stream, and/or direct exhaust gases.
  • the spiral heat sink arrangement maximizes the area of catalyst exposed to the exhaust while at the same time providing a optimal transfer of heat to the outside.
  • the foil is preferably positioned within a heat transfer structure for transferring heat from the heat sink to a heat dissipating or cooling structure, and thermoelectric generator units connected across the thermal differential between the heat transfer structure and the heat dissipating or cooling structure.
  • the heat transfer structure may be a modular arrangement that clamps onto the outside of the converter core.
  • the principles of the invention may be applied to any vehicle having an internal combustion engine, including diesel and gasoline power vehicles, and gas/electric hybrid vehicles.
  • the principle of instant lightoff through the addition of hydrogen, or a hydrogen containing gas, to the exhaust stream may be applied to any catalytic converter including conventional ceramic honeycomb converters and more efficient sheet metal converters such as the one disclosed in U.S. Pat. No. 6,827,909.
  • FIG. 1 is a block diagram of a thermoelectric-hydrogen hybrid power system constructed in accordance with the principles of a preferred embodiment of the invention.
  • FIG. 2 is an isometric view of a catalytic converter assembly with integral thermoelectric generator for use in connection with the thermoelectric hydrogen hybrid vehicle illustrated in FIG. 1 .
  • FIG. 3 is a cross-sectional view of the catalytic converter assembly of FIG. 2 .
  • FIG. 4 is a cross-sectional view of a catalytic converter core for use in the assembly of FIG. 2 .
  • FIG. 5 is an isometric view of a louver structure included in the catalytic converter core of FIG. 4 .
  • FIG. 6 is an isometric view of an alternative embodiment of a heat exchanger for use in connection with the preferred converter.
  • FIG. 1 shows a thermoelectric-hydrogen hybrid power system 1 that illustrates the principles of a preferred embodiment of the invention.
  • Power system 1 includes an internal combustion engine 2 that generates an exhaust stream, and a catalytic converter 3 for reducing the amount of hydrocarbon pollutants in the exhaust stream by interaction with a catalyst. While power system 1 is especially suitable for vehicles having a drive train 8 and wheels 9 , the invention may also be applied to other types of vehicles in which the exhaust stream might be directed through a catalytic converter, such as trains and watercraft, and it is also within the scope of the invention to apply the principles of the invention to a stationary generator system, or any other system that utilizes an internal combustion engine.
  • power system 1 in order to reduce cold-start emissions by pre-heating the catalytic converter 3 , includes means, in the form of an injection device or intake valve 4 , for introducing a hydrogen-containing fluid or fuel component into the exhaust stream 5 when the engine is started and the exhaust stream is first generated.
  • Injection device 4 connected to the exhaust system at a point upstream of the catalytic converter 3 , and is further connected to a source of hydrogen-containing fluid, which may be in the form of a gas storage tank 13 as described below, and to a system controller 20 , so as to inject the fluid into the exhaust stream at start-up in order to minimize light-off time while stopping the injection after light-off has occurred and is sustainable by the heat of the exhaust gases. It is possible that additional fluid may need to be injected into the fuel stream during idling, particularly in the case of diesel and other cool-running engines.
  • FIG. 1 illustrates a system in which the fluid injected into the exhaust stream is pure or substantially pure hydrogen gas.
  • hydrogen-containing fluids such as propane
  • propane should have the same effect on the catalytic converter, and therefore it is also within the scope of the invention to inject propane or another gas, so long as the effect of the gas intake to the exhaust stream is to cause instantaneous lightoff of the catalyst, enabling the catalytic converter to begin reducing emissions immediately.
  • oxygen generated as a by-product of hydrogen generation may be supplied separately to the converter input.
  • Engine 2 may be any internal combustion engine that produces an exhaust stream 5 , including both gasoline and diesel engines, or engines associated with a hybrid gas/electric power system.
  • the illustrated power system 1 is a “hybrid” power system that includes not only an internal combustion engine 2 , but also an electric motor 6 controlled by a motor controller 7 to supply the primary motive force during low torque operation, which is assisted by the internal combustion engine during acceleration and when moving large loads, and which generates electricity during braking and under certain conditions when the internal combustion engine is operating.
  • hybrid gas/electric power systems are well known and used in a variety of commercially available vehicles as a way of reducing both emissions and fuel consumption, primarily as a result of the energy recaptured during regenerative braking, which replaces energy that would otherwise be obtained by burning fuel.
  • the benefits of the present invention are equally applicable to power systems that lack an electric motor/generator corresponding to motor 6 .
  • the catalytic converter 3 may be a conventional ceramic catalytic converter, one that uses metal sheets or foil, or even an electrically heated catalytic converter.
  • Examples of catalytic converters to which the principles of the invention may be applied include, in addition to the converters disclosed in the above-discussed patents, the converters disclosed in U.S. Pat. Nos. 6,821,491 and 6,162,403, and the converters and pre-converters described in the articles “ New Diesel Catalyst System To Achieve European 2005 Legislation” by Dipl.-Ing Frida Diefke et al. (2005) and “ Configurations—Automotive Preconverters for LEV/ULEV ,” a brochure by MicrolithTM (2005).
  • catalytic converter encompass any device containing a catalyst (such as, but not limited to, platinum) that causes breakdown of emission constituents, and in which lightoff or activation of the catalyst is expedited by introducing hydrogen gas or another hydrogen-containing fluid into the exhaust stream.
  • a catalyst such as, but not limited to, platinum
  • the hydrogen for injection into the exhaust stream 5 is generated within the power system using heat recovered from the catalytic converter 3 , and/or the engine 2 , motor 6 , and/or elsewhere in the exhaust system, by a thermoelectric generator or generators 10 .
  • Thermoelectric generators are described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863, and it is intended that the present invention not be limited to a particular type of thermoelectric generator.
  • Current thermoelectric generator configurations are capable of generating upwards of 250 W when connected to a typical vehicle exhaust system.
  • thermoelectric generator(s) 10 may be used either to perform electrolysis by means of an electrolysis generator 11 , and/or to power a reformer 12 .
  • the resulting hydrogen, as well as oxygen generated during the electrolysis or reformation processes, is preferably stored in a storage device 13 that may take the form of a tank or solid storage (i.e., in a brick). If stored as a brick, then a source of heat will need to be included in order to extract the hydrogen.
  • the storage device is connected to the injector or intake 4 for supplying hydrogen to the exhaust stream.
  • the output of the thermoelectric generator may be stored in a battery 19 or other storage device, supplied directly to the electrolysis generator, the motor, or other electrical systems or devices, under controller of a master controller or power converter 20 .
  • the electricity generated by the thermoelectric generator includes heating of fuel injectors by means of a heater 21 to get better atomization and gas mileage.
  • the hydrogen storage tank 13 may be connected to the intake manifold 14 and hydrogen stored in the tank added to the engine fuel supply 15 to improve burning efficiency.
  • the addition of hydrogen to the fuel intake may be constant or only during an increased load such as occurs during acceleration.
  • oxygen generated as a by-product of hydrogen generation may be stored and added to the engine fuel supply 15
  • water and/or methanol may be added to the to the engine air/fuel mixture 28 via an intake 16 to prevent premature combustion or knocking, particularly when hydrogen and/or oxygen is also added.
  • the engine air/fuel mixture including the addition of hydrogen, hydrogen and oxygen, and/or additional fuel components such as methanol or water as discussed above, may be controlled in a known manner by controller 20 in response to appropriate sensors such as a mass air flow sensor 30 , manifold absolute pressure sensor 31 , exhaust oxygen sensor 32 , and tachometer 33 .
  • Water for electrolysis or hydrocarbon fuel for reformation may be stored in tanks 17 , 18 connected, respectively, to electrolysis generator 11 and/or reformer 12 .
  • an aqueous solution of at least 30% methanol may be substituted for pure water, or filtered and de-ionized diesel fuel or other hydrocarbons may be supplied directly to the electrolysis generator.
  • sensors 35 maybe added to the hydrogen generator 11 or 12 , water tank 17 , and/or fuel supply system, in order to measure the amount of hydrogen produced.
  • the sensors 3 5 may be connected to or include a wireless transmitter arranged to transmit the measured amount to a central station in order to log or keep track of hydrogen production or power consumption.
  • FIGS. 2 and 3 show an integrated catalytic converter assembly designed to enhance thermoelectric generation, including catalytic converter 3 and a heat exchanger 40 with integrated cooling pipes 42 to enhance the thermal differential required for thermoelectric generation.
  • the converter 3 includes a heat sink 50 arranged to transfer heat to the outside surface of the converter, where it is transferred to the heat exchanger 40 .
  • heat exchanger 40 takes the form of two semi-cylindrical halves 51 , 52 arranged to be clamped or secured onto the outside of converter 3 , for example, by fastening together the halves at flanges 53 .
  • exchanger halves 51 , 52 are arranged to support modular thermoelectric generator/cooling structures 54 each consisting of an insulated thermo-electric generator plate 55 containing a thermo-electric element, and cooling pipe mount 56 . Plates 55 are secured in grooves 57 by appropriate brackets or fasteners 58 .
  • Each cooling pipe mount includes an air channel 59 and grooves 60 having a surface that extends over an arc of greater than 180° and less than 360° to enable pipes 42 to be removably snapped into place. Pipes 42 are connected to a coolant source so that a thermal differential exists between the heat exchanger halves 51 , 52 and the cooling pipe mounts 56 .
  • the converter 3 consists of a core made up of a heat sink 50 in the form of a foil or sheet coated on both sides with a catalyst layer 57 and rolled into a spiral or “jelly roll” configuration to maximize the surface area of catalyst exposed to the exhaust gases, which flow through the core in a direction perpendicular to the illustrated cross-section.
  • the outside surface of the heat sink 50 is kept free of catalyst, with the edge 58 being welded, crimped, or otherwise secured to the outside surface so as to form a closed, sealed, structure in order to contain the exhaust gases.
  • the catalyst is typically platinum but the invention is not limited to a particular catalyst.
  • any heat sink structure, configuration, or geometry that transfers heat to the outside the converter for transfer to the heat exchanger 40 may be used, such as radial catalyst-coated heat sink fins, although the spiral configuration may have the advantage of creating vortices which increase the reaction efficiency or rate.
  • radial catalyst-coated heat sink fins for use in connection with a thermo-electric generator, it is only necessary that the outside surface of the converter be un-insulated.
  • FIG. 5 shows a modification of the heat sink illustrated in FIG. 4 , in which the foil or sheet 50 is provided with louvers 60 for spacing adjacent turns of sheet 50 in order to provide a passage for the exhaust stream.
  • Louvers 60 may be used for a number of additional purposes, depending on their specific configuration, including pressure equalization (e.g., by varying the numbers of louvers with distance from the center), creation of turbulence in the exhaust stream, and/or direction of exhaust gases, and also to trap soot particles in the exhaust stream, thereby facilitate burning of the particles.
  • FIG. 4 is not necessarily drawn to scale, and that the orientation and structure of the louvers may be varied, or the louvers may be entirely replaced by other spacing means.
  • FIG. 6 shows an alternative to the modular water-cooled heat exchanger of FIGS. 2 and 3 .
  • cooling is achieved by heat radiating fins 61 rather than cooling pipe mounts as in the embodiment illustrated in FIGS. 2 and 3 .
  • the remaining elements of the heat exchanger 40 ′ of this embodiment are the same as those shown in FIGS. 2 and 3 , although the core of converter 3 is not shown.
  • the heat exchanger 40 ′ is provided with any necessary insulators, such as gaskets 62 , as well as appropriate fasteners (not shown) and the like.
  • sensors 43 such as oxygen sensor 32 and temperature sensor 43 may be provided to assess converter performance and adjust the temperature differential to ensure that the temperature of the converter remains optimum.
  • the temperature differential may be adjusted, for example, by adjusting the flow of coolant through the pipe 42 . If the temperature is too hot, the life of the catalyst will be reduced, and therefore the catalyst should remain at about the lightoff temperature.
  • the hydrogen injected into the exhaust stream and, optionally, the intake manifold may be externally generated and pumped into a small storage tank (not shown) from outside the vehicle, or supplied in brick form.
  • the thermoelectric generators maybe omitted, or energy from waste heat maybe used for other purposes, including those described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863.

Abstract

Emissions from systems that use a catalytic converter are substantially reduced by introducing hydrogen, or a hydrogen containing fluid or fuel component, into the exhaust stream being scrubbed by the catalytic converter, resulting in instant lightoff and a significant reduction in emissions. Hydrogen for injection into the exhaust stream may, optionally, be generated within the vehicle using heat recovered from the catalytic converter, and/or the engine or elsewhere in the exhaust system, by a thermoelectric generator, the electrical output of which may be used to perform electrolysis and/or to power a reformer in order to generate the hydrogen. The thermoelectric generator may be retrofit onto the catalytic converter, or integrated in a way that enhances thermoelectric generation, including providing a catalyst coated heat sink and integrated cooling pipes to enhance the thermal differential required for thermoelectric generation. Sensors such as an oxygen sensor and temperature sensor may be provided to assess converter performance and adjust the temperature differential to ensure that the temperature of the converter remains optimum.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a system for reducing vehicle emissions in a vehicle having an internal combustion engine and a catalytic converter, and in particular to a system and method for rapidly bringing the catalytic converter to light-off temperature by introducing a hydrogen containing fluid into the exhaust stream.
  • The invention also relates to a system for reducing vehicle emissions by introducing a hydrogen containing fluid into the exhaust stream, and in which the hydrogen containing fluid is in the form of hydrogen gas generated by an on-board electrolysis device or reformer powered by the heat of the exhaust stream, for example by a thermo-electric generator secured to or integral with the catalytic converter. The hydrogen gas may also be added to the fuel intake to boost fuel efficiency and further reduce emissions.
  • The invention further relates to a system for utilizing waste heat generated by an internal combustion engine to generate hydrogen for use by the internal combustion engine or to reduce emissions.
  • Finally, the invention relates to a method for reducing emissions and conserving energy, and to a catalytic converter capable of reducing emissions and at the same time improving fuel efficiency.
  • 2. Description of Related Art
  • In a conventional vehicle, 70% to 80% of emissions occur during the first 100 seconds following a cold-start. The reason is that the catalytic converter does not begin operating to reduce emissions until the catalyst has reached a “light-off” temperature. As a result, it has previously been proposed to pre-heat the catalytic converter, so that when the engine is started, the catalytic converter immediately begins reducing emissions. These proposals all involve electrically heating the converter using a resistance element, as described by way of example in U.S. Pat. Nos. 6,613,293; 6,562,305; 6,168,763; 5,948,504; and 5,852,274. Such heaters have the advantage of decreasing emissions not only during a cold start, but also during idling in the case of cooler running engines such as diesels. However, they have the disadvantage of increasing the electrical load on the engine, resulting in decreased fuel economy.
  • A partial solution to the problem of heating a catalytic converter without decreased fuel economy is proposed in U.S. Pat. No. 5,968,456. According to U.S. Pat. No. 5,968,456, the device that pre-heat the converter is a thermo-electric generator that generates electricity from the heat carried by the exhaust stream when pre-heating is not required. As a result, there is a net energy savings since the electricity generated by the thermoelectric generator can be stored in a battery and used not only to power the heater, but also electrical systems and devices.
  • Other proposals for converting waste heat emitted by an internal combustion engine or carried by the exhaust stream or engine coolant are found in U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863, while U.S. Pat. Nos. 5,753,383 and 4,161,657 propose the inclusion of thermoelectric generators in hydrogen powered vehicles that includes both a burner module and a fuel cell. For the most part, these systems promise significant energy savings (for example, around 80% of the energy output of an internal combustion engine is in the form of heat). However, use of the energy to pre-heat a catalytic converter at start-up, as proposed in the above-discussed U.S. Pat. No. 5,968,456, is not the best use for the re-captured energy, and in fact negates a significant portion of the energy savings since (i) resistance heating is not very energy efficient, and (ii) the added electrical load on the engine at start-up requires a much higher system energy capacity, including higher capacity batteries. The need for higher capacity batteries increases the weight of the vehicle and decreases fuel efficiency.
  • None of the previous proposals for using electric resistance elements, and/or a thermo-electric generator, to pre-heat a catalytic converter involves injecting a hydrogen-containing gas into the converter in order to initiate an exothermic reaction that instantaneously heats the catalyst. It is of course known that hydrogen can cause heating of a catalyst (see, e.g., U.S. Pat. No. 6,231,831, which discloses a heating of a catalyst-coated membrane in a methanol reformation system), but the principle has not previously been applied to the catalytic converter of a vehicle emissions reduction system.
  • Additional background on the generation and use of hydrogen in vehicles is found in U.S. Pat. No. 6,659,049 (condensation in exhaust converted to hydrogen for mixture with hydrocarbon fuel); U.S. Pat. No. 6,559,551 (hydrogen generation for a fuel cell); U.S. Pat. No. 4,368,696 (hydrogen and oxygen generation to supplement gasoline fuel); and U.S. Pat. No. 6,516,615 (compressed hydrogen fuel that obtains work from both decompression and burning).
  • SUMMARY OF THE INVENTION
  • It is accordingly a first objective of the invention to provide a system and method for reducing emissions from an internal combustion engine without increasing fuel consumption.
  • It is a second objective of the invention to provide a system and method for reducing emissions from an internal combustion engine that is simple, reliable, and economical to operate.
  • It is a third objective of the invention to provide a catalytic converter having reduced emissions.
  • It is a fourth objective of the invention to provide a catalytic converter that contributes to more efficient energy utilization.
  • It is a fifth objective of the invention to provide a system and method of pre-heating a catalytic converter that does not significantly increase the electrical load on the vehicle at start-up.
  • It is a sixth objective of the invention to provide an internal combustion/hydrogen powered hybrid vehicle having enhanced efficiency and lower emissions.
  • It is a seventh objective of the invention to provide a method and system that utilizes waste heat generated during operation of an internal combustion engine to reduce emissions.
  • These objectives are achieved, in accordance with the principles of a preferred embodiment of the invention, by providing a system and method in which a hydrogen-containing fluid, such as pure hydrogen, methanol, or propane, is injected into the exhaust stream to cause a reaction that instantly heats the catalyst layer of a catalytic converter.
  • According to a preferred embodiment of the invention, the fluid injected into the exhaust stream is hydrogen gas generated within the vehicle using heat recovered from the catalytic converter, the engine block or engine cooling system, and/or elsewhere in the exhaust system, by a thermoelectric generator. The electrical output of the thermo-electric generator is preferably used to perform electrolysis and/or to power a reformer in order to generate the hydrogen. The hydrogen may be stored in a tank or in solid form (i.e., in a brick), and may be added to the engine fuel intake to improve burning efficiency. The addition of hydrogen to the fuel intake may be constant or only during acceleration.
  • In order to increase the efficiency of hydrogen generation within the vehicle by electrolysis, and to prevent freezing, an aqueous solution of at least 30% methanol may be used, rather than pure water. Alternatively, filtered and de-ionized diesel fuel or other hydrocarbons may be supplied directly to the electrolysis generator. Use of filtered and de-ionized diesel fuel would be especially convenient in a vehicle in which the primary internal combustion engine is a diesel engine.
  • According to another feature of the preferred embodiment, the hydrogen generator may be equipped with sensors to measure power consumption and water level. The sensors may be connected to a wireless transmitter that conveys data gathered by the sensors to a central station in order to log the hydrogen produced in order, for example, to take advantage of energy tax credits offered by the U.S. government and/or to signal the need for maintenance.
  • Alternative to generating the hydrogen within the vehicle, the hydrogen may be externally generated and pumped into a small storage tank or supplied in brick form. In that case, energy from waste heat may be used for other purposes, such as heating of fuel injectors to get better atomization and gas mileage (the use of energy generated from waste heat for this purpose results in a true increase in gas mileage, whereas using the conventional vehicle's electrical system would not result in a net savings), or the various purposes described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863.
  • The invention also provides an integrated catalytic converter designed to enhance thermoelectric generation, including providing a catalyst coated heat sink and integrated cooling pipes to enhance the thermal differential required for thermoelectric generation. In an especially preferred embodiment of the invention, sensors such as an oxygen sensor and temperature sensor may be provided to assess converter performance and adjust the temperature differential to ensure that the temperature of the converter remains optimum. If the temperature is too hot, the life of the catalyst will be reduced, and therefore the catalyst should remain at about the light-off temperature.
  • The heat sink of the preferred catalytic converter may, for example, consist of a metal foil coated on both sides with a catalyst and arranged in a spiral “jelly roll” configuration such that heat may be conducted by the metal foil all the way from the interior of the spiral to the outside. In addition, louvers or similar structures may extend from the foil to provide spacing, equalize pressure, trap soot, create turbulence in the exhaust stream, and/or direct exhaust gases.
  • The spiral heat sink arrangement maximizes the area of catalyst exposed to the exhaust while at the same time providing a optimal transfer of heat to the outside. Instead of insulating the outside surface of the catalyst-coated foil, the foil is preferably positioned within a heat transfer structure for transferring heat from the heat sink to a heat dissipating or cooling structure, and thermoelectric generator units connected across the thermal differential between the heat transfer structure and the heat dissipating or cooling structure. The heat transfer structure may be a modular arrangement that clamps onto the outside of the converter core.
  • The principles of the invention may be applied to any vehicle having an internal combustion engine, including diesel and gasoline power vehicles, and gas/electric hybrid vehicles. In addition, the principle of instant lightoff through the addition of hydrogen, or a hydrogen containing gas, to the exhaust stream, may be applied to any catalytic converter including conventional ceramic honeycomb converters and more efficient sheet metal converters such as the one disclosed in U.S. Pat. No. 6,827,909.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a thermoelectric-hydrogen hybrid power system constructed in accordance with the principles of a preferred embodiment of the invention.
  • FIG. 2 is an isometric view of a catalytic converter assembly with integral thermoelectric generator for use in connection with the thermoelectric hydrogen hybrid vehicle illustrated in FIG. 1.
  • FIG. 3 is a cross-sectional view of the catalytic converter assembly of FIG. 2.
  • FIG. 4 is a cross-sectional view of a catalytic converter core for use in the assembly of FIG. 2.
  • FIG. 5 is an isometric view of a louver structure included in the catalytic converter core of FIG. 4.
  • FIG. 6 is an isometric view of an alternative embodiment of a heat exchanger for use in connection with the preferred converter.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a thermoelectric-hydrogen hybrid power system 1 that illustrates the principles of a preferred embodiment of the invention. Power system 1 includes an internal combustion engine 2 that generates an exhaust stream, and a catalytic converter 3 for reducing the amount of hydrocarbon pollutants in the exhaust stream by interaction with a catalyst. While power system 1 is especially suitable for vehicles having a drive train 8 and wheels 9, the invention may also be applied to other types of vehicles in which the exhaust stream might be directed through a catalytic converter, such as trains and watercraft, and it is also within the scope of the invention to apply the principles of the invention to a stationary generator system, or any other system that utilizes an internal combustion engine.
  • According to the principles of the invention, in order to reduce cold-start emissions by pre-heating the catalytic converter 3, power system 1 includes means, in the form of an injection device or intake valve 4, for introducing a hydrogen-containing fluid or fuel component into the exhaust stream 5 when the engine is started and the exhaust stream is first generated. Injection device 4 connected to the exhaust system at a point upstream of the catalytic converter 3, and is further connected to a source of hydrogen-containing fluid, which may be in the form of a gas storage tank 13 as described below, and to a system controller 20, so as to inject the fluid into the exhaust stream at start-up in order to minimize light-off time while stopping the injection after light-off has occurred and is sustainable by the heat of the exhaust gases. It is possible that additional fluid may need to be injected into the fuel stream during idling, particularly in the case of diesel and other cool-running engines.
  • FIG. 1 illustrates a system in which the fluid injected into the exhaust stream is pure or substantially pure hydrogen gas. However, other hydrogen-containing fluids, such as propane, should have the same effect on the catalytic converter, and therefore it is also within the scope of the invention to inject propane or another gas, so long as the effect of the gas intake to the exhaust stream is to cause instantaneous lightoff of the catalyst, enabling the catalytic converter to begin reducing emissions immediately. In addition, oxygen generated as a by-product of hydrogen generation may be supplied separately to the converter input.
  • Engine 2 may be any internal combustion engine that produces an exhaust stream 5, including both gasoline and diesel engines, or engines associated with a hybrid gas/electric power system. The illustrated power system 1 is a “hybrid” power system that includes not only an internal combustion engine 2, but also an electric motor 6 controlled by a motor controller 7 to supply the primary motive force during low torque operation, which is assisted by the internal combustion engine during acceleration and when moving large loads, and which generates electricity during braking and under certain conditions when the internal combustion engine is operating. Such “hybrid” gas/electric power systems are well known and used in a variety of commercially available vehicles as a way of reducing both emissions and fuel consumption, primarily as a result of the energy recaptured during regenerative braking, which replaces energy that would otherwise be obtained by burning fuel. On the other hand, however, the benefits of the present invention are equally applicable to power systems that lack an electric motor/generator corresponding to motor 6.
  • The catalytic converter 3 may be a conventional ceramic catalytic converter, one that uses metal sheets or foil, or even an electrically heated catalytic converter. Examples of catalytic converters to which the principles of the invention may be applied include, in addition to the converters disclosed in the above-discussed patents, the converters disclosed in U.S. Pat. Nos. 6,821,491 and 6,162,403, and the converters and pre-converters described in the articles “New Diesel Catalyst System To Achieve European 2005 Legislation” by Dipl.-Ing Frida Diefke et al. (2005) and “Configurations—Automotive Preconverters for LEV/ULEV,” a brochure by Microlith™ (2005). Further, it is intended that the term “catalytic converter” encompass any device containing a catalyst (such as, but not limited to, platinum) that causes breakdown of emission constituents, and in which lightoff or activation of the catalyst is expedited by introducing hydrogen gas or another hydrogen-containing fluid into the exhaust stream.
  • According to a preferred embodiment of the invention, the hydrogen for injection into the exhaust stream 5 is generated within the power system using heat recovered from the catalytic converter 3, and/or the engine 2, motor 6, and/or elsewhere in the exhaust system, by a thermoelectric generator or generators 10. Thermoelectric generators are described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863, and it is intended that the present invention not be limited to a particular type of thermoelectric generator. Current thermoelectric generator configurations are capable of generating upwards of 250 W when connected to a typical vehicle exhaust system.
  • According to the preferred embodiment of the invention, the electrical output of thermoelectric generator(s) 10 may be used either to perform electrolysis by means of an electrolysis generator 11, and/or to power a reformer 12. The resulting hydrogen, as well as oxygen generated during the electrolysis or reformation processes, is preferably stored in a storage device 13 that may take the form of a tank or solid storage (i.e., in a brick). If stored as a brick, then a source of heat will need to be included in order to extract the hydrogen. As indicated above, the storage device is connected to the injector or intake 4 for supplying hydrogen to the exhaust stream.
  • When not be supplied directly to a hydrogen generating device, the output of the thermoelectric generator may be stored in a battery 19 or other storage device, supplied directly to the electrolysis generator, the motor, or other electrical systems or devices, under controller of a master controller or power converter 20. For example, the electricity generated by the thermoelectric generator includes heating of fuel injectors by means of a heater 21 to get better atomization and gas mileage. Those skilled in the art will appreciate that the use of energy generated from waste heat for the purpose of fuel injector heating results in a true increase in gas mileage, whereas using the conventional vehicle's electrical system would not result in a net savings.
  • In addition to being connected to the injector 4, the hydrogen storage tank 13 may be connected to the intake manifold 14 and hydrogen stored in the tank added to the engine fuel supply 15 to improve burning efficiency. The addition of hydrogen to the fuel intake may be constant or only during an increased load such as occurs during acceleration. In addition, oxygen generated as a by-product of hydrogen generation may be stored and added to the engine fuel supply 15, while water and/or methanol may be added to the to the engine air/fuel mixture 28 via an intake 16 to prevent premature combustion or knocking, particularly when hydrogen and/or oxygen is also added.
  • Those skilled in the art will appreciate that, in the illustrated power system 1, the engine air/fuel mixture, including the addition of hydrogen, hydrogen and oxygen, and/or additional fuel components such as methanol or water as discussed above, may be controlled in a known manner by controller 20 in response to appropriate sensors such as a mass air flow sensor 30, manifold absolute pressure sensor 31, exhaust oxygen sensor 32, and tachometer 33.
  • Water for electrolysis or hydrocarbon fuel for reformation may be stored in tanks 17,18 connected, respectively, to electrolysis generator 11 and/or reformer 12. Alternatively, in order to increase the efficiency of hydrogen generation within the vehicle by electrolysis, an aqueous solution of at least 30% methanol may be substituted for pure water, or filtered and de-ionized diesel fuel or other hydrocarbons may be supplied directly to the electrolysis generator. Those skilled in the art will appreciate that numerous techniques for generating hydrogen are currently being developed, and that the invention is not limited to any particular technique.
  • Finally, as illustrated in FIG. 1, sensors 35 maybe added to the hydrogen generator 11 or 12, water tank 17, and/or fuel supply system, in order to measure the amount of hydrogen produced. The sensors 3 5 may be connected to or include a wireless transmitter arranged to transmit the measured amount to a central station in order to log or keep track of hydrogen production or power consumption.
  • FIGS. 2 and 3 show an integrated catalytic converter assembly designed to enhance thermoelectric generation, including catalytic converter 3 and a heat exchanger 40 with integrated cooling pipes 42 to enhance the thermal differential required for thermoelectric generation. As will be explained in more detail below, the converter 3 includes a heat sink 50 arranged to transfer heat to the outside surface of the converter, where it is transferred to the heat exchanger 40. In the embodiment illustrated in FIGS. 2 and 3, heat exchanger 40 takes the form of two semi-cylindrical halves 51,52 arranged to be clamped or secured onto the outside of converter 3, for example, by fastening together the halves at flanges 53.
  • To facilitate servicing and assembly, exchanger halves 51,52 are arranged to support modular thermoelectric generator/cooling structures 54 each consisting of an insulated thermo-electric generator plate 55 containing a thermo-electric element, and cooling pipe mount 56. Plates 55 are secured in grooves 57 by appropriate brackets or fasteners 58. Each cooling pipe mount includes an air channel 59 and grooves 60 having a surface that extends over an arc of greater than 180° and less than 360° to enable pipes 42 to be removably snapped into place. Pipes 42 are connected to a coolant source so that a thermal differential exists between the heat exchanger halves 51,52 and the cooling pipe mounts 56.
  • As illustrated in FIG. 4, the converter 3 consists of a core made up of a heat sink 50 in the form of a foil or sheet coated on both sides with a catalyst layer 57 and rolled into a spiral or “jelly roll” configuration to maximize the surface area of catalyst exposed to the exhaust gases, which flow through the core in a direction perpendicular to the illustrated cross-section. The outside surface of the heat sink 50 is kept free of catalyst, with the edge 58 being welded, crimped, or otherwise secured to the outside surface so as to form a closed, sealed, structure in order to contain the exhaust gases. The catalyst is typically platinum but the invention is not limited to a particular catalyst.
  • Those skilled in the art will appreciate that the illustrated spiral or jelly roll configuration is illustrative in nature only. Any heat sink structure, configuration, or geometry that transfers heat to the outside the converter for transfer to the heat exchanger 40 may be used, such as radial catalyst-coated heat sink fins, although the spiral configuration may have the advantage of creating vortices which increase the reaction efficiency or rate. For use in connection with a thermo-electric generator, it is only necessary that the outside surface of the converter be un-insulated.
  • FIG. 5 shows a modification of the heat sink illustrated in FIG. 4, in which the foil or sheet 50 is provided with louvers 60 for spacing adjacent turns of sheet 50 in order to provide a passage for the exhaust stream. Louvers 60 may be used for a number of additional purposes, depending on their specific configuration, including pressure equalization (e.g., by varying the numbers of louvers with distance from the center), creation of turbulence in the exhaust stream, and/or direction of exhaust gases, and also to trap soot particles in the exhaust stream, thereby facilitate burning of the particles. It will be noted that FIG. 4 is not necessarily drawn to scale, and that the orientation and structure of the louvers may be varied, or the louvers may be entirely replaced by other spacing means.
  • FIG. 6 shows an alternative to the modular water-cooled heat exchanger of FIGS. 2 and 3. In this embodiment, cooling is achieved by heat radiating fins 61 rather than cooling pipe mounts as in the embodiment illustrated in FIGS. 2 and 3. The remaining elements of the heat exchanger 40′ of this embodiment are the same as those shown in FIGS. 2 and 3, although the core of converter 3 is not shown. Of course, the heat exchanger 40′ is provided with any necessary insulators, such as gaskets 62, as well as appropriate fasteners (not shown) and the like.
  • Referring back to FIG. 1, in an especially preferred embodiment of the invention, sensors 43 such as oxygen sensor 32 and temperature sensor 43 may be provided to assess converter performance and adjust the temperature differential to ensure that the temperature of the converter remains optimum. The temperature differential may be adjusted, for example, by adjusting the flow of coolant through the pipe 42. If the temperature is too hot, the life of the catalyst will be reduced, and therefore the catalyst should remain at about the lightoff temperature.
  • Having thus described preferred embodiments of the invention in sufficient detail to enable those skilled in the art to make and use the invention, it will nevertheless be appreciated that numerous variations and modifications of the illustrated embodiment may be made without departing from the spirit of the invention. For example, in an alternative embodiment of the invention, instead of generating the hydrogen within the vehicle, the hydrogen injected into the exhaust stream and, optionally, the intake manifold, may be externally generated and pumped into a small storage tank (not shown) from outside the vehicle, or supplied in brick form. In that case, the thermoelectric generators maybe omitted, or energy from waste heat maybe used for other purposes, including those described in the above-cited U.S. Pat. Nos. 6,605,773; 6,172,427; 5,625,245; 4,753,682; and 4,673,863.
  • On the other hand, it will be appreciated that the principle of using of waste heat to generate hydrogen for vehicle propulsion in a hydrogen, hydrogen fuel cell, hydrogen/internal combustion, hydrogen/electric, or hydrogen/internal combustion/electric powered vehicle may be applied even in the absence of catalytic converter pre-heating by hydrogen injection. Accordingly, it is intended that the invention not be limited by the above description or accompanying drawings, but that it be defined solely in accordance with the appended claims.

Claims (35)

1. A system for reducing emissions from a catalytic converter, comprising:
supply means for supplying a gas containing hydrogen; and
injection means for injecting the gas into the exhaust stream prior to entry into the catalytic converter.
2. A system as claimed in claim 1, wherein the supply means includes a hydrogen tank.
3. A system as claimed in claim 1, wherein the supply means is a solid hydride brick.
4. A system as claimed in claim 1, wherein the supply means includes a hydrolysis device.
5. A system as claimed in claim 4, further comprising a thermo-electric generator for converting exhaust heat into electricity.
6. A system as claimed in claim 5, wherein the electricity is stored in a battery and supplied to the electrolysis device as necessary to generate hydrogen.
7. A system as claimed in claim 1, wherein the supply means is a reformer.
8. A system as claimed in claim 7, further comprising a thermoelectric generator for converting exhaust heat into electricity.
9. A system as claimed in claim 7, wherein the electricity is stored in a battery and supplied to the hydrolysis device as necessary to generate hydrogen.
10. A system as claimed in claim 1, further comprising a thermoelectric generator for generating electricity in response to waste heat from said exhaust.
11. A system as claimed in claim 10, wherein said thermoelectric generator is in thermal contact with said catalytic converter.
12. A system as claimed in claim 10, wherein said thermoelectric generator is integral with said catalytic converter.
13. A system as claimed in claim 12, wherein said thermoelectric generator is positioned between heat fins on said catalytic converter and a coolant supply.
14. A system as claimed in claim 12, wherein said heat fins are coated with a catalyst.
15. A system as claimed in claim 12, wherein said coolant supply includes pipes connected to a source of liquid coolant.
16. A system as claimed in claim 12, further comprising means for controlling said coolant supply based on input from a temperature sensor connected to said catalytic converter and an oxygen sensor in said exhaust stream.
17. A system as claimed in claim 1, wherein said hydrogen is also supplied to an intake of said engine.
18. A system as claimed in claim 17, wherein the addition of hydrogen to the fuel intake occurs only during acceleration.
19. A system as claimed in claim 1, further comprising a thermoelectric generator in thermal contact with the exhaust or engine block and arranged to generate electricity in response to a thermal differential, and further comprising means for heating of fuel injectors to get better atomization and gas mileage.
20. A vehicle including a electrolysis device for generating hydrogen, a internal combustion engine, a thermoelectric generator for supplying electricity for said hydrolysis in response to heat generated by said engine or an exhaust system of said engine, a catalytic converter, and means for supplying said hydrogen to said catalytic converter.
21. A vehicle as claimed in claim 20, further comprising means for adding methanol to water for electrolysis, in order to increase efficiency and prevent freezing.
22. A vehicle as claimed in claim 20, further comprising a storage battery for storing electricity generated by said thermoelectric generator, and a controller for selectively supplying said electricity to said hydrolysis device.
23. A vehicle as claimed in claim 20, further comprising means for injecting said hydrogen into a fuel intake of said engine.
24. A vehicle as claimed in claim 20, further comprising a transmitter connected to sensors for measuring hydrogen production and transmitting data concerning the hydrogen production to a central station.
25. A system for generating and utilizing hydrogen, comprising:
means associated with an internal combustion engine for utilizing hydrogen;
a thermoelectric generator in thermal contact with a source of heat generated during internal combustion with the internal combustion engine;
a hydrogen generator connected to and supplied with power from the thermoelectric generator for supplying hydrogen to the hydrogen utilization means.
26. A system as claimed in claim 25, wherein said system is arranged to power a vehicle.
27. A system as claimed in claim 25, wherein said means associated with an internal combustion engine for generating and utilizing hydrogen is a system for injecting hydrogen into an exhaust stream to heat a catalytic converter.
28. A system as claimed in claim 25, wherein said means associated with an internal combustion engine for generating and utilizing hydrogen causing said hydrogen to be added to a fuel/air mixture of the internal combustion engine.
29. A system as claimed in claim 28, wherein water and/or methanol is added to the fuel/air mixture to prevent premature combustion.
30. A system as claimed in claim 28, wherein said system is provided in a vehicle, and said hydrogen is added when said vehicle accelerates.
31. A system as claimed in claim 25, wherein said source of heat is an exhaust stream from the internal combustion engine.
32. A system as claimed in claim 31, wherein said thermoelectric generator is connected to a catalytic converter
33. A system as claimed in claim 25, wherein said hydrogen generator is an electrolysis device.
34. A system as claimed in claim 33, wherein methanol is added to water in the electrolysis device to increase electrolysis efficiency.
35. A system as claimed in claim 25, wherein said hydrogen generator is a hydrocarbon fuel reformer.
US11/056,233 2005-02-14 2005-02-14 System and method for reducing vehicle emissions and/or generating hydrogen Abandoned US20060179819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/056,233 US20060179819A1 (en) 2005-02-14 2005-02-14 System and method for reducing vehicle emissions and/or generating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/056,233 US20060179819A1 (en) 2005-02-14 2005-02-14 System and method for reducing vehicle emissions and/or generating hydrogen

Publications (1)

Publication Number Publication Date
US20060179819A1 true US20060179819A1 (en) 2006-08-17

Family

ID=36814231

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/056,233 Abandoned US20060179819A1 (en) 2005-02-14 2005-02-14 System and method for reducing vehicle emissions and/or generating hydrogen

Country Status (1)

Country Link
US (1) US20060179819A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000651A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented hybrid electric propulsion system
US20080109122A1 (en) * 2005-11-30 2008-05-08 Ferguson Alan L Work machine control using off-board information
WO2008138562A1 (en) * 2007-05-11 2008-11-20 Voith Patent Gmbh Vehicle drive
DE102008005334A1 (en) * 2008-01-21 2009-07-30 Christian Vitek Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity
US20090235585A1 (en) * 2008-03-18 2009-09-24 Jacobus Neels Actively Cooled Fuel Processor
DE102008038985A1 (en) * 2008-08-13 2010-02-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device
US20100170454A1 (en) * 2009-01-05 2010-07-08 Clean-Fuel Technologies, Inc. Hydrogen supplementation fuel apparatus and method
US20100287911A1 (en) * 2007-09-26 2010-11-18 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and exhaust gas purification method
WO2013011313A1 (en) * 2011-07-18 2013-01-24 Esam Elsarrag Fuel production apparatus
US20150292380A1 (en) * 2014-04-14 2015-10-15 Evident Technologies Efficiency and Reduced Emission for Internal Combustion Engines Using Thermoelectric-driven Electrolysis
EP3124780A1 (en) * 2015-07-29 2017-02-01 Fuelsave GmbH Vehicle drive system and method for operating a vehicle drive system
EP3124781A1 (en) * 2015-07-29 2017-02-01 Fuelsave GmbH Marine propulsion system and method for operating a marine propulsion system
FR3048553A1 (en) * 2016-03-01 2017-09-08 Valeo Systemes Thermiques THERMOELECTRIC DEVICE AND THERMOELECTRIC GENERATOR COMPRISING SUCH A DEVICE
CN107605579A (en) * 2017-08-24 2018-01-19 南京理工大学 A kind of exhaust purifier using waste heat of automotive exhaust gas thermo-electric generation
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
US11015520B2 (en) * 2018-03-20 2021-05-25 Fuelsave Gmbh Ship drive system and retrofitting method for a ship drive system
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217696A (en) * 1962-09-28 1965-11-16 Kiekhaefer Corp Thermoelectric generator for internal combustion engine
US4161657A (en) * 1975-02-21 1979-07-17 Shaffer Marlin R Jr Hydrogen supply and utility systems and components thereof
US4256060A (en) * 1979-08-13 1981-03-17 Kelly Donald A Manifold hydrogen generator units for automotive I.C. engines
US4368696A (en) * 1980-07-29 1983-01-18 Reinhardt Weldon E Electrolytic supplemental fuel generation for motor vehicles
US4476817A (en) * 1980-09-25 1984-10-16 Owen, Wickersham & Erickson, P.C. Combustion and pollution control system
US4673863A (en) * 1984-05-24 1987-06-16 Alan Swarbrick Thermoelectric generator for engine exhaust
US4753682A (en) * 1985-09-03 1988-06-28 Ital Idee S.R.L. Apparatus of thermoelectric effect for current generation in internal combustion engine vehicles and the like, with recovery of the externally dissipated heat
US5105773A (en) * 1991-10-21 1992-04-21 Alternate Fuels, Inc. Method and apparatus for enhancing combustion in an internal combustion engine through electrolysis
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
US5450822A (en) * 1994-02-01 1995-09-19 Cunningham; John E. Apparatus and method for electrolysis to enhance combustion in an internal combustion engine
US5540831A (en) * 1992-03-10 1996-07-30 Klein; Martin Electrolytic hydrogen storage and generation
US5625245A (en) * 1993-10-19 1997-04-29 Bass; John C. Thermoelectric generator for motor vehicle
US5753383A (en) * 1996-12-02 1998-05-19 Cargnelli; Joseph Hybrid self-contained heating and electrical power supply process incorporating a hydrogen fuel cell, a thermoelectric generator and a catalytic burner
US5852274A (en) * 1994-09-07 1998-12-22 Nippon Soken, Inc. Electrically heatable catalytic converter
US5948504A (en) * 1993-01-21 1999-09-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Electrically insulating supporting structure capable of metallic bonding, process for producing the same, electrically heatable catalytic converter and electrically conductive honeycomb body using the same
US5964089A (en) * 1997-06-27 1999-10-12 Lynntech, Inc Diagnostics and control of an on board hydrogen generation and delivery system
US5968456A (en) * 1997-05-09 1999-10-19 Parise; Ronald J. Thermoelectric catalytic power generator with preheat
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
US6162403A (en) * 1998-11-02 2000-12-19 General Motors Corporation Spin formed vacuum bottle catalytic converter
US6168763B1 (en) * 1997-06-03 2001-01-02 Heraeus Electro-Nite International N.V. Electrically heatable catalytic converter
US6172427B1 (en) * 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
US6231831B1 (en) * 1997-12-16 2001-05-15 Xcellsis Gmbh Hydrogen separating membrane, methanol reformation system equipped therewith, and operating method therefor
US6332457B1 (en) * 1999-02-26 2001-12-25 Siemens Automotive Corporation Method of using an internally heated tip injector to reduce hydrocarbon emissions during cold-start
US6461752B1 (en) * 1999-04-19 2002-10-08 The United States Of America As Represented By The Secretary Of The Army Portable electric generator with thermal electric co-generator
US6516615B1 (en) * 2001-11-05 2003-02-11 Ford Global Technologies, Inc. Hydrogen engine apparatus with energy recovery
US6559551B2 (en) * 2000-09-23 2003-05-06 Ballard Power Systems Ag Starter device for fuel cell system
US20030085135A1 (en) * 1997-12-16 2003-05-08 Lynntech, Inc. Water sources for automotive devices
US6605773B2 (en) * 2001-01-27 2003-08-12 Ford Global Technologies, Llc Thermoelectric generator for a vehicle
US6613293B2 (en) * 1997-04-30 2003-09-02 Forschungszentrum Jülich GmbH Electrically heated catalytic converter
US6659049B2 (en) * 2002-02-22 2003-12-09 Proton Energy Systems Hydrogen generation apparatus for internal combustion engines and method thereof
US6810658B2 (en) * 2002-03-08 2004-11-02 Daimlerchrysler Ag Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine
US6821491B1 (en) * 1997-05-27 2004-11-23 Emitec Gesellschaft Fuer Emissionstechnologie Gmbh Muffler and associated assembly having a catalyst carrier body and a retaining element and method for producing the assembly
US6827909B1 (en) * 1998-05-12 2004-12-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Catalytic converter, diesel engine and lean-burn engine having a catalytic converter

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217696A (en) * 1962-09-28 1965-11-16 Kiekhaefer Corp Thermoelectric generator for internal combustion engine
US4161657A (en) * 1975-02-21 1979-07-17 Shaffer Marlin R Jr Hydrogen supply and utility systems and components thereof
US4256060A (en) * 1979-08-13 1981-03-17 Kelly Donald A Manifold hydrogen generator units for automotive I.C. engines
US4368696A (en) * 1980-07-29 1983-01-18 Reinhardt Weldon E Electrolytic supplemental fuel generation for motor vehicles
US4476817A (en) * 1980-09-25 1984-10-16 Owen, Wickersham & Erickson, P.C. Combustion and pollution control system
US4673863A (en) * 1984-05-24 1987-06-16 Alan Swarbrick Thermoelectric generator for engine exhaust
US4753682A (en) * 1985-09-03 1988-06-28 Ital Idee S.R.L. Apparatus of thermoelectric effect for current generation in internal combustion engine vehicles and the like, with recovery of the externally dissipated heat
US5343699A (en) * 1989-06-12 1994-09-06 Mcalister Roy E Method and apparatus for improved operation of internal combustion engines
US5105773A (en) * 1991-10-21 1992-04-21 Alternate Fuels, Inc. Method and apparatus for enhancing combustion in an internal combustion engine through electrolysis
US5540831A (en) * 1992-03-10 1996-07-30 Klein; Martin Electrolytic hydrogen storage and generation
US5948504A (en) * 1993-01-21 1999-09-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Electrically insulating supporting structure capable of metallic bonding, process for producing the same, electrically heatable catalytic converter and electrically conductive honeycomb body using the same
US6562305B1 (en) * 1993-01-21 2003-05-13 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Electrically heatable catalytic converter
US5625245A (en) * 1993-10-19 1997-04-29 Bass; John C. Thermoelectric generator for motor vehicle
US5450822A (en) * 1994-02-01 1995-09-19 Cunningham; John E. Apparatus and method for electrolysis to enhance combustion in an internal combustion engine
US5852274A (en) * 1994-09-07 1998-12-22 Nippon Soken, Inc. Electrically heatable catalytic converter
US5753383A (en) * 1996-12-02 1998-05-19 Cargnelli; Joseph Hybrid self-contained heating and electrical power supply process incorporating a hydrogen fuel cell, a thermoelectric generator and a catalytic burner
US6172427B1 (en) * 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
US6613293B2 (en) * 1997-04-30 2003-09-02 Forschungszentrum Jülich GmbH Electrically heated catalytic converter
US5968456A (en) * 1997-05-09 1999-10-19 Parise; Ronald J. Thermoelectric catalytic power generator with preheat
US6986247B1 (en) * 1997-05-09 2006-01-17 Parise Ronald J Thermoelectric catalytic power generator with preheat
US6821491B1 (en) * 1997-05-27 2004-11-23 Emitec Gesellschaft Fuer Emissionstechnologie Gmbh Muffler and associated assembly having a catalyst carrier body and a retaining element and method for producing the assembly
US6168763B1 (en) * 1997-06-03 2001-01-02 Heraeus Electro-Nite International N.V. Electrically heatable catalytic converter
US5964089A (en) * 1997-06-27 1999-10-12 Lynntech, Inc Diagnostics and control of an on board hydrogen generation and delivery system
US6231831B1 (en) * 1997-12-16 2001-05-15 Xcellsis Gmbh Hydrogen separating membrane, methanol reformation system equipped therewith, and operating method therefor
US20030085135A1 (en) * 1997-12-16 2003-05-08 Lynntech, Inc. Water sources for automotive devices
US6827909B1 (en) * 1998-05-12 2004-12-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Catalytic converter, diesel engine and lean-burn engine having a catalytic converter
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
US6162403A (en) * 1998-11-02 2000-12-19 General Motors Corporation Spin formed vacuum bottle catalytic converter
US6332457B1 (en) * 1999-02-26 2001-12-25 Siemens Automotive Corporation Method of using an internally heated tip injector to reduce hydrocarbon emissions during cold-start
US6461752B1 (en) * 1999-04-19 2002-10-08 The United States Of America As Represented By The Secretary Of The Army Portable electric generator with thermal electric co-generator
US6559551B2 (en) * 2000-09-23 2003-05-06 Ballard Power Systems Ag Starter device for fuel cell system
US6605773B2 (en) * 2001-01-27 2003-08-12 Ford Global Technologies, Llc Thermoelectric generator for a vehicle
US6516615B1 (en) * 2001-11-05 2003-02-11 Ford Global Technologies, Inc. Hydrogen engine apparatus with energy recovery
US6659049B2 (en) * 2002-02-22 2003-12-09 Proton Energy Systems Hydrogen generation apparatus for internal combustion engines and method thereof
US6810658B2 (en) * 2002-03-08 2004-11-02 Daimlerchrysler Ag Exhaust-gas purification installation and exhaust-gas purification method for purifying an exhaust gas from an internal combustion engine

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000651A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented hybrid electric propulsion system
US7253353B2 (en) * 2004-06-30 2007-08-07 General Motors Corporation Thermoelectric augmented hybrid electric propulsion system
US20080109122A1 (en) * 2005-11-30 2008-05-08 Ferguson Alan L Work machine control using off-board information
WO2008138562A1 (en) * 2007-05-11 2008-11-20 Voith Patent Gmbh Vehicle drive
US8468807B2 (en) * 2007-09-26 2013-06-25 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and exhaust gas purification method
US20100287911A1 (en) * 2007-09-26 2010-11-18 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and exhaust gas purification method
DE102008005334A1 (en) * 2008-01-21 2009-07-30 Christian Vitek Thermoelectric generator for exhaust gas stream, is attached at waste gas flue, and thermoelectric transducer element is arranged, which converts thermal energy into electricity
US20090235585A1 (en) * 2008-03-18 2009-09-24 Jacobus Neels Actively Cooled Fuel Processor
US8496717B2 (en) * 2008-03-18 2013-07-30 Westport Power Inc. Actively cooled fuel processor
DE102008038985A1 (en) * 2008-08-13 2010-02-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device
US9117969B2 (en) 2008-08-13 2015-08-25 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Thermoelectric device, thermoelectric apparatus having a multiplicity of thermoelectric devices and motor vehicle having a thermoelectric apparatus
US20110185715A1 (en) * 2008-08-13 2011-08-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device, thermoelectric apparatus having a multiplicity of thermoelectric devices and motor vehicle having a thermoelectric apparatus
US8702916B2 (en) 2009-01-05 2014-04-22 Clean-Fuel Technologies, Inc. Hydrogen supplementation fuel apparatus and method
US8100092B2 (en) 2009-01-05 2012-01-24 Clean-Fuel Technologies, Inc. Hydrogen supplementation fuel apparatus and method
US20100170454A1 (en) * 2009-01-05 2010-07-08 Clean-Fuel Technologies, Inc. Hydrogen supplementation fuel apparatus and method
WO2013011313A1 (en) * 2011-07-18 2013-01-24 Esam Elsarrag Fuel production apparatus
CN103827475A (en) * 2011-07-18 2014-05-28 E·艾萨拉杰 Fuel production apparatus
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine
US20150292380A1 (en) * 2014-04-14 2015-10-15 Evident Technologies Efficiency and Reduced Emission for Internal Combustion Engines Using Thermoelectric-driven Electrolysis
WO2017016969A1 (en) * 2015-07-29 2017-02-02 Fuelsave Gmbh Vehicle drive system, and method for operating a vehicle drive system
AU2016300964B2 (en) * 2015-07-29 2020-03-12 Fuelsave Gmbh Ship propulsion system, and method for operating a ship propulsion system
WO2017016970A1 (en) * 2015-07-29 2017-02-02 Fuelsave Gmbh Ship propulsion system, and method for operating a ship propulsion system
EP3124780A1 (en) * 2015-07-29 2017-02-01 Fuelsave GmbH Vehicle drive system and method for operating a vehicle drive system
US11098660B2 (en) 2015-07-29 2021-08-24 Fuelsave Gmbh Drive system and method for operating a drive system
GB2557488A (en) * 2015-07-29 2018-06-20 Fuelsave Gmbh Ship propulsion system, and method for operating a ship propulsion system
CN108350836A (en) * 2015-07-29 2018-07-31 燃料节省有限公司 The method of marine propuision system and operating ship propulsion system
US10323582B2 (en) 2015-07-29 2019-06-18 Fuelsave Gmbh Vehicle drive system, and method for operating a vehicle drive system
US10495032B2 (en) 2015-07-29 2019-12-03 Fuelsave Gmbh Ship propulsion system, and method for operating a ship propulsion system
US10697401B2 (en) 2015-07-29 2020-06-30 Fuelsave Gmbh Propulsion system, and method for operating a propulsion system
AU2016299746B2 (en) * 2015-07-29 2020-03-05 Fuelsave Gmbh Vehicle drive system, and method for operating a vehicle drive system
EP3124781A1 (en) * 2015-07-29 2017-02-01 Fuelsave GmbH Marine propulsion system and method for operating a marine propulsion system
FR3048553A1 (en) * 2016-03-01 2017-09-08 Valeo Systemes Thermiques THERMOELECTRIC DEVICE AND THERMOELECTRIC GENERATOR COMPRISING SUCH A DEVICE
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
US11280261B2 (en) 2016-03-07 2022-03-22 HyTech Power, Inc. Systems for HHO gas second fuel distribution and control
US11815011B2 (en) 2016-03-07 2023-11-14 Hytech Power, Llc Generation and regulation of HHO gas
CN107605579A (en) * 2017-08-24 2018-01-19 南京理工大学 A kind of exhaust purifier using waste heat of automotive exhaust gas thermo-electric generation
US10619562B2 (en) 2018-01-29 2020-04-14 Hytech Power, Llc Explosion safe electrolysis unit
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10746094B2 (en) 2018-01-29 2020-08-18 Hytech Power, Llc Onboard HHO gas generation system for heavy duty trucks
US11828219B2 (en) 2018-01-29 2023-11-28 Hytech Power, Llc Rollover safe electrolysis unit for vehicles
US11015520B2 (en) * 2018-03-20 2021-05-25 Fuelsave Gmbh Ship drive system and retrofitting method for a ship drive system
US11466613B2 (en) 2018-03-20 2022-10-11 Fuelsave Gmbh Ship drive system and retrofitting method for a ship drive system

Similar Documents

Publication Publication Date Title
US7523607B2 (en) System and method for reducing vehicle emissions and/or generating hydrogen
US20060179819A1 (en) System and method for reducing vehicle emissions and/or generating hydrogen
US8726661B2 (en) Hybrid powertrain system including an internal combustion engine and a stirling engine
US7401578B2 (en) System and method for the co-generation of fuel having a closed-loop energy cycle
US6230494B1 (en) Power generation system and method
US8397680B2 (en) Engine system
US20070278795A1 (en) Method for creating energy sources for a vehicle drive system
JP5159800B2 (en) Hydrogen supply device for internal combustion engine and operation method of internal combustion engine
WO2007011641A2 (en) Method for creating energy sources for a vehicle drive system
EP2734722B1 (en) Fuel production apparatus
WO2012036748A1 (en) Economical hybrid fuel
US6244044B1 (en) Method for reducing cold-start hydrocarbon emissions in a gasoline, natural gas, or propane fueled engine
US20120204536A1 (en) Catalytic converter combustion strategy for a hybrid vehicle
Laing Development of an alternator-powered electrically-heated catalyst system
CN103210193B (en) Fuel reformer
US20080010976A1 (en) Exhaust Gas Regenerator Comprising a Catalyst
CN201003443Y (en) Diesel engine discharge system possessing fuel oil reforming device
CN108643994B (en) Multistage combined recovery device for exhaust energy of vehicle-mounted engine
US7721681B1 (en) Hydrocarbon and water hybrid engine
US20040038094A1 (en) Fuel cell system
TWI609130B (en) Waste heat recombination hydrogen production device
RU2440507C1 (en) Device for pre-startup heating of engine, independent heating, generation of hydrogen-bearing gas and operating method of device
WO2005116418A1 (en) Co-generation of fuel using thermodynamic cycle
JP2006512725A (en) Fuel reforming system for supplying to fuel cell of automobile and its use
TWI397631B (en) Power assembly and its application

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION