US20060083968A1 - Fuel cell assembly operating method and fuel cell system - Google Patents

Fuel cell assembly operating method and fuel cell system Download PDF

Info

Publication number
US20060083968A1
US20060083968A1 US11/248,449 US24844905A US2006083968A1 US 20060083968 A1 US20060083968 A1 US 20060083968A1 US 24844905 A US24844905 A US 24844905A US 2006083968 A1 US2006083968 A1 US 2006083968A1
Authority
US
United States
Prior art keywords
fuel cell
cell assembly
temperature
refrigerant
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/248,449
Other versions
US7871731B2 (en
Inventor
Shigeru Inai
Katsumi Hayashi
Hiromichi Yoshida
Ryo Jinba
Minoru Koshinuma
Naoki Mitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITSUTA, NAOKI, HAYASHI, KATSUMI, INAI, SHIGERU, JINBA, RYO, KOSHINUMA, MINORU, YOSHIDA, HIROMICHI
Publication of US20060083968A1 publication Critical patent/US20060083968A1/en
Application granted granted Critical
Publication of US7871731B2 publication Critical patent/US7871731B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell assembly operating method and a fuel cell system adapted for power generation in a subfreezing environment.
  • a solid polymer type fuel cell assembly 100 has a solid polymer electrolyte membrane 101 , a hydrogen electrode 102 and an oxygen electrode 103 that have catalytic action, which are provided on both sides of the membrane 101 , and separators 104 and 105 that constitute supply passages of hydrogen and oxygen (contained in air), which are reactive gases, between the electrodes 102 and 103 .
  • a hydrogen gas H 2 supplied to a supply passage 106 formed by the separator 104 emits electrons e ⁇ at the hydrogen electrode 102 , turning into hydrogen ions H + .
  • the hydrogen ions H + conduct in the solid polymer electrolyte membrane 101 .
  • the reaction represented by expression (1) given below takes place from an oxygen gas O 2 in the air supplied to a supply passage 107 formed by the separator 105 and an electron e ⁇ and a hydrogen ion H+supplied from the oxygen electrode 103 , thereby generating water (H 2 O).
  • a method of operating a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cells, including a first step for determining whether the temperature of the fuel cell assembly is lower than a predetermined temperature, when a stop condition has been satisfied while the fuel cell assembly is performing a power generating operation, and a second step for continuing the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stopping the power generating operation of the fuel cell assembly.
  • the stop condition of the fuel cell assembly when the stop condition of the fuel cell assembly is satisfied while the fuel cell assembly is performing the power generating operation, it is determined in the first step whether the temperature of the fuel cell assembly is lower than the predetermined temperature. If the power generation of the fuel cell assembly is immediately stopped when it has been determined that the temperature of the fuel cell assembly is lower than the predetermined temperature, then the water generated during the power generation freezes in fuel cells. For this reason, if the temperature of the fuel cell assembly is lower than the predetermined temperature, the power generating operation of the fuel cell assembly is continued until the temperature of the fuel cell assembly reaches the predetermined temperature or higher, and then the power generation of the fuel cell assembly is stopped, with the second step.
  • the water generated during the power generation of the fuel cell assembly is in the form of a gas or a liquid, so that most generated water is drained out of the fuel cells, with only a very small amount of the generated water remaining in the fuel cells.
  • the deterioration of the power generating performance of the fuel cell assembly caused by the freezing of the generated water remaining in the fuel cells can be restrained.
  • an alarm is given by an alarm device while the power generating operation of the fuel cell assembly is being continued in the second step.
  • This arrangement makes it possible to prevent a user from feeling nervous or insecure when the fuel cell assembly does not stop despite the stop condition having been satisfied and the power generating operation of the fuel cell assembly is continued in the second step.
  • scavenging is performed by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped in the second step.
  • the scavenging carried out after the power generation of the fuel cell assembly is stopped further reduces the volume of the generated water remaining in the fuel cells to be extremely small, making it possible to restrain the deterioration of the power generating performance of the fuel cell assembly for the next power generating operation.
  • a fuel cell system having a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cell assembly cells, a power generation controlling means for controlling the operation of the fuel cell assembly, and a fuel cell assembly temperature grasping means for grasping the temperature of the fuel cell assembly, wherein the power generation controlling means determines whether the temperature of the fuel cell assembly is lower than a predetermined temperature when a stop condition has been satisfied while the fuel cell assembly is generating power, continues the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stops the power generation of the fuel cell assembly.
  • the fuel cell system is provided with an alarm device for giving an alarm while the power generating operation of the fuel cell assembly is being continued by the power generation controlling means until the temperature detected by the temperature detector reaches the predetermined temperature or higher.
  • This arrangement makes it possible to prevent a user from feeling nervous or insecure when the fuel cell assembly does not stop despite the stop condition having been satisfied and the power generating operation of the fuel cell assembly is continued by the power generation controlling means.
  • the power generation controlling means performs scavenging by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped.
  • the scavenging carried out after the power generation of the fuel cell assembly is stopped further reduces the volume of the generated water remaining in the fuel cells to be extremely small, making it possible to restrain the deterioration of the power generating performance of the fuel cell assembly for the next power generating operation.
  • the fuel cell system is provided with a circulation passage provided in the fuel cell assembly, a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly, a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near the inlet to the fuel cell assembly, and a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near the outlet from the fuel cell assembly, wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
  • an increase in the temperature of the fuel cell assembly results in a higher temperature rise of a refrigerant passing through the fuel cell assembly of the circulation circuit, leading to a larger difference between the temperature detected by the refrigerant inlet temperature sensor and the temperature detected by the refrigerant outlet temperature sensor.
  • the predetermined temperature is set to a value that exceeds the freezing temperature of water produced during power generation. This increases the effect of preventing water remaining inside the fuel cell from freezing.
  • FIG. 1 is a general block diagram of a fuel cell system
  • FIG. 2 is a control flowchart of the procedure for stopping a power generating operation of a fuel cell assembly
  • FIG. 3 is a diagram showing the internal construction of the fuel cell assembly.
  • FIG. 1 is a general block diagram of a fuel cell system
  • FIG. 2 is a control flowchart of the procedure for stopping power generation of a fuel cell assembly.
  • a fuel cell system is adapted to be mounted in a fuel cell car, and includes a fuel cell assembly (fuel cell stack) 1 constructed by connecting a plurality of fuel cells 2 , an air compressor 4 for supplying air to the fuel cell assembly 1 through an air supply pipe 3 , a hydrogen tank 6 for supplying hydrogen to the fuel cell assembly 1 through a hydrogen supply pipe 5 , a pump 8 for cooling the fuel cell assembly 1 by circulating a refrigerant in a circulation passage 7 , a hydrogen valve 10 for adjusting the supply amount of hydrogen, an exhaust valve 11 for adjusting the amount of exhaust from the hydrogen supply pipe 5 , an ejector 12 for collecting hydrogen contained in the exhaust from the hydrogen supply pipe 5 and adding the collected hydrogen back into the hydrogen supply pipe 5 on the upstream side of the fuel cell assembly 1 , various sensors 15 and 16 for detecting output voltages or the like of the fuel cells 2 , a refrigerant inlet temperature sensor 20 for detecting the temperature of a refrigerant in the circulation
  • the detection signals of the various sensors 15 and 16 , the refrigerant inlet temperature sensor 20 , and the refrigerant outlet temperature sensor 21 are supplied to the control unit 30 .
  • the operations of the air compressor 4 , the pump 8 , the hydrogen valve 10 , the exhaust valve 11 , and the alarm 13 are controlled by control signals issued from the control unit 30 .
  • the control unit 30 proceeds from STEP 1 to STEP 2 to grasp the temperature of the fuel cell assembly 1 (hereinafter referred to as “the FC internal temperature”) from the difference between a detected temperature T in of the refrigerant inlet temperature sensor 20 and a detected temperature T out of the refrigerant outlet temperature sensor 21 .
  • the construction which includes the refrigerant inlet temperature sensor 20 and the refrigerant outlet temperature sensor 21 and in which the control unit 30 grasps the FC internal temperature from the difference between the detected temperature T in of the refrigerant inlet temperature sensor 20 and the detected temperature T out of the refrigerant outlet temperature sensor 21 corresponds to the fuel cell temperature grasping means in the present invention.
  • control unit 30 determines whether the FC internal temperature is a predetermined temperature or higher, the predetermined temperature having been set to be higher than a temperature at which water produced during the power generation of the fuel cell assembly 1 freezes.
  • FC internal temperature is found to be the predetermined temperature or higher in STEP 3 , then the majority of the produced water is exhausted from the fuel cells 2 , because the water produced during the power generation is in the form of a gas or liquid, thus leaving an extremely small volume of the produced water in the fuel cells 2 . In this case, therefore, even if the internal temperature of the fuel cell assembly 1 lowers below zero after the power generation of the fuel cell assembly 1 is stopped, the amount of the produced water that freezes in the fuel cells 2 will be extremely small, thus minimizing deterioration of the power generating performance of the fuel cell assembly 1 at a restart.
  • the control unit 30 branches from STEP 3 to STEP 20 wherein it immediately stops the power generating operation of the fuel cell assembly 1 and proceeds to STEP 11 to carry out the processing for stopping the system.
  • the processing for stopping the system stops the operations of various electronic components, including the control unit 30 itself.
  • the control unit 30 proceeds to STEP 4 .
  • the FC internal temperature reaches the predetermined temperature or higher due to the heat generated by the power generation. This means that the FC internal temperature is found to be lower than the predetermined temperature in STEP 3 in such a case where the IG switch is turned off immediately after a user turns the IG switch on to start the power generating operation of the fuel cell assembly 1 in a subfreezing environment.
  • the power generating operation of the fuel cell assembly 1 is performed while the FC internal temperature is lower than the predetermined temperature, the water produced from the power generating operation will not be exhausted from the fuel cells 2 , but will immediately freeze on oxygen electrodes in the fuel cells 2 . As a result, the conductivity of the hydrogen ions in the polymer electrolyte membranes of the fuel cells 2 deteriorates. Hence, the power generating performance of the fuel cell assembly 1 deteriorates if the fuel cell assembly 1 is restarted with the produced water frozen in the fuel cells 2 , as described above.
  • the control unit 30 adjusts the condition for the power generation of the fuel cell assembly 1 in STEP 4 so as to raise the FC internal temperature, and turns the alarm 13 on (starts the operation) in STEP 5 .
  • the control unit 30 grasps the FC internal temperature in STEP 6 in the same manner as that in STEP 2 described above to determine in STEP 7 whether the FC internal temperature has reached the predetermined temperature or more.
  • the alarm 13 an LED display or buzzer mounted on an instrument panel of a fuel cell car is used.
  • the control unit 30 proceeds to STEP 8 wherein it stops the power generating operation of the fuel cell assembly 1 .
  • the produced water remaining in each fuel cell 2 is in the form of a gas or liquid, so that the drainage of the produced water remaining in the fuel cells 2 can be promoted by scavenging implemented by supplying a reactive gas to both electrodes (the hydrogen electrodes and the oxygen electrodes) in the subsequent STEP 9 (the processing for scavenging).
  • the control unit 30 turns the alarm 13 off and performs the processing for stopping the system in STEP 11 .
  • the processing for grasping the FC internal temperature in STEP 2 and determining whether the FC internal temperature is lower than the predetermined temperature in STEP 3 corresponds to the first step in the present invention.
  • the processing for continuing the power generating operation of the fuel cell assembly 1 until the FC internal temperature reaches the predetermined temperature or more in STEP 4 to STEP 8 if the FC internal temperature is found to be lower than the predetermined temperature in STEP 3 corresponds to the second step in the present invention.
  • the present embodiment has shown the fuel cell system mounted in a car.
  • the present invention is, however, applicable to any other system as long as it uses fuel cells in a subfreezing environment.
  • the control unit 30 has grasped the internal temperature of the fuel cell assembly 1 (the FC internal temperature) from the difference between the detected temperature T in of the refrigerant inlet temperature sensor 20 and a detected temperature T out of the refrigerant outlet temperature sensor 21 .
  • the internal temperature of the fuel cell assembly 1 may be grasped from detected temperatures of a temperature sensor 40 provided in an air supply pipe 3 at near the outlet from the fuel cell assembly 1 or a temperature sensor 41 provided in a hydrogen supply pipe 5 at near the outlet from the fuel cell assembly 1 , as shown in FIG. 1 .
  • temperature sensors may be provided in the fuel cells 2 to directly detect the internal temperature of the fuel cell assembly 1 .
  • both electrodes may be scavenged before the processing for stopping the system is carried out. Scavenging both electrodes further reduces the produced water remaining in the fuel cells 2 to an extremely small amount, making it possible to minimize deterioration of the power generating performance of the fuel cell assembly 1 .

Abstract

A method of operating a fuel cell assembly and a fuel cell system use a simple construction to restrain deterioration of power generating performance of a fuel cell assembly at a startup in a subfreezing environment. If an ignition switch is turned off is STEP 1, a control unit determines in STEP 3 whether the temperature of a fuel cell assembly (the internal temperature of the fuel cell assembly) is lower than a predetermined temperature, which is higher than the temperature at which the water produced during power generation freezes. If the internal temperature of the fuel cell assembly is the predetermined temperature or higher, then the processing proceeds to STEP 4 wherein a power generating condition is adjusted to cause the internal temperature of the fuel cell assembly to rise. In STEP 5, an alarm device is actuated. The power generation is continued until the internal temperature of the fuel cell assembly reaches the predetermined temperature or higher, and then the power generation is stopped in STEP 8.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a fuel cell assembly operating method and a fuel cell system adapted for power generation in a subfreezing environment.
  • 2. Description of the Related Art
  • Referring to FIG. 3, a solid polymer type fuel cell assembly 100 has a solid polymer electrolyte membrane 101, a hydrogen electrode 102 and an oxygen electrode 103 that have catalytic action, which are provided on both sides of the membrane 101, and separators 104 and 105 that constitute supply passages of hydrogen and oxygen (contained in air), which are reactive gases, between the electrodes 102 and 103.
  • A hydrogen gas H2 supplied to a supply passage 106 formed by the separator 104 emits electrons e at the hydrogen electrode 102, turning into hydrogen ions H+. The hydrogen ions H+ conduct in the solid polymer electrolyte membrane 101. Meanwhile, in the oxygen electrode 103, the reaction represented by expression (1) given below takes place from an oxygen gas O2 in the air supplied to a supply passage 107 formed by the separator 105 and an electron e and a hydrogen ion H+supplied from the oxygen electrode 103, thereby generating water (H2O).
    1/2O2+2H++2e→H2O  (1)
  • When starting up the fuel cell assembly 100 in a subfreezing environment, if water generated according to the above expression (1) during previous power generation still remains in the fuel cell assembly 100, the remaining water freezes on the oxygen electrode 103, inconveniently leading to deteriorated conductivity of the hydrogen ions H+ in the polymer electrolyte membrane 101. This results in deteriorated power generating performance of the fuel cell assembly 100.
  • As a method for thawing ice in a fuel cell assembly by increasing the temperature of a fuel cell stack when starting up a fuel cell assembly in a subfreezing environment to solve the aforesaid problem, there has been proposed, for example, a method for heating the air supplied to a fuel cell stack by a heater to raise the temperature of the fuel cell stack (refer to, e.g., Japanese Unexamined Patent Application Publication No. 2002-93445).
  • However, providing the heater for heating air, as mentioned above, inconveniently complicates the construction of a fuel cell system and also increases the number of components.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a method of operating a fuel cell assembly and a fuel cell system that use a simple construction to solve the problems described above and restrain deterioration of the power generating performance of a fuel cell assembly when starting up the fuel cell assembly in a subfreezing environment.
  • To this end, according to one aspect of the present invention, there is provided a method of operating a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cells, including a first step for determining whether the temperature of the fuel cell assembly is lower than a predetermined temperature, when a stop condition has been satisfied while the fuel cell assembly is performing a power generating operation, and a second step for continuing the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stopping the power generating operation of the fuel cell assembly.
  • With this arrangement, when the stop condition of the fuel cell assembly is satisfied while the fuel cell assembly is performing the power generating operation, it is determined in the first step whether the temperature of the fuel cell assembly is lower than the predetermined temperature. If the power generation of the fuel cell assembly is immediately stopped when it has been determined that the temperature of the fuel cell assembly is lower than the predetermined temperature, then the water generated during the power generation freezes in fuel cells. For this reason, if the temperature of the fuel cell assembly is lower than the predetermined temperature, the power generating operation of the fuel cell assembly is continued until the temperature of the fuel cell assembly reaches the predetermined temperature or higher, and then the power generation of the fuel cell assembly is stopped, with the second step. In this case, the water generated during the power generation of the fuel cell assembly is in the form of a gas or a liquid, so that most generated water is drained out of the fuel cells, with only a very small amount of the generated water remaining in the fuel cells. Thus, when restarting the fuel cell assembly in a subfreezing environment thereafter, the deterioration of the power generating performance of the fuel cell assembly caused by the freezing of the generated water remaining in the fuel cells can be restrained.
  • Preferably, an alarm is given by an alarm device while the power generating operation of the fuel cell assembly is being continued in the second step.
  • This arrangement makes it possible to prevent a user from feeling nervous or insecure when the fuel cell assembly does not stop despite the stop condition having been satisfied and the power generating operation of the fuel cell assembly is continued in the second step.
  • Preferably, scavenging is performed by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped in the second step.
  • With this arrangement, the scavenging carried out after the power generation of the fuel cell assembly is stopped further reduces the volume of the generated water remaining in the fuel cells to be extremely small, making it possible to restrain the deterioration of the power generating performance of the fuel cell assembly for the next power generating operation.
  • According to another aspect of the present invention, there is provided a fuel cell system having a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cell assembly cells, a power generation controlling means for controlling the operation of the fuel cell assembly, and a fuel cell assembly temperature grasping means for grasping the temperature of the fuel cell assembly, wherein the power generation controlling means determines whether the temperature of the fuel cell assembly is lower than a predetermined temperature when a stop condition has been satisfied while the fuel cell assembly is generating power, continues the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stops the power generation of the fuel cell assembly.
  • With this arrangement, when the stop condition is satisfied while the fuel cell assembly is generating power, if the temperature of the fuel cell assembly grasped by the fuel cell assembly temperature grasping means is lower than the predetermined temperature, then the power generating operation is continued by the power generation controlling means until the temperature of the fuel cell assembly reaches the predetermined temperature or higher, and then the power generating operation of the fuel cell assembly is stopped. Thus, most of the water generated during the power generation is in the form of a gas or a liquid and drained out of the fuel cells, with only a very small amount of the generated water remaining in the fuel cells. Hence, when restarting the fuel cell assembly in a subfreezing environment thereafter, the deterioration of the power generating performance of the fuel cell assembly caused by the freezing of the generated water remaining in the fuel cells can be restrained.
  • Preferably, the fuel cell system is provided with an alarm device for giving an alarm while the power generating operation of the fuel cell assembly is being continued by the power generation controlling means until the temperature detected by the temperature detector reaches the predetermined temperature or higher.
  • This arrangement makes it possible to prevent a user from feeling nervous or insecure when the fuel cell assembly does not stop despite the stop condition having been satisfied and the power generating operation of the fuel cell assembly is continued by the power generation controlling means.
  • Preferably, the power generation controlling means performs scavenging by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped.
  • With this arrangement, the scavenging carried out after the power generation of the fuel cell assembly is stopped further reduces the volume of the generated water remaining in the fuel cells to be extremely small, making it possible to restrain the deterioration of the power generating performance of the fuel cell assembly for the next power generating operation.
  • Preferably, the fuel cell system is provided with a circulation passage provided in the fuel cell assembly, a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly, a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near the inlet to the fuel cell assembly, and a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near the outlet from the fuel cell assembly, wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
  • With this arrangement, an increase in the temperature of the fuel cell assembly results in a higher temperature rise of a refrigerant passing through the fuel cell assembly of the circulation circuit, leading to a larger difference between the temperature detected by the refrigerant inlet temperature sensor and the temperature detected by the refrigerant outlet temperature sensor. This allows the fuel cell assembly temperature grasping means to grasp the temperature of the fuel cell assembly from the difference between the temperature detected by the refrigerant inlet temperature sensor and the temperature detected by the refrigerant outlet temperature sensor.
  • Preferably, in the method of operating a fuel cell assembly and the fuel cell system, the predetermined temperature is set to a value that exceeds the freezing temperature of water produced during power generation. This increases the effect of preventing water remaining inside the fuel cell from freezing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a general block diagram of a fuel cell system;
  • FIG. 2 is a control flowchart of the procedure for stopping a power generating operation of a fuel cell assembly; and
  • FIG. 3 is a diagram showing the internal construction of the fuel cell assembly.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • With reference to FIGS. 1 and 2, an embodiment of the present invention will be explained. FIG. 1 is a general block diagram of a fuel cell system, and FIG. 2 is a control flowchart of the procedure for stopping power generation of a fuel cell assembly.
  • Referring to FIG. 1, a fuel cell system according to the present embodiment is adapted to be mounted in a fuel cell car, and includes a fuel cell assembly (fuel cell stack) 1 constructed by connecting a plurality of fuel cells 2, an air compressor 4 for supplying air to the fuel cell assembly 1 through an air supply pipe 3, a hydrogen tank 6 for supplying hydrogen to the fuel cell assembly 1 through a hydrogen supply pipe 5, a pump 8 for cooling the fuel cell assembly 1 by circulating a refrigerant in a circulation passage 7, a hydrogen valve 10 for adjusting the supply amount of hydrogen, an exhaust valve 11 for adjusting the amount of exhaust from the hydrogen supply pipe 5, an ejector 12 for collecting hydrogen contained in the exhaust from the hydrogen supply pipe 5 and adding the collected hydrogen back into the hydrogen supply pipe 5 on the upstream side of the fuel cell assembly 1, various sensors 15 and 16 for detecting output voltages or the like of the fuel cells 2, a refrigerant inlet temperature sensor 20 for detecting the temperature of a refrigerant in the circulation passage 7 at near the inlet to the fuel cell assembly 1, a refrigerant outlet temperature sensor 21 for detecting the temperature of the refrigerant in the circulation passage 7 at near the outlet from the fuel cell assembly 1, an alarm 13, and a control unit 30 (including the function of the power generation controlling means in the present invention) for controlling the entire operation of the fuel cell system.
  • The detection signals of the various sensors 15 and 16, the refrigerant inlet temperature sensor 20, and the refrigerant outlet temperature sensor 21 are supplied to the control unit 30. The operations of the air compressor 4, the pump 8, the hydrogen valve 10, the exhaust valve 11, and the alarm 13 are controlled by control signals issued from the control unit 30.
  • Referring now to the flowchart shown in FIG. 2, the procedure of controlling the fuel cell assembly 1 by the control unit 30 when stopping the power generation of the fuel cell assembly 1 will be explained.
  • If an ignition (IG) switch is turned off by a driver of a vehicle while the fuel cell assembly 1 is generating power (corresponding to the stop condition in the present invention), then the control unit 30 proceeds from STEP 1 to STEP 2 to grasp the temperature of the fuel cell assembly 1 (hereinafter referred to as “the FC internal temperature”) from the difference between a detected temperature Tin of the refrigerant inlet temperature sensor 20 and a detected temperature Tout of the refrigerant outlet temperature sensor 21.
  • The construction which includes the refrigerant inlet temperature sensor 20 and the refrigerant outlet temperature sensor 21 and in which the control unit 30 grasps the FC internal temperature from the difference between the detected temperature Tin of the refrigerant inlet temperature sensor 20 and the detected temperature Tout of the refrigerant outlet temperature sensor 21 corresponds to the fuel cell temperature grasping means in the present invention.
  • In the subsequent STEP 3, the control unit 30 determines whether the FC internal temperature is a predetermined temperature or higher, the predetermined temperature having been set to be higher than a temperature at which water produced during the power generation of the fuel cell assembly 1 freezes.
  • If the FC internal temperature is found to be the predetermined temperature or higher in STEP 3, then the majority of the produced water is exhausted from the fuel cells 2, because the water produced during the power generation is in the form of a gas or liquid, thus leaving an extremely small volume of the produced water in the fuel cells 2. In this case, therefore, even if the internal temperature of the fuel cell assembly 1 lowers below zero after the power generation of the fuel cell assembly 1 is stopped, the amount of the produced water that freezes in the fuel cells 2 will be extremely small, thus minimizing deterioration of the power generating performance of the fuel cell assembly 1 at a restart.
  • The control unit 30 branches from STEP 3 to STEP 20 wherein it immediately stops the power generating operation of the fuel cell assembly 1 and proceeds to STEP 11 to carry out the processing for stopping the system. The processing for stopping the system stops the operations of various electronic components, including the control unit 30 itself.
  • Meanwhile, if the FC internal temperature is found to be lower than the predetermined temperature in STEP 3, then the control unit 30 proceeds to STEP 4. When the power generation of the fuel cell assembly 1 is continued for a certain time, the FC internal temperature reaches the predetermined temperature or higher due to the heat generated by the power generation. This means that the FC internal temperature is found to be lower than the predetermined temperature in STEP 3 in such a case where the IG switch is turned off immediately after a user turns the IG switch on to start the power generating operation of the fuel cell assembly 1 in a subfreezing environment.
  • If the power generating operation of the fuel cell assembly 1 is performed while the FC internal temperature is lower than the predetermined temperature, the water produced from the power generating operation will not be exhausted from the fuel cells 2, but will immediately freeze on oxygen electrodes in the fuel cells 2. As a result, the conductivity of the hydrogen ions in the polymer electrolyte membranes of the fuel cells 2 deteriorates. Hence, the power generating performance of the fuel cell assembly 1 deteriorates if the fuel cell assembly 1 is restarted with the produced water frozen in the fuel cells 2, as described above.
  • To avoid such a problem, the control unit 30 adjusts the condition for the power generation of the fuel cell assembly 1 in STEP 4 so as to raise the FC internal temperature, and turns the alarm 13 on (starts the operation) in STEP 5. In the loop of the subsequent STEP 6 and STEP 7, the control unit 30 grasps the FC internal temperature in STEP 6 in the same manner as that in STEP 2 described above to determine in STEP 7 whether the FC internal temperature has reached the predetermined temperature or more. As the alarm 13, an LED display or buzzer mounted on an instrument panel of a fuel cell car is used.
  • If the FC internal temperature is found to be the predetermined temperature or higher in STEP 7, then the control unit 30 proceeds to STEP 8 wherein it stops the power generating operation of the fuel cell assembly 1. At this time, the produced water remaining in each fuel cell 2 is in the form of a gas or liquid, so that the drainage of the produced water remaining in the fuel cells 2 can be promoted by scavenging implemented by supplying a reactive gas to both electrodes (the hydrogen electrodes and the oxygen electrodes) in the subsequent STEP 9 (the processing for scavenging).
  • Thus, when the fuel cell assembly 1 is started up thereafter, the power generating performance of the fuel cell assembly 1 can be restrained from deterioration caused by freezing of the produced water remaining in the fuel cells 2 when the internal temperature of the fuel cell assembly 1 lowers down below zero. In the following STEP 10, the control unit 30 turns the alarm 13 off and performs the processing for stopping the system in STEP 11.
  • The processing for grasping the FC internal temperature in STEP 2 and determining whether the FC internal temperature is lower than the predetermined temperature in STEP 3 corresponds to the first step in the present invention. The processing for continuing the power generating operation of the fuel cell assembly 1 until the FC internal temperature reaches the predetermined temperature or more in STEP 4 to STEP 8 if the FC internal temperature is found to be lower than the predetermined temperature in STEP 3 corresponds to the second step in the present invention.
  • The present embodiment has shown the fuel cell system mounted in a car. The present invention is, however, applicable to any other system as long as it uses fuel cells in a subfreezing environment.
  • Further, in the present embodiment, the control unit 30 has grasped the internal temperature of the fuel cell assembly 1 (the FC internal temperature) from the difference between the detected temperature Tin of the refrigerant inlet temperature sensor 20 and a detected temperature Tout of the refrigerant outlet temperature sensor 21. Alternatively, however, the internal temperature of the fuel cell assembly 1 may be grasped from detected temperatures of a temperature sensor 40 provided in an air supply pipe 3 at near the outlet from the fuel cell assembly 1 or a temperature sensor 41 provided in a hydrogen supply pipe 5 at near the outlet from the fuel cell assembly 1, as shown in FIG. 1. Further alternatively, temperature sensors may be provided in the fuel cells 2 to directly detect the internal temperature of the fuel cell assembly 1.
  • In the present embodiment, after stopping the power generation in STEP 20 shown in FIG. 2, the control unit has proceeded to STEP 11 to immediately carry out the processing for stopping the system. Alternatively, however, after stopping the power generation in STEP 20, both electrodes may be scavenged before the processing for stopping the system is carried out. Scavenging both electrodes further reduces the produced water remaining in the fuel cells 2 to an extremely small amount, making it possible to minimize deterioration of the power generating performance of the fuel cell assembly 1.

Claims (14)

1. A method of operating a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cells, comprising:
a first step for determining whether the temperature of the fuel cell assembly is lower than a predetermined temperature, when a stop condition has been satisfied while the fuel cell assembly is performing a power generating operation; and
a second step for continuing the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stopping the power generating operation of the fuel cell assembly.
2. The method of operating a fuel cell assembly according to claim 1, wherein an alarm is given by alarming means while the fuel cell assembly is continuing its power generating operation in the second step.
3. The method of operating a fuel cell assembly according to claim 1, wherein scavenging is performed by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped in the second step.
4. The method of operating a fuel cell assembly according to claim 2, wherein scavenging is performed by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped in the second step.
5. The method of operating a fuel cell assembly according to claim 1, wherein said predetermined temperature is set to a value that exceeds the freezing temperature of water produced during power generation.
6. A fuel cell system comprising:
a fuel cell assembly constructed by connecting a plurality of solid polymer type fuel cell assembly cells;
power generation controlling means for controlling the operation of the fuel cell assembly; and
fuel cell assembly temperature grasping means for grasping the temperature of the fuel cell assembly,
wherein the power generation controlling means determines whether the temperature of the fuel cell assembly is lower than a predetermined temperature when a stop condition has been satisfied while the fuel cell assembly is performing power generating operation, and continues the power generating operation of the fuel cell assembly until the temperature of the fuel cell assembly reaches the predetermined temperature or higher if the temperature of the fuel cell assembly is lower than the predetermined temperature, and then stops the power generation of the fuel cell assembly.
7. The fuel cell system according to claim 6, comprising alarming means for giving an alarm while a power generating operation of the fuel cell assembly is being continued by the power generation controlling means until the internal temperature of the fuel cell assembly reaches the predetermined temperature or higher.
8. The fuel cell system according to claim 6, wherein the power generation controlling means performs scavenging by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped.
9. The fuel cell system according to claim 7, wherein the power generation controlling means performs scavenging by supplying a reactive gas to the fuel cell assembly after the power generation of the fuel cell assembly is stopped.
10. The fuel cell system according to claim 6, comprising:
a circulation passage provided in the fuel cell assembly;
a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly;
a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near an inlet to the fuel cell assembly; and
a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near an outlet from the fuel cell assembly,
wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
11. The fuel cell system according to claim 7, comprising:
a circulation passage provided in the fuel cell assembly;
a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly;
a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near an inlet to the fuel cell assembly; and
a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near an outlet from the fuel cell assembly,
wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
12. The fuel cell system according to claim 8, comprising:
a circulation passage provided in the fuel cell assembly;
a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly;
a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near an inlet to the fuel cell assembly; and
a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near an outlet from the fuel cell assembly,
wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
13. The fuel cell system according to claim 9, comprising:
a circulation passage provided in the fuel cell assembly;
a pump that circulates a refrigerant in the circulation passage to cool the fuel cell assembly;
a refrigerant inlet temperature sensor for detecting the temperature of a refrigerant in the circulation passage at near an inlet to the fuel cell assembly; and
a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant in the circulation passage at near an outlet from the fuel cell assembly,
wherein the fuel cell assembly temperature grasping means grasps the temperature of the fuel cell assembly from the difference between a temperature detected by the refrigerant inlet temperature sensor and a temperature detected by the refrigerant outlet temperature sensor.
14. The fuel cell system according to claim 6, wherein said predetermined temperature is set to a value that exceeds the freezing temperature of water produced during power generation.
US11/248,449 2004-10-14 2005-10-12 Fuel cell assembly operating method and fuel cell system Expired - Fee Related US7871731B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004300303A JP4823502B2 (en) 2004-10-14 2004-10-14 Method for stopping fuel cell and fuel cell system
JP2004-300303 2004-10-14

Publications (2)

Publication Number Publication Date
US20060083968A1 true US20060083968A1 (en) 2006-04-20
US7871731B2 US7871731B2 (en) 2011-01-18

Family

ID=36181142

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/248,449 Expired - Fee Related US7871731B2 (en) 2004-10-14 2005-10-12 Fuel cell assembly operating method and fuel cell system

Country Status (2)

Country Link
US (1) US7871731B2 (en)
JP (1) JP4823502B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156132A1 (en) * 2008-06-27 2009-12-30 Bayerische Motoren Werke Aktiengesellschaft Fuel cell unit having a storage unit for storing and providing liquid water coolant
US20100112390A1 (en) * 2007-06-15 2010-05-06 Kenji Umayahara Fuel cell system and activating completion degree displaying method of the same
US20100279188A1 (en) * 2008-01-23 2010-11-04 Shinji Miyauchi Fuel cell system
WO2011029410A1 (en) * 2009-09-14 2011-03-17 华为技术有限公司 Controlling method and controller for fuel cell
US20210175524A1 (en) * 2018-08-21 2021-06-10 Fuelcell Energy, Inc. Fuel cell with protection from pressure imbalance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305346A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267467A1 (en) * 2002-09-17 2004-12-30 Gopal Ravi B Alarm recovery system and method for fuel cell testing systems
US20050053807A1 (en) * 2003-09-05 2005-03-10 Breault Richard D. Method of operating a fuel cell system under freezing conditions
US20060134483A1 (en) * 2004-12-21 2006-06-22 Gallagher Emerson R Passive microcoolant loop for an electrochemical fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214025A (en) * 1998-01-21 1999-08-06 Sanyo Electric Co Ltd Fuel cell apparatus
JP2002093445A (en) * 2000-09-11 2002-03-29 Equos Research Co Ltd Fuel cell device and its operation method
JP3999498B2 (en) * 2001-11-13 2007-10-31 日産自動車株式会社 Fuel cell system and method for stopping the same
JP2004265684A (en) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267467A1 (en) * 2002-09-17 2004-12-30 Gopal Ravi B Alarm recovery system and method for fuel cell testing systems
US20050053807A1 (en) * 2003-09-05 2005-03-10 Breault Richard D. Method of operating a fuel cell system under freezing conditions
US20060134483A1 (en) * 2004-12-21 2006-06-22 Gallagher Emerson R Passive microcoolant loop for an electrochemical fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112390A1 (en) * 2007-06-15 2010-05-06 Kenji Umayahara Fuel cell system and activating completion degree displaying method of the same
US8980487B2 (en) 2007-06-15 2015-03-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system and activating completion degree displaying method of the same
DE112008001582B4 (en) * 2007-06-15 2015-05-07 Toyota Jidosha Kabushiki Kaisha A fuel cell system and method for indicating a degree of activation completion
US20100279188A1 (en) * 2008-01-23 2010-11-04 Shinji Miyauchi Fuel cell system
US8415064B2 (en) * 2008-01-23 2013-04-09 Panasonic Corporation Fuel cell system
WO2009156132A1 (en) * 2008-06-27 2009-12-30 Bayerische Motoren Werke Aktiengesellschaft Fuel cell unit having a storage unit for storing and providing liquid water coolant
US20110081590A1 (en) * 2008-06-27 2011-04-07 Bayerische Motoren Werke Aktiengesellschaft Fuel Cell Unit Including a Storage Unit for Storing and Providing Liquid Water Coolant
US8354196B2 (en) 2008-06-27 2013-01-15 Bayerische Motoren Werke Aktiengesellschaft Fuel cell unit including a storage unit for storing and providing liquid water coolant
WO2011029410A1 (en) * 2009-09-14 2011-03-17 华为技术有限公司 Controlling method and controller for fuel cell
US20210175524A1 (en) * 2018-08-21 2021-06-10 Fuelcell Energy, Inc. Fuel cell with protection from pressure imbalance
US11804608B2 (en) * 2018-08-21 2023-10-31 Fuelcell Energy, Inc. Fuel cell with protection from pressure imbalance

Also Published As

Publication number Publication date
JP2006114335A (en) 2006-04-27
JP4823502B2 (en) 2011-11-24
US7871731B2 (en) 2011-01-18

Similar Documents

Publication Publication Date Title
EP1429409B1 (en) Fuel cell system and method of starting the frozen fuel cell system
US7666532B2 (en) Fuel cell system and method of starting fuel cell system
US9337502B2 (en) Fuel cell system and control method at starting in the fuel cell system
KR102304546B1 (en) Apparatus for condensate drainage of fuel cell vehicle and control method thereof
US7871731B2 (en) Fuel cell assembly operating method and fuel cell system
JP2007035389A (en) Fuel cell system and its control method
US10439238B2 (en) Control of fuel cell cooling system in a vehicle
JP2007109615A (en) Fuel cell system and its stopping method
KR102614135B1 (en) Air supply control method and control system for fuel cell
US20060141310A1 (en) Fuel cell system and method of controlling the same
US8895166B2 (en) Fuel cell system and activation method of fuel cell
JP2007220355A (en) Low-temperature starting method of fuel cell system and fuel cell
JP5324838B2 (en) Fuel cell system and operation method thereof
JP2008282794A (en) Fuel cell system
JP5154846B2 (en) Fuel cell system and its performance recovery method
JP2009076261A (en) Fuel cell system and its starting method
JP2006139924A (en) Fuel cell system
JP2011204447A (en) Fuel cell system
JP2009054432A (en) Fuel cell system
JP5262520B2 (en) Heating control device
JP2010129276A (en) Fuel cell system
JP2006134771A (en) Fuel cell system
JP2004146187A (en) Fuel cell system
JP2009016282A (en) Fuel cell system
JP7120939B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INAI, SHIGERU;HAYASHI, KATSUMI;YOSHIDA, HIROMICHI;AND OTHERS;SIGNING DATES FROM 20050617 TO 20050620;REEL/FRAME:017113/0243

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INAI, SHIGERU;HAYASHI, KATSUMI;YOSHIDA, HIROMICHI;AND OTHERS;REEL/FRAME:017113/0243;SIGNING DATES FROM 20050617 TO 20050620

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230118