Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060035046 A1
Publication typeApplication
Application numberUS 11/241,205
Publication date16 Feb 2006
Filing date30 Sep 2005
Priority date21 Feb 2001
Also published asCA2443888A1, CA2443888C, CN1503722A, CN100429070C, EP1412167A1, EP1412167A4, US7022058, US20030155269, US20050143243, US20050147330, US20050147774, WO2002074522A1
Publication number11241205, 241205, US 2006/0035046 A1, US 2006/035046 A1, US 20060035046 A1, US 20060035046A1, US 2006035046 A1, US 2006035046A1, US-A1-20060035046, US-A1-2006035046, US2006/0035046A1, US2006/035046A1, US20060035046 A1, US20060035046A1, US2006035046 A1, US2006035046A1
InventorsKyul-Joo Lee
Original AssigneeTilia International, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for preparing air channel-equipped film for use in vacuum package
US 20060035046 A1
Abstract
Disclosed is a method for preparing an air channel-equipped film for use in vacuum packages, which comprises the step of providing a gas-impermeable base, along with a melt-extruded heat-sealable resin, to a laminating unit consisting of a laminating roll and a cooling roll, to form a heat-sealable resin layer on the gas-impermeable base, characterized in that the heat-sealable resin is molded and quenched in such a way that a plurality of protrusions, corresponding to a plurality of grooves formed in a predetermined pattern on the circumferential surface of the cooling roll, are formed on the molded heat-sealable resin layer, defining channels for the evacuation of air therebetween. The method is simple because of its ability to form air channels without the aid of additional embossing techniques, as well as being economically favorable owing to the employment of no embossing molds.
Images(11)
Previous page
Next page
Claims(8)
1. A method for preparing an air channel-equipped film for use in vacuum package, comprising the step of feeding a gas-impermeable base, along with a melt-extruded heat-sealable resin, to a laminating unit consisting of a laminating roll and a cooling roll to form a heat-sealable resin layer on a gas-impermeable base layer, said heat-sealable resin layer being molded and cooled in such a way that a plurality of protrusions, corresponding to a plurality of grooves formed in a predetermined pattern on a circumferential surface of the cooling roll, are formed on the heat-sealable resin layer, defining channels for the evacuation of air therebetween.
2. The method according to claim 1, wherein the gas-impermeable base layer is made of a material selected from the group consisting of polyamide, polyester, and ethylene vinyl alcohol (EVOH).
3. The method according to claim 1, wherein the heat-sealable resin layer is made of polyethylene.
4. The method according to claim 1, wherein the grooves of the cooling roll are formed in an uneven pattern on the circumferential surface of the cooling roll.
5. The method according to claim 1, wherein the grooves of the cooling roll are formed in a wave pattern on the circumferential surface of the cooling roll.
6. The method according to claim 1, wherein the grooves of the cooling roll are formed in a stripe pattern on the circumferential surface of the cooling roll.
7. The method according to claim 2, wherein the gas-impermeable base layer consists of single layer, or two or more layers.
8. A bag for use in vacuum packages, comprising a first sheet and a second sheet overlapping with each other, each of which is composed of a laminated film consisting of a gas-impermeable base layer as an outer layer and a heat-sealable resin layer as an inner layer, said first sheet and the second sheet being bonded to each other along lower, left, and right edges thereof so as to form a space for receiving a product to be vacuum packaged therein, wherein at least one of the first sheet and the second sheet is a film for use in vacuum packages produced according to the method of claim 1.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. Application No. 10/169,485 filed Jun. 26, 2002, now pending, which is a 35 USC § 371 application of International Application No. PCT/KR02/00283 filed Feb. 21, 2002 designating the United States, which claims priority to KR Application No. 2001-8724 filed Feb. 21, 2001, and claims priority to KR Application No. 2002-9064 filed Feb. 20, 2002, all of which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • [0002]
    The present invention relates to a method for preparing an air channel-equipped film for use in vacuum packages. More specifically, the present invention is directed to a method for preparing an air channel-equipped film, in which a heat-sealable resin layer having channels for the evacuation of air formed in a pattern defined by grooves on a cooling roll is formed on a gas-impermeable base layer, and a bag for use in vacuum packages produced by use of such films.
  • PRIOR ART
  • [0003]
    In various countries including the United States, a method of preserving perishable foods such as meats or processed meats for a long term has been widely used, comprising the steps of stuffing foods into a plastic bag capable of maintaining a vacuum therein, evacuating air from the bag by use of an air pump or another vacuum processing machine, and tightly sealing the bag.
  • [0004]
    With reference to FIG. 1, a schematic perspective view of the conventional bag for use in vacuum packages is illustrated. The conventional bag comprises a main body 110 with both sheets 111 and 112 consisting of a plastic-based film; a sealed part 120 in which a lower, a left, and a right edge of the main body 110 are heat-sealed so as to form an inner space for receiving perishable products such as foods; and an unsealed part 130 provided at an upper edge of the main body 110, through which perishable products are stuffed into the main body 110 and air is evacuated from the inside of the main body 110. At this time, the main body 110 is generally made of a thermoplastic polyethylene resin which is melted by heat and is harmless to a human body.
  • [0005]
    After foods are stuffed through the unsealed part 130 into the bag and air is evacuated from the inside of the bag by use of an air pump or another vacuum processing machine, the unsealed part is heated to a predetermined temperature and pressed to seal the bag.
  • [0006]
    However, the bag as above is disadvantageous in that both sheets 111 and 112 of the main body 110 are quickly adhered to each other while some of air is discharged from the bag when perishable products are stuffed into the bag and air in the bag is evacuated by use of a vacuum processing machine, and thus air remaining in the lower part of the bag may not evacuated.
  • [0007]
    To avoid the above disadvantage, a technology for forming air channels by processing the conventional sheet with the aid of embossing techniques was developed. According to the technology, air channels are formed on one sheet or both sheets of a film constituting the main body, and air is evacuated along the air channel from the bag during the evacuation of air in the bag by the vacuum processing machine, thereby air existing in the lower par of the bag is easily evacuated from the bag.
  • [0008]
    U.S. Pat. No. 2,778,173 discloses a method of producing airtight packages using the above technology. According to this method, an evacuating opening is formed on a first sheet, and a second sheet is laid overlapped with the first sheet in such a way that the second sheet precisely overlaps the first sheet. At this time, a plurality of spacing projections are formed on at least one of the two sheets, thereby channels for the movement of air, connected to the openings, are formed. In addition, the projections may take shapes of pyramid and hemisphere, and are formed by pressing the film constituting the sheet using heated female and male dies or various tools. Alternatively, the channels are formed by interposing a strip with projections between the first sheet and the second sheet.
  • [0009]
    According to this method, projections in a blank of flexible, fluid-tight sheet material to provide channels between the projections, and one sheet portion of the blank is folded over another sheet portion of the blank with the projections between the sheet portions and with the peripheral edges of the sheet portions contacting each other. Then, the contacting peripheral edges are sealed to each other for part of their length to form an envelope having an inlet at the unsealed part of the peripheral edges. A commodity is introduced into the envelope through the inlet and the remainder of the contacting peripheral edges is sealed to each other to close the inlet. Thereafter, an evacuating opening is pierced in a part of the sheet material which communicates with the channels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed. However, this method is disadvantageous in that two sealing steps are additionally required after the commodity is stuffed into the envelope.
  • [0010]
    To avoid the above disadvantage, another technology was developed, in which a main body of the conventional bag for use in vacuum packages as shown in FIG. 1 consists of laminated films, and at least one sheet of the main body is embossed by use of an embossing mold.
  • [0011]
    FIG. 2 is a schematic perspective view of the conventional bag for use in vacuum packages, with its one side being subjected to embossing. In this technology, one film layer 113 of laminated film layers 113 and 114 constituting the main body 110 of the conventional bag for use in vacuum packages as shown in FIG. 2 is embossed to form protrusions 116 and channels 115 defined by the space between protrusions 116, so that air is readily evacuated from the bag.
  • [0012]
    Such a technology is exemplified in U.S. Pat. No. Re. 34,929. The bag for use in vacuum packages consists of a first panel and a second panel overlapping each other, and panels each having a predetermined thickness are sealed to each other at a lower, a left, and a right edge except an inlet for receiving products. Furthermore, the first and the second panel each consist of a heat-sealable inner layer with a uniform thickness and a gas-impermeable outer layer with a uniform thickness, and a plurality of protrusions are formed in a waffle-shaped pattern on an inner and an outer surface of at least one panel of the first panel and the second panel (refer to FIGS. 6 and 7 in U.S. Pat. No. Re. 34,929). In particular, an embossing pattern is formed on a hot roller, and the laminated film consisting of the gas-impermeable sheet and the heat-sealable sheet is provided to the hot roller and embossed with heating to form channels 115 and protrusions 116. However, when the protrusions and channels are forcibly formed on the film with a predetermined thickness by heat, the contacting portion between the channel and the protrusion is drawn and such a drawn portion of the film becomes thin. Thus, the film may be torn during the embossing, or pinholes may be formed on the film due to re-drawing of the film during forming a vacuum in the bag, and so environmental air flows into the bag. Also, it is necessary to frequently replace the embossing mold with a new one because the film may be damaged due to abrasion of the embossing mold when the embossing mold is used for a long time.
  • [0013]
    Meanwhile, U.S. Pat. No. 5,554,423 corresponding to EP 0 648 688 B1 discloses a bag for use in vacuum packages using another type of protrusions. According to this patent, a tubular element for forming bags for the vacuum-packing of products comprises a first sheet consisting of a gas-impermeable outer layer and a heat-sealable inner layer and a second sheet consisting of a gas-impermeable outer layer and a heat-sealable inner layer, and the first sheet and the second sheet are adhered to each other at an upper and a lower edge to form a space for receiving perishable products in the bag. In particular, a plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner sheet of any one sheet of the first sheet and the second sheet in such a way that heat-sealable strand elements extend along a length of the tubular element substantially parallel to the upper and lower bonded edges, thereby a space between strand elements acts as a channel for the evacuation of air. In this respect, FIG. 3 schematically illustrates arrangement and heat bonding of a plurality of heat-sealable strand elements on the sheet. According to this patent, a plurality of strand elements 4 extruded from an extrusion head 2 for use in producing strand elements are arranged at regular intervals on the heat-sealable layer of the laminated sheet 1 consisting of the gas-impermeable layer and the heat-sealable layer, and heat bonded to a surface of the heat-sealable layer by use of pressure rollers 3 and 3′. However, this patent is disadvantageous in that separate equipments are required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is very complicated. Other disadvantages are that various shapes of pattern are hard to form, i.e. only strand type channels are formed, and the production of the film with relatively thin thickness is difficult because the strand elements for channels are additionally formed on the heat-sealable inner layer having a predetermined thickness.
  • [0014]
    Referring to FIG. 4, another method of preparing a film for use in vacuum packages is illustrated, in which channels are directly formed on a heat-sealable inner layer by a co-extrusion process using blowing, and the resulting heat-sealable inner layer is laminated on a gas-impermeable outer layer.
  • [0015]
    In detail, protrusions 5 are equipped on a co-extrusion ring of the inner layer, and so channels are formed by the protrusions on the film for use in vacuum packages when the film is upwardly blown. However, this method is disadvantageous in that only stripe-shaped channels are formed in itself on the film regardless of the shape of the protrusions, and so various shapes of channels cannot be obtained. Furthermore, there is a limitation in making narrow a space between channels due to characteristics of the co-extrusion process using blowing, so that sheets constituting the main body of the bag are readily adhered to each other during vacuum packing. Thus, the formation of a vacuum in the bag is not sufficient.
  • [0016]
    Therefore, there remains a need for providing a method of preparing a film for use in vacuum packages, by which more various channel patterns can be achieved with ease compared with the conventional method.
  • [0017]
    The present inventors have conducted extensive studies into an improved method of preparing a film for use in vacuum packages, resulting in the finding that the film for use in vacuum packages, which is prepared in such a manner that a heat-sealable resin melt-extruded through a nozzle of an extruder and a gas-impermeable base layer are provided between a laminating roll and a cooling roll having grooves formed in a predetermined pattern on a surface thereof, thereby the heat-sealable layer with protrusions and channels for the evacuation of air is formed on the gas-impermeable base layer, can easily overcome the disadvantages encountered in the prior arts.
  • DISCLOSURE OF THE INVENTION
  • [0018]
    Therefore, it is an object of the present invention to provide a method of preparing a film for use in vacuum packages, which can effectively prevent pinholes from occurring and can improve an ability to form a vacuum by precisely forming channels.
  • [0019]
    It is another object of the present invention to provide a method of preparing a film for use in vacuum packages, in which various channel patterns of the film can be readily provided.
  • [0020]
    It is still another object of the present invention to provide a method of preparing a thin film with excellent physical properties, for use in vacuum packages.
  • [0021]
    It is yet another object of the present invention to provide a bag for use in vacuum packages produced by use of the film according to the present invention.
  • [0022]
    Based on the present invention, the above objects of the present invention can be accomplished by a provision of a method for preparing an air channel-equipped film for use in vacuum packages, which comprises the step of providing a gas-impermeable base, along with a melt-extruded heat-sealable resin, to a laminating unit consisting of a laminating roll and a cooling roll, to from a heat-sealable resin layer on the gas-impermeable base, characterized in that the heat-sealable resin is molded and cooled in such a way that a plurality of protrusions, corresponding to a plurality of grooves formed in a predetermined pattern on the circumferential surface of the cooling roll, are formed on the molded heat-sealable resin layer, defining channels for the evacuation of air therebetween.
  • [0023]
    In addition, according to the present invention, a bag for use in vacuum packages is provided, which comprises a first sheet and a second sheet, one overlapping the other. Each of the two sheets is composed of a laminated film consisting of a gas-impermeable base layer as an outer layer and a heat-sealable resin layer as an inner layer, wherein at least one of the first sheet and the second sheet is a film for use in vacuum packages produced according to the method of this invention. The first sheet and the second sheet are bonded to each other along their lower, left, and right edges so as to form a space for receiving a product to be vacuum packaged therein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0024]
    The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • [0025]
    FIG. 1 is a schematic perspective view of the conventional bag for use in vacuum packages;
  • [0026]
    FIG. 2 is a schematic perspective view of the conventional bag for use in vacuum packages, with its one sheet being subjected to embossing;
  • [0027]
    FIG. 3 illustrates heat bonding of a plurality of heat-sealable strand elements onto a surface of a heat-sealable layer of a laminated sheet comprising a gas-impermeable layer and the heat-sealable layer according to the conventional method;
  • [0028]
    FIG. 4 illustrates a formation of air channels by the conventional co-extrusion process using blowing;
  • [0029]
    FIG. 5 schematically illustrates a formation of a heat-sealabel resin layer with protrusions and channels for the evacuation of air on a gas-impermeable base layer of the film according to an embodiment of the present invention;
  • [0030]
    FIG. 6 is a partial expanded view of FIG. 5 illustrating a formation of the heat-sealable resin layer with protrusions and channels for the evacuation of air on the gas-impermeable base layer of the film according to the embodiment of the present invention;
  • [0031]
    FIG. 7 is a schematic partial perspective view of an extruder shown in FIG. 5;
  • [0032]
    FIG. 8 is a plane view of the film for use in vacuum packages according to an embodiment of the present invention;
  • [0033]
    FIG. 9 is a plane view of the film for use in vacuum packages according to another embodiment of the present invention; and
  • [0034]
    FIG. 10 is a schematic perspective view of a bag for use in vacuum packages according to a further embodiment of the present invention.
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • [0035]
    With reference to FIG. 5, formation of a heat-sealable resin layer with protrusions and air channels on a gas-impermeable base layer according to an embodiment of the present invention is schematically illustrated. A laminating roll 20′ and a cooling roll 20 constituting a laminating unit are arranged at regular intervals so that the melt-extruded heat-sealable resin layer is stacked on the gas-impermeable base layer while the heat-sealable resin is cooled. Illustrative, but non-limiting examples of materials of the laminating roll and the cooling roll include steel and rubber. The space between the laminating roll and the cooling roll is desirably controlled according to specifications (for example, thickness) of the film for use in vacuum packages. It is preferable to control the temperature of the cooling roll in a range of about −15 to about −10° C. so that the melt-extruded resin is cooled. However, the temperature of the cooling roll may be varied according to a laminating condition.
  • [0036]
    Typically, the cooling roll has a larger diameter than the laminating roll, for example, the diameter of the cooling roll is about 1.5 to about 3 times as large as that of the laminating roll. This range is set forth to illustrate, but is not to be construed to limit the diameter of the cooling roll.
  • [0037]
    The gas-impermeable base 10 is fed to the nip between the cooling roll 20 and the laminating roll 20′ by a feeding means (not shown in FIG. 5). Examples of the gas-impermeable base include polyester, polyamide, and EVOH (ethylene vinyl alcohol), and it is preferable that the gas-impermeable base is made of materials capable of securing mechanical properties when subject to heating in the process of the subsequent vacuum packaging.
  • [0038]
    The heat-sealable resin is typically made of a thermoplastic resin. After perishable products are stuffed into a bag for use in vacuum packages produced by using a laminated film of the present invention and air which is present in the bag is evacuated, the heat-sealable resin layer of the two sheets in contact with each other while being heated, should be strongly bonded to each other so as to prevent environmental air from penetrating into the bag. In particular, it is preferable that the heat-sealable resin is made of polyethylene (PE) suitable to preserve foods and harmless to a human body.
  • [0039]
    In FIG. 5, an extruder 30 is positioned in such a way that the melt-extruded heat-sealable resin is layered on the base layer by feeding the extruded heat-sealable resin to the nip between the cooling roll 20 and the laminating roll 20′. The heat-sealable resin is fed through a nozzle 31 of the extruder 30. At this time, the temperature of the melt-extruded heat-sealable resin depends on a kind of the used resin, and preferably, ranges from about 200 to about 250° C. Furthermore, the amount of resin to be extruded into the laminating unit depends on the required thickness of the heat-sealable resin layer to be positioned on the base layer.
  • [0040]
    According to the present invention, a plurality of grooves are formed in a predetermined pattern on the circumferential surface of the cooling roll 20. In FIG. 5, a film for use in vacuum packages according to an embodiment of the present invention is illustrated, in which the heat-sealable resin layer is molded in such a way that protrusions corresponding to illustrative-shaped grooves formed in a predetermined pattern on the circumferential surface of the cooling roll and air channels defined by the space between the protrusions, are formed on the molded heat-sealable resin layer.
  • [0041]
    As described above, according to the present invention, the heat-sealable resin melt-extruded by the extruder is fed through the nozzle of the extruder, and naturally molded by the grooves of the cooling roll while being cooled. The melt-extruded heat-sealable resin is fed along with the base layer to a laminating unit consisting of the laminating roll and the cooling roll having the grooves formed in a predetermined pattern, and the heat-sealable resin is molded in such a way that a plurality of protrusions, corresponding to the grooves formed on the circumferential surface of the cooling roll, are formed on the molded heat-sealable resin layer, defining channels for the evacuation of air therebetween, thereby the film for use in vacuum packages 40 of the present invention can be prepared. The pattern of the grooves can be formed in desired various shapes such as straight lines and curved lines according to shapes of desired channels, and the shape of the pattern is not limited. Unlike the conventional method adopting a post-embossing treatment, in case that the melt-extruded heat-sealable resin is molded and cooled by use of the grooves according to the present invention, the performance of securing a vacuum by use of the melt-extruded heat-sealable resin is not poor, even though the heat-sealable resin layer is kept thin.
  • [0042]
    FIG. 6 is a partial expanded view of FIG. 5 illustrating formation of the heat-sealable resin layer with protrusions and channels for the evacuation of air on the gas-impermeable base layer, and FIG. 7 is a schematic partial perspective view of an extruder shown in FIG. 5. The extruded heat-sealable resin is fed through a nozzle 32 of a nozzle part 31 to the laminating unit, as shown in FIG. 7.
  • [0043]
    With reference to FIGS. 5 to 7, the base 10 is fed to the nip between the cooling roll 20 and the laminating roll 20′ constituting the laminating unit. At this time, a plurality of grooves 21 are formed in a predetermined pattern on the circumferential surface of the cooling roll 20. According to the embodiment illustrated in FIG. 5, each of the grooves is formed in an uneven pattern on the circumferential surface of the cooling roll 20 such that each groove is symmetrical with neighboring grooves.
  • [0044]
    Moreover, the extruder 30 is positioned between the cooling roll 20 having the grooves 21 with a predetermined pattern and the laminating roll 20′, and the heat-sealable resin extruded by the nozzle 32 of the extruder 30 is pressed, along with the base 10, by the cooling roll 20 and the laminating roll 20′ constituting the laminating unit to form protrusions corresponding to the grooves of the cooling roll 20 on the heat-sealable resin layer formed on the upper surface of the film 40 for use in vacuum packages. At this time, channels for the evacuation of air are formed on the heat-sealable resin layer at positions between protrusions formed by the grooves 21 of the cooling roll 20.
  • [0045]
    According to the present invention, the channels may be formed in such a way that a plurality of stripes or crossed stripes are longitudinally extended on the film. The stripe- or cross stripe-shaped channels are set forth to illustrate, but are not to be construed to limit the shape of the channel. Therefore, any shapes of the channels can be applied to a bag for use in vacuum packages of the present invention.
  • [0046]
    With reference to FIGS. 5 and 6, the grooves are formed in a predetermined uneven pattern on the circumferential surface of the cooling roll, and so a plurality of protrusions are formed on the heat-sealable resin layer and define channels therebetween, which act as channels for the movement of air. Therefore, the shape of the channels of the present invention is determined by the pattern on the cooling roll. On the other hand, the cooling roll having protrusions with the uneven pattern may be employed, so that the resulting channels take an uneven pattern.
  • [0047]
    Referring to FIG. 8, a plane view of the film for use in vacuum packages according to an embodiment of the present invention is illustrated, in which a plurality of protrusions with the uneven pattern are positioned on the film and channels formed at the gaps between the protrusions are longitudinally extended. Therefore, air remaining in the bag is smoothly evacuated along the channels during the evacuation of air.
  • [0048]
    Turning now to FIG. 9, a plane view of a film for use in vacuum packages according to another embodiment of the present invention is illustrated. In this embodiment, a plurality of grooves are foamed in a wave pattern on the circumferential surface of the cooling roll, and thus channels defined by the gaps between protrusions take the shape of the wave pattern.
  • [0049]
    Meanwhile, the thickness of each protrusion formed on the heat-sealable resin layer of a laminated film 40 is determined by the depth of grooves 21 formed on the cooling roll 20, and the width of the channel is determined by the interval between the grooves 21. Thus, the shape, width, and thickness of the channels for the evacuation of air, defined by the gaps between protrusions are controlled by changing the specifications for the grooves of the cooling roll according to use of the laminated film.
  • [0050]
    In the heat-sealable resin layer having such channels, it is typical that each channel ranges from about 40 to about 100 μm in depth, each protrusion and the base layer are about 150 to about 300 μm and about 30 to about 200 μm in thickness, respectively. However, the dimensions of the channel, the protrusion, and the base layer are set forth to illustrate, but are not to be construed to limit the dimensions.
  • [0051]
    According to the present invention, the base layer may consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the base layer.
  • [0052]
    With reference to FIG. 10, a bag for use in vacuum packages produced by using the film of the present invention is illustrated, in which the bag 50 for use in vacuum packages consists of a first sheet 51 and a second sheet 52 overlapping each other, and channels are formed on any one of the first sheet 51 and the second sheet 52. At this time, the heat-sealable resin layer and the base layer of each sheet are typically made of the same material as those of the other sheet, but they may also be made of different materials. The heat-sealable resin layer is used as an inner layer and the base layer is used as an outer layer. In addition, lower, left, and right edges of the first and the second sheet are bonded to each other so as to form a space for receiving a product to be vacuum packaged. In case of using the sheet on which channels are not formed, the sheet ranges from about 50 to about 150 gm in thickness. In FIG. 10, channels with a predetermined pattern are formed on any one of the first sheet and the second sheet. However, it should be understand that a film, in which channels with a predetermined pattern are formed, may be useful as the material of both the first sheet and the second sheet of the bag for use in vacuum packages of this invention. Furthermore, various shapes of bags for use in vacuum packages can be prepared by using the laminated film having channels of the present invention.
  • [0053]
    A better understanding of the present invention may be obtained by reading the following examples which are set forth to illustrate, but are not to be construed to limit the present invention.
  • EXAMPLE 1
  • [0054]
    A polyamide base layer with a width of 1200 mm and a thickness of 75 μm was fed to a laminating unit at a rate of 80 m/min, as shown in FIG. 5. A laminating roll and a cooling roll made of steel were 250 Φ and 500 Φ in diameter, respectively, and the depth of each groove on the cooling roll was 0:8 mm. The gap between the laminating roll and the cooling roll was 100, μm, and an extruder was positioned around the nip between the laminating roll and the cooling roll so that a melt-extruded polyethylene resin (CA-110 made by SK Corp.) at 220° C. was fed from a nozzle of the extruder to the laminating unit to produce a film for use in vacuum packages. At this time, the temperature of the cooling roll was −12° C. The film for use in vacuum packages thus produced comprised a base layer with a thickness of 75 μm, protrusions with a thickness of 250 μm, and channels with a depth of 25 μm, and was used as a first sheet. A second sheet was produced according to the same procedure as the first sheet, and combined with the first sheet to prepare a bag of 300×400 mm for use in vacuum packages. At this time, the second sheet does not have channels, and the base layer and the heat-sealable resin layer were 75 μm and 25 μm in thickness, respectively. Samples were put into the bag for use in vacuum packages, and tightly vacuum-packed by use of a vacuum packing machine (trade name: Foodsaver 550). 100 Samples thus packed were tested for 100 hours, and then the number of bags not maintaining a vacuum state was counted. The results are given in Table 1, below.
  • COMPARATIVE EXAMPLE 1
  • [0055]
    Performance of a bag for use in vacuum packages was evaluated according to the same procedure as example I except that commercial FoodsaverŽ made by Tilia Inc. was used as the bag. The results are described in Table 1, below.
  • COMPARATIVE EXAMPLE 2
  • [0056]
    Performance of a bag for use in vacuum packages was evaluated according to the same procedure as example 1 except that commercial MAGIC VAC made by Flaemnouva Co. was used as the bag. The results are described in Table 1, below.
    TABLE 1
    Example 1 Com. Ex. 1 Com. Ex. 2
    Number of bags not 0 20 5
    maintaining vacuum
  • [0057]
    From the results of Table 1, it can be seen that the bag for use in vacuum packages according to example 1 of the present invention is much better than the conventional bags for use in vacuum packages in view of maintaining a vacuum state for an extended period.
  • [0058]
    INDUSTRIAL APPLICABILITY
  • [0059]
    According to a method of preparing a film for use in vacuum packages of the present invention, as described above, protrusions and channels are naturally formed on a heat-sealable resin layer by grooves of a cooling roll when a heat-sealable resin is layered on a gas-impermeable base. Therefore, the method is simple because of its ability to form air channels without the aid of additional embossing techniques, as well as being economically favorable owing to the employment of no embossing molds. Also, the freedom in patterning the grooves of the cooling roll makes it possible to form versatile air channel patterns and to easily control the intervals between the air channels, with an increase in productivity of about 50% compared to the conventional techniques.
  • [0060]
    The present invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US274447 *19 Jan 188120 Mar 1883 William-kentish
US2105376 *18 Dec 193611 Jan 1938Chase Bag CompanyValve bag
US2633442 *8 Mar 194931 Mar 1953Albert E CaldwellMethod of making tufted material
US2670501 *24 Aug 19512 Mar 1954Us Rubber CoMethod of forming plastic material
US2776452 *3 Sep 19528 Jan 1957Chavannes Ind Synthetics IncApparatus for embossing thermoplastic film
US2778171 *26 Feb 195322 Jan 1957Wilts United Dairies LtdProduction of air-tight packages
US2778173 *24 Aug 195122 Jan 1957Wilts United Dairies LtdMethod of producing airtight packages
US2789609 *9 Jul 195623 Apr 1957Flexigrip IncActuator for zippers and pouch embodying the same
US2821338 *21 Oct 195428 Jan 1958Metzger Melvin RValve-equipped container
US3026231 *23 Dec 195720 Mar 1962Sealed Air CorpMethod of making an embossed laminated structure
US3077262 *22 Mar 196112 Feb 1963Poly Sil IncNovel container
US3077428 *29 Jun 195612 Feb 1963Union Carbide CorpHeat sealable polyethylene laminate and method of making same
US3237844 *28 Sep 19641 Mar 1966Ici LtdBag closure
US3251463 *31 Oct 196217 May 1966Bodet Jean AugustinPellet package
US3381887 *14 Apr 19677 May 1968Nat Distillers Chem CorpSealing patch valve for plastic bags
US3423231 *20 May 196521 Jan 1969Ethyl CorpMultilayer polymeric film
US3565147 *27 Nov 196823 Feb 1971Steven AusnitPlastic bag having reinforced closure
US3575781 *16 May 196920 Apr 1971Stauffer Hoechst Polymer CorpPlastic film wrapping material
US3661677 *10 Oct 19699 May 1972Allied ChemPost-heat treatment for polyvinylidene chloride-coated film
US3785111 *4 Feb 197215 Jan 1974Palos Verdes PeninsulaMethod of forming containers and packages
US3799427 *5 Mar 19733 Feb 1987 Title not available
US3809217 *27 Oct 19707 May 1974Franklin Mint CorpPackaging for flat objects
US3937395 *22 Jul 197410 Feb 1976British Visqueen LimitedVented bags
US3958391 *14 Nov 197525 May 1976Kabushiki Kaisha Furukawa SeisakushoVacuum packaging method and apparatus
US3958693 *20 Jan 197525 May 1976E-Z-Em Company Inc.Vacuum X-ray envelope
US4018253 *9 Oct 197519 Apr 1977Seth Ian KaufmanHome vacuum apparatus for freezer bags
US4066167 *8 Jul 19763 Jan 1978Keebler CompanyRecloseable package
US4155453 *27 Feb 197822 May 1979Ono Dan DInflatable grip container
US4186786 *29 Sep 19785 Feb 1980Union Carbide CorporationColored interlocking closure strips for a container
US4310118 *3 Jan 198012 Jan 1982C. I. Kasei Co. Ltd.Packaging bags for powdery materials
US4370187 *18 Dec 198025 Jan 1983Mitsui Polychemicals Co. Ltd.Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon
US4372921 *8 Dec 19818 Feb 1983Sanderson Roger SSterilized storage container
US4449243 *7 Sep 198215 May 1984Cafes ColletVacuum package bag
US4569712 *2 Sep 198311 Feb 1986Sanyo Kokusaku Pulp Co., Ltd.Process for producing support for use in formation of polyurethan films
US4575990 *11 Jan 198518 Mar 1986W. R. Grace & Co., Cryovac Div.Shrink packaging process
US4576283 *25 Jan 198418 Mar 1986Bernard FafournouxBag for vacuum packaging of articles
US4576285 *29 Feb 198418 Mar 1986Fres-Co System Usa, Inc.Sealed flexible container with non-destructive peelable opening and apparatus and method for forming same
US4579756 *13 Aug 19841 Apr 1986Edgel Rex DInsulation material with vacuum compartments
US4583347 *11 Jun 198522 Apr 1986W. R. Grace & Co., Cryovac Div.Vacuum packaging apparatus and process
US4658434 *29 May 198614 Apr 1987Grain Security Foundation Ltd.Laminates and laminated articles
US4669124 *15 Sep 198626 May 1987Yoken Co., Ltd.Beverage container with tamperproof screwthread cap
US4747702 *17 Mar 198731 May 1988First Brands CorporationInterlocking closure device having controlled separation and improved ease of occlusion
US4812056 *25 Mar 198514 Mar 1989The Dow Chemical CompanyReclosable, flexible container having an externally operated fastener
US4834554 *16 Nov 198730 May 1989J. C. Brock Corp.Plastic bag with integral venting structure
US4890637 *19 Jan 19892 Jan 1990Flavorcoffee Co. Inc.One way valve
US4892414 *6 Feb 19899 Jan 1990Minigrip, Inc.Bags with reclosable plastic fastener having automatic sealing gasket means
US4903718 *19 Oct 198827 Feb 1990Ipco CorporationFlexible ultrasonic cleaning bag
US4906108 *8 Mar 19896 Mar 1990Mobil Oil CorporationCorrugated sticky tape bag tie closure
US4913561 *15 Nov 19883 Apr 1990Fres-Co System Usa, Inc.Gussetted flexible package with presealed portions and method of making the same
US4917506 *21 Nov 198817 Apr 1990First Brands CorporationInterlocking closure device having controlled separation and improved ease of occlusion
US4917844 *31 Mar 198817 Apr 1990Fuji Photo Film Co., Ltd.Method of manufacturing laminate product
US5006056 *5 Jul 19909 Apr 1991The Black Clawson CompanyFilm extrusion apparatus including a quickly replaceable chill roll
US5080155 *28 Dec 199014 Jan 1992Hooleon CorporationKeyboard enclosure
US5097956 *9 May 199024 Mar 1992Paramount Packaging CorporationVacuum package with smooth surface and method of making same
US5098497 *5 Nov 199024 Mar 1992Anthony Industries, Inc.Process for preparing embossed, coated paper
US5106688 *25 Jun 199121 Apr 1992W. R. Grace & Co.-Conn.Multi-layer packaging film and process
US5111838 *25 Nov 199112 May 1992Shipping Systems, Inc.Dunnage bag air valve and coupling
US5116444 *30 May 199126 May 1992Sealed Air CorporationApparatus and method for enhancing lamination of plastic films
US5203458 *2 Mar 199220 Apr 1993Quality Containers International, Inc.Cryptoplate disposable surgical garment container
US5209264 *2 Jul 199211 May 1993Yoshihiro KoyanagiCheck valve
US5397182 *13 Oct 199314 Mar 1995Reynolds Consumer Products Inc.Write-on profile strips for recloseable plastic storage bags
US5402906 *14 Jun 19944 Apr 1995Brown; Richard S.Fresh produce container system
US5480030 *15 Dec 19932 Jan 1996New West Products, Inc.Reusable, evacuable enclosure for storage of clothing and the like
US5592697 *18 Apr 199514 Jan 1997Young; RussellWaterproof pocket
US5620098 *25 Aug 199515 Apr 1997Southern California Foam, Inc.Full recovery reduced-volume packaging system
US5709467 *18 Jun 199620 Jan 1998Galliano, Ii; Carol J.Device and apparatus for mixing alginate
US5735395 *28 Jun 19967 Apr 1998Lo; LukeAirtight garment hanging bag
US5749493 *10 Nov 198712 May 1998The Coca-Cola CompanyConduit member for collapsible container
US5873217 *9 May 199723 Feb 1999Smith; George E.Vacuum sealing methods and apparatus
US5874155 *25 Jan 199623 Feb 1999American National Can CompanyEasy-opening flexible packaging laminates and packaging materials made therefrom
US5881881 *16 Jun 199716 Mar 1999Carrington; ThomasEvacuateable bag
US5893822 *22 Oct 199713 Apr 1999Keystone Mfg. Co., Inc.System for vacuum evacuation and sealing of plastic bags
US5898113 *30 Jul 199727 Apr 1999Bellaire Industries, Inc.Multi-ply material sealed container
US6021624 *17 Jul 19968 Feb 2000Kapak CorporationVented pouch arrangement and method
US6023914 *22 Apr 199715 Feb 2000Kapak CorporationVented pouch arrangement and method
US6029810 *17 Oct 199729 Feb 2000Chen; Shu-LingDress bag and hanger assembly
US6030652 *21 Jul 199829 Feb 2000Hanus; JohnFood bag featuring gusset opening, method of making the food bag, and method of using the food bag
US6035769 *22 Jun 199914 Mar 2000Hikari Kinzoku Industry Co., Ltd.Method for preserving cooked food and vacuum sealed preservation container therefor
US6039182 *16 Jul 199921 Mar 2000Light; BarryBag
US6045006 *2 Jun 19984 Apr 2000The Coca-Cola CompanyDisposable liquid containing and dispensing package and an apparatus for its manufacture
US6045264 *29 Jan 19984 Apr 2000Miniea; Stephen H.Self-sealing, disposable storage bag
US6053606 *7 Oct 199725 Apr 2000Seiko Epson CorporationInk cartridge
US6059457 *10 Aug 19989 May 2000Com-Pac International, Inc.Evacuable storage bag with integral zipper seal
US6202849 *7 Jul 199920 Mar 2001David B. GrahamEvacuatable rigid storage unit for storing compressible articles therein
US6220702 *23 Dec 199924 Apr 2001Seiko Epson CorporationInk bag for ink jet type recording apparatus and package suitable for packing such ink bag
US6224528 *12 Oct 19991 May 2001Kapak CorporationMethod for making bag constructions having inwardly directed side seal portions
US6227706 *26 Jun 20008 May 2001Thoai S. TranTwo piece, compressible storage satchel for compressible articles
US6231234 *7 Oct 199915 May 2001Tc Manufacturing Co., Inc.One piece snap closure for a plastic bag
US6231236 *12 Jul 199915 May 2001Reynolds Consumer Products, Inc.Resealable package having venting structure and methods
US6357915 *25 Jun 200119 Mar 2002New West Products, Inc.Storage bag with one-way air valve
US6520071 *18 May 200018 Feb 2003Aracaria B. .Hand-held suction pump
US6568931 *31 May 200127 May 2003Idemitsu Petrochemical Co., Ltd.Emboss pattern processing apparatus
US7022058 *21 Feb 20024 Apr 2006Tilia International, Inc.Method for preparing air channel-equipped film for use in vacuum package
US20040000501 *28 Jun 20021 Jan 2004Shah Ketan N.Recloseable storage bag with secondary closure members
US20040000502 *28 Jun 20021 Jan 2004Shah Ketan N.Recloseable storage bag with user-deformable air vent
US20040000503 *28 Jun 20021 Jan 2004Shah Ketan N.Recloseable storage bag with porous evacuation portal
US20040007494 *15 Jul 200215 Jan 2004Popeil Ronald M.Apparatus and method to more effectively vacuum package foods and other objects
USD425786 *4 May 199830 May 2000 Multi ply reinforced dunnage bag and valve therefor
USRE34929 *22 Jan 19939 May 1995Tilia, Inc.Plastic bag for vacuum sealing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US785751515 Jun 200728 Dec 2010S.C. Johnson Home Storage, Inc.Airtight closure mechanism for a reclosable pouch
US787473115 Jun 200725 Jan 2011S.C. Johnson Home Storage, Inc.Valve for a recloseable container
US788723815 Jun 200715 Feb 2011S.C. Johnson Home Storage, Inc.Flow channels for a pouch
US794676615 Jun 200724 May 2011S.C. Johnson & Son, Inc.Offset closure mechanism for a reclosable pouch
US796750915 Jun 200728 Jun 2011S.C. Johnson & Son, Inc.Pouch with a valve
US823127317 Dec 201031 Jul 2012S.C. Johnson & Son, Inc.Flow channel profile and a complementary groove for a pouch
US83979585 Aug 201019 Mar 2013Ds Smith Plastics LimitedClosure valve assembly for a container
US882059117 Jan 20132 Sep 2014Ds Smith Plastics LimitedClosure valve assembly for a container
US897378931 Mar 201410 Mar 2015Ds Smith Plastics LimitedClosure valve assembly for a container
Classifications
U.S. Classification428/36.6, 428/36.91, 428/35.2, 264/171.23, 156/244.27, 264/171.13, 428/35.4, 264/167
International ClassificationB29K23/00, B29C47/88, B29K29/00, B29L9/00, B29K67/00, B29L31/56, B29C47/02, B65D65/40, B65D75/30, B29K77/00, B29C69/02, B29C59/04, B29C43/22, B65D81/20, B32B38/04, B65D30/08, B32B27/08, B32B38/06, B29C43/28, B32B37/15
Cooperative ClassificationY10T428/1393, B29C59/046, B32B37/153, B32B38/06, B29C43/28, B65D31/02, Y10T428/1379, B32B2439/06, B29C43/222, Y10T428/1334, Y10T428/1341, Y10T428/13, B65D81/2038, B65D81/2023
European ClassificationB29C59/04L, B29C43/28, B65D81/20B3, B32B38/06, B65D31/02, B29C43/22B, B65D81/20B2
Legal Events
DateCodeEventDescription
13 Nov 2007ASAssignment
Owner name: SUNBEAM PRODUCTS, INC., FLORIDA
Free format text: MERGER;ASSIGNOR:TILIA INTERNATIONAL, INC.;REEL/FRAME:020102/0840
Effective date: 20060630