US20060157244A1 - Compositions comprising melt-processed inorganic fibers and methods of using such compositions - Google Patents

Compositions comprising melt-processed inorganic fibers and methods of using such compositions Download PDF

Info

Publication number
US20060157244A1
US20060157244A1 US11/272,951 US27295105A US2006157244A1 US 20060157244 A1 US20060157244 A1 US 20060157244A1 US 27295105 A US27295105 A US 27295105A US 2006157244 A1 US2006157244 A1 US 2006157244A1
Authority
US
United States
Prior art keywords
cement
cement composition
basalt fibers
composition
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/272,951
Inventor
B. Reddy
Krishna Ravi
Bryan Waugh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/884,756 external-priority patent/US7178597B2/en
Priority claimed from US11/101,762 external-priority patent/US7537054B2/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US11/272,951 priority Critical patent/US20060157244A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REDDY, B. RAGHAVA, WAUGH, BRYAN K.
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAVI, KRISHNA M.
Publication of US20060157244A1 publication Critical patent/US20060157244A1/en
Priority to PCT/GB2006/004106 priority patent/WO2007054670A2/en
Priority to US11/940,173 priority patent/US7493968B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/16Clay-containing compositions characterised by the inorganic compounds other than clay
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/906Solid inorganic additive in defined physical form

Definitions

  • the present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers.
  • Hydraulic cement compositions commonly are utilized in subterranean operations, particularly subterranean well completion and remedial operations.
  • hydraulic cement compositions are used in primary cementing operations whereby pipe strings, such as casing and liners, are cemented in well bores.
  • a hydraulic cement composition may be pumped into an annulus between the walls of a well bore and the exterior surface of the pipe string disposed therein.
  • the cement composition sets in the annular space, thereby forming therein an annular sheath of hardened, substantially impermeable cement that supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore.
  • Hydraulic cement compositions also may be used in remedial cementing operations, such as plugging well bores, plugging highly permeable zones or fractures in well bores, plugging cracks and holes in pipe strings, and the like.
  • the cement sheath may be subjected to a variety of shear, tensile, impact, flexural, and compressive stresses that may lead to failure of the cement sheath, resulting, inter alia, in fractures, cracks, and/or debonding of the cement sheath from the pipe string and/or the formation. This may lead to undesirable consequences such as lost production, environmental pollution, hazardous rig operations resulting from unexpected fluid flow from the formation caused by the loss of zonal isolation, and/or hazardous production operations. Cement failures may be particularly problematic in high temperature wells, where fluids injected into the wells or produced from the wells by way of the well bore may cause the temperature of any fluids trapped within the annulus to increase.
  • high fluid pressures and/or temperatures inside the pipe string may cause additional problems during testing, perforation, fluid injection, and/or fluid production. If the pressure and/or temperature inside the pipe string increases, the pipe may expand and stress the surrounding cement sheath. This may cause the cement sheath to crack, or the bond between the outside surface of the pipe string and the cement sheath to fail, thereby breaking the hydraulic seal between the two. Furthermore, high temperature differentials created during production or injection of high temperature fluids through the well bore may cause fluids trapped in the cement sheath to thermally expand, causing high pressures within the sheath itself. Additionally, failure of the cement sheath also may be caused by forces exerted by shifts in subterranean formations surrounding the well bore, cement erosion, and repeated impacts from the drill bit and the drill pipe.
  • fibers may be included in the cement composition.
  • Various types of fibers have been used heretofore, including those formed of polypropylene, polyester, polyamide, polyethylene, polyolefin, glass, iron, and steel. These fibers may function to control shrinkage cracking in the early stages of the cement setting process, and also may provide resiliency, ductility, and toughness to the set cement composition so that it resists cracking or fracturing. Further, if fracturing or cracking does occur, the fibers may function to hold the set cement composition together, thereby resisting fall back of the cement sheath. Additionally, fiber may act as lost circulation materials.
  • the cement composition sets, it releases hydrated lime, which may leach out or form alpha dicalcium silicate hydrate, resulting in increased permeability and porosity and decreased compressive strength.
  • synthetic fibers such as polypropylene fibers, polyester fibers, and the like, may act to enhance the resiliency and ductility of the set cement composition, these synthetic fibers generally do not enhance compressive strength of the set cement composition or counteract the effects of the hydrated lime.
  • glass fibers may undesirably interact with the hydrated lime that is released during the setting of the cement composition; for example, the alkaline environment created by the hydrated lime may dissolve the glass fibers present in the cement composition.
  • the present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers.
  • An embodiment of a method of the present invention provides a method of cementing.
  • the method may comprise providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers; introducing the cement composition into a subterranean formation; and allowing the cement composition to set therein.
  • Another embodiment of a method of the present invention provides a method of cementing a pipe string in a well bore.
  • the method may comprise providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers; introducing the cement composition into an annulus between at least one wall of the well bore and the pipe string disposed within the well bore; and allowing the cement composition to set therein.
  • Another embodiment of a method of the present invention provides a method of enhancing the compressive strength of a cement composition.
  • the method may comprise adding a plurality of basalt fibers to the cement composition, wherein the cement composition comprises water and a hydraulic cement; introducing the cementing composition into a subterranean formation; and allowing the cement composition to set therein.
  • the present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers. While the compositions and methods are useful in a variety of well completion and remedial operations, they are particularly useful in primary cementing, e.g., cementing casings and liners in well bores, including those in multi-lateral subterranean wells.
  • the cement compositions of the present invention generally comprise water, a hydraulic cement, and a plurality of basalt fibers.
  • the cement compositions of the present invention may have a density in the range of from about 4 pounds per gallon (“lb/gal”) to about 20 lb/gal.
  • the cement compositions may have a density in the range of from about 8 lb/gal to about 17 lb/gal.
  • the cement compositions may be foamed or unfoamed or may comprise other means to reduce their densities, such as hollow microspheres, low-density elastic beads, or other density-reducing additives known in the art. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • the water used in the cement compositions of the present invention may be freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), or seawater, or combinations thereof.
  • the water may be from any source, provided that it does not contain an excess of compounds that adversely affect other components in the cement composition.
  • the water may be present in an amount sufficient to form a pumpable slurry. More particularly, the water may be present in the cement compositions of the present invention in an amount in the range of from about 33% to about 200% by weight of the cement (“bwoc”). In some embodiments, the water may be present in an amount in the range of from about 35% to about 70% bwoc.
  • cements suitable for use in subterranean cementing operations may be used in accordance with the present invention.
  • Suitable examples include cements comprised of calcium, aluminum, silicon, oxygen, and/or sulfur, which set and harden by reaction with water.
  • Such hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, and silica cements, and combinations thereof.
  • the cement may comprise a Portland cement.
  • the Portland cements that are suited for use in the present invention are classified as Class A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements , API Specification 10, Fifth Ed., Jul. 1, 1990.
  • the cement compositions of the present invention further comprise a plurality of basalt fibers.
  • the basalt fibers may aid in the prevention of lost circulation and also may act to provide resiliency and impact resistance to the set cement composition.
  • Basalt fibers also may increase the compressive and tensile strengths of the set cement compositions.
  • the basalt fibers may react with the hydrated lime that is released during the setting of the cement composition.
  • Basalt fibers generally are produced from basalt, which is an igneous rock that is generally comprised of microscopic grains, such as calcium-sodium (plagioclase) feldspar, pyroxene, and olivine. Any suitable method for the production of inorganic fibers may be used for the production of the basalt fibers included in the cement compositions of the present invention.
  • basalt fibers may be produced by a process of extrusion through fine holes, which determines the diameter of the fibers.
  • basalt fibers may be produced by melt spinning. Suitable basalt fibers are commercially available from Forta Corporation, Grove City, Pa. Basalt fibers having a variety of lengths and diameters may be suitable for use with the present invention.
  • the diameter and length of the basalt fibers may be controlled during preparation thereof.
  • the basalt fibers may have a diameter in the range of from about 9 microns to about 13 microns.
  • the basalt fibers may a length in the range of from about 3 millimeters (“mm”) to about 9 mm.
  • Suitable commercially available basalt fibers may have a length of about 6 mm.
  • the appropriate length and diameter of the basalt fibers for a particular application may be selected based on, for example, commercial availability and dry blending requirements.
  • the basalt fibers should be present in the cement compositions of the present invention in an amount sufficient to provide the desired mechanical properties, including resiliency, compressive strength, and tensile strength.
  • the basalt fibers are present in the cement compositions of the present invention in an amount in the range of from about 0.1% to about 1.5% bwoc.
  • the basalt fibers are present in an amount in the range of from about 0.1% to about 0.3% bwoc.
  • the basalt fibers are present in an amount of 0.125% bwoc.
  • cement compositions of the present invention optionally may be foamed using a suitable gas (such as air or nitrogen, or a combination thereof) and a foaming agent.
  • a suitable gas such as air or nitrogen, or a combination thereof
  • the foaming agent may act to facilitate the formation and stabilization of a foamed cement composition.
  • Suitable foaming agents include, but are not limited to, anionic or amphoteric surfactants, or combinations thereof, such as, for example, a mixture of an ammonium salt of alcohol ether sulfate (HOWCO-SUDSTM foaming agent) and cocoylamidopropyl betaine (HC-2TM foaming agent) commercially available from Halliburton Energy Services, Inc., Duncan, Okla.; a 2:1 mixture of the sodium salt of alpha-olefin sulfonate (AQF-2TM foaming agent) and cocylamidopropyl betaine (HC-2TM foaming agent) commercially available from Halliburton Energy Services, Inc., Duncan, Okla.; and a mixture of an ethoxylated alcohol ether sulfate, an alkyl or alkyene amidopropyl betaine and an alkyl or alkene amidopropyldimethylamine oxide commercially available from Halliburton Energy Services, Inc.
  • the foaming agent generally may be present in an amount sufficient to provide the desired foaming of the cement composition.
  • the foaming agent may be present in the cement compositions of the present invention in an amount in the range of from about 0.8% to about 5% by volume of the water. In some embodiments, the foaming agent may be present in an amount in the range of from about 2% by volume of the water.
  • additives suitable for use in subterranean well bore cementing operations also may be added to these compositions.
  • Other additives include, but are not limited to, defoamers, dispersants, retardants, accelerants, fluid loss control additives, weighting agents, vitrified shale, lightweight additives (e.g., bentonite, gilsonite, glass spheres, etc.), and fly ash, and combinations thereof.
  • defoamers include, but are not limited to, defoamers, dispersants, retardants, accelerants, fluid loss control additives, weighting agents, vitrified shale, lightweight additives (e.g., bentonite, gilsonite, glass spheres, etc.), and fly ash, and combinations thereof.
  • defoamers include, but are not limited to, defoamers, dispersants, retardants, accelerants, fluid loss control additives, weighting agents, vitrified shale, lightweight additives (e.g., bentonite
  • Sample compositions were prepared by combining Portland Class H cement with freshwater in an amount of 4.3 gallons per 94-pound sack of cement. The density of the resulting slurries was 16.4 pounds per gallon. In Sample Composition Nos. 2-7, 9, and 10, fibers were also included, wherein the amount and type of fiber included in each sample was varied. Further, Sample Composition Nos. 8-10 were foamed. To these samples, ZONESEALTM 2000 foaming agent was added in an amount of 2% by volume of the freshwater, and the samples were then foamed with air to a density of 12.5 pounds per gallon. After preparation, the sample compositions were cured at 140° F. for 72 hours.
  • Example 2 indicates, among other things, that the use of cement compositions of the present invention, that comprise water, a hydraulic cement, and a plurality of basalt fibers, may provide enhanced physical and chemical properties to the resultant set cement composition.

Abstract

Improved lost circulation compositions that include melt-processed inorganic fibers and methods for using such compositions in subterranean formations are provided. An example of a method of the present invention is a method of cementing in a subterranean formation. Another example of a method of the present invention is a method comprising providing a cement composition that comprises cement, water, and a plurality of melt-processed inorganic fibers, the melt-processed inorganic fibers having a mean aspect ratio of greater than about 25, a specific gravity of greater than about 1.2, and a length of less than about 10 millimeters; introducing the cement composition into a well bore that penetrates a subterranean formation; and allowing the melt-processed inorganic fibers to at least partially prevent fluid loss from the cement composition into the subterranean formation. An example of a composition of the present invention is a cement composition for use in a subterranean formation.

Description

    BACKGROUND
  • The present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers.
  • Hydraulic cement compositions commonly are utilized in subterranean operations, particularly subterranean well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby pipe strings, such as casing and liners, are cemented in well bores. In performing primary cementing, a hydraulic cement composition may be pumped into an annulus between the walls of a well bore and the exterior surface of the pipe string disposed therein. The cement composition sets in the annular space, thereby forming therein an annular sheath of hardened, substantially impermeable cement that supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore. Hydraulic cement compositions also may be used in remedial cementing operations, such as plugging well bores, plugging highly permeable zones or fractures in well bores, plugging cracks and holes in pipe strings, and the like.
  • Once set, the cement sheath may be subjected to a variety of shear, tensile, impact, flexural, and compressive stresses that may lead to failure of the cement sheath, resulting, inter alia, in fractures, cracks, and/or debonding of the cement sheath from the pipe string and/or the formation. This may lead to undesirable consequences such as lost production, environmental pollution, hazardous rig operations resulting from unexpected fluid flow from the formation caused by the loss of zonal isolation, and/or hazardous production operations. Cement failures may be particularly problematic in high temperature wells, where fluids injected into the wells or produced from the wells by way of the well bore may cause the temperature of any fluids trapped within the annulus to increase. Furthermore, high fluid pressures and/or temperatures inside the pipe string may cause additional problems during testing, perforation, fluid injection, and/or fluid production. If the pressure and/or temperature inside the pipe string increases, the pipe may expand and stress the surrounding cement sheath. This may cause the cement sheath to crack, or the bond between the outside surface of the pipe string and the cement sheath to fail, thereby breaking the hydraulic seal between the two. Furthermore, high temperature differentials created during production or injection of high temperature fluids through the well bore may cause fluids trapped in the cement sheath to thermally expand, causing high pressures within the sheath itself. Additionally, failure of the cement sheath also may be caused by forces exerted by shifts in subterranean formations surrounding the well bore, cement erosion, and repeated impacts from the drill bit and the drill pipe.
  • To counteract these problems associated with the fracturing and/or cracking of the cement sheath, fibers may be included in the cement composition. Various types of fibers have been used heretofore, including those formed of polypropylene, polyester, polyamide, polyethylene, polyolefin, glass, iron, and steel. These fibers may function to control shrinkage cracking in the early stages of the cement setting process, and also may provide resiliency, ductility, and toughness to the set cement composition so that it resists cracking or fracturing. Further, if fracturing or cracking does occur, the fibers may function to hold the set cement composition together, thereby resisting fall back of the cement sheath. Additionally, fiber may act as lost circulation materials. However, as the cement composition sets, it releases hydrated lime, which may leach out or form alpha dicalcium silicate hydrate, resulting in increased permeability and porosity and decreased compressive strength. While synthetic fibers, such as polypropylene fibers, polyester fibers, and the like, may act to enhance the resiliency and ductility of the set cement composition, these synthetic fibers generally do not enhance compressive strength of the set cement composition or counteract the effects of the hydrated lime. Further, glass fibers may undesirably interact with the hydrated lime that is released during the setting of the cement composition; for example, the alkaline environment created by the hydrated lime may dissolve the glass fibers present in the cement composition.
  • SUMMARY
  • The present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers.
  • An embodiment of a method of the present invention provides a method of cementing. In an example of such a method, the method may comprise providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers; introducing the cement composition into a subterranean formation; and allowing the cement composition to set therein.
  • Another embodiment of a method of the present invention provides a method of cementing a pipe string in a well bore. In an example of such a method, the method may comprise providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers; introducing the cement composition into an annulus between at least one wall of the well bore and the pipe string disposed within the well bore; and allowing the cement composition to set therein.
  • Another embodiment of a method of the present invention provides a method of enhancing the compressive strength of a cement composition. In an example of such a method, the method may comprise adding a plurality of basalt fibers to the cement composition, wherein the cement composition comprises water and a hydraulic cement; introducing the cementing composition into a subterranean formation; and allowing the cement composition to set therein.
  • The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention relates to subterranean well cementing operations and, more particularly, to methods of cementing using cement compositions comprising basalt fibers. While the compositions and methods are useful in a variety of well completion and remedial operations, they are particularly useful in primary cementing, e.g., cementing casings and liners in well bores, including those in multi-lateral subterranean wells.
  • The cement compositions of the present invention generally comprise water, a hydraulic cement, and a plurality of basalt fibers. Typically, the cement compositions of the present invention may have a density in the range of from about 4 pounds per gallon (“lb/gal”) to about 20 lb/gal. In certain embodiments, the cement compositions may have a density in the range of from about 8 lb/gal to about 17 lb/gal. The cement compositions may be foamed or unfoamed or may comprise other means to reduce their densities, such as hollow microspheres, low-density elastic beads, or other density-reducing additives known in the art. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • The water used in the cement compositions of the present invention may be freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), or seawater, or combinations thereof. Generally, the water may be from any source, provided that it does not contain an excess of compounds that adversely affect other components in the cement composition. The water may be present in an amount sufficient to form a pumpable slurry. More particularly, the water may be present in the cement compositions of the present invention in an amount in the range of from about 33% to about 200% by weight of the cement (“bwoc”). In some embodiments, the water may be present in an amount in the range of from about 35% to about 70% bwoc.
  • All cements suitable for use in subterranean cementing operations may be used in accordance with the present invention. Suitable examples include cements comprised of calcium, aluminum, silicon, oxygen, and/or sulfur, which set and harden by reaction with water. Such hydraulic cements, include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, and silica cements, and combinations thereof. In certain embodiments, the cement may comprise a Portland cement. In some embodiments, the Portland cements that are suited for use in the present invention are classified as Class A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990.
  • The cement compositions of the present invention further comprise a plurality of basalt fibers. Among other things, the basalt fibers may aid in the prevention of lost circulation and also may act to provide resiliency and impact resistance to the set cement composition. Basalt fibers also may increase the compressive and tensile strengths of the set cement compositions. For instance, the basalt fibers may react with the hydrated lime that is released during the setting of the cement composition.
  • Basalt fibers generally are produced from basalt, which is an igneous rock that is generally comprised of microscopic grains, such as calcium-sodium (plagioclase) feldspar, pyroxene, and olivine. Any suitable method for the production of inorganic fibers may be used for the production of the basalt fibers included in the cement compositions of the present invention. In some embodiments, basalt fibers may be produced by a process of extrusion through fine holes, which determines the diameter of the fibers. In some embodiments, basalt fibers may be produced by melt spinning. Suitable basalt fibers are commercially available from Forta Corporation, Grove City, Pa. Basalt fibers having a variety of lengths and diameters may be suitable for use with the present invention. The diameter and length of the basalt fibers may be controlled during preparation thereof. In some embodiments, the basalt fibers may have a diameter in the range of from about 9 microns to about 13 microns. In some embodiments, the basalt fibers may a length in the range of from about 3 millimeters (“mm”) to about 9 mm. Suitable commercially available basalt fibers may have a length of about 6 mm. The appropriate length and diameter of the basalt fibers for a particular application may be selected based on, for example, commercial availability and dry blending requirements.
  • The basalt fibers should be present in the cement compositions of the present invention in an amount sufficient to provide the desired mechanical properties, including resiliency, compressive strength, and tensile strength. In some embodiments, the basalt fibers are present in the cement compositions of the present invention in an amount in the range of from about 0.1% to about 1.5% bwoc. In some embodiments, the basalt fibers are present in an amount in the range of from about 0.1% to about 0.3% bwoc. In some embodiments, the basalt fibers are present in an amount of 0.125% bwoc.
  • Further, the cement compositions of the present invention optionally may be foamed using a suitable gas (such as air or nitrogen, or a combination thereof) and a foaming agent. Among other things, the foaming agent may act to facilitate the formation and stabilization of a foamed cement composition. Suitable foaming agents, include, but are not limited to, anionic or amphoteric surfactants, or combinations thereof, such as, for example, a mixture of an ammonium salt of alcohol ether sulfate (HOWCO-SUDS™ foaming agent) and cocoylamidopropyl betaine (HC-2™ foaming agent) commercially available from Halliburton Energy Services, Inc., Duncan, Okla.; a 2:1 mixture of the sodium salt of alpha-olefin sulfonate (AQF-2™ foaming agent) and cocylamidopropyl betaine (HC-2™ foaming agent) commercially available from Halliburton Energy Services, Inc., Duncan, Okla.; and a mixture of an ethoxylated alcohol ether sulfate, an alkyl or alkyene amidopropyl betaine and an alkyl or alkene amidopropyldimethylamine oxide commercially available from Halliburton Energy Services, Inc. under the trade name ZONESEAL 2000™ foaming agent. Examples of suitable foaming agents are described in U.S. Pat. Nos. 6,210,476; 6,063,738; 5,897,699; 5,875,845; 5,820,670; 5,711,801; and 5,588,489; the relevant disclosures of which are incorporate herein by reference. The foaming agent generally may be present in an amount sufficient to provide the desired foaming of the cement composition. In some embodiments, the foaming agent may be present in the cement compositions of the present invention in an amount in the range of from about 0.8% to about 5% by volume of the water. In some embodiments, the foaming agent may be present in an amount in the range of from about 2% by volume of the water.
  • Other additives suitable for use in subterranean well bore cementing operations also may be added to these compositions. Other additives, include, but are not limited to, defoamers, dispersants, retardants, accelerants, fluid loss control additives, weighting agents, vitrified shale, lightweight additives (e.g., bentonite, gilsonite, glass spheres, etc.), and fly ash, and combinations thereof. A person having ordinary skill in the art, with the benefit of this disclosure, will know the type and amount of additive useful for a particular application and desired result.
  • To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.
  • EXAMPLES Example 1
  • A sample of basalt fibers was analyzed to determine the composition thereof. Elemental analysis using a MiniPal spectrometer, commercially available from Philips Analytical, showed the presence of Al, Si, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Sr, and Zr. Table 1 shows the percentage of each these elements found using elemental analysis. The elemental analyses are shown in Table 1 as oxides.
    TABLE 1
    Compound
    Al2O3 SiO2 K2O CaO TiO2 Cr2O3 MnO Fe2O3 CuO ZnO SrO ZrO2
    Concentration 21 47 2.0 11.2 1.6 0.061 0.30 17.2 0.063 0.02 0.063 0.054
    (%)
  • An elemental analysis was also performed on the basalt fibers using x-ray fluorescence, the results of which are shown in Table 2.
    TABLE 2
    Concentration
    Oxide (%)
    Na2O 0.14
    MgO 0.23
    Al2O3 20.72
    SiO2 58.92
    SO3 0.144
    K2O 1.66
    CaO 8.03
    TiO2 1.03
    MnO 0.08
    Fe2O3 8.72
    SrO 0.04
    BaO 0.00
    Total 100
  • Example 2
  • Sample compositions were prepared by combining Portland Class H cement with freshwater in an amount of 4.3 gallons per 94-pound sack of cement. The density of the resulting slurries was 16.4 pounds per gallon. In Sample Composition Nos. 2-7, 9, and 10, fibers were also included, wherein the amount and type of fiber included in each sample was varied. Further, Sample Composition Nos. 8-10 were foamed. To these samples, ZONESEAL™ 2000 foaming agent was added in an amount of 2% by volume of the freshwater, and the samples were then foamed with air to a density of 12.5 pounds per gallon. After preparation, the sample compositions were cured at 140° F. for 72 hours. Thereafter, standard mechanical tests were performed on the set sample compositions in accordance with API Recommended Practices 10B, Twenty-Second Edition, December 1997, to determine the compressive strength and the tensile strength. The Young's Modulus of Elasticity and the Poisson's Ratio were determined in accordance with ASTM D3148-02. The results of these tests are shown in Table 3.
    TABLE 3
    Foamed Compressive Tensile Young's
    Sample Density Density Fiber % Strength Strength Modulus Poisson's
    No. (lb/gal) (lb/gal) Fiber Type (bwoc) (psi) (psi) (×106) Ratio
    1 16.4 4,120 467 1.91 0.193
    2 16.4 Polypropylene 0.250 3,590 512 1.48 0.140
    3 16.4 Polypropylene 0.125 3,610 504 1.67 0.138
    4 16.4 Hydrophilic 0.250 3,750 493 1.45 0.124
    Polypropylene
    5 16.4 Hydrophilic 0.125 3,970 556 1.50 0.130
    Polypropylene
    6 16.4 Basalt 0.250 4,842 538 0.475 0.190
    7 16.4 Basalt 0.125 6,150 381 0.212 0.195
    8 16.4 12.5 1,899 151 0.977 0.177
    9 16.4 12.5 Basalt 0.250 1,839 192 0.973 0.188
    10 16.4 12.5 Basalt 0.123 1,854 222 1.04 0.179
  • Therefore, Example 2 indicates, among other things, that the use of cement compositions of the present invention, that comprise water, a hydraulic cement, and a plurality of basalt fibers, may provide enhanced physical and chemical properties to the resultant set cement composition.
  • Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims (20)

1. A method of cementing, comprising:
providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers;
introducing the cement composition into a subterranean formation; and
allowing the cement composition to set therein.
2. The method of claim 1 wherein the water comprises at least one of the following: freshwater; saltwater; a brine; or seawater.
3. The method of claim 1 wherein the cement comprises at least one of the following: a Portland cement; a pozzolana cement; a gypsum cement; a high alumina content cement; a slag cement; or a silica cement.
4. The method of claim 1 wherein the plurality of basalt fibers have a diameter in the range of from about 9 microns to about 13 microns.
5. The method of claim 1 wherein the plurality of basalt fibers have a length in the range of from about 3 millimeters to about 6 millimeters.
6. The method of claim 1 wherein the basalt fibers are present in the cement composition in an amount in the range of from about 0.1% to about 1.5% by weight of the cement.
7. The method of claim 1 wherein the cement composition is foamed, and wherein the cement composition further comprises a gas and a foaming agent.
8. A method of cementing a pipe string in a well bore, comprising:
providing a cement composition that comprises water, a hydraulic cement, and a plurality of basalt fibers;
introducing the cement composition into an annulus between at least one wall of the well bore and the pipe string disposed within the well bore; and
allowing the cement composition to set therein.
9. The method of claim 8 wherein the water comprises at least one of the following: freshwater; saltwater; a brine; or seawater.
10. The method of claim 8 wherein the cement comprises at least one of the following: a Portland cement; a pozzolana cement; a gypsum cement; a high alumina content cement; a slag cement; or a silica cement.
11. The method of claim 8 wherein the plurality of basalt fibers have a diameter in the range of from about 9 microns to about 13 microns.
12. The method of claim 8 wherein the plurality of basalt fibers have a length in the range of from about 3 millimeters to about 6 millimeters.
13. The method of claim 8 wherein the basalt fibers are present in the cement composition in an amount in the range of from about 0.1% to about 1.5% by weight of the cement.
14. The method of claim 8 wherein the cement composition is foamed, and wherein the cement composition further comprises a gas and a foaming agent.
15. A method of enhancing the compressive strength of a cement composition, comprising:
adding a plurality of basalt fibers to the cement composition, wherein the cement composition comprises water and a hydraulic cement;
introducing the cementing composition into a subterranean formation; and
allowing the cement composition to set therein.
16. The method of claim 15 wherein the water comprises at least one of the following: freshwater; saltwater; a brine; or seawater.
17. The method of claim 15 wherein the plurality of basalt fibers have a diameter in the range of from about 9 microns to about 13 microns.
18. The method of claim 15 wherein the plurality of basalt fibers have a length in the range of from about 3 millimeters to about 6 millimeters.
19. The method of claim 15 wherein the basalt fibers are present in the cement composition in an amount in the range of from about 0.1% to about 1.5% by weight of the cement.
20. The method of claim 15 wherein the cement composition is foamed, and wherein the cement composition further comprises a gas and a foaming agent.
US11/272,951 2004-07-02 2005-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions Abandoned US20060157244A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/272,951 US20060157244A1 (en) 2004-07-02 2005-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions
PCT/GB2006/004106 WO2007054670A2 (en) 2005-11-14 2006-11-02 Compositions comprising melt-processed inorganic fibers and methods of using such compositions
US11/940,173 US7493968B2 (en) 2004-07-02 2007-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/884,756 US7178597B2 (en) 2004-07-02 2004-07-02 Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US11/101,762 US7537054B2 (en) 2004-07-02 2005-04-08 Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US11/272,951 US20060157244A1 (en) 2004-07-02 2005-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/101,762 Continuation-In-Part US7537054B2 (en) 2004-07-02 2005-04-08 Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/940,173 Continuation US7493968B2 (en) 2004-07-02 2007-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions

Publications (1)

Publication Number Publication Date
US20060157244A1 true US20060157244A1 (en) 2006-07-20

Family

ID=37560956

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/272,951 Abandoned US20060157244A1 (en) 2004-07-02 2005-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions
US11/940,173 Active US7493968B2 (en) 2004-07-02 2007-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/940,173 Active US7493968B2 (en) 2004-07-02 2007-11-14 Compositions comprising melt-processed inorganic fibers and methods of using such compositions

Country Status (2)

Country Link
US (2) US20060157244A1 (en)
WO (1) WO2007054670A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000612A1 (en) * 2004-07-02 2006-01-05 Reddy B R Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7174961B2 (en) 2005-03-25 2007-02-13 Halliburton Energy Services, Inc. Methods of cementing using cement compositions comprising basalt fibers
US20080053657A1 (en) * 2006-09-01 2008-03-06 Jean Andre Alary Method of manufacturing and using rod-shaped proppants and anti-flowback additives
US20080103065A1 (en) * 2004-07-02 2008-05-01 Reddy B R Compositions Comprising Melt-Processed Inorganic Fibers and Methods of Using Such Compositions
EP2083059A1 (en) 2007-12-28 2009-07-29 Services Pétroliers Schlumberger Cement compositions containing inorganic and organic fibres
EP2085447A1 (en) 2007-12-26 2009-08-05 Services Pétroliers Schlumberger Method and composition for curing lost circulation
US7654323B2 (en) 2005-09-21 2010-02-02 Imerys Electrofused proppant, method of manufacture, and method of use
US20110183871A1 (en) * 2008-08-18 2011-07-28 Jesse Lee Method and composition for curing lost circulation
US9200148B2 (en) 2010-12-15 2015-12-01 3M Innovative Properties Company Controlled degradation fibers
US9862641B2 (en) * 2016-02-23 2018-01-09 James Hardie Technology Limited Fiber reinforced cementitious composition
WO2018039256A1 (en) * 2016-08-26 2018-03-01 Baker Hughes, A Ge Company, Llc Composition and method for cementing in subterranean formations using inorganic fibers
CN115898376A (en) * 2022-12-20 2023-04-04 西南石油大学 Visual experiment device and method for deformation and plugging of cracks around well

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US8490699B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US8490698B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
EP2398866B1 (en) * 2009-01-30 2015-03-04 M-I L.L.C. Defluidizing lost circulation pills
EP2261458A1 (en) * 2009-06-05 2010-12-15 Services Pétroliers Schlumberger Engineered fibres for well treatments
US8408303B2 (en) * 2009-09-24 2013-04-02 Halliburton Energy Services, Inc. Compositions for improving thermal conductivity of cement systems
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
US8726990B2 (en) * 2011-10-07 2014-05-20 Halliburton Energy Services, Inc Lost-circulation material made from a recycled ceramic
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US9388685B2 (en) 2012-12-22 2016-07-12 Halliburton Energy Services, Inc. Downhole fluid tracking with distributed acoustic sensing
US8739872B1 (en) 2013-03-01 2014-06-03 Halliburton Energy Services, Inc. Lost circulation composition for fracture sealing
US9228122B2 (en) 2013-06-05 2016-01-05 Halliburton Energy Services, Inc. Methods and cement compositions utilizing treated polyolefin fibers
US10066146B2 (en) * 2013-06-21 2018-09-04 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
WO2015152860A1 (en) * 2014-03-31 2015-10-08 Schlumberger Canada Limited Compositions and methods for well completions
WO2015152859A1 (en) * 2014-03-31 2015-10-08 Schlumberger Canada Limited Compositions and methods for well completions
US9909048B2 (en) * 2014-09-10 2018-03-06 Forta Corporation Compositions and methods for fiber-containing grout
US11492866B2 (en) * 2016-09-12 2022-11-08 Baker Hughes Holdings Llc Downhole tools containing ductile cementing materials
US11293247B2 (en) 2016-09-12 2022-04-05 Baker Hughes, A Ge Company, Llc Frac plug and method for fracturing a formation
US10144860B1 (en) 2017-07-20 2018-12-04 Saudi Arabian Oil Company Loss circulation compositions (LCM) having portland cement clinker
US10619090B1 (en) 2019-04-15 2020-04-14 Saudi Arabian Oil Company Fracturing fluid compositions having Portland cement clinker and methods of use

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US620354A (en) * 1899-02-28 pohlit
US2463561A (en) * 1947-07-09 1949-03-08 Julian M Riley Composition for patching metallic bodies
US2805719A (en) * 1955-09-15 1957-09-10 Halliburton Oil Well Cementing High temperature well cementing
US3036633A (en) * 1958-07-07 1962-05-29 Halliburton Co Oil and gas well cementing composition
US3092505A (en) * 1960-01-20 1963-06-04 Quigley Co Refractory insulating and sealing compound
US3220863A (en) * 1958-07-07 1965-11-30 Halliburton Co Well cementing compositions
US3363689A (en) * 1965-03-11 1968-01-16 Halliburton Co Well cementing
US3834916A (en) * 1972-03-23 1974-09-10 Steel Corp Fiber-reinforced cement composite
US3844351A (en) * 1973-06-01 1974-10-29 Halliburton Co Method of plugging a well
US3953953A (en) * 1972-11-28 1976-05-04 Australian Wire Industries Proprietary Limited Concrete reinforcing elements and reinforced composite incorporating same
US4062913A (en) * 1975-07-17 1977-12-13 Ab Institutet For Innovationsteknik Method of reinforcing concrete with fibres
US4140533A (en) * 1976-12-08 1979-02-20 Kanebo Ltd. Alkali resistant glass compositions and alkali resistant glass fibers prepared therefrom
US4142906A (en) * 1977-06-06 1979-03-06 Ikebukuro Horo Kogyo Co., Ltd. Glass composition for alkali-resistant glass fiber
US4199336A (en) * 1978-09-25 1980-04-22 Corning Glass Works Method for making basalt glass ceramic fibers
US4224377A (en) * 1973-04-16 1980-09-23 N. V. Bekaert S.A. Reinforcing member for castable material and process of mixing reinforcing elements with said material
US4240840A (en) * 1975-10-28 1980-12-23 Imperial Chemical Industries Limited Cementitious compositions
US4304604A (en) * 1978-11-10 1981-12-08 Werhahn & Neuen Production, composition and aftertreatment of mineral fibers for the micro-reinforcement of binders of building materials
US4341835A (en) * 1981-01-26 1982-07-27 Corning Glass Works Macrofilament-reinforced composites
US4366255A (en) * 1981-03-23 1982-12-28 Wahl Refractory Products, Company Highly reinforced refractory concrete with 4-20 volume % steel fibers
US4474907A (en) * 1982-07-06 1984-10-02 Kuraray Co., Ltd. Fiber-reinforced hydraulically setting materials
US4565840A (en) * 1980-01-11 1986-01-21 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced concrete and reinforcing material for concrete
US4610926A (en) * 1982-04-16 1986-09-09 Tokyo Rope Manufacturing Co., Ltd. Concrete reinforcing steel fibers and production thereof
US4780141A (en) * 1986-08-08 1988-10-25 Cemcom Corporation Cementitious composite material containing metal fiber
US4818288A (en) * 1983-12-07 1989-04-04 Skw Trostberg Aktiengesellschaft Dispersant for concrete mixtures of high salt content
US4836940A (en) * 1987-09-14 1989-06-06 American Colloid Company Composition and method of controlling lost circulation from wellbores
US4858487A (en) * 1987-01-20 1989-08-22 Regie Nationale Des Usines Renault Device for transmission of movement by an outside gearing
US4871395A (en) * 1987-09-17 1989-10-03 Associated Universities, Inc. High temperature lightweight foamed cements
US4960649A (en) * 1987-11-25 1990-10-02 Kabushiki Kaisha Kobe Seiko Sho Reinforcing metal fibers
US4968561A (en) * 1987-04-10 1990-11-06 Kuraray Company Limited Synthetic fiber for use in reinforcing cement mortar or concrete and cement composition containing same
US5118225A (en) * 1990-01-25 1992-06-02 Nycon, Inc. Fiber-loading apparatus and method of use
US5421409A (en) * 1994-03-30 1995-06-06 Bj Services Company Slag-based well cementing compositions and methods
US5443918A (en) * 1994-09-07 1995-08-22 Universite Laval Metal fiber with optimized geometry for reinforcing cement-based materials
US5447564A (en) * 1994-02-16 1995-09-05 National Research Council Of Canada Conductive cement-based compositions
US5456752A (en) * 1991-04-02 1995-10-10 Synthetic Industries Graded fiber design and concrete reinforced therewith
US5588489A (en) * 1995-10-31 1996-12-31 Halliburton Company Lightweight well cement compositions and methods
US5628822A (en) * 1991-04-02 1997-05-13 Synthetic Industries, Inc. Graded fiber design and concrete reinforced therewith
US5648568A (en) * 1993-06-30 1997-07-15 Asahi Glass Company Ltd. Method for producing a hydrofluorocarbon
US5649568A (en) * 1993-10-29 1997-07-22 Union Oil Company Of California Glass fiber reinforced cement liners for pipelines and casings
US5820670A (en) * 1996-07-01 1998-10-13 Halliburton Energy Services, Inc. Resilient well cement compositions and methods
US5865000A (en) * 1992-05-08 1999-02-02 N.V. Bekaert S.A. Steel fiber reinforced concrete with high flexural strength
US5875845A (en) * 1997-08-18 1999-03-02 Halliburton Energy Services, Inc. Methods and compositions for sealing pipe strings in well bores
US5897699A (en) * 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
US5900053A (en) * 1997-08-15 1999-05-04 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5948157A (en) * 1996-12-10 1999-09-07 Fording Coal Limited Surface treated additive for portland cement concrete
US5981630A (en) * 1998-01-14 1999-11-09 Synthetic Industries, Inc. Fibers having improved sinusoidal configuration, concrete reinforced therewith and related method
US6016879A (en) * 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
US6063738A (en) * 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
US6156808A (en) * 1999-01-04 2000-12-05 Halliburton Energy Services, Inc. Defoaming compositions and methods
US6230804B1 (en) * 1997-12-19 2001-05-15 Bj Services Company Stress resistant cement compositions and methods for using same
US6308777B2 (en) * 1999-10-13 2001-10-30 Halliburton Energy Services, Inc. Cementing wells with crack and shatter resistant cement
US6332921B1 (en) * 1997-08-15 2001-12-25 Halliburton Energy Services, Inc. Cement compositions and methods for high temperature wells containing carbon dioxide
US6367550B1 (en) * 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US6458198B1 (en) * 1998-05-11 2002-10-01 Schlumberger Technology Corporation Cementing compositions and use of such compositions for cementing oil wells or the like
US6457524B1 (en) * 2000-09-15 2002-10-01 Halliburton Energy Services, Inc. Well cementing compositions and methods
US6500252B1 (en) * 2000-10-24 2002-12-31 Halliburton Energy Services, Inc. High strength foamed well cement compositions and methods
US6508305B1 (en) * 1999-09-16 2003-01-21 Bj Services Company Compositions and methods for cementing using elastic particles
US6550362B1 (en) * 2000-10-25 2003-04-22 Si Corporation Apparatus and method for dispensing fibers into cementitious materials
US6582511B1 (en) * 1999-05-26 2003-06-24 Ppg Industries Ohio, Inc. Use of E-glass fibers to reduce plastic shrinkage cracks in concrete
US6613424B1 (en) * 1999-10-01 2003-09-02 Awi Licensing Company Composite structure with foamed cementitious layer
US6645288B1 (en) * 1998-12-21 2003-11-11 Schlumberger Technology Corporation Cementing compositions and application of such compositions for cementing oil wells or the like
US6647747B1 (en) * 1997-03-17 2003-11-18 Vladimir B. Brik Multifunctional apparatus for manufacturing mineral basalt fibers
US6689208B1 (en) * 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US20040040712A1 (en) * 2002-08-29 2004-03-04 Ravi Krishna M. Cement composition exhibiting improved resilience/toughness and method for using same
US6702044B2 (en) * 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
US20040045713A1 (en) * 2002-05-31 2004-03-11 Bianchi Gustavo Luis Slurry for hydrocarbon production and water injection well cementing, and procedures to cement wells using such slurry
US6729405B2 (en) * 2001-02-15 2004-05-04 Bj Services Company High temperature flexible cementing compositions and methods for using same
US20040106704A1 (en) * 2001-09-18 2004-06-03 Christian Meyer Admixture to improve rheological property of composition comprising a mixture of hydraulic cement and alumino-silicate mineral admixture
US20040206501A1 (en) * 2003-04-16 2004-10-21 Brothers Lance E. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US20040211562A1 (en) * 2003-04-24 2004-10-28 Brothers Lance E. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6824847B2 (en) * 2000-02-08 2004-11-30 Institut Francais Du Petrole Expandable and curable flexible preform containing unsaturated resins, for casing a well or a line
US6832654B2 (en) * 2001-06-29 2004-12-21 Bj Services Company Bottom hole assembly
US6861392B2 (en) * 2002-03-26 2005-03-01 Halliburton Energy Services, Inc. Compositions for restoring lost circulation
US6866712B1 (en) * 1999-04-14 2005-03-15 Saint-Gobain Vetrotex France S.A. Reinforcing fibre material for bituminous aggregates, method for producing same and use
US6963201B2 (en) * 2000-08-17 2005-11-08 Merlin Technology, Inc. Flux plane locating in an underground drilling system

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738285A (en) * 1951-12-28 1956-03-13 Owens Corning Fiberglass Corp Reinforced cement products and method of making the same
US2779417A (en) * 1954-02-15 1957-01-29 Stanolind Oil & Gas Co Plugging well casing perforations
US3146828A (en) * 1960-12-14 1964-09-01 Continental Oil Co Methods and compositions for well completion
US3852082A (en) 1966-07-11 1974-12-03 Nat Res Dev Fibre reinforced cement
US3854986A (en) 1967-09-26 1974-12-17 Ceskoslovenska Akademie Ved Method of making mineral fibers of high corrosion resistance and fibers produced
GB1290528A (en) * 1969-07-28 1972-09-27
US3736162A (en) * 1972-02-10 1973-05-29 Ceskoslovenska Akademie Ved Cements containing mineral fibers of high corrosion resistance
AU464066B2 (en) * 1972-05-12 1975-08-14 Kanebo, Ltd Alkali resistant glass fibers
US3774683A (en) 1972-05-23 1973-11-27 Halliburton Co Method for stabilizing bore holes
US3904424A (en) * 1972-06-09 1975-09-09 Nippon Asbestos Company Ltd Alkali resistant glassy fibers
US4036654A (en) * 1972-12-19 1977-07-19 Pilkington Brothers Limited Alkali-resistant glass compositions
US4008094A (en) * 1975-07-16 1977-02-15 Corning Glass Works High durability, reinforcing fibers for cementitious materials
US4030939A (en) * 1975-07-30 1977-06-21 Southwest Research Institute Cement composition
US4066465A (en) * 1975-11-07 1978-01-03 Central Glass Company, Limited Alkali-resistant glass composition
US4090884A (en) * 1976-07-16 1978-05-23 W. R. Bonsal Company Inhibitors for alkali-glass reactions in glass fiber reinforced cement products
US4289536A (en) * 1978-10-25 1981-09-15 Owens-Corning Fiberglas Corporation Glass fiber reinforced cements and process for manufacture of same
FR2447891A1 (en) * 1979-01-30 1980-08-29 Saint Gobain GLASS FIBERS FOR CEMENT REINFORCEMENT
IE50727B1 (en) * 1980-02-27 1986-06-25 Pilkington Brothers Ltd Alkali resistant glass fibres and cementitious products reinforced with such glass fibres
DE3363554D1 (en) * 1982-12-30 1986-06-19 Eurosteel Sa Filiform elements usable for reinforcing mouldable materials, particularly concrete
FR2575744B1 (en) * 1985-01-10 1991-10-25 Inst Nat Sciences Appliq Lyon COMPOSITE MATERIAL FOR CONSTRUCTION BASED ON SYNTHETIC POUZZOLANES, AND METHOD OF MANUFACTURE
FR2577213B1 (en) * 1985-02-12 1991-10-31 Saint Gobain Vetrotex GLASS FIBERS RESISTANT TO BASIC MEDIA AND APPLICATION THEREOF TO CEMENT REINFORCEMENT
FR2601356B1 (en) 1986-07-10 1992-06-05 Saint Gobain Vetrotex CEMENT BASED PRODUCT FIBERGLASS WEAPON.
US4923517A (en) * 1987-09-17 1990-05-08 Exxon Research And Engineering Company Glass fiber reinforced cement compositions
FR2628732A1 (en) 1988-03-18 1989-09-22 Saint Gobain Vetrotex PROCESS FOR MANUFACTURING A MIXTURE AND MIXTURE BASED ON CEMENT, METAKAOLIN, GLASS FIBERS AND POLYMER
FR2651492B1 (en) 1989-09-06 1993-06-18 Saint Gobain Rech PROCESS AND PRODUCTS OBTAINED BY MIXING CEMENT AND REINFORCING FIBERS.
JPH0764593B2 (en) 1989-08-23 1995-07-12 日本電気硝子株式会社 Alkali resistant glass fiber composition
US5154955A (en) * 1989-09-21 1992-10-13 Ceram-Sna Inc. Fiber-reinforced cement composition
DE4006371A1 (en) * 1990-03-01 1991-09-05 Hoechst Ag FIBER REINFORCED COMPOSITES AND METHOD FOR THEIR PRODUCTION
AU7962291A (en) * 1990-05-18 1991-12-10 E. Khashoggi Industries Hydraulically bonded cement compositions and their methods of manufacture and use
JP3215425B2 (en) * 1992-08-24 2001-10-09 ボンテック・インターナショナル・コーポレーション Inter-ground fiber cement
US5339902A (en) * 1993-04-02 1994-08-23 Halliburton Company Well cementing using permeable cement
EP0647603A1 (en) * 1993-10-11 1995-04-12 Hans Beat Fehlmann Building element with improved strength
US5916361A (en) * 1993-10-12 1999-06-29 Henry J. Molly & Associates, Inc. Glass fiber reinforced cement composites
US5489626A (en) * 1993-11-24 1996-02-06 Mitsui Toatsu Chemicals, Inc. Admixture for hydraulic cement
US5690729A (en) 1994-09-21 1997-11-25 Materials Technology, Limited Cement mixtures with alkali-intolerant matter and method
FR2729658B1 (en) * 1995-01-25 1997-04-04 Lafarge Nouveaux Materiaux COMPOSITE CONCRETE
FR2749844B1 (en) * 1996-06-18 1998-10-30 Schlumberger Cie Dowell CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
US6152227A (en) 1997-10-24 2000-11-28 Baroid Technology, Inc. Drilling and cementing through shallow waterflows
FR2778654B1 (en) * 1998-05-14 2000-11-17 Bouygues Sa CONCRETE COMPRISING ORGANIC FIBERS DISPERSED IN A CEMENTITIOUS MATRIX, CONCRETE CEMENTITIOUS MATRIX AND PREMIXES
FR2784095B1 (en) * 1998-10-06 2001-09-21 Dowell Schlumberger Services CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
US6561269B1 (en) * 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
WO2001051731A1 (en) * 2000-01-13 2001-07-19 The Dow Chemical Company Small cross-section composites of longitudinally oriented fibers and a thermoplastic resin as concrete reinforcement
DE20018390U1 (en) * 2000-10-27 2001-01-18 Wenzler Medizintechnik Gmbh Cutting pliers
EP1270924A3 (en) * 2001-06-28 2004-01-07 Delphi Technologies, Inc. Integrated intake manifold assembly for an internal combustion engine
ATE404505T1 (en) * 2001-08-06 2008-08-15 Schlumberger Technology Bv LOW DENSITY FIBER REINFORCED CEMENT COMPOSITION
CA2469719C (en) * 2001-12-03 2009-01-20 Wyo-Ben, Inc. Composition for use in sealing a porous subterranean formation, and methods of making and using
FI121674B (en) * 2003-01-09 2011-02-28 Metso Paper Inc Method and apparatus for wetting a moving paper or cardboard web
US7178597B2 (en) * 2004-07-02 2007-02-20 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7537054B2 (en) * 2004-07-02 2009-05-26 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US20060157244A1 (en) * 2004-07-02 2006-07-20 Halliburton Energy Services, Inc. Compositions comprising melt-processed inorganic fibers and methods of using such compositions
US7284611B2 (en) * 2004-11-05 2007-10-23 Halliburton Energy Services, Inc. Methods and compositions for controlling lost circulation in subterranean operations
US7174961B2 (en) * 2005-03-25 2007-02-13 Halliburton Energy Services, Inc. Methods of cementing using cement compositions comprising basalt fibers

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US620354A (en) * 1899-02-28 pohlit
US2463561A (en) * 1947-07-09 1949-03-08 Julian M Riley Composition for patching metallic bodies
US2805719A (en) * 1955-09-15 1957-09-10 Halliburton Oil Well Cementing High temperature well cementing
US3036633A (en) * 1958-07-07 1962-05-29 Halliburton Co Oil and gas well cementing composition
US3220863A (en) * 1958-07-07 1965-11-30 Halliburton Co Well cementing compositions
US3092505A (en) * 1960-01-20 1963-06-04 Quigley Co Refractory insulating and sealing compound
US3363689A (en) * 1965-03-11 1968-01-16 Halliburton Co Well cementing
US3834916A (en) * 1972-03-23 1974-09-10 Steel Corp Fiber-reinforced cement composite
US3953953A (en) * 1972-11-28 1976-05-04 Australian Wire Industries Proprietary Limited Concrete reinforcing elements and reinforced composite incorporating same
US4224377A (en) * 1973-04-16 1980-09-23 N. V. Bekaert S.A. Reinforcing member for castable material and process of mixing reinforcing elements with said material
US3844351A (en) * 1973-06-01 1974-10-29 Halliburton Co Method of plugging a well
US4062913A (en) * 1975-07-17 1977-12-13 Ab Institutet For Innovationsteknik Method of reinforcing concrete with fibres
US4240840A (en) * 1975-10-28 1980-12-23 Imperial Chemical Industries Limited Cementitious compositions
US4140533A (en) * 1976-12-08 1979-02-20 Kanebo Ltd. Alkali resistant glass compositions and alkali resistant glass fibers prepared therefrom
US4142906A (en) * 1977-06-06 1979-03-06 Ikebukuro Horo Kogyo Co., Ltd. Glass composition for alkali-resistant glass fiber
US4199336A (en) * 1978-09-25 1980-04-22 Corning Glass Works Method for making basalt glass ceramic fibers
US4304604A (en) * 1978-11-10 1981-12-08 Werhahn & Neuen Production, composition and aftertreatment of mineral fibers for the micro-reinforcement of binders of building materials
US4565840A (en) * 1980-01-11 1986-01-21 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced concrete and reinforcing material for concrete
US4341835A (en) * 1981-01-26 1982-07-27 Corning Glass Works Macrofilament-reinforced composites
US4366255A (en) * 1981-03-23 1982-12-28 Wahl Refractory Products, Company Highly reinforced refractory concrete with 4-20 volume % steel fibers
US4610926A (en) * 1982-04-16 1986-09-09 Tokyo Rope Manufacturing Co., Ltd. Concrete reinforcing steel fibers and production thereof
US4474907A (en) * 1982-07-06 1984-10-02 Kuraray Co., Ltd. Fiber-reinforced hydraulically setting materials
US4818288A (en) * 1983-12-07 1989-04-04 Skw Trostberg Aktiengesellschaft Dispersant for concrete mixtures of high salt content
US4780141A (en) * 1986-08-08 1988-10-25 Cemcom Corporation Cementitious composite material containing metal fiber
US4858487A (en) * 1987-01-20 1989-08-22 Regie Nationale Des Usines Renault Device for transmission of movement by an outside gearing
US4968561A (en) * 1987-04-10 1990-11-06 Kuraray Company Limited Synthetic fiber for use in reinforcing cement mortar or concrete and cement composition containing same
US4836940A (en) * 1987-09-14 1989-06-06 American Colloid Company Composition and method of controlling lost circulation from wellbores
US4871395A (en) * 1987-09-17 1989-10-03 Associated Universities, Inc. High temperature lightweight foamed cements
US4960649A (en) * 1987-11-25 1990-10-02 Kabushiki Kaisha Kobe Seiko Sho Reinforcing metal fibers
US5118225A (en) * 1990-01-25 1992-06-02 Nycon, Inc. Fiber-loading apparatus and method of use
US5456752A (en) * 1991-04-02 1995-10-10 Synthetic Industries Graded fiber design and concrete reinforced therewith
US5628822A (en) * 1991-04-02 1997-05-13 Synthetic Industries, Inc. Graded fiber design and concrete reinforced therewith
US5865000A (en) * 1992-05-08 1999-02-02 N.V. Bekaert S.A. Steel fiber reinforced concrete with high flexural strength
US5648568A (en) * 1993-06-30 1997-07-15 Asahi Glass Company Ltd. Method for producing a hydrofluorocarbon
US5649568A (en) * 1993-10-29 1997-07-22 Union Oil Company Of California Glass fiber reinforced cement liners for pipelines and casings
US5447564A (en) * 1994-02-16 1995-09-05 National Research Council Of Canada Conductive cement-based compositions
US5421409A (en) * 1994-03-30 1995-06-06 Bj Services Company Slag-based well cementing compositions and methods
US5443918A (en) * 1994-09-07 1995-08-22 Universite Laval Metal fiber with optimized geometry for reinforcing cement-based materials
US5588489A (en) * 1995-10-31 1996-12-31 Halliburton Company Lightweight well cement compositions and methods
US5711801A (en) * 1995-10-31 1998-01-27 Halliburton Co Cement compositions
US5820670A (en) * 1996-07-01 1998-10-13 Halliburton Energy Services, Inc. Resilient well cement compositions and methods
US5948157A (en) * 1996-12-10 1999-09-07 Fording Coal Limited Surface treated additive for portland cement concrete
US6647747B1 (en) * 1997-03-17 2003-11-18 Vladimir B. Brik Multifunctional apparatus for manufacturing mineral basalt fibers
US5897699A (en) * 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
US5900053A (en) * 1997-08-15 1999-05-04 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US6332921B1 (en) * 1997-08-15 2001-12-25 Halliburton Energy Services, Inc. Cement compositions and methods for high temperature wells containing carbon dioxide
US6143069A (en) * 1997-08-15 2000-11-07 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US6488763B2 (en) * 1997-08-15 2002-12-03 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5875845A (en) * 1997-08-18 1999-03-02 Halliburton Energy Services, Inc. Methods and compositions for sealing pipe strings in well bores
US6016879A (en) * 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
US6230804B1 (en) * 1997-12-19 2001-05-15 Bj Services Company Stress resistant cement compositions and methods for using same
US5981630A (en) * 1998-01-14 1999-11-09 Synthetic Industries, Inc. Fibers having improved sinusoidal configuration, concrete reinforced therewith and related method
US6458198B1 (en) * 1998-05-11 2002-10-01 Schlumberger Technology Corporation Cementing compositions and use of such compositions for cementing oil wells or the like
US6645288B1 (en) * 1998-12-21 2003-11-11 Schlumberger Technology Corporation Cementing compositions and application of such compositions for cementing oil wells or the like
US6297202B1 (en) * 1999-01-04 2001-10-02 Halliburton Energy Services, Inc. Defoaming compositions and methods
US6156808A (en) * 1999-01-04 2000-12-05 Halliburton Energy Services, Inc. Defoaming compositions and methods
US6866712B1 (en) * 1999-04-14 2005-03-15 Saint-Gobain Vetrotex France S.A. Reinforcing fibre material for bituminous aggregates, method for producing same and use
US6063738A (en) * 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
US6582511B1 (en) * 1999-05-26 2003-06-24 Ppg Industries Ohio, Inc. Use of E-glass fibers to reduce plastic shrinkage cracks in concrete
US6508305B1 (en) * 1999-09-16 2003-01-21 Bj Services Company Compositions and methods for cementing using elastic particles
US6613424B1 (en) * 1999-10-01 2003-09-02 Awi Licensing Company Composite structure with foamed cementitious layer
US6308777B2 (en) * 1999-10-13 2001-10-30 Halliburton Energy Services, Inc. Cementing wells with crack and shatter resistant cement
US6824847B2 (en) * 2000-02-08 2004-11-30 Institut Francais Du Petrole Expandable and curable flexible preform containing unsaturated resins, for casing a well or a line
US6963201B2 (en) * 2000-08-17 2005-11-08 Merlin Technology, Inc. Flux plane locating in an underground drilling system
US6457524B1 (en) * 2000-09-15 2002-10-01 Halliburton Energy Services, Inc. Well cementing compositions and methods
US6500252B1 (en) * 2000-10-24 2002-12-31 Halliburton Energy Services, Inc. High strength foamed well cement compositions and methods
US6367550B1 (en) * 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US6547871B2 (en) * 2000-10-25 2003-04-15 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
US6550362B1 (en) * 2000-10-25 2003-04-22 Si Corporation Apparatus and method for dispensing fibers into cementitious materials
US20040194960A1 (en) * 2001-02-15 2004-10-07 Bj Services Company High temperature flexible cementing compositions and methods for using the same
US6729405B2 (en) * 2001-02-15 2004-05-04 Bj Services Company High temperature flexible cementing compositions and methods for using same
US6832654B2 (en) * 2001-06-29 2004-12-21 Bj Services Company Bottom hole assembly
US20040106704A1 (en) * 2001-09-18 2004-06-03 Christian Meyer Admixture to improve rheological property of composition comprising a mixture of hydraulic cement and alumino-silicate mineral admixture
US6861392B2 (en) * 2002-03-26 2005-03-01 Halliburton Energy Services, Inc. Compositions for restoring lost circulation
US20040045713A1 (en) * 2002-05-31 2004-03-11 Bianchi Gustavo Luis Slurry for hydrocarbon production and water injection well cementing, and procedures to cement wells using such slurry
US20040069537A1 (en) * 2002-06-13 2004-04-15 Reddy B. Raghava Methods of consolidating formations and forming a chemical casing
US6823940B2 (en) * 2002-06-13 2004-11-30 Halliburton Energy Services, Inc. Methods of consolidating formations and forming a chemical casing
US20040108141A1 (en) * 2002-06-13 2004-06-10 Reddy B. Raghava Methods of forming a chemical casing
US20040069538A1 (en) * 2002-06-13 2004-04-15 Reddy B. Raghava Methods of consolidating formations
US6702044B2 (en) * 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
US20040040712A1 (en) * 2002-08-29 2004-03-04 Ravi Krishna M. Cement composition exhibiting improved resilience/toughness and method for using same
US20040206501A1 (en) * 2003-04-16 2004-10-21 Brothers Lance E. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US20040211562A1 (en) * 2003-04-24 2004-10-28 Brothers Lance E. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6689208B1 (en) * 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000612A1 (en) * 2004-07-02 2006-01-05 Reddy B R Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US20080103065A1 (en) * 2004-07-02 2008-05-01 Reddy B R Compositions Comprising Melt-Processed Inorganic Fibers and Methods of Using Such Compositions
US20090133606A1 (en) * 2004-07-02 2009-05-28 Reddy B Raghava Cement Compositions Comprising High Aspect Ratio Materials and Methods of Use in Subterranean Formations
US8123852B2 (en) 2004-07-02 2012-02-28 Halliburton Energy Services Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7174961B2 (en) 2005-03-25 2007-02-13 Halliburton Energy Services, Inc. Methods of cementing using cement compositions comprising basalt fibers
US7654323B2 (en) 2005-09-21 2010-02-02 Imerys Electrofused proppant, method of manufacture, and method of use
US20080053657A1 (en) * 2006-09-01 2008-03-06 Jean Andre Alary Method of manufacturing and using rod-shaped proppants and anti-flowback additives
US8562900B2 (en) 2006-09-01 2013-10-22 Imerys Method of manufacturing and using rod-shaped proppants and anti-flowback additives
US10344206B2 (en) 2006-09-01 2019-07-09 US Ceramics LLC Method of manufacture and using rod-shaped proppants and anti-flowback additives
EP2085447A1 (en) 2007-12-26 2009-08-05 Services Pétroliers Schlumberger Method and composition for curing lost circulation
US20110005758A1 (en) * 2007-12-26 2011-01-13 Nikhil Shindgikar Method and composition for curing lost circulation
US8479817B2 (en) 2007-12-26 2013-07-09 Schlumberger Technology Corporation Method and composition for curing lost circulation
US20110042088A1 (en) * 2007-12-28 2011-02-24 Jaleh Gassemzadeh Cement composition containing inorganic and organic fibers
EP2083059A1 (en) 2007-12-28 2009-07-29 Services Pétroliers Schlumberger Cement compositions containing inorganic and organic fibres
US20110183871A1 (en) * 2008-08-18 2011-07-28 Jesse Lee Method and composition for curing lost circulation
US8946133B2 (en) 2008-08-18 2015-02-03 Schlumberger Technology Corporation Method and composition for curing lost circulation
US9200148B2 (en) 2010-12-15 2015-12-01 3M Innovative Properties Company Controlled degradation fibers
US9862641B2 (en) * 2016-02-23 2018-01-09 James Hardie Technology Limited Fiber reinforced cementitious composition
WO2018039256A1 (en) * 2016-08-26 2018-03-01 Baker Hughes, A Ge Company, Llc Composition and method for cementing in subterranean formations using inorganic fibers
CN115898376A (en) * 2022-12-20 2023-04-04 西南石油大学 Visual experiment device and method for deformation and plugging of cracks around well

Also Published As

Publication number Publication date
WO2007054670A2 (en) 2007-05-18
WO2007054670A3 (en) 2007-07-12
US7493968B2 (en) 2009-02-24
US20080103065A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US7174961B2 (en) Methods of cementing using cement compositions comprising basalt fibers
US20060157244A1 (en) Compositions comprising melt-processed inorganic fibers and methods of using such compositions
RU2601953C9 (en) Composition setting with increased time of pumping
US6957702B2 (en) Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US9023150B2 (en) Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8297357B2 (en) Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8950486B2 (en) Acid-soluble cement compositions comprising cement kiln dust and methods of use
US7424914B2 (en) Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7337842B2 (en) Methods of using cement compositions comprising high alumina cement and cement kiln dust
US7537054B2 (en) Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
EP2273063B1 (en) Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7445669B2 (en) Settable compositions comprising cement kiln dust and additive(s)
US7395860B2 (en) Methods of using foamed settable compositions comprising cement kiln dust
US7381263B2 (en) Cement compositions comprising high alumina cement and cement kiln dust
US11692122B2 (en) Geopolymer cement compositions and methods of use
MX2012004981A (en) Methods of cementing in subterranean formations using cement kiln dust in compositions having reduced portland cement content.
CA2337372A1 (en) High strength foamed well cement compositions and methods
AU2012257600A1 (en) Settable compositions containing metakaolin having reduced portland cement content
US7708071B2 (en) Cement compositions comprising aluminum chloride and associated methods
US20230126770A1 (en) Liquid Salt Activator and Methods of Making and Using Same
NZ535117A (en) Lightweight well cement compositions and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REDDY, B. RAGHAVA;WAUGH, BRYAN K.;REEL/FRAME:017244/0406;SIGNING DATES FROM 20051110 TO 20051111

AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAVI, KRISHNA M.;REEL/FRAME:017738/0223

Effective date: 20060307

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION