US20060144619A1 - Thermal management apparatus, systems, and methods - Google Patents

Thermal management apparatus, systems, and methods Download PDF

Info

Publication number
US20060144619A1
US20060144619A1 US11/030,263 US3026305A US2006144619A1 US 20060144619 A1 US20060144619 A1 US 20060144619A1 US 3026305 A US3026305 A US 3026305A US 2006144619 A1 US2006144619 A1 US 2006144619A1
Authority
US
United States
Prior art keywords
coolant
flow rate
heat exchange
exchange element
electronic devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/030,263
Inventor
Bruce Storm
James Freeman
Juan-Carlos Jakaboski
Yogendra Joshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US11/030,263 priority Critical patent/US20060144619A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STORM, BRUCE H., FREEMAN, JAMES J
Priority to EP06717670A priority patent/EP1856373A1/en
Priority to PCT/US2006/000498 priority patent/WO2006074393A1/en
Publication of US20060144619A1 publication Critical patent/US20060144619A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • E21B47/0175Cooling arrangements

Definitions

  • thermal management generally, including apparatus, systems, and methods used to manage electronic device thermal conditions.
  • Electronic devices may be designed to operate at a variety of temperatures, including up to about 200 C or greater, which is approximately the same as the ambient temperature experienced by various downhole drilling components.
  • the variety of such components available to designers may be somewhat limited, however, and those that are available can be relatively expensive and difficult to obtain.
  • managing thermal conditions associated with such components used in the downhole environment can be difficult, since operations can continue for days at a time. For a variety of reasons, then, there is a need to provide enhanced thermal management apparatus, systems, and methods for electronic devices used in downhole environments.
  • FIG. 1 is a block diagram of several apparatus according to various embodiments of the invention.
  • FIG. 2 illustrates a chassis heat exchange element according to various embodiments of the invention
  • FIG. 3 illustrates several systems according to various embodiments of the invention
  • FIG. 4 is a flow chart illustrating several methods according to various embodiments of the invention.
  • FIG. 5 is a block diagram of an article according to various embodiments of the invention.
  • an element that serves as both a chassis and a heat exchanger may be thermally coupled to a plurality of electronic devices using a corresponding plurality of receiving sections (e.g., machined recesses tailored to receive the individual devices).
  • the chassis heat exchange element may include a conduit thermally coupled to the chassis heat exchange element.
  • a flow rate regulator may be used adjust the flow rate of a coolant (e.g., water, oil, etc.) circulated in the conduit.
  • thermally conductive, flow disruptive elements may be included in the conduit.
  • the chassis heat exchange element may be used in conjunction with downhole drilling and logging operations.
  • a “chassis heat exchange element” may mean any substantially rigid structure that serves both as a chassis and as a heat exchange device in direct thermal communication with at least one electronic device from which heat is to be removed.
  • Direct thermal communication means that relatively thin thermally conductive materials (e.g., epoxy, grease, polymer, etc., comprising a total layer thickness of less than about 5 mm) may be interposed between the electronic device and the chassis heat exchange element (e.g., between the device and a receiving section). In some cases, the electronic device may be placed in direct contact with the chassis heat exchange element.
  • FIG. 1 is a block diagram of several apparatus 100 according to various embodiments of the invention.
  • an apparatus 100 may include a chassis heat exchange element 104 .
  • FIG. 2 illustrates a chassis heat exchange element 204 according to various embodiments of the invention.
  • the chassis heat exchange element 104 shown in FIG. 1 may be similar to or identical to the chassis heat exchange element 204 shown in FIG. 2 .
  • the chassis heat exchange elements 104 , 204 may include a plurality of receiving sections 208 thermally coupled to a corresponding plurality of electronic devices 212 .
  • various relatively thin (e.g., less than about 5 mm total thickness) layers of thermal epoxies, grease, polymers, etc. may be interposed between the electronic devices 212 and the chassis heat exchange elements 104 , 204 , perhaps disposed within the receiving sections 208 .
  • the apparatus 100 may also include a thermal conduit 116 , 216 thermally coupled to the chassis heat exchange element 104 , 204 .
  • a flow rate regulator 120 , 220 may be used to adjust the flow rate of a coolant 122 , 222 circulated in the thermal conduit 116 , 216 .
  • the flow rate regulator 120 , 220 may be designed so as to be capable of adjusting the flow rate of the coolant 122 , 222 to be a substantially constant flow rate.
  • the flow rate regulator 120 , 220 may also comprise a processor 124 , perhaps electrically coupled to one or more thermocouples 128 .
  • the processor 124 may be thermally coupled to the chassis heat exchange element 104 , 204 .
  • the apparatus 100 may comprise a feedback and control system 130 (e.g., comprising the flow rate regulator 120 , 220 ; the processor 124 ; and thermocouples 128 ) to monitor the temperature of one or more of the plurality of electronic devices 212 and/or the coolant 122 , 222 , and to adjust the flow rate of the coolant 122 , 222 in accordance with the sensed temperature.
  • the flow rate of the coolant 122 , 222 may be adjustable, including a set of states such as OFF, ON (at a preselected rate), ON (at a rate selected from a continuous range of rates), and ON (at a rate selected from a range of discrete rates), among others.
  • the flow rate of the coolant 122 , 222 may be adjusted to comprise a preselected flow rate, perhaps a fixed flow rate, and/or an optimal flow rate determined by simulation and/or experiment. In such cases, a designer may choose not to use any feedback and control system 130 .
  • the apparatus 100 may include a pump and/or valve 232 to circulate the coolant 122 , 222 in the thermal conduit 116 , 216 .
  • the thermal conduit 116 , 216 may includes thermally conductive flow disruptive elements 236 , including laminar flow disruptive elements, similar to or identical to those in-tube heat transfer enhancement devices known as HiTRAN® Matrix Elements available from Cal Galvin, Ltd. of Warwickshire, England.
  • laminar flow disruptive elements such as spikes and other protuberances located within the thermal conduit 116 , 216 , and perhaps attached to the internal wall of the conduit 116 , 216 , may be used as well.
  • coolant 122 , 222 may be used within the thermal conduit 116 , 216 of the apparatus 100 .
  • the coolant 122 , 222 may comprise water, such as distilled or de-ionized water.
  • the coolant 122 , 222 may comprise non-hydrocarbon-based fluids.
  • the coolant 122 , 222 may comprise hydrocarbon-based fluids, such as oils, including poly(alpha-olefin) oils and other synthetic lubricants.
  • the apparatus 100 may include additional elements.
  • the thermal conduit 116 , 216 may be placed in fluid communication with a heat exchanger 140 , perhaps immersed in a material 144 , such as a phase-change material, including a eutectic phase-change material, a solid, a liquid, or a gas.
  • the heat exchanger 140 and/or material 144 may be contained in a heat sink 146 , which may in turn include a canister.
  • the heat exchanger 140 , material 144 , and/or heat sink 146 may be thermally coupled to the chassis heat exchange element 104 .
  • the apparatus 100 may be housed in a flask 148 , such as an insulated and/or evacuated flask. Other embodiments may be realized.
  • the apparatus 100 may include a fluid expansion compensator 152 in fluid communication with the fluid conduit 116 , 216 .
  • the fluid expansion compensator 152 may be used to maintain the pressure of the coolant 122 , 222 at substantially the same value.
  • Actuation of the fluid expansion compensator 152 may occur in a mechanical fashion (e.g., the fluid expansion compensator may include a piston and a spring to adjust a volume responsive to the pressure of the coolant), or in an electrical one, such as by moving a piston to adjust a volume coupled to the coolant 222 in accordance with a sensed pressure of the coolant 222 , as monitored by the processor 124 .
  • a solenoid or other electrically-movable device may be mechanically coupled to the fluid expansion compensator 152 and activated by the processor 124 .
  • the apparatus 100 may include one or more circuit boards 254 , perhaps located on the first and second sides 256 , 258 of the chassis thermal exchange element 104 , 204 .
  • the circuit boards may have a thermally conductive layer 260 thermally coupled to the plurality of electronic devices 212 .
  • the thermally conductive layer 260 may be embedded within the circuit boards 254 , or provided as an outside layer of the circuits boards 254 . If the thermally conductive layer 260 is embedded within the circuit boards 254 , vias or similar mechanisms may be used to couple heat from the electronic devices 212 (e.g., using thermal grease or thermally conductive adhesive) to the thermally conductive layer 260 .
  • the thermally conductive layer 260 may in turn be coupled, mechanically and/or thermally to side rails 261 that can be attached to the circuit boards 254 and/or the chassis thermal exchange elements 104 , 204 , if desired.
  • multiple receiving sections 208 may be used to receive the plurality of electronic devices 212 attached to the circuit boards 254 .
  • an antenna 262 may be coupled to one or more of the plurality of electronic devices 212 .
  • FIG. 3 illustrates several systems 364 according to various embodiments of the invention, which may comprise portions of a bottom hole assembly 320 as part of a downhole drilling operation. Such systems 364 may be used in drilling and logging operations.
  • a system 364 may form a portion of a drilling rig 302 located at the surface 304 of a well 306 .
  • the drilling rig 302 may provide support for a drill string 308 .
  • the drill string 308 may operate to penetrate a rotary table 310 for drilling a borehole 312 through subsurface formations 314 .
  • the drill string 308 may include a Kelly 316 , a drill pipe 318 , and a bottom hole assembly 320 , perhaps located at the lower portion of the drill pipe 318 .
  • the bottom hole assembly 320 may include drill collars 322 , perhaps coupled to a downhole tool 324 and/or a drill bit 326 .
  • the drill bit 326 may operate to create a borehole 312 by penetrating the surface 304 and subsurface formations 314 .
  • the downhole tool 324 may comprise any of a number of different types of tools including MWD (measurement while drilling) tools, LWD (logging while drilling) tools, and others.
  • the drill string 308 (perhaps including the Kelly 316 , the drill pipe 318 , and the bottom hole assembly 320 ) may be rotated by the rotary table 310 .
  • the bottom hole assembly 320 may also be rotated by a motor (e.g., a mud motor) that is located downhole.
  • the drill collars 322 may be used to add weight to the drill bit 326 .
  • the drill collars 322 also may stiffen the bottom hole assembly 320 to allow the bottom hole assembly 320 to transfer the added weight to the drill bit 326 , and in turn, assist the drill bit 326 in penetrating the surface 304 and subsurface formations 314 .
  • a mud pump 332 may pump drilling fluid (sometimes known by those of skill in the art as “drilling mud”) from a mud pit 334 through a hose 336 into the drill pipe 318 and down to the drill bit 326 .
  • the drilling fluid can flow out from the drill bit 326 and be returned to the surface 304 through an annular area 340 between the drill pipe 318 and the sides of the borehole 312 .
  • the drilling fluid may then be returned to the mud pit 334 , where such fluid is filtered.
  • the drilling fluid can be used to cool the drill bit 326 , as well as to provide lubrication for the drill bit 326 during drilling operations. Additionally, the drilling fluid may be used to remove subsurface formation 314 cuttings created by operating the drill bit 326 .
  • the system 364 may include a bottom hole assembly 320 , as well as one or more apparatus 300 , similar to or identical to the apparatus 100 described above and illustrated in FIG. 1 .
  • the system 364 may include a collar 322 to couple to a drill bit 326 and to house one or more chassis heat exchange elements (included in the apparatus 300 ).
  • a system 364 may include a tool body 370 to couple to a logging cable 374 .
  • the tool body 370 may house an apparatus 300 , including one or more chassis heat exchange elements.
  • the logging cable 374 may comprise a wireline (multiple power and communication lines), a mono-cable (a single conductor), and a slick-line (no conductors for power or communications).
  • a variety of mechanisms can be used to cool the apparatus 300 when it is brought to the surface 306 after operation in the borehole 312 . In some cases, it is desirable to remove and replace the apparatus 300 entirely.
  • a charging pump 378 is used. The charge pump 378 may be used to circulate the coolant 122 , 222 in the conduit 116 , 216 of the apparatus 100 , 300 (see FIGS. 1 and 2 ). For rapid turnaround, the coolant 122 , 222 may be chilled while it is circulated. This can occur either by replacing the coolant 122 , 222 with new coolant, or simply chilling the existing coolant and circulating it within the conduit until the temperature of the circulated coolant remains at a selected temperature.
  • a system 364 may include a charging pump 378 capable of being removably fluidly coupled to the thermal conduit 116 , 216 in the apparatus 100 , 300 (see FIGS. 1 and 2 ).
  • the apparatus 100 chassis heat exchange elements 104 , 204 , thermal conduits 116 , 216 , flow rate regulators 120 , 220 , coolant 122 , 222 , processor 124 , thermocouples 128 , feedback and control system 130 , fluid expansion compensator 152 , receiving sections 208 , electronic devices 212 , pump and valve 232 , thermally conductive flow disruptive elements 236 , heat exchanger 140 , material 144 , flask 148 , circuit boards 254 , first and second sides 256 , 258 , thermally conductive layer 260 , side rails 261 , antenna 262 , drilling rig 302 , surface 304 , well 306 , drill string 308 , rotary table 310 , borehole 312 , subsurface formations 314 , Kelly 316 , drill pipe 318 , bottom hole assembly 320 , drill collars 322 , downhole tool 324 , drill bit 326 , mud pump 332 , mud pit
  • Such modules may include hardware circuitry, and/or one or more processors and/or memory circuits, software program modules, including objects and collections of objects, and/or firmware, and combinations thereof, as desired by the architect of the apparatus 100 , 300 and systems 364 , and as appropriate for particular implementations of various embodiments of the invention.
  • modules may be included in a system operation software simulation package, such as an electrical signal simulation package, a power usage and distribution simulation package, a power/heat dissipation simulation package, a signal transmission-reception simulation package, and/or a combination of software and hardware used to simulate the operation of various potential embodiments.
  • apparatus and systems of various embodiments can be used in applications other than for logging, drilling, and downhole operations, and thus, various embodiments are not to be so limited.
  • the illustrations of apparatus 100 , 300 and systems 364 are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein.
  • inventions that may include the novel apparatus and systems of various embodiments include electronic circuitry used in high-speed computers, communication and signal processing circuitry, modems, processor modules, embedded processors, data switches, and application-specific modules, including multilayer, multi-chip modules. Such apparatus and systems may further be included as sub-components within a variety of electronic systems, such as televisions, cellular telephones, personal computers, spaceflight computers, personal digital assistants (PDAs), workstations, radios, video players, vehicles, and others.
  • PDAs personal digital assistants
  • FIG. 4 is a flow chart illustrating several methods according to various embodiments of the invention.
  • a method 411 may (optionally) begin with inserting an apparatus (e.g., similar to or identical to apparatus 100 , 300 shown in FIGS. 1 and 3 ), including one or more chassis heat exchange elements, into a borehole at block 421 .
  • the method 411 may continue at block 425 with circulating a coolant through a thermal conduit thermally coupled to the chassis heat exchange element(s) (including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices, as noted above).
  • the method 411 may continue with sensing a temperature of one or more of the plurality of electronic devices (and/or the coolant) at block 429 .
  • the method 411 may also include indicating the temperature at block 431 , either to a processor included in the plurality of electronic devices, or in a variety of other ways, such as by operating an alarm.
  • the method 411 may include adjusting a flow rate of the coolant in accordance with the sensed temperature at block 441 .
  • the method 411 may further include, for example, increasing the flow rate in accordance with sensing an increased temperature associated with one or more of the plurality of electronic devices, as well as decreasing the flow rate of the coolant in accordance with sensing a decreased temperature associated with one or more of the plurality of electronic devices at block 445 .
  • the flow rate may even be adjusted to a substantially constant flow rate, if desired.
  • the method 411 may also include determining an optimal flow rate (e.g., a rate determined to provide a maximum operational time downhole) associated with the coolant at block 445 .
  • the method 411 may include adjusting the flow rate of the coolant in accordance with a change in the viscosity of the coolant at block 449 .
  • the method 411 may also include adjusting a volume in fluid communication with the conduit to maintain a substantially constant pressure of the coolant at block 453 (e.g., using an expansion valve).
  • the method 411 may include removing one or more of the apparatus (e.g., similar to or identical to apparatus 100 , 300 shown in FIGS. 1 and 3 ), including one or more chassis heat exchange elements, from the borehole at block 457 .
  • the method 411 may include replacing a first heat sink, perhaps including a heat exchanger (e.g., similar to or identical to the heat sink 146 and heat exchanger 140 ), thermally coupled to one or more chassis heat exchange elements in the apparatus, with a second heat sink (to be thermally coupled to the chassis heat exchange element) at block 463 .
  • the second heat sink may have a temperature substantially less than the temperature of the first heat sink.
  • the chassis heat exchange element may be removably attached to circuit boards holding the electronic devices being cooled, or not.
  • the method 411 may include removably coupling a charging pump to the thermal conduit included in the chassis heat exchange element at block 467 , and circulating a second coolant through the thermal conduit (wherein the second coolant has a second temperature substantially less than a first temperature of the original, or first coolant).
  • the coolant that is in fact circulated by the charging pump may be chilled to speed up the cooling process.
  • the methods described herein do not have to be executed in the order described, or in any particular order. Any of the activities described above in conjunction with the methods 411 may be simulated, such that software and hardware modules are combined to provide a simulation environment that mimics the behavior of the apparatus 100 , 300 and systems 364 in the real world. Moreover, various activities described with respect to the methods identified herein can be executed in serial, parallel, or iterative fashion. For the purposes of this document, the terms “information” and “data” may be used interchangeably.
  • Information including parameters, commands, operands, and other data, including data in various formats (e.g., time division, multiple access) and of various types (e.g., binary, alphanumeric, audio, video), can be sent and received in the form of one or more carrier waves.
  • data e.g., time division, multiple access
  • types e.g., binary, alphanumeric, audio, video
  • a software program can be launched from a computer-readable medium in a computer-based system to execute the functions defined in the software program.
  • One of ordinary skill in the art will further understand the various programming languages that may be employed to create one or more software programs designed to implement and perform the methods disclosed herein.
  • the programs may be structured in an object-orientated format using an object-oriented language such as Java or C++.
  • the programs can be structured in a procedure-orientated format using a procedural language, such as assembly or C.
  • the software components may communicate using any of a number of mechanisms well-known to those skilled in the art, such as application program interfaces or inter-process communication techniques, including remote procedure calls.
  • the teachings of various embodiments are not limited to any particular programming language or environment. Thus, other embodiments may be realized, as shown in FIG. 5 .
  • FIG. 5 is a block diagram of an article 585 according to various embodiments of the invention, such as a computer, a memory system, a magnetic or optical disk, some other storage device, and/or any type of electronic device or system.
  • the article 585 may comprise a processor 587 coupled to a machine-accessible medium such as a memory 589 (e.g., a memory including an electrical, optical, or electromagnetic conductor) having associated information 591 (e.g., computer program instructions, and/or other data), which when accessed, results in a machine (e.g., the processor 587 ) performing such actions as (simulating) circulating a coolant through a thermal conduit thermally coupled to a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices, (simulating) sensing a temperature of at least one of the plurality of electronic devices, and (simulating) adjusting a flow rate of the coolant in accordance with the temperature.
  • actions may include indicating the temperature, determining an optimal flow rate associated with the coolant, and perhaps increasing the flow rate in accordance with sensing an increased temperature associated with one or more of the plurality of electronic devices, or decreasing the flow rate of the coolant in accordance with sensing a decreased temperature associated with one or more of the plurality of electronic devices.
  • the flow rate of the coolant may even be adjusted to a substantially constant flow rate.
  • actions may include adjusting a volume of the coolant to maintain a substantially constant coolant pressure.
  • Implementing the apparatus, systems, and methods described herein may provide a mechanism to increase the operational time of electronic devices used in downhole applications.
  • the use of less expensive, more widely available components that tolerate lower operational temperatures may also be enabled.
  • inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.
  • inventive concept merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.

Abstract

An apparatus and a system, as well as a method and article, may operate to circulate a coolant through a thermal conduit thermally coupled to a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices. The temperature of one or more of the plurality of electronic devices may be sensed, and the flow rate of the coolant adjusted in accordance with the sensed temperature. The thermal conduit may include thermally conductive, flow disrupting elements. The chassis heat exchange element may operate in a downhole environment, including logging and drilling operations.

Description

    RELATED APPLICATIONS
  • This disclosure is related to pending U.S. patent application Ser. No. 10/602,236, titled “Method and Apparatus for Managing the Temperature of Thermal Components”, by Bruce H. Storm, Jr. and Haoshi Song, filed on Jun. 24, 2003, and is assigned to the assignee of the embodiments disclosed herein, Halliburton Energy Services, Inc.
  • TECHNICAL FIELD
  • Various embodiments described herein relate to thermal management generally, including apparatus, systems, and methods used to manage electronic device thermal conditions.
  • BACKGROUND INFORMATION
  • Electronic devices may be designed to operate at a variety of temperatures, including up to about 200 C or greater, which is approximately the same as the ambient temperature experienced by various downhole drilling components. The variety of such components available to designers may be somewhat limited, however, and those that are available can be relatively expensive and difficult to obtain. In addition, managing thermal conditions associated with such components used in the downhole environment can be difficult, since operations can continue for days at a time. For a variety of reasons, then, there is a need to provide enhanced thermal management apparatus, systems, and methods for electronic devices used in downhole environments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of several apparatus according to various embodiments of the invention;
  • FIG. 2 illustrates a chassis heat exchange element according to various embodiments of the invention;
  • FIG. 3 illustrates several systems according to various embodiments of the invention;
  • FIG. 4 is a flow chart illustrating several methods according to various embodiments of the invention; and
  • FIG. 5 is a block diagram of an article according to various embodiments of the invention.
  • DETAILED DESCRIPTION
  • In some embodiments, an element that serves as both a chassis and a heat exchanger may be thermally coupled to a plurality of electronic devices using a corresponding plurality of receiving sections (e.g., machined recesses tailored to receive the individual devices). The chassis heat exchange element may include a conduit thermally coupled to the chassis heat exchange element. A flow rate regulator may be used adjust the flow rate of a coolant (e.g., water, oil, etc.) circulated in the conduit. In some embodiments, thermally conductive, flow disruptive elements may be included in the conduit. In some embodiments, the chassis heat exchange element may be used in conjunction with downhole drilling and logging operations.
  • For the purposes of this document, a “chassis heat exchange element” may mean any substantially rigid structure that serves both as a chassis and as a heat exchange device in direct thermal communication with at least one electronic device from which heat is to be removed. “Direct thermal communication” means that relatively thin thermally conductive materials (e.g., epoxy, grease, polymer, etc., comprising a total layer thickness of less than about 5 mm) may be interposed between the electronic device and the chassis heat exchange element (e.g., between the device and a receiving section). In some cases, the electronic device may be placed in direct contact with the chassis heat exchange element.
  • FIG. 1 is a block diagram of several apparatus 100 according to various embodiments of the invention. For example, an apparatus 100 may include a chassis heat exchange element 104.
  • FIG. 2 illustrates a chassis heat exchange element 204 according to various embodiments of the invention. The chassis heat exchange element 104 shown in FIG. 1 may be similar to or identical to the chassis heat exchange element 204 shown in FIG. 2.
  • Referring now to FIGS. 1 and 2, it can be seen that the chassis heat exchange elements 104, 204 may include a plurality of receiving sections 208 thermally coupled to a corresponding plurality of electronic devices 212. Thus, various relatively thin (e.g., less than about 5 mm total thickness) layers of thermal epoxies, grease, polymers, etc. may be interposed between the electronic devices 212 and the chassis heat exchange elements 104, 204, perhaps disposed within the receiving sections 208.
  • The apparatus 100 may also include a thermal conduit 116, 216 thermally coupled to the chassis heat exchange element 104, 204. A flow rate regulator 120, 220 may be used to adjust the flow rate of a coolant 122, 222 circulated in the thermal conduit 116, 216. In some embodiments, the flow rate regulator 120, 220 may be designed so as to be capable of adjusting the flow rate of the coolant 122, 222 to be a substantially constant flow rate. The flow rate regulator 120, 220 may also comprise a processor 124, perhaps electrically coupled to one or more thermocouples 128. The processor 124 may be thermally coupled to the chassis heat exchange element 104, 204.
  • Thus, in some embodiments, the apparatus 100 may comprise a feedback and control system 130 (e.g., comprising the flow rate regulator 120, 220; the processor 124; and thermocouples 128) to monitor the temperature of one or more of the plurality of electronic devices 212 and/or the coolant 122, 222, and to adjust the flow rate of the coolant 122, 222 in accordance with the sensed temperature. In this case, the flow rate of the coolant 122, 222 may be adjustable, including a set of states such as OFF, ON (at a preselected rate), ON (at a rate selected from a continuous range of rates), and ON (at a rate selected from a range of discrete rates), among others.
  • Alternatively, or in addition, the flow rate of the coolant 122, 222 may be adjusted to comprise a preselected flow rate, perhaps a fixed flow rate, and/or an optimal flow rate determined by simulation and/or experiment. In such cases, a designer may choose not to use any feedback and control system 130.
  • In some embodiments, the apparatus 100 may include a pump and/or valve 232 to circulate the coolant 122, 222 in the thermal conduit 116, 216. The thermal conduit 116, 216 may includes thermally conductive flow disruptive elements 236, including laminar flow disruptive elements, similar to or identical to those in-tube heat transfer enhancement devices known as HiTRAN® Matrix Elements available from Cal Galvin, Ltd. of Warwickshire, England. Of course, other laminar flow disruptive elements, such as spikes and other protuberances located within the thermal conduit 116, 216, and perhaps attached to the internal wall of the conduit 116, 216, may be used as well.
  • Many different types of coolant 122, 222 may be used within the thermal conduit 116, 216 of the apparatus 100. For example, the coolant 122, 222 may comprise water, such as distilled or de-ionized water. Thus, the coolant 122, 222 may comprise non-hydrocarbon-based fluids. In some embodiments, the coolant 122, 222 may comprise hydrocarbon-based fluids, such as oils, including poly(alpha-olefin) oils and other synthetic lubricants.
  • In some embodiments, the apparatus 100 may include additional elements. For example, the thermal conduit 116, 216 may be placed in fluid communication with a heat exchanger 140, perhaps immersed in a material 144, such as a phase-change material, including a eutectic phase-change material, a solid, a liquid, or a gas. The heat exchanger 140 and/or material 144 may be contained in a heat sink 146, which may in turn include a canister. Thus, the heat exchanger 140, material 144, and/or heat sink 146 may be thermally coupled to the chassis heat exchange element 104. In some embodiments, the apparatus 100 may be housed in a flask 148, such as an insulated and/or evacuated flask. Other embodiments may be realized.
  • For example, in some embodiments, the apparatus 100 may include a fluid expansion compensator 152 in fluid communication with the fluid conduit 116, 216. The fluid expansion compensator 152 may be used to maintain the pressure of the coolant 122, 222 at substantially the same value. Actuation of the fluid expansion compensator 152 may occur in a mechanical fashion (e.g., the fluid expansion compensator may include a piston and a spring to adjust a volume responsive to the pressure of the coolant), or in an electrical one, such as by moving a piston to adjust a volume coupled to the coolant 222 in accordance with a sensed pressure of the coolant 222, as monitored by the processor 124. A solenoid or other electrically-movable device may be mechanically coupled to the fluid expansion compensator 152 and activated by the processor 124.
  • In some embodiments, the apparatus 100 may include one or more circuit boards 254, perhaps located on the first and second sides 256, 258 of the chassis thermal exchange element 104, 204. The circuit boards may have a thermally conductive layer 260 thermally coupled to the plurality of electronic devices 212. The thermally conductive layer 260 may be embedded within the circuit boards 254, or provided as an outside layer of the circuits boards 254. If the thermally conductive layer 260 is embedded within the circuit boards 254, vias or similar mechanisms may be used to couple heat from the electronic devices 212 (e.g., using thermal grease or thermally conductive adhesive) to the thermally conductive layer 260. The thermally conductive layer 260 may in turn be coupled, mechanically and/or thermally to side rails 261 that can be attached to the circuit boards 254 and/or the chassis thermal exchange elements 104, 204, if desired. As noted previously, multiple receiving sections 208 may be used to receive the plurality of electronic devices 212 attached to the circuit boards 254. In some embodiments, an antenna 262 may be coupled to one or more of the plurality of electronic devices 212.
  • FIG. 3 illustrates several systems 364 according to various embodiments of the invention, which may comprise portions of a bottom hole assembly 320 as part of a downhole drilling operation. Such systems 364 may be used in drilling and logging operations.
  • In some embodiments, a system 364 may form a portion of a drilling rig 302 located at the surface 304 of a well 306. The drilling rig 302 may provide support for a drill string 308. The drill string 308 may operate to penetrate a rotary table 310 for drilling a borehole 312 through subsurface formations 314. The drill string 308 may include a Kelly 316, a drill pipe 318, and a bottom hole assembly 320, perhaps located at the lower portion of the drill pipe 318.
  • The bottom hole assembly 320 may include drill collars 322, perhaps coupled to a downhole tool 324 and/or a drill bit 326. The drill bit 326 may operate to create a borehole 312 by penetrating the surface 304 and subsurface formations 314. The downhole tool 324 may comprise any of a number of different types of tools including MWD (measurement while drilling) tools, LWD (logging while drilling) tools, and others.
  • During drilling operations, the drill string 308 (perhaps including the Kelly 316, the drill pipe 318, and the bottom hole assembly 320) may be rotated by the rotary table 310. In addition to, or alternatively, the bottom hole assembly 320 may also be rotated by a motor (e.g., a mud motor) that is located downhole. The drill collars 322 may be used to add weight to the drill bit 326. The drill collars 322 also may stiffen the bottom hole assembly 320 to allow the bottom hole assembly 320 to transfer the added weight to the drill bit 326, and in turn, assist the drill bit 326 in penetrating the surface 304 and subsurface formations 314.
  • During drilling operations, a mud pump 332 may pump drilling fluid (sometimes known by those of skill in the art as “drilling mud”) from a mud pit 334 through a hose 336 into the drill pipe 318 and down to the drill bit 326. The drilling fluid can flow out from the drill bit 326 and be returned to the surface 304 through an annular area 340 between the drill pipe 318 and the sides of the borehole 312. The drilling fluid may then be returned to the mud pit 334, where such fluid is filtered. In some embodiments, the drilling fluid can be used to cool the drill bit 326, as well as to provide lubrication for the drill bit 326 during drilling operations. Additionally, the drilling fluid may be used to remove subsurface formation 314 cuttings created by operating the drill bit 326.
  • Thus, it may be seen that in some embodiments the system 364 may include a bottom hole assembly 320, as well as one or more apparatus 300, similar to or identical to the apparatus 100 described above and illustrated in FIG. 1. In some embodiments, the system 364 may include a collar 322 to couple to a drill bit 326 and to house one or more chassis heat exchange elements (included in the apparatus 300).
  • In some embodiments (e.g., wireline applications), a system 364 may include a tool body 370 to couple to a logging cable 374. The tool body 370 may house an apparatus 300, including one or more chassis heat exchange elements. The logging cable 374 may comprise a wireline (multiple power and communication lines), a mono-cable (a single conductor), and a slick-line (no conductors for power or communications).
  • A variety of mechanisms can be used to cool the apparatus 300 when it is brought to the surface 306 after operation in the borehole 312. In some cases, it is desirable to remove and replace the apparatus 300 entirely. In others, a charging pump 378 is used. The charge pump 378 may be used to circulate the coolant 122, 222 in the conduit 116, 216 of the apparatus 100, 300 (see FIGS. 1 and 2). For rapid turnaround, the coolant 122, 222 may be chilled while it is circulated. This can occur either by replacing the coolant 122, 222 with new coolant, or simply chilling the existing coolant and circulating it within the conduit until the temperature of the circulated coolant remains at a selected temperature. Thus, a system 364 may include a charging pump 378 capable of being removably fluidly coupled to the thermal conduit 116, 216 in the apparatus 100, 300 (see FIGS. 1 and 2).
  • The apparatus 100, chassis heat exchange elements 104, 204, thermal conduits 116, 216, flow rate regulators 120, 220, coolant 122, 222, processor 124, thermocouples 128, feedback and control system 130, fluid expansion compensator 152, receiving sections 208, electronic devices 212, pump and valve 232, thermally conductive flow disruptive elements 236, heat exchanger 140, material 144, flask 148, circuit boards 254, first and second sides 256, 258, thermally conductive layer 260, side rails 261, antenna 262, drilling rig 302, surface 304, well 306, drill string 308, rotary table 310, borehole 312, subsurface formations 314, Kelly 316, drill pipe 318, bottom hole assembly 320, drill collars 322, downhole tool 324, drill bit 326, mud pump 332, mud pit 334, hose 336, annular area 340, system 364, tool body 370, logging cable 374, and charging pump 378 may all be characterized as “modules” herein. Such modules may include hardware circuitry, and/or one or more processors and/or memory circuits, software program modules, including objects and collections of objects, and/or firmware, and combinations thereof, as desired by the architect of the apparatus 100, 300 and systems 364, and as appropriate for particular implementations of various embodiments of the invention. For example, such modules may be included in a system operation software simulation package, such as an electrical signal simulation package, a power usage and distribution simulation package, a power/heat dissipation simulation package, a signal transmission-reception simulation package, and/or a combination of software and hardware used to simulate the operation of various potential embodiments.
  • It should also be understood that the apparatus and systems of various embodiments can be used in applications other than for logging, drilling, and downhole operations, and thus, various embodiments are not to be so limited. The illustrations of apparatus 100, 300 and systems 364 are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein.
  • Applications that may include the novel apparatus and systems of various embodiments include electronic circuitry used in high-speed computers, communication and signal processing circuitry, modems, processor modules, embedded processors, data switches, and application-specific modules, including multilayer, multi-chip modules. Such apparatus and systems may further be included as sub-components within a variety of electronic systems, such as televisions, cellular telephones, personal computers, spaceflight computers, personal digital assistants (PDAs), workstations, radios, video players, vehicles, and others.
  • FIG. 4 is a flow chart illustrating several methods according to various embodiments of the invention. Thus, in some embodiments, a method 411 may (optionally) begin with inserting an apparatus (e.g., similar to or identical to apparatus 100, 300 shown in FIGS. 1 and 3), including one or more chassis heat exchange elements, into a borehole at block 421. The method 411 may continue at block 425 with circulating a coolant through a thermal conduit thermally coupled to the chassis heat exchange element(s) (including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices, as noted above). The method 411 may continue with sensing a temperature of one or more of the plurality of electronic devices (and/or the coolant) at block 429. Thus, the method 411 may also include indicating the temperature at block 431, either to a processor included in the plurality of electronic devices, or in a variety of other ways, such as by operating an alarm.
  • In some embodiments, the method 411 may include adjusting a flow rate of the coolant in accordance with the sensed temperature at block 441. Thus, the method 411 may further include, for example, increasing the flow rate in accordance with sensing an increased temperature associated with one or more of the plurality of electronic devices, as well as decreasing the flow rate of the coolant in accordance with sensing a decreased temperature associated with one or more of the plurality of electronic devices at block 445. The flow rate may even be adjusted to a substantially constant flow rate, if desired. The method 411 may also include determining an optimal flow rate (e.g., a rate determined to provide a maximum operational time downhole) associated with the coolant at block 445.
  • In some embodiments, the method 411 may include adjusting the flow rate of the coolant in accordance with a change in the viscosity of the coolant at block 449. The method 411 may also include adjusting a volume in fluid communication with the conduit to maintain a substantially constant pressure of the coolant at block 453 (e.g., using an expansion valve).
  • More extensive cooling operations may be conducted in a number of ways, as indicated above. For example, the method 411 may include removing one or more of the apparatus (e.g., similar to or identical to apparatus 100, 300 shown in FIGS. 1 and 3), including one or more chassis heat exchange elements, from the borehole at block 457. In some circumstances, the method 411 may include replacing a first heat sink, perhaps including a heat exchanger (e.g., similar to or identical to the heat sink 146 and heat exchanger 140), thermally coupled to one or more chassis heat exchange elements in the apparatus, with a second heat sink (to be thermally coupled to the chassis heat exchange element) at block 463. In many embodiments, the second heat sink may have a temperature substantially less than the temperature of the first heat sink. The chassis heat exchange element may be removably attached to circuit boards holding the electronic devices being cooled, or not.
  • In some circumstances, the method 411 may include removably coupling a charging pump to the thermal conduit included in the chassis heat exchange element at block 467, and circulating a second coolant through the thermal conduit (wherein the second coolant has a second temperature substantially less than a first temperature of the original, or first coolant). As noted above, whether or not a second coolant is used to replace the first coolant, the coolant that is in fact circulated by the charging pump may be chilled to speed up the cooling process.
  • It should be noted that the methods described herein do not have to be executed in the order described, or in any particular order. Any of the activities described above in conjunction with the methods 411 may be simulated, such that software and hardware modules are combined to provide a simulation environment that mimics the behavior of the apparatus 100, 300 and systems 364 in the real world. Moreover, various activities described with respect to the methods identified herein can be executed in serial, parallel, or iterative fashion. For the purposes of this document, the terms “information” and “data” may be used interchangeably. Information, including parameters, commands, operands, and other data, including data in various formats (e.g., time division, multiple access) and of various types (e.g., binary, alphanumeric, audio, video), can be sent and received in the form of one or more carrier waves.
  • Upon reading and comprehending the content of this disclosure, one of ordinary skill in the art will understand the manner in which a software program can be launched from a computer-readable medium in a computer-based system to execute the functions defined in the software program. One of ordinary skill in the art will further understand the various programming languages that may be employed to create one or more software programs designed to implement and perform the methods disclosed herein. The programs may be structured in an object-orientated format using an object-oriented language such as Java or C++. Alternatively, the programs can be structured in a procedure-orientated format using a procedural language, such as assembly or C. The software components may communicate using any of a number of mechanisms well-known to those skilled in the art, such as application program interfaces or inter-process communication techniques, including remote procedure calls. The teachings of various embodiments are not limited to any particular programming language or environment. Thus, other embodiments may be realized, as shown in FIG. 5.
  • FIG. 5 is a block diagram of an article 585 according to various embodiments of the invention, such as a computer, a memory system, a magnetic or optical disk, some other storage device, and/or any type of electronic device or system. The article 585 may comprise a processor 587 coupled to a machine-accessible medium such as a memory 589 (e.g., a memory including an electrical, optical, or electromagnetic conductor) having associated information 591 (e.g., computer program instructions, and/or other data), which when accessed, results in a machine (e.g., the processor 587) performing such actions as (simulating) circulating a coolant through a thermal conduit thermally coupled to a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices, (simulating) sensing a temperature of at least one of the plurality of electronic devices, and (simulating) adjusting a flow rate of the coolant in accordance with the temperature. The use of the term “simulating” is used here to emphasize that the activities described can be conducted under real-world conditions, or merely simulated so as to mimic real-world behavior.
  • Other actions may include indicating the temperature, determining an optimal flow rate associated with the coolant, and perhaps increasing the flow rate in accordance with sensing an increased temperature associated with one or more of the plurality of electronic devices, or decreasing the flow rate of the coolant in accordance with sensing a decreased temperature associated with one or more of the plurality of electronic devices. The flow rate of the coolant may even be adjusted to a substantially constant flow rate. In some embodiments, actions may include adjusting a volume of the coolant to maintain a substantially constant coolant pressure.
  • Implementing the apparatus, systems, and methods described herein may provide a mechanism to increase the operational time of electronic devices used in downhole applications. The use of less expensive, more widely available components that tolerate lower operational temperatures may also be enabled.
  • The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
  • Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
  • The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (34)

1. A method, comprising:
circulating a first coolant through a thermal conduit thermally coupled to a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices;
sensing a temperature of at least one of the plurality of electronic devices; and
adjusting a flow rate of the first coolant in accordance with the temperature.
2. The method of claim 1, further including:
adjusting the flow rate of the first coolant in accordance with a change in a viscosity of the first coolant.
3. The method of claim 1, wherein adjusting the flow rate of the first coolant comprises adjusting the flow rate of the first coolant to a substantially constant flow rate.
4. The method of claim 1, further including:
removing the chassis heat exchange element from a borehole;
removably coupling a charging pump to the thermal conduit; and
circulating a second coolant through the thermal conduit, wherein the second coolant has a second temperature substantially less than a first temperature of the first coolant.
5. The method of claim 1, further including:
replacing a first heat sink thermally coupled to the chassis heat exchange element with a second heat sink having a second temperature substantially less than a first temperature of the first heat sink.
6. The method of claim 1, further including:
adjusting a volume in fluid communication with the conduit to maintain a substantially constant pressure of the coolant.
7. The method of claim 1, further including:
inserting the chassis heat exchange element into a borehole.
8. An article including a machine-accessible medium having associated information, wherein the information, when accessed, results in a machine performing:
circulating a coolant through a thermal conduit thermally coupled to a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices;
sensing a temperature of at least one of the plurality of electronic devices; and
adjusting a flow rate of the coolant in accordance with the temperature.
9. The article of claim 8, wherein the information, when accessed, results in a machine performing:
indicating the temperature.
10. The article of claim 8, wherein the information, when accessed, results in a machine performing:
determining an optimal flow rate associated with the coolant.
11. The article of claim 8, wherein the information, when accessed, results in a machine performing:
increasing the flow rate in accordance with sensing an increased temperature associated with the at least one of the plurality of electronic devices; and
decreasing a flow rate of the coolant in accordance with sensing a decreased temperature associated with the at least one of the plurality of electronic devices.
12. The article of claim 8, wherein the information, when accessed, results in a machine performing:
adjusting a volume of the coolant to maintain a substantially constant coolant pressure.
13. The article of claim 8, wherein adjusting the flow rate of the coolant comprises adjusting the flow rate of the coolant to a substantially constant flow rate.
14. An apparatus, comprising:
a chassis heat exchange element including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices;
a thermal conduit thermally coupled to the chassis heat exchange element; and
a flow rate regulator to adjust a flow rate of a coolant to be circulated in the thermal conduit.
15. The apparatus of claim 14, further including:
a pump to circulate the coolant in the thermal conduit.
16. The apparatus of claim 14, wherein the thermal conduit includes:
thermally conductive flow disruptive elements.
17. The apparatus of claim 14, wherein the coolant comprises one of water and an oil.
18. The apparatus of claim 14, further including:
a feedback and control system to monitor a temperature of at least one of the plurality of electronic devices.
19. The apparatus of claim 14, further including:
a heat sink including a heat exchanger thermally coupled to the chassis heat exchange element.
20. The apparatus of claim 14, wherein the flow rate regulator is capable of adjusting the flow rate of the coolant to be a substantially constant flow rate.
21. A system, comprising:
a chassis heat exchange element to be used down-hole and including a plurality of sections thermally coupled to a corresponding plurality of electronic devices;
a thermal conduit thermally coupled to the chassis heat exchange element;
a flow rate regulator to adjust a flow rate of a coolant to be circulated in the thermal conduit; and
a collar to couple to a drill bit and to house the chassis heat exchange element.
22. The system of claim 21, further including:
a fluid expansion compensator in fluid communication with the fluid conduit.
23. The system of claim 22, wherein the fluid expansion compensator includes a spring and a piston.
24. The system of claim 21, further including:
a circuit board having a thermally conductive layer thermally coupled to the plurality of electronic devices.
25. The system of claim 21, further including:
an antenna coupled to at least one of the plurality of electronic devices.
26. The system of claim 21, further including:
a heat sink including a heat exchanger thermally coupled to the chassis heat exchange element.
27. The system of claim 21, wherein the flow rate regulator is capable of adjusting the flow rate of the coolant to be a substantially constant flow rate.
28. A system, comprising:
a chassis heat exchange element to be used down-hole and including a plurality of receiving sections thermally coupled to a corresponding plurality of electronic devices;
a thermal conduit thermally coupled to the chassis heat exchange element;
a flow rate regulator to adjust a flow rate of a coolant to be circulated in the thermal conduit; and
a tool body to couple to a logging cable and to house the chassis heat exchange element.
29. The system of claim 28, further including:
a charging pump capable of being removably fluidly coupled to the thermal conduit.
30. The system of claim 28, wherein the logging cable includes one of a wireline, a mono-cable, and a slick-line.
31. The system of claim 28, further including:
a first circuit board attached to a first side of the chassis heat exchange element; and
a second circuit board attached to a second side of the chassis heat exchange element.
32. The system of claim 28, wherein the receiving sections are to receive the plurality of electronic devices attached to the first circuit board and to the second circuit board.
33. The system of claim 28, further including:
a heat sink including a heat exchanger thermally coupled to the chassis heat exchange element.
34. The system of claim 28, wherein the flow rate regulator is capable of adjusting the flow rate of the coolant to be a substantially constant flow rate.
US11/030,263 2005-01-06 2005-01-06 Thermal management apparatus, systems, and methods Abandoned US20060144619A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/030,263 US20060144619A1 (en) 2005-01-06 2005-01-06 Thermal management apparatus, systems, and methods
EP06717670A EP1856373A1 (en) 2005-01-06 2006-01-06 Thermal management apparatus, systems, and methods
PCT/US2006/000498 WO2006074393A1 (en) 2005-01-06 2006-01-06 Thermal management apparatus, systems, and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/030,263 US20060144619A1 (en) 2005-01-06 2005-01-06 Thermal management apparatus, systems, and methods

Publications (1)

Publication Number Publication Date
US20060144619A1 true US20060144619A1 (en) 2006-07-06

Family

ID=36387200

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/030,263 Abandoned US20060144619A1 (en) 2005-01-06 2005-01-06 Thermal management apparatus, systems, and methods

Country Status (3)

Country Link
US (1) US20060144619A1 (en)
EP (1) EP1856373A1 (en)
WO (1) WO2006074393A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080289818A1 (en) * 2007-05-25 2008-11-27 Chevron Energy Technology Company open hole logging for drilling rigs
US20080314638A1 (en) * 2007-06-21 2008-12-25 Schlumberger Technology Corporation Apparatus and Methods to Dissipate Heat in a Downhole Tool
US20100155058A1 (en) * 2008-12-23 2010-06-24 Darrell Gordy Apparatus and method for monitoring a fracturing operation
US20110079391A1 (en) * 2009-10-06 2011-04-07 Sylvain Bedouet Cooling apparatus and methods for use with downhole tools
US20110272135A1 (en) * 2010-05-05 2011-11-10 Anmol Kaul Axially loaded tapered heat sink mechanism
US20110308791A1 (en) * 2010-06-18 2011-12-22 Baker Hughes Incorporated Apparatus for Use Downhole Including Devices Having Heat Carrier Channels
US20120297801A1 (en) * 2010-01-28 2012-11-29 Youhong Sun Forced cooling circulation system for drilling mud
WO2013119125A1 (en) * 2012-02-08 2013-08-15 Visuray Technology Ltd. Downhole logging tool cooling device
US20150107852A1 (en) * 2012-05-02 2015-04-23 Spartek Systems Uk Limited Downhole Device
WO2015099769A1 (en) * 2013-12-27 2015-07-02 Halliburton Energy Services, Inc. Improving reliability in a high-temperature environment
US9133685B2 (en) 2010-02-04 2015-09-15 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
CN104964845A (en) * 2015-07-10 2015-10-07 吉林大学 Simulated well experimental device and experimental method for natural gas hydrate drilling sampling
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
US20160183404A1 (en) * 2014-12-17 2016-06-23 Schlumberger Technology Corporation Heat Transferring Electronics Chassis
EP2753787A4 (en) * 2011-09-08 2016-07-13 Halliburton Energy Services Inc High temperature drilling with lower temperature rated tools
US9441475B2 (en) 2011-11-21 2016-09-13 Schlumberger Technology Corporation Heat dissipation in downhole equipment
US20170241718A1 (en) * 2016-02-22 2017-08-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
US10113415B2 (en) 2014-12-15 2018-10-30 Arthur H. Kozak Methods and apparatuses for determining true vertical depth (TVD) within a well
US10450839B2 (en) * 2017-08-15 2019-10-22 Saudi Arabian Oil Company Rapidly cooling a geologic formation in which a wellbore is formed
US10508517B2 (en) 2018-03-07 2019-12-17 Saudi Arabian Oil Company Removing scale from a wellbore
US10605052B2 (en) 2015-11-19 2020-03-31 Halliburton Energy Services, Inc. Thermal management system for downhole tools
CN111219181A (en) * 2019-11-05 2020-06-02 中国石油天然气集团有限公司 Gas-driven cooling system and method for while-drilling instrument circuit system
US20200190948A1 (en) * 2018-01-10 2020-06-18 Safe Marine Transfer, LLC Well annulus fluid expansion storage device
US10914162B2 (en) * 2019-06-30 2021-02-09 Halliburton Energy Services, Inc. Protective housing for electronics in downhole tools
US11054544B2 (en) 2017-07-24 2021-07-06 Fermi Research Alliance, Llc High-energy X-ray source and detector for wellbore inspection
US11585176B2 (en) 2021-03-23 2023-02-21 Saudi Arabian Oil Company Sealing cracked cement in a wellbore casing
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11867028B2 (en) 2021-01-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995131B2 (en) 2008-11-13 2018-06-12 Halliburton Energy Services, Inc. Downhole thermal component temperature management system and method

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711084A (en) * 1952-08-30 1955-06-21 Well Surveys Inc Refrigeration system for well logging instruments
US3038074A (en) * 1959-11-06 1962-06-05 Serge A Scherbatskoy Temperature-regulated well-logging apparatus
US3488970A (en) * 1967-04-13 1970-01-13 Schlumberger Technology Corp Electrical apparatus
US3500915A (en) * 1968-09-13 1970-03-17 Tenneco Oil Co Method of producing an oil bearing stratum of a subterranean formation in a steeply dipping reservoir
US3695055A (en) * 1970-07-15 1972-10-03 Ralph E Bruce Temperature compensating refrigerant charging device
US3757530A (en) * 1972-04-12 1973-09-11 Control Data Corp Cooling system for data processing apparatus
US4120021A (en) * 1964-07-08 1978-10-10 Cray Research, Inc. Cooling system for electronic assembly
US4248298A (en) * 1979-02-21 1981-02-03 Measurement Analysis Corporation Well logging evaporative thermal protection system
US4287957A (en) * 1980-05-27 1981-09-08 Evans Robert F Cooling a drilling tool component with a separate flow stream of reduced-temperature gaseous drilling fluid
US4375157A (en) * 1981-12-23 1983-03-01 Borg-Warner Corporation Downhole thermoelectric refrigerator
US4407136A (en) * 1982-03-29 1983-10-04 Halliburton Company Downhole tool cooling system
US4481154A (en) * 1981-03-20 1984-11-06 Cal Gavin Limited Insert for placement in a vessel and method of forming the insert
US4513352A (en) * 1984-03-20 1985-04-23 The United States Of America As Represented By The United States Department Of Energy Thermal protection apparatus
US4517459A (en) * 1981-11-02 1985-05-14 Texaco Inc. Temperature stabilization system for a radiation detector in a well logging tool
US4701751A (en) * 1984-11-09 1987-10-20 Sackett Robert L Pool alarm system
US4796699A (en) * 1988-05-26 1989-01-10 Schlumberger Technology Corporation Well tool control system and method
US4809415A (en) * 1982-11-02 1989-03-07 Tokyo Shibaura Denki Kabushiki Kaisha Method of manufacturing a heat exchange pipe
US4857694A (en) * 1988-05-06 1989-08-15 The Babcock & Wilcox Company Method and apparatus for automatic vapor cooling when shape melting a component
US5165243A (en) * 1991-06-04 1992-11-24 The United States Of America As Represented By The United States Department Of Energy Compact acoustic refrigerator
US5262921A (en) * 1990-03-03 1993-11-16 Rheinmetall Gmbh Directly cooled circuit board for an electronic power circuit
US5265677A (en) * 1992-07-08 1993-11-30 Halliburton Company Refrigerant-cooled downhole tool and method
US5509468A (en) * 1993-12-23 1996-04-23 Storage Technology Corporation Assembly for dissipating thermal energy contained in an electrical circuit element and associated method therefor
US5547028A (en) * 1994-09-12 1996-08-20 Pes, Inc. Downhole system for extending the life span of electronic components
US5554897A (en) * 1994-04-22 1996-09-10 Baker Hughes Incorporated Downhold motor cooling and protection system
US5701751A (en) * 1996-05-10 1997-12-30 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US5715895A (en) * 1996-04-23 1998-02-10 Champness; Elwood Downhole drilling tool cooling system
US5720342A (en) * 1994-09-12 1998-02-24 Pes, Inc. Integrated converter for extending the life span of electronic components
US5730217A (en) * 1994-09-12 1998-03-24 Pes, Inc. Vacuum insulated converter for extending the life span of electronic components
US5735134A (en) * 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
US5815370A (en) * 1997-05-16 1998-09-29 Allied Signal Inc Fluidic feedback-controlled liquid cooling module
US5829519A (en) * 1997-03-10 1998-11-03 Enhanced Energy, Inc. Subterranean antenna cooling system
US5834132A (en) * 1994-11-14 1998-11-10 Honda Giken Kogyo Kabushiki Kaisha Battery temperature regulating apparatus
US5931000A (en) * 1998-04-23 1999-08-03 Turner; William Evans Cooled electrical system for use downhole
US6089311A (en) * 1995-07-05 2000-07-18 Borealis Technical Limited Method and apparatus for vacuum diode heat pump
US6134892A (en) * 1998-04-23 2000-10-24 Aps Technology, Inc. Cooled electrical system for use downhole
US6188165B1 (en) * 1997-11-21 2001-02-13 Samsung Electronics Co., Ltd. Coolant buffering apparatus for CRT assembly
US6220346B1 (en) * 1999-05-29 2001-04-24 Halliburton Energy Services, Inc. Thermal insulation vessel
US6336408B1 (en) * 1999-01-29 2002-01-08 Robert A. Parrott Cooling system for downhole tools
US6341498B1 (en) * 2001-01-08 2002-01-29 Baker Hughes, Inc. Downhole sorption cooling of electronics in wireline logging and monitoring while drilling
US6354087B1 (en) * 1998-05-22 2002-03-12 Sumitomo Electric Industries, Ltd Method and apparatus for cooling superconductor
US6396191B1 (en) * 1999-03-11 2002-05-28 Eneco, Inc. Thermal diode for energy conversion
US6672093B2 (en) * 2001-01-08 2004-01-06 Baker Hughes Incorporated Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
US6942019B2 (en) * 2002-03-25 2005-09-13 Ltx Corporation Apparatus and method for circuit board liquid cooling
US20090101311A1 (en) * 2007-10-22 2009-04-23 Raytheon Company System and Method for Cooling Using Two Separate Coolants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1475407A (en) * 1975-01-15 1977-06-01 Int Computers Ltd Apparatus for stabilizing the temperature of a circuit assembly
FR2807285A1 (en) * 2000-03-29 2001-10-05 Seem Semrac Device for thermal control of high-power electronic components by circulation of coolant

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711084A (en) * 1952-08-30 1955-06-21 Well Surveys Inc Refrigeration system for well logging instruments
US3038074A (en) * 1959-11-06 1962-06-05 Serge A Scherbatskoy Temperature-regulated well-logging apparatus
US4120021A (en) * 1964-07-08 1978-10-10 Cray Research, Inc. Cooling system for electronic assembly
US3488970A (en) * 1967-04-13 1970-01-13 Schlumberger Technology Corp Electrical apparatus
US3500915A (en) * 1968-09-13 1970-03-17 Tenneco Oil Co Method of producing an oil bearing stratum of a subterranean formation in a steeply dipping reservoir
US3695055A (en) * 1970-07-15 1972-10-03 Ralph E Bruce Temperature compensating refrigerant charging device
US3757530A (en) * 1972-04-12 1973-09-11 Control Data Corp Cooling system for data processing apparatus
US4248298A (en) * 1979-02-21 1981-02-03 Measurement Analysis Corporation Well logging evaporative thermal protection system
US4287957A (en) * 1980-05-27 1981-09-08 Evans Robert F Cooling a drilling tool component with a separate flow stream of reduced-temperature gaseous drilling fluid
US4481154A (en) * 1981-03-20 1984-11-06 Cal Gavin Limited Insert for placement in a vessel and method of forming the insert
US4517459A (en) * 1981-11-02 1985-05-14 Texaco Inc. Temperature stabilization system for a radiation detector in a well logging tool
US4375157A (en) * 1981-12-23 1983-03-01 Borg-Warner Corporation Downhole thermoelectric refrigerator
US4407136A (en) * 1982-03-29 1983-10-04 Halliburton Company Downhole tool cooling system
US4809415A (en) * 1982-11-02 1989-03-07 Tokyo Shibaura Denki Kabushiki Kaisha Method of manufacturing a heat exchange pipe
US4513352A (en) * 1984-03-20 1985-04-23 The United States Of America As Represented By The United States Department Of Energy Thermal protection apparatus
US4701751A (en) * 1984-11-09 1987-10-20 Sackett Robert L Pool alarm system
US4857694A (en) * 1988-05-06 1989-08-15 The Babcock & Wilcox Company Method and apparatus for automatic vapor cooling when shape melting a component
US4796699A (en) * 1988-05-26 1989-01-10 Schlumberger Technology Corporation Well tool control system and method
US5262921A (en) * 1990-03-03 1993-11-16 Rheinmetall Gmbh Directly cooled circuit board for an electronic power circuit
US5165243A (en) * 1991-06-04 1992-11-24 The United States Of America As Represented By The United States Department Of Energy Compact acoustic refrigerator
US5265677A (en) * 1992-07-08 1993-11-30 Halliburton Company Refrigerant-cooled downhole tool and method
US5509468A (en) * 1993-12-23 1996-04-23 Storage Technology Corporation Assembly for dissipating thermal energy contained in an electrical circuit element and associated method therefor
US5554897A (en) * 1994-04-22 1996-09-10 Baker Hughes Incorporated Downhold motor cooling and protection system
US5547028A (en) * 1994-09-12 1996-08-20 Pes, Inc. Downhole system for extending the life span of electronic components
US5720342A (en) * 1994-09-12 1998-02-24 Pes, Inc. Integrated converter for extending the life span of electronic components
US5730217A (en) * 1994-09-12 1998-03-24 Pes, Inc. Vacuum insulated converter for extending the life span of electronic components
US5834132A (en) * 1994-11-14 1998-11-10 Honda Giken Kogyo Kabushiki Kaisha Battery temperature regulating apparatus
US6089311A (en) * 1995-07-05 2000-07-18 Borealis Technical Limited Method and apparatus for vacuum diode heat pump
US5715895A (en) * 1996-04-23 1998-02-10 Champness; Elwood Downhole drilling tool cooling system
US5701751A (en) * 1996-05-10 1997-12-30 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US5735134A (en) * 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
US5829519A (en) * 1997-03-10 1998-11-03 Enhanced Energy, Inc. Subterranean antenna cooling system
US5815370A (en) * 1997-05-16 1998-09-29 Allied Signal Inc Fluidic feedback-controlled liquid cooling module
US6188165B1 (en) * 1997-11-21 2001-02-13 Samsung Electronics Co., Ltd. Coolant buffering apparatus for CRT assembly
US6134892A (en) * 1998-04-23 2000-10-24 Aps Technology, Inc. Cooled electrical system for use downhole
US5931000A (en) * 1998-04-23 1999-08-03 Turner; William Evans Cooled electrical system for use downhole
US6354087B1 (en) * 1998-05-22 2002-03-12 Sumitomo Electric Industries, Ltd Method and apparatus for cooling superconductor
US6336408B1 (en) * 1999-01-29 2002-01-08 Robert A. Parrott Cooling system for downhole tools
US6396191B1 (en) * 1999-03-11 2002-05-28 Eneco, Inc. Thermal diode for energy conversion
US6220346B1 (en) * 1999-05-29 2001-04-24 Halliburton Energy Services, Inc. Thermal insulation vessel
US6341498B1 (en) * 2001-01-08 2002-01-29 Baker Hughes, Inc. Downhole sorption cooling of electronics in wireline logging and monitoring while drilling
US6672093B2 (en) * 2001-01-08 2004-01-06 Baker Hughes Incorporated Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US6942019B2 (en) * 2002-03-25 2005-09-13 Ltx Corporation Apparatus and method for circuit board liquid cooling
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
US6769487B2 (en) * 2002-12-11 2004-08-03 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US20090101311A1 (en) * 2007-10-22 2009-04-23 Raytheon Company System and Method for Cooling Using Two Separate Coolants

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836974B2 (en) * 2007-05-25 2010-11-23 Chevron U.S.A. Inc. Open hole logging for drilling rigs
US20080289818A1 (en) * 2007-05-25 2008-11-27 Chevron Energy Technology Company open hole logging for drilling rigs
US8020633B2 (en) 2007-05-25 2011-09-20 Chevron U.S.A. Inc. Simultaneous drilling and open hole wireline logging for drilling rigs
US20110024109A1 (en) * 2007-05-25 2011-02-03 Chevron U.S.A. Inc. Simultaneous Drilling and Open Hole Wireline Logging for Drilling Rigs
GB2464409A (en) * 2007-06-21 2010-04-21 Schlumberger Holdings Apparatus and methods to dissipate heat in a downhole tool
US7806173B2 (en) 2007-06-21 2010-10-05 Schlumberger Technology Corporation Apparatus and methods to dissipate heat in a downhole tool
RU2468199C2 (en) * 2007-06-21 2012-11-27 Шлюмбергер Текнолоджи Б.В. Device and method of heat dissipation in well tool
GB2464409B (en) * 2007-06-21 2011-08-24 Schlumberger Holdings Apparatus and methods to dissipate heat in a downhole tool
WO2009002702A1 (en) * 2007-06-21 2008-12-31 Schlumberger Canada Limited Apparatus and methods to dissipate heat in a downhole tool
US20080314638A1 (en) * 2007-06-21 2008-12-25 Schlumberger Technology Corporation Apparatus and Methods to Dissipate Heat in a Downhole Tool
NO343614B1 (en) * 2007-06-21 2019-04-15 Schlumberger Technology Bv Device and method for dissipating heat in a downhole tool
US20100155058A1 (en) * 2008-12-23 2010-06-24 Darrell Gordy Apparatus and method for monitoring a fracturing operation
US8631867B2 (en) * 2008-12-23 2014-01-21 Halliburton Energy Services, Inc. Methods for cooling measuring devices in high temperature wells
US9382779B2 (en) 2009-08-18 2016-07-05 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8567500B2 (en) 2009-10-06 2013-10-29 Schlumberger Technology Corporation Cooling apparatus and methods for use with downhole tools
WO2011044071A3 (en) * 2009-10-06 2011-08-04 Schlumberger Canada Limited Cooling apparatus and methods for use with downhole tools
US20110079391A1 (en) * 2009-10-06 2011-04-07 Sylvain Bedouet Cooling apparatus and methods for use with downhole tools
US20120297801A1 (en) * 2010-01-28 2012-11-29 Youhong Sun Forced cooling circulation system for drilling mud
US9062509B2 (en) * 2010-01-28 2015-06-23 Jilin University Forced cooling circulation system for drilling mud
US9133685B2 (en) 2010-02-04 2015-09-15 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8322411B2 (en) * 2010-05-05 2012-12-04 Schlumberger Technology Corporation Axially loaded tapered heat sink mechanism
US20110272135A1 (en) * 2010-05-05 2011-11-10 Anmol Kaul Axially loaded tapered heat sink mechanism
US20110308791A1 (en) * 2010-06-18 2011-12-22 Baker Hughes Incorporated Apparatus for Use Downhole Including Devices Having Heat Carrier Channels
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
US9605507B2 (en) 2011-09-08 2017-03-28 Halliburton Energy Services, Inc. High temperature drilling with lower temperature rated tools
EP2753787A4 (en) * 2011-09-08 2016-07-13 Halliburton Energy Services Inc High temperature drilling with lower temperature rated tools
US9441475B2 (en) 2011-11-21 2016-09-13 Schlumberger Technology Corporation Heat dissipation in downhole equipment
US20150345254A1 (en) * 2012-02-08 2015-12-03 Visuray Technology Ltd. Downhole logging tool cooling device
GB2513072A (en) * 2012-02-08 2014-10-15 Visuray Technology Ltd Downhole logging tool cooling device
WO2013119125A1 (en) * 2012-02-08 2013-08-15 Visuray Technology Ltd. Downhole logging tool cooling device
US10012054B2 (en) * 2012-02-08 2018-07-03 Visuray Technology Ltd. Downhole logging tool cooling device
GB2513072B (en) * 2012-02-08 2015-06-10 Visuray Technology Ltd Downhole logging tool cooling device
NO338979B1 (en) * 2012-02-08 2016-11-07 Visuray Tech Ltd Apparatus and method for cooling downhole tools, as well as using a pre-cooled solid cooling source body as a cooling source for a cooling circuit thermally connected to a downhole tool
US20150107852A1 (en) * 2012-05-02 2015-04-23 Spartek Systems Uk Limited Downhole Device
US9784092B2 (en) * 2012-05-02 2017-10-10 Spartek Systems Uk Limited Downhole control device
WO2015099769A1 (en) * 2013-12-27 2015-07-02 Halliburton Energy Services, Inc. Improving reliability in a high-temperature environment
US10024152B2 (en) 2013-12-27 2018-07-17 Halliburton Energy Services, Inc. Improving reliability in a high-temperature environment
US10113415B2 (en) 2014-12-15 2018-10-30 Arthur H. Kozak Methods and apparatuses for determining true vertical depth (TVD) within a well
US9611723B2 (en) * 2014-12-17 2017-04-04 Schlumberger Technology Corporation Heat transferring electronics chassis
US20160183404A1 (en) * 2014-12-17 2016-06-23 Schlumberger Technology Corporation Heat Transferring Electronics Chassis
CN104964845A (en) * 2015-07-10 2015-10-07 吉林大学 Simulated well experimental device and experimental method for natural gas hydrate drilling sampling
US10605052B2 (en) 2015-11-19 2020-03-31 Halliburton Energy Services, Inc. Thermal management system for downhole tools
US10415891B2 (en) * 2016-02-22 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
US20170241718A1 (en) * 2016-02-22 2017-08-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
US11054544B2 (en) 2017-07-24 2021-07-06 Fermi Research Alliance, Llc High-energy X-ray source and detector for wellbore inspection
US10724337B2 (en) 2017-08-15 2020-07-28 Saudi Arabian Oil Company Rapidly cooling a geologic formation in which a wellbore is formed
US10724338B2 (en) 2017-08-15 2020-07-28 Saudi Arabian Oil Company Rapidly cooling a geologic formation in which a wellbore is formed
US10450839B2 (en) * 2017-08-15 2019-10-22 Saudi Arabian Oil Company Rapidly cooling a geologic formation in which a wellbore is formed
US11549340B2 (en) * 2018-01-10 2023-01-10 Safe Marine Transfer, LLC Well annulus fluid expansion storage device
US20200190948A1 (en) * 2018-01-10 2020-06-18 Safe Marine Transfer, LLC Well annulus fluid expansion storage device
US10508517B2 (en) 2018-03-07 2019-12-17 Saudi Arabian Oil Company Removing scale from a wellbore
US10677021B2 (en) 2018-03-07 2020-06-09 Saudi Arabian Oil Company Removing scale from a wellbore
US10677020B2 (en) 2018-03-07 2020-06-09 Saudi Arabian Oil Company Removing scale from a wellbore
US10914162B2 (en) * 2019-06-30 2021-02-09 Halliburton Energy Services, Inc. Protective housing for electronics in downhole tools
CN111219181A (en) * 2019-11-05 2020-06-02 中国石油天然气集团有限公司 Gas-driven cooling system and method for while-drilling instrument circuit system
US11867028B2 (en) 2021-01-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11585176B2 (en) 2021-03-23 2023-02-21 Saudi Arabian Oil Company Sealing cracked cement in a wellbore casing
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Also Published As

Publication number Publication date
WO2006074393A1 (en) 2006-07-13
EP1856373A1 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US20060144619A1 (en) Thermal management apparatus, systems, and methods
US8024936B2 (en) Cooling apparatus, systems, and methods
US9256045B2 (en) Open loop cooling system and method for downhole tools
US7609518B2 (en) Cooling computer components
US6978828B1 (en) Heat pipe cooling system
EP2893270A1 (en) Apparatus and method for geothermally cooling electronic devices installed in a subsurface environment
EP3508945B1 (en) Solid state drive apparatus and data storage system having the same
NO20130005A1 (en) Device for use downhole which includes equipment having heat carrier ducts
Fleischer Cooling our insatiable demand for data
MX2014007773A (en) Thermal buffering of downhole equipment with phase change material.
US9441475B2 (en) Heat dissipation in downhole equipment
US11795809B2 (en) Electronics enclosure for downhole tools
WO2011056171A1 (en) Open loop cooling system and method for downhole tools
RU2649196C1 (en) Hardware, containing the mounting plate and the related system and method
Snider et al. RFID actuation of self-powered downhole tools
EP3958660A1 (en) Subsea electronic shock-absorbing assembly
Johnston Early Detection
Liu et al. Managing the High Temperature Risk in a Horizontal HPHT Deepwater Well
Gooneratne et al. Fabrication and Packaging of Downhole Instruments
Parker et al. Taking the Heat: Logging While Drilling at Extreme Temperatures
Soule The practical engineer [Give priority to heat sinks to reduce design time]
TW202326048A (en) Immersion cooling systems, apparatus, and related methods
Stroehlein Design Considerations for a 200° C MWD System

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STORM, BRUCE H.;FREEMAN, JAMES J;REEL/FRAME:016163/0290;SIGNING DATES FROM 20041103 TO 20041209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION