US20060011724A1 - Optical code reading system and method using a variable resolution imaging sensor - Google Patents

Optical code reading system and method using a variable resolution imaging sensor Download PDF

Info

Publication number
US20060011724A1
US20060011724A1 US10/891,851 US89185104A US2006011724A1 US 20060011724 A1 US20060011724 A1 US 20060011724A1 US 89185104 A US89185104 A US 89185104A US 2006011724 A1 US2006011724 A1 US 2006011724A1
Authority
US
United States
Prior art keywords
image
imaging sensor
optical code
optical
code reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/891,851
Inventor
Eugene Joseph
Brad Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symbol Technologies LLC
Original Assignee
Symbol Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbol Technologies LLC filed Critical Symbol Technologies LLC
Priority to US10/891,851 priority Critical patent/US20060011724A1/en
Assigned to SYMBOL TECHNOLOGIES, INC. reassignment SYMBOL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARLSON, BRAD, JOSEPH, EUGENE
Priority to PCT/US2005/024902 priority patent/WO2006019847A1/en
Publication of US20060011724A1 publication Critical patent/US20060011724A1/en
Priority to US11/644,399 priority patent/US8083146B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming

Definitions

  • the present disclosure relates to the field of imaging, and specifically to an optical code reading system and method using a variable resolution imaging sensor.
  • the present disclosure relates to using variable resolution imaging sensors for providing high-speed auto-exposure, high-speed decoding and 2 ⁇ optical zoom in an optical code reading system.
  • CCD or CMOS imaging sensors are typically used in imaging devices, such as optical code reading devices for reading and decoding optical codes, such as bar codes.
  • These sensors generally have an imaging pixel array having a plurality of photosensitive elements or pixels for capturing an image. Each pixel of the pixel array has a fixed aspect ratio (i.e., width-to-height).
  • the aspect ratio of the pixels in an optical code reading device is generally determined by the type and/or density of the images, e.g., bar codes, to be read by the imaging device.
  • a typical auto-exposure system uses the output image to determine the exposure parameters. This ties the time for auto-exposure to the time it takes to transfer frames from the imaging sensor to the auto-exposure system.
  • the worst case time required for auto-exposure is 2-3 times the typical frame transfer time of 33 ms. This amount of time can substantially slow down the first-read times for an imager or imaging engine in an optical code reading system and significantly affect any imager's performance.
  • the first-read time is one of the major parameters used in evaluating imager performance.
  • Optical zoom systems are generally used in optical code reading devices for precisely moving at least one lens and other components of the imaging devices. Hence, these optical zoom systems require movable optical and other components which need to be precisely moved at very short distances. Accordingly, a need exists for an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without moving any optical and non-optical components.
  • informational encoded content transferred by the images generated is thereafter decoded using decoding algorithms stored as a set of programmable instructions within at least one processor or decoder of the system.
  • the images generated by CCD and CMOS imaging sensors are generally high resolution images, thereby requiring a long period of decode time (trigger to beep) to decode their informational encoded content (in the order of 50 to over 250 ms). These decode times are too slow for high performance bar code reading applications. Accordingly, a need exists to reduce the decode time by programming a variable resolution imaging sensor to generate a low resolution image which takes less time to transfer to the at least one processor or decoder from the sensor.
  • variable resolution imaging sensor to continuously generate an image having a higher resolution than the previously generated image and transferring the new image (or a portion thereof) to the at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • An aspect of the present disclosure is to provide an optical code reading system having an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters.
  • Another aspect of the present disclosure is to provide an optical code reading system having an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without moving any optical and non-optical components.
  • Another aspect of the present disclosure is to provide an optical code reading system having a variable resolution imaging sensor programmed to generate a low resolution image, thereby requiring less time to transfer the image to at least one processor or decoder for decoding.
  • Another aspect of the present disclosure is to provide an optical code reading system having a variable resolution imaging sensor programmed to continuously generate an image having a higher resolution than the previously generated image and transferring the new image (or a portion thereof) to at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • Another aspect of the present disclosure is to provide an optical code reading system with at least one variable resolution imaging sensor and incorporating all of the features and methodologies recited in the aspects identified above, thereby having improved performance, a high-speed auto-exposure system, a high-speed decode time for reading and decoding low- and high-density bar codes, an optical zoom system having no moveable parts, and other benefits and advantages.
  • the present disclosure provides an optical code reading system having an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters.
  • the very low resolution images can be transferred much faster than high resolution images which results in a very fast auto-exposure system (few milli-seconds).
  • the present disclosure further provides an optical code reading system having an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without using any moveable optical and non-optical components.
  • the present disclosure further provides an optical code reading system having a variable resolution imaging sensor programmed to generate a low resolution image, thereby requiring less time to transfer the image to at least one processor or decoder for decoding.
  • the present disclosure further provides an optical code reading system having a variable resolution imaging sensor programmed to continuously generate an image having a higher resolution than the previously generated image and transferring the new image to at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • the present disclosure provides an optical code reading system with at least one variable resolution imaging sensor and incorporating all of the features and methodologies recited above, thereby having improved performance, a high-speed auto-exposure system, a high-speed decode time for reading and decoding low- and high-density bar codes, an optical zoom system having no moveable parts, and other benefits and advantages.
  • FIG. 1 is a schematic illustration of an auto-exposure system for use with a variable resolution imaging sensor of an optical code reading system in accordance with the present disclosure
  • FIG. 2A is a schematic illustration of an optical zoom system using a variable resolution imaging sensor without binning for reading out the center field of view in accordance with the present disclosure
  • FIG. 2B is a schematic illustration of an optical zoom system using a variable resolution imaging sensor with binning for reading out the full field of view in accordance with the present disclosure
  • FIG. 3A is a flow chart illustrating a method of decoding an optical code using an optical code reading system in accordance with the present disclosure
  • FIG. 3B is a flow chart illustrating another method of decoding an optical code using an optical code reading system in accordance with the present disclosure.
  • FIG. 4 is a schematic illustration of an optical code reading system having an imaging device in accordance with the present disclosure.
  • FIG. 1 there is shown a schematic illustration of an auto-exposure system for use with a variable resolution imaging sensor of an optical code reading system in accordance with the present disclosure.
  • an optical code reading system for imaging and decoding optical codes such as bar codes
  • the aspects and features described herein can be incorporated in other systems, such as a video camera system, a digital camera system, etc.
  • the auto-exposure system 10 of the optical code reading system 200 makes use of a variable resolution imaging sensor 12 which is capable of generating and outputting images having at least two different resolutions, i.e., a low and a high resolution.
  • the variable resolution imaging sensor 12 can also be capable of generating and outputting images having a plurality of resolutions ranging from low to high.
  • the sensor 12 can be a CCD, CMOS, or other type of imaging sensor as known in the art.
  • the variable resolution imaging sensor 12 is programmed for outputting very low resolution images 13 when operating the auto-exposure system 10 .
  • the sensor 12 can be accompanied by sensor control circuitry 14 (e.g., a processor, ASIC, etc.) for controlling the sensor 12 via sensor control signals 11 for causing the variable resolution imaging sensor 12 to output low resolution images 13 when operating the auto-exposure system 10 .
  • sensor control circuitry 14 e.g., a processor, ASIC, etc.
  • the senor 12 is programmed or the accompanying sensor control circuitry 14 controls the sensor to output an image consisting of a single pixel. This is equivalent to having a single photodiode facing the target field of view.
  • the low resolution images are then used by the auto-exposure system 10 to determine exposure parameters, such as shutter speed, sensor gain, lens aperture and brightness of illumination. Accordingly, the low resolution images are transferred to processing circuitry 16 which can include at least one processor, such as processor 62 ( FIGS. 2A and 2B ) and/or an ASIC for determining exposure parameters.
  • the processing circuitry 16 can be resident within the sensor 12 , within sensor control circuitry 14 , or, as shown by FIG. 1 , as a separate unit.
  • the low resolution images are transferred much faster than high resolution images used in prior art auto-exposure systems which results in a very fast auto-exposure system (few milli-seconds).
  • the processing circuitry 16 To determine exposure-related parameter values, the processing circuitry 16 first determines at least one characteristic of the low resolution image or single pixel, such as, for example, the incident light intensity of the low resolution image or single pixel. The processing circuitry 16 then correlates the determined incident light intensity or other characteristic of the low resolution image with one or more auto-exposure parameters by accessing one or more data structures 18 , such as look-up tables, stored within the processing circuitry 16 , as shown by FIG. 1 .
  • the processing circuitry 16 of the optical code reading system 200 determines the incident light intensity of the low resolution image or single pixel to be x and then correlates x with a look-up table corresponding to an auto-exposure parameter to determine the exposure-related parameter value associated with a light intensity of x.
  • the auto-exposure system 10 preferably takes the average intensity, or other statistical function, of the pixels at the center of the image for correlating with the auto-exposure parameter using the look-up table.
  • the determined light intensity x, or other characteristic of the low resolution image can also be correlated with one or more other look-up tables corresponding to other auto-exposure parameters, either simultaneously with the first look-up table or non-simultaneously.
  • the determined exposure-related parameter values are then used by the auto-exposure system 10 for appropriately controlling one or more aspects or features of the optical code reading system 200 , such as shutter speed, sensor gain, lens aperture and brightness of illumination.
  • one or more auto-exposure control signals 20 are transmitted by the processing circuitry 16 to control circuitry 22 .
  • the control circuitry 22 controls the one or more aspects or features of the optical code reading system 200 in accordance with the exposure-related parameter values.
  • the 2 ⁇ optical zoom system of the optical code reading system 200 is designated generally by reference numeral 50 and makes use of a variable resolution imaging sensor 12 for zooming in and out of a target, such as a bar code, without using any moveable optical and non-optical components.
  • the optical zoom system 50 of the optical code reading system 200 makes use of a variable resolution imaging sensor having associated circuitry, such as sensor control circuitry 14 , for combining one or more rectangular sets of pixels into a single, enlarged pixel; a method referred to as binning.
  • Foveon X3TM image sensor available from Foveon, Inc., Santa Clara, Calif.
  • the size or number of pixels of an output image generated by the Foveon X3TM image sensor is 1420 ⁇ 1060.
  • the Foveon X3TM image sensor can form 2 ⁇ 2 super pixels to yield an output image having a size or number of pixels of 710 ⁇ 530; it can form 3 ⁇ 2 super pixels to yield an output image having a size of 473 ⁇ 530; and it can form 3 ⁇ 3 super pixels to yield an output image having a size of 473 ⁇ 353.
  • the Foveon X3TM image sensor has the capability to output a window of the image directly from its pixel array.
  • the center field of view 52 can be read out from a pixel array 54 of the imaging sensor 12 to output an image 56 having a size or number of pixels of 710 ⁇ 530.
  • the center 1 ⁇ 4 field of view is read out from the pixel array 54 .
  • the optical zoom system 50 of the present disclosure operates exactly like a 2 ⁇ optical zoom system with a sensor pixel array having a number of pixels of 710 ⁇ 530 and without precisely moving any optical and non-optical components.
  • variable resolution imaging sensor 12 it is also possible according to the present disclosure to vary the image resolution of the variable resolution imaging sensor 12 by subsampling pixels, e.g., reading every other pixel in the horizontal and vertical direction, without binning. That is, the outputted image is comprised of individual pixels which are not combined with other pixels.
  • conventional mega-pixel sensors have at least one low resolution mode and are implemented with subsampling capabilities for supporting a “viewfinder” mode on digital cameras.
  • the present disclosure utilizes features of conventional mega-pixel sensors for auto-exposure, optical zoom and aggressive decoding of optical codes, such as bar code symbols.
  • the optical zoom system 50 of the optical code reading system 200 of the present disclosure further includes the processor 62 .
  • the optical zoom system 50 can also be designed to use the processing circuitry 16 .
  • the processor 62 is programmed for controlling the zoom setting of the optical zoom system 50 .
  • the processor 62 can be provided with distance information from a range finder system 64 regarding the distance to a target, such as an optical code, from the imaging sensor 12 and accordingly correlate using a data structure 65 , such as a look-up table, the distance to the target as provided by the range finder system 64 with a zoom setting.
  • the look-up table can be stored within the processor 62 , as shown by FIGS. 2A and 2B , or be resident outside the processor 62 , such as in a database of the optical code reading system 200 .
  • the processor 62 accesses a different look-up table for correlating distance information with a zoom setting in accordance with the type of application for which the 2 ⁇ optical zoom system 50 is being used.
  • one look-up table can provide zoom settings for imaging a one-dimensional optical code
  • another look-up table can provide zoom settings for imaging a two-dimensional optical code, such as a PDF417 code
  • another look-up table can provide zoom settings for imaging a scene
  • another look-up table can provide zoom settings for imaging a DPM code, etc.
  • the zoom setting of the optical code reading system 200 can then be changed by generating and transmitting a zoom setting signal 66 from the processor 62 to the imaging sensor 12 .
  • the zoom setting signal 66 controls the circuitry associated with the imaging sensor 12 for outputting an image having a particular resolution which provides the determined zoom setting.
  • the optical zoom system 50 of the present disclosure can change the zoom setting of the optical code reading system 200 “on the fly” or instantaneously.
  • the processor 62 of the optical zoom system 50 is programmed to alter the zoom setting in alternate image scans, until the target, such as an optical code, is adequately zoomed and successfully decoded.
  • the optical zoom system 50 of the present disclosure differs from digital optical zoom system commonly used in digital photography cameras.
  • Digital optical zoom systems use all of the pixels of the imaging sensor to perform zoom functions using the process known as image interpolation to increase the number of pixels in the image.
  • the optical zoom system 50 does not perform zoom functions by image interpolation.
  • the optical zoom system 50 does not use all of the pixels of the imaging sensor 12 , but uses a portion of the pixels (by either binning or subsampling). If during the performance of a zoom function, it is determined by the processor 62 and/or sensor control circuitry 14 that additional pixels are needed, the number of pixels used by the optical zoom system 50 is increased (by decreasing bin or subsample size). By increasing the number of pixels, the resolution of the image is increased. Accordingly, the image resolution is increased, without using the process of image interpolation.
  • the optical code reading system 200 of the present disclosure can be programmed for decoding an optical code according to several methodologies for reducing decode time, i.e., the time from when the optical code is imaged by the variable resolution imaging sensor 12 to the time it is decoded, in order to enable high-speed decoding.
  • One methodology according to the present disclosure entails programming circuitry associated with the imaging sensor 12 , such as sensor control circuitry 14 , or a processor, such as, for example, the processor 62 and/or the processing circuitry 16 , for controlling the imaging sensor 12 for generating a low resolution image.
  • the required or appropriate resolution for the outputted low resolution image can be determined based on one or more of the following parameters: the type of application the optical code reading system 200 is being used for, the ambient lighting, the distance to target, the speed of target (in case the target is moving), the angle between sensor 12 and target, etc.
  • the low resolution image generated by the imaging sensor 12 requires less time to be transferred to at least one processor, which may include the processor 62 and/or the processing circuitry 16 , and/or a decoder 518 , from the imaging sensor 12 for locating the target feature, such as a start and stop pattern of an optical code, since the bit size of the low resolution image generated by the imaging sensor 12 is significantly smaller than the bit size of a high resolution image capable of being generated by the variable resolution imaging sensor 12 .
  • the at least one processor or decoder attempts to extract the desired information from the optical code by decoding the optical code. If the resolution of the image is sufficient, the desired information can be successfully extracted by decoding the optical code. Accordingly, this methodology uses a low resolution image to accomplish the task of imaging and decoding the optical code. This methodology also saves time, because by transferring a low resolution image to the at least one processor or decoder, the decode time is significantly reduced. The decode time is reduced in the order of four as compared to prior art optical code reading systems.
  • the processor associated with the optical code reading system 200 which can include the processing circuitry 16 and/or the processor 62 , can be programmed for executing the algorithm illustrated by the flow chart shown by FIG. 3A for decoding an optical code and reducing the decode time.
  • the algorithm is configured as a set of programmable instructions stored in a memory and capable of being executed by the processor and/or the sensor control circuitry 14 .
  • the imaging sensor 12 is controlled by a processor, which can include the processing circuitry 16 and/or processor 62 , or the sensor control circuitry 14 for generating an image having a particular resolution, and preferably, the lowest, useful resolution that can be generated by the sensor 12 .
  • the lowest, useful resolution can be defined by the application; e.g., the density of the bar codes being read.
  • the lowest resolution image is then outputted for use in locating a target feature, such as a bar code, by the processor at step 302 . It is contemplated that the image generated is not the lowest resolution image that can be generated but an image which has a low resolution for providing a starting point in attempting to locate the target feature by the processor.
  • the process attempts a simple decode of the located target feature.
  • a determination is made as to whether the bar code was successfully decoded in step 304 . If yes, the result is reported to a user of the optical code reading system in step 308 . If no, the process continues to step 310 where the low resolution image's pixels per module (PPM) is estimated. If the estimated PPM is sufficient to decode the target feature as determined at step 312 , an attempt is made at step 314 to decode the target feature. If the estimated PPM is not sufficient to decode the target feature, the process continues to step 316 .
  • PPM pixels per module
  • step 316 a determination is made as to whether to continue with the decoding process, i.e., whether to generate and output a higher resolution image. If no, as determined, for example, by a system clock or based according to how many times the process has reached step 316 , the process terminates at step 320 . If at step 316 , the decision is to continue with the decoding process, the process continues to step 322 where the higher resolution image is generated and outputted by the variable resolution imaging sensor 12 . The process then repeats starting with step 302 for locating the target feature. It is preferred that the newly generated, higher resolution image is cropped such that the image is centered with respect to the location of the target feature.
  • step 316 It is necessary to determine at step 316 whether to continue with the process in order for the process to be able to move on to decode another optical code. This may be required in the case where the system 200 is used to image optical codes passing on a conveyor belt to prevent the optical code reading system 200 from “falling behind” in imaging and decoding the optical codes passing by.
  • the methodology described above attempts to determine at what resolution is the target feature adequately visible for decoding. Since low resolution images are generated and transmitted to the processor much faster than high resolution images, the amount of time expensed for determining an appropriate or desired low resolution for decoding the target feature is significantly less than the time capable of being expensed if a high resolution image is generated and transferred to the processor for decoding, even though with the methodology described herein multiple low resolution images may need to be generated and transferred to the processor before the target feature is decoded.
  • the methodology described above with reference to FIG. 3A can be modified into a two-stage resolution algorithm for performing a methodology as illustrated by the flow chart shown by FIG. 3B for the optical code reading system 200 .
  • the optical code reading system 200 includes a two-position focus system 202 with positions NEAR 204 and FAR 206 and the imaging sensor 12 being modified for delivering at least two image resolutions, HI_RESOLUTION (high resolution) and LOW_RESOLUTION (low resolution).
  • the NEAR position 204 captures a larger image of the target and the FAR position 206 captures a smaller, cropped image of the target. In effect, this implements a 2 ⁇ optical zoom system.
  • the system 200 is also modified for capturing two images, HI_RES_IMAGE (high resolution image) and LOW_RES_IMAGE (low resolution image).
  • the two-stage resolution algorithm is performed by the processor of the optical code reading system 200 , which can include the processing circuitry 16 and/or the processor 62 , by executing a series of programmable instructions.
  • the methodology decreases the decode time while improving the overall performance of the optical code reading system 200 .
  • the methodology according to the present disclosure entails starting at step 400 in FIG. 3B and setting the focus position to NEAR and sensor resolution to LOW_RESOLUTION.
  • a full field of view (FOV) image is captured of the LOW_RES_IMAGE.
  • the LOW_RES_IMAGE is transferred to a memory of the optical code reading system, the focus position is set to FAR and sensor resolution is set to HI_RESOLUTION.
  • the HI_RES_IMAGE is captured and a cropped image thereof centered with respect to the optical axis of the optical code reading system is transferred to the memory.
  • the process retrieves the LOW_RES_IMAGE stored in the memory, and analyzes or processes the LOW_RES_IMAGE in an attempt to locate the target feature in the LOW_RES_IMAGE.
  • a determination is made as to whether the target feature in the LOW_RES_IMAGE was found. If the target feature was not found, the process continues to step 418 .
  • step 414 attempts to extract information or decode the target corresponding to the target feature found in the LOW_RES_IMAGE. If in step 414 , the target is decoded or the information is extracted, the result is reported to a user of the optical code reading system in step 416 and the process terminates at step 412 .
  • step 414 determines whether the information is extracted or the target feature is not decoded due to the low resolution of the LOW_RES_IMAGE (or if the target feature in the low resolution image is not found at step 410 ).
  • the process in step 418 locates the target feature in the HI_RES_IMAGE.
  • the process in step 420 attempts to extract information or decode the target corresponding to the target feature found in the HI_RES_IMAGE.
  • the focus position is set to NEAR and the sensor resolution is set to LOW_RESOLUTION in step 422 .
  • Steps 420 and 422 are performed simultaneously as mega step 423 .
  • step 420 If information is extracted in step 420 or the target is decoded, the result is reported to the user of the optical code reading system in step 416 and the process terminates at step 412 . However, if in step 420 the information is not extracted or the target is not decoded, the process proceeds to step 402 and is repeated until the information is extracted or the target is decoded, until a maximum number of iterations is reached, or until a predetermined amount of time as determined by the processor has lapsed.
  • the processor which may include processing circuitry 16 and/or the processor 62 , of the optical code reading system 200 .
  • the processor executes a series of programmable instructions for performing the described methods.
  • the series of programmable instructions can be stored within a memory of the processor, a memory of the optical code reading system 200 , or on a computer-readable medium, such as a CD-ROM, floppy disc, hard drive, etc.
  • An exemplary optical code reading system 200 having features described herein is schematically illustrated by FIG. 4 and includes an imaging device, such as a bar code reader, designated generally by reference numeral 500 .
  • the imaging device 500 houses the variable resolution imaging sensor 12 described above and packaged in the form of an imaging engine 502 , an illumination source 504 having at least one LED or other light generating device, an aiming source 506 having a light source for aiming at an optical code (e.g., a bar code) or target to be imaged, sensor control circuitry 14 , processing circuitry 16 , control circuitry 22 , processor 62 , range finder system 64 , and communication circuitry 508 interfaced with cable 510 for non-wirelessly transmitting signals to a terminal 512 , such as a point-of-sale terminal.
  • the optical code reading system 200 may be designed for wireless operation.
  • the imaging engine 502 is configured and dimensioned for fitting within a predetermined form factor 514 of the imaging device 500 , such as the SE1200 form factor developed by Symbol Technologies, Inc., and includes the two-position focus system 202 with positions NEAR 204 and FAR 206 .
  • the processing circuitry 16 , control circuitry 22 and/or the processor 62 control the operation of the imaging device 500 , such as the auto-exposure system 10 , the optical zoom system 50 , the means for actuating an image and decode process upon a user pressing a trigger button 516 , controlling the illumination source 504 , the aiming source 506 and the communication circuitry 508 , for operating the imaging device 500 in a particular imaging mode, such as a continuous imaging mode, and for executing a set of programmable instructions for decoding the imaged optical code or target or controlling operation of the decoder 518 for decoding the imaged optical code or target.
  • the decoder 518 can be external to the processing circuitry 16 or the processor 62 , as shown by FIG. 4 , or resident within the processing circuitry 16 or the processor 62 .
  • the processing circuitry 16 , the control circuitry 22 and/or the processor 62 further include a memory for storing pixel output data and other data, such as the sets of programmable instructions for performing the high-speed decoding methods described herein.
  • the processing circuitry 16 , the control circuitry 22 and/or the processor 62 further determine an imaging resolution for imaging the optical code and control the variable resolution imaging sensor 12 either directly or via the sensor control circuitry 14 for imaging the optical code according to the determined imaging resolution.
  • the communication circuitry 508 outputs data indicative of the decoded and/or processed optical code or target to an external computing device, such as terminal 512 , and receives data, such as data for changing at least one operational parameter of the imaging device 500 as known in the art.
  • the operational parameters can also be changed by imaging an optical code or target corresponding to at least one operational parameter and decoding and/or processing the imaged optical code or target, and subsequently changing the at least one operational parameter indicative of the decoded and/or processed optical code or target.

Abstract

An optical code reading system having an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters is presented. The very low resolution images can be transferred much faster than high resolution images which results in a very fast auto-exposure system. The optical code reading system further includes an optical zoom system for zooming in and out of a target without the use of any moveable components. The optical zoom system makes use of a binning and/or subsampling feature of the imaging sensor for zooming in and out of the target. High-speed decoding methodologies are also presented for the optical code reading system. One decoding methodology utilizes low resolution images for performing high-speed decoding. Other methodologies utilize low resolution images and higher resolution images, if the optical code imaged by the low resolution images is not decoded successfully.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present disclosure relates to the field of imaging, and specifically to an optical code reading system and method using a variable resolution imaging sensor. In particular, the present disclosure relates to using variable resolution imaging sensors for providing high-speed auto-exposure, high-speed decoding and 2× optical zoom in an optical code reading system.
  • 2. Description of the Related Art
  • CCD or CMOS imaging sensors are typically used in imaging devices, such as optical code reading devices for reading and decoding optical codes, such as bar codes. These sensors generally have an imaging pixel array having a plurality of photosensitive elements or pixels for capturing an image. Each pixel of the pixel array has a fixed aspect ratio (i.e., width-to-height). The aspect ratio of the pixels in an optical code reading device is generally determined by the type and/or density of the images, e.g., bar codes, to be read by the imaging device.
  • Due to the limited dynamic range of CCD, CMOS and other area sensors, auto-exposure systems are generally used to generate images with sufficient information content for automatic identification purposes. A typical auto-exposure system uses the output image to determine the exposure parameters. This ties the time for auto-exposure to the time it takes to transfer frames from the imaging sensor to the auto-exposure system. For CCD and most CMOS imaging sensors, the worst case time required for auto-exposure is 2-3 times the typical frame transfer time of 33 ms. This amount of time can substantially slow down the first-read times for an imager or imaging engine in an optical code reading system and significantly affect any imager's performance. (The first-read time is one of the major parameters used in evaluating imager performance.) Accordingly, a need exists for an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters. The short time required to transfer the low resolution image, as opposed to a high resolution image, results in a very fast auto-exposure system (few milli-seconds).
  • Optical zoom systems are generally used in optical code reading devices for precisely moving at least one lens and other components of the imaging devices. Hence, these optical zoom systems require movable optical and other components which need to be precisely moved at very short distances. Accordingly, a need exists for an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without moving any optical and non-optical components.
  • In the case of an optical code reading system, informational encoded content transferred by the images generated is thereafter decoded using decoding algorithms stored as a set of programmable instructions within at least one processor or decoder of the system. The images generated by CCD and CMOS imaging sensors are generally high resolution images, thereby requiring a long period of decode time (trigger to beep) to decode their informational encoded content (in the order of 50 to over 250 ms). These decode times are too slow for high performance bar code reading applications. Accordingly, a need exists to reduce the decode time by programming a variable resolution imaging sensor to generate a low resolution image which takes less time to transfer to the at least one processor or decoder from the sensor. A need also exists for programming the variable resolution imaging sensor to continuously generate an image having a higher resolution than the previously generated image and transferring the new image (or a portion thereof) to the at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • SUMMARY OF THE INVENTION
  • An aspect of the present disclosure is to provide an optical code reading system having an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters.
  • Another aspect of the present disclosure is to provide an optical code reading system having an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without moving any optical and non-optical components.
  • Another aspect of the present disclosure is to provide an optical code reading system having a variable resolution imaging sensor programmed to generate a low resolution image, thereby requiring less time to transfer the image to at least one processor or decoder for decoding.
  • Another aspect of the present disclosure is to provide an optical code reading system having a variable resolution imaging sensor programmed to continuously generate an image having a higher resolution than the previously generated image and transferring the new image (or a portion thereof) to at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • Another aspect of the present disclosure is to provide an optical code reading system with at least one variable resolution imaging sensor and incorporating all of the features and methodologies recited in the aspects identified above, thereby having improved performance, a high-speed auto-exposure system, a high-speed decode time for reading and decoding low- and high-density bar codes, an optical zoom system having no moveable parts, and other benefits and advantages.
  • In accordance with the above aspects, the present disclosure provides an optical code reading system having an auto-exposure system for use with a variable resolution imaging sensor in which very low resolution images are used to determine exposure parameters. The very low resolution images can be transferred much faster than high resolution images which results in a very fast auto-exposure system (few milli-seconds). The present disclosure further provides an optical code reading system having an optical zoom system for use with a variable resolution imaging sensor for zooming in and out of a target, such as a bar code, without using any moveable optical and non-optical components.
  • The present disclosure further provides an optical code reading system having a variable resolution imaging sensor programmed to generate a low resolution image, thereby requiring less time to transfer the image to at least one processor or decoder for decoding. The present disclosure further provides an optical code reading system having a variable resolution imaging sensor programmed to continuously generate an image having a higher resolution than the previously generated image and transferring the new image to at least one processor or decoder, until the informational encoded content transferred by the most-recently transferred image is decoded or a predetermined period of time has lapsed.
  • Additionally, the present disclosure provides an optical code reading system with at least one variable resolution imaging sensor and incorporating all of the features and methodologies recited above, thereby having improved performance, a high-speed auto-exposure system, a high-speed decode time for reading and decoding low- and high-density bar codes, an optical zoom system having no moveable parts, and other benefits and advantages.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present disclosure will be described herein below with reference to the figures wherein:
  • FIG. 1 is a schematic illustration of an auto-exposure system for use with a variable resolution imaging sensor of an optical code reading system in accordance with the present disclosure;
  • FIG. 2A is a schematic illustration of an optical zoom system using a variable resolution imaging sensor without binning for reading out the center field of view in accordance with the present disclosure;
  • FIG. 2B is a schematic illustration of an optical zoom system using a variable resolution imaging sensor with binning for reading out the full field of view in accordance with the present disclosure;
  • FIG. 3A is a flow chart illustrating a method of decoding an optical code using an optical code reading system in accordance with the present disclosure;
  • FIG. 3B is a flow chart illustrating another method of decoding an optical code using an optical code reading system in accordance with the present disclosure; and
  • FIG. 4 is a schematic illustration of an optical code reading system having an imaging device in accordance with the present disclosure.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • With reference to FIG. 1, there is shown a schematic illustration of an auto-exposure system for use with a variable resolution imaging sensor of an optical code reading system in accordance with the present disclosure. Even though the present disclosure is described herein with reference to an optical code reading system for imaging and decoding optical codes, such as bar codes, the aspects and features described herein can be incorporated in other systems, such as a video camera system, a digital camera system, etc.
  • The auto-exposure system 10 of the optical code reading system 200 (FIG. 4) makes use of a variable resolution imaging sensor 12 which is capable of generating and outputting images having at least two different resolutions, i.e., a low and a high resolution. The variable resolution imaging sensor 12 can also be capable of generating and outputting images having a plurality of resolutions ranging from low to high. The sensor 12 can be a CCD, CMOS, or other type of imaging sensor as known in the art.
  • The variable resolution imaging sensor 12 is programmed for outputting very low resolution images 13 when operating the auto-exposure system 10. Or, as shown by FIG. 1, the sensor 12 can be accompanied by sensor control circuitry 14 (e.g., a processor, ASIC, etc.) for controlling the sensor 12 via sensor control signals 11 for causing the variable resolution imaging sensor 12 to output low resolution images 13 when operating the auto-exposure system 10.
  • In a limiting case according to the present disclosure, the sensor 12 is programmed or the accompanying sensor control circuitry 14 controls the sensor to output an image consisting of a single pixel. This is equivalent to having a single photodiode facing the target field of view.
  • The low resolution images are then used by the auto-exposure system 10 to determine exposure parameters, such as shutter speed, sensor gain, lens aperture and brightness of illumination. Accordingly, the low resolution images are transferred to processing circuitry 16 which can include at least one processor, such as processor 62 (FIGS. 2A and 2B) and/or an ASIC for determining exposure parameters. The processing circuitry 16 can be resident within the sensor 12, within sensor control circuitry 14, or, as shown by FIG. 1, as a separate unit. The low resolution images are transferred much faster than high resolution images used in prior art auto-exposure systems which results in a very fast auto-exposure system (few milli-seconds).
  • To determine exposure-related parameter values, the processing circuitry 16 first determines at least one characteristic of the low resolution image or single pixel, such as, for example, the incident light intensity of the low resolution image or single pixel. The processing circuitry 16 then correlates the determined incident light intensity or other characteristic of the low resolution image with one or more auto-exposure parameters by accessing one or more data structures 18, such as look-up tables, stored within the processing circuitry 16, as shown by FIG. 1.
  • For example, in accordance with the present disclosure, the processing circuitry 16 of the optical code reading system 200 determines the incident light intensity of the low resolution image or single pixel to be x and then correlates x with a look-up table corresponding to an auto-exposure parameter to determine the exposure-related parameter value associated with a light intensity of x. In the case of the low resolution image, the auto-exposure system 10 preferably takes the average intensity, or other statistical function, of the pixels at the center of the image for correlating with the auto-exposure parameter using the look-up table.
  • The determined light intensity x, or other characteristic of the low resolution image, can also be correlated with one or more other look-up tables corresponding to other auto-exposure parameters, either simultaneously with the first look-up table or non-simultaneously. The determined exposure-related parameter values are then used by the auto-exposure system 10 for appropriately controlling one or more aspects or features of the optical code reading system 200, such as shutter speed, sensor gain, lens aperture and brightness of illumination. As such, one or more auto-exposure control signals 20 are transmitted by the processing circuitry 16 to control circuitry 22. Upon receiving the auto-exposure control signals 20, the control circuitry 22 controls the one or more aspects or features of the optical code reading system 200 in accordance with the exposure-related parameter values.
  • A 2× optical zoom system of the present disclosure will now be described with reference to FIGS. 2A and 2B. The 2× optical zoom system of the optical code reading system 200 is designated generally by reference numeral 50 and makes use of a variable resolution imaging sensor 12 for zooming in and out of a target, such as a bar code, without using any moveable optical and non-optical components. The optical zoom system 50 of the optical code reading system 200 makes use of a variable resolution imaging sensor having associated circuitry, such as sensor control circuitry 14, for combining one or more rectangular sets of pixels into a single, enlarged pixel; a method referred to as binning.
  • One imaging sensor designed for digital cameras and having the capability of binning a rectangular set of pixels into a single, enlarged super pixel to change the size or number of pixels forming the image is the Foveon X3™ image sensor available from Foveon, Inc., Santa Clara, Calif. Without binning, the size or number of pixels of an output image generated by the Foveon X3™ image sensor is 1420×1060. With binning, the Foveon X3™ image sensor can form 2×2 super pixels to yield an output image having a size or number of pixels of 710×530; it can form 3×2 super pixels to yield an output image having a size of 473×530; and it can form 3×3 super pixels to yield an output image having a size of 473×353. Further, the Foveon X3™ image sensor has the capability to output a window of the image directly from its pixel array.
  • As shown by FIG. 2A, without binning, the center field of view 52 can be read out from a pixel array 54 of the imaging sensor 12 to output an image 56 having a size or number of pixels of 710×530. Preferably, the center ¼ field of view is read out from the pixel array 54.
  • Further, as shown by FIG. 2B, with 2×2 binning, the full field of view 58 of the pixel array 54 can be read out to output an image 60 which also has a size or number of pixels of 710×530. Accordingly, the optical zoom system 50 of the present disclosure operates exactly like a 2× optical zoom system with a sensor pixel array having a number of pixels of 710×530 and without precisely moving any optical and non-optical components.
  • It is also possible according to the present disclosure to vary the image resolution of the variable resolution imaging sensor 12 by subsampling pixels, e.g., reading every other pixel in the horizontal and vertical direction, without binning. That is, the outputted image is comprised of individual pixels which are not combined with other pixels.
  • Typically, conventional mega-pixel sensors have at least one low resolution mode and are implemented with subsampling capabilities for supporting a “viewfinder” mode on digital cameras. The present disclosure utilizes features of conventional mega-pixel sensors for auto-exposure, optical zoom and aggressive decoding of optical codes, such as bar code symbols.
  • The optical zoom system 50 of the optical code reading system 200 of the present disclosure further includes the processor 62. The optical zoom system 50 can also be designed to use the processing circuitry 16. The processor 62 is programmed for controlling the zoom setting of the optical zoom system 50.
  • The processor 62 can be provided with distance information from a range finder system 64 regarding the distance to a target, such as an optical code, from the imaging sensor 12 and accordingly correlate using a data structure 65, such as a look-up table, the distance to the target as provided by the range finder system 64 with a zoom setting. The look-up table can be stored within the processor 62, as shown by FIGS. 2A and 2B, or be resident outside the processor 62, such as in a database of the optical code reading system 200.
  • It is contemplated that the processor 62 accesses a different look-up table for correlating distance information with a zoom setting in accordance with the type of application for which the 2× optical zoom system 50 is being used. For example, one look-up table can provide zoom settings for imaging a one-dimensional optical code, another look-up table can provide zoom settings for imaging a two-dimensional optical code, such as a PDF417 code, another look-up table can provide zoom settings for imaging a scene, another look-up table can provide zoom settings for imaging a DPM code, etc.
  • Upon determining the appropriate zoom setting from at least two zoom settings using the data structure 65, the zoom setting of the optical code reading system 200 can then be changed by generating and transmitting a zoom setting signal 66 from the processor 62 to the imaging sensor 12. The zoom setting signal 66 controls the circuitry associated with the imaging sensor 12 for outputting an image having a particular resolution which provides the determined zoom setting. With this set-up, the optical zoom system 50 of the present disclosure can change the zoom setting of the optical code reading system 200 “on the fly” or instantaneously.
  • In the alternative, instead of using the range finder system 64 to determine distance to the target, the processor 62 of the optical zoom system 50 is programmed to alter the zoom setting in alternate image scans, until the target, such as an optical code, is adequately zoomed and successfully decoded.
  • The optical zoom system 50 of the present disclosure differs from digital optical zoom system commonly used in digital photography cameras. Digital optical zoom systems use all of the pixels of the imaging sensor to perform zoom functions using the process known as image interpolation to increase the number of pixels in the image.
  • The optical zoom system 50 does not perform zoom functions by image interpolation. The optical zoom system 50 does not use all of the pixels of the imaging sensor 12, but uses a portion of the pixels (by either binning or subsampling). If during the performance of a zoom function, it is determined by the processor 62 and/or sensor control circuitry 14 that additional pixels are needed, the number of pixels used by the optical zoom system 50 is increased (by decreasing bin or subsample size). By increasing the number of pixels, the resolution of the image is increased. Accordingly, the image resolution is increased, without using the process of image interpolation.
  • The optical code reading system 200 of the present disclosure can be programmed for decoding an optical code according to several methodologies for reducing decode time, i.e., the time from when the optical code is imaged by the variable resolution imaging sensor 12 to the time it is decoded, in order to enable high-speed decoding.
  • One methodology according to the present disclosure entails programming circuitry associated with the imaging sensor 12, such as sensor control circuitry 14, or a processor, such as, for example, the processor 62 and/or the processing circuitry 16, for controlling the imaging sensor 12 for generating a low resolution image. The required or appropriate resolution for the outputted low resolution image can be determined based on one or more of the following parameters: the type of application the optical code reading system 200 is being used for, the ambient lighting, the distance to target, the speed of target (in case the target is moving), the angle between sensor 12 and target, etc.
  • The low resolution image generated by the imaging sensor 12 requires less time to be transferred to at least one processor, which may include the processor 62 and/or the processing circuitry 16, and/or a decoder 518, from the imaging sensor 12 for locating the target feature, such as a start and stop pattern of an optical code, since the bit size of the low resolution image generated by the imaging sensor 12 is significantly smaller than the bit size of a high resolution image capable of being generated by the variable resolution imaging sensor 12.
  • Once transferred to the at least one processor or decoder, the at least one processor or decoder attempts to extract the desired information from the optical code by decoding the optical code. If the resolution of the image is sufficient, the desired information can be successfully extracted by decoding the optical code. Accordingly, this methodology uses a low resolution image to accomplish the task of imaging and decoding the optical code. This methodology also saves time, because by transferring a low resolution image to the at least one processor or decoder, the decode time is significantly reduced. The decode time is reduced in the order of four as compared to prior art optical code reading systems.
  • However, sometimes the required image resolution is not known ahead of time. For such applications, according to the present disclosure, the processor associated with the optical code reading system 200, which can include the processing circuitry 16 and/or the processor 62, can be programmed for executing the algorithm illustrated by the flow chart shown by FIG. 3A for decoding an optical code and reducing the decode time. The algorithm is configured as a set of programmable instructions stored in a memory and capable of being executed by the processor and/or the sensor control circuitry 14.
  • At step 300, the imaging sensor 12 is controlled by a processor, which can include the processing circuitry 16 and/or processor 62, or the sensor control circuitry 14 for generating an image having a particular resolution, and preferably, the lowest, useful resolution that can be generated by the sensor 12. (The lowest, useful resolution can be defined by the application; e.g., the density of the bar codes being read.) The lowest resolution image is then outputted for use in locating a target feature, such as a bar code, by the processor at step 302. It is contemplated that the image generated is not the lowest resolution image that can be generated but an image which has a low resolution for providing a starting point in attempting to locate the target feature by the processor.
  • At step 304, the process attempts a simple decode of the located target feature. At step 306, a determination is made as to whether the bar code was successfully decoded in step 304. If yes, the result is reported to a user of the optical code reading system in step 308. If no, the process continues to step 310 where the low resolution image's pixels per module (PPM) is estimated. If the estimated PPM is sufficient to decode the target feature as determined at step 312, an attempt is made at step 314 to decode the target feature. If the estimated PPM is not sufficient to decode the target feature, the process continues to step 316.
  • If the attempted decode at step 314 is successful as determined at step 318, the result is reported to the user at step 308. If the attempted decode is not successful, the process continues to step 316. At step 316, a determination is made as to whether to continue with the decoding process, i.e., whether to generate and output a higher resolution image. If no, as determined, for example, by a system clock or based according to how many times the process has reached step 316, the process terminates at step 320. If at step 316, the decision is to continue with the decoding process, the process continues to step 322 where the higher resolution image is generated and outputted by the variable resolution imaging sensor 12. The process then repeats starting with step 302 for locating the target feature. It is preferred that the newly generated, higher resolution image is cropped such that the image is centered with respect to the location of the target feature.
  • It is necessary to determine at step 316 whether to continue with the process in order for the process to be able to move on to decode another optical code. This may be required in the case where the system 200 is used to image optical codes passing on a conveyor belt to prevent the optical code reading system 200 from “falling behind” in imaging and decoding the optical codes passing by.
  • The methodology described above attempts to determine at what resolution is the target feature adequately visible for decoding. Since low resolution images are generated and transmitted to the processor much faster than high resolution images, the amount of time expensed for determining an appropriate or desired low resolution for decoding the target feature is significantly less than the time capable of being expensed if a high resolution image is generated and transferred to the processor for decoding, even though with the methodology described herein multiple low resolution images may need to be generated and transferred to the processor before the target feature is decoded.
  • The methodology described above with reference to FIG. 3A can be modified into a two-stage resolution algorithm for performing a methodology as illustrated by the flow chart shown by FIG. 3B for the optical code reading system 200. The optical code reading system 200 includes a two-position focus system 202 with positions NEAR 204 and FAR 206 and the imaging sensor 12 being modified for delivering at least two image resolutions, HI_RESOLUTION (high resolution) and LOW_RESOLUTION (low resolution). The NEAR position 204 captures a larger image of the target and the FAR position 206 captures a smaller, cropped image of the target. In effect, this implements a 2× optical zoom system. The system 200 is also modified for capturing two images, HI_RES_IMAGE (high resolution image) and LOW_RES_IMAGE (low resolution image).
  • The two-stage resolution algorithm is performed by the processor of the optical code reading system 200, which can include the processing circuitry 16 and/or the processor 62, by executing a series of programmable instructions. The methodology decreases the decode time while improving the overall performance of the optical code reading system 200.
  • The methodology according to the present disclosure entails starting at step 400 in FIG. 3B and setting the focus position to NEAR and sensor resolution to LOW_RESOLUTION. At step 402, a full field of view (FOV) image is captured of the LOW_RES_IMAGE. At step 404, the LOW_RES_IMAGE is transferred to a memory of the optical code reading system, the focus position is set to FAR and sensor resolution is set to HI_RESOLUTION. These three action items are preferably performed simultaneously.
  • At step 406, the HI_RES_IMAGE is captured and a cropped image thereof centered with respect to the optical axis of the optical code reading system is transferred to the memory. At step 408, which is performed simultaneously with step 406 as mega step 409, the process retrieves the LOW_RES_IMAGE stored in the memory, and analyzes or processes the LOW_RES_IMAGE in an attempt to locate the target feature in the LOW_RES_IMAGE. At step 410, a determination is made as to whether the target feature in the LOW_RES_IMAGE was found. If the target feature was not found, the process continues to step 418.
  • If the target feature in the LOW_RES_IMAGE was found in step 410, the process in step 414 attempts to extract information or decode the target corresponding to the target feature found in the LOW_RES_IMAGE. If in step 414, the target is decoded or the information is extracted, the result is reported to a user of the optical code reading system in step 416 and the process terminates at step 412.
  • However, if in step 414 the information is not extracted or the target feature is not decoded due to the low resolution of the LOW_RES_IMAGE (or if the target feature in the low resolution image is not found at step 410), the process in step 418 locates the target feature in the HI_RES_IMAGE. The process in step 420 then attempts to extract information or decode the target corresponding to the target feature found in the HI_RES_IMAGE. Simultaneously with step 420, the focus position is set to NEAR and the sensor resolution is set to LOW_RESOLUTION in step 422. Steps 420 and 422 are performed simultaneously as mega step 423.
  • If information is extracted in step 420 or the target is decoded, the result is reported to the user of the optical code reading system in step 416 and the process terminates at step 412. However, if in step 420 the information is not extracted or the target is not decoded, the process proceeds to step 402 and is repeated until the information is extracted or the target is decoded, until a maximum number of iterations is reached, or until a predetermined amount of time as determined by the processor has lapsed.
  • As stated above, all of the methods described herein in accordance with the present disclosure for decoding an optical code are performed by the processor, which may include processing circuitry 16 and/or the processor 62, of the optical code reading system 200. The processor executes a series of programmable instructions for performing the described methods. The series of programmable instructions can be stored within a memory of the processor, a memory of the optical code reading system 200, or on a computer-readable medium, such as a CD-ROM, floppy disc, hard drive, etc.
  • An exemplary optical code reading system 200 having features described herein is schematically illustrated by FIG. 4 and includes an imaging device, such as a bar code reader, designated generally by reference numeral 500. The imaging device 500 houses the variable resolution imaging sensor 12 described above and packaged in the form of an imaging engine 502, an illumination source 504 having at least one LED or other light generating device, an aiming source 506 having a light source for aiming at an optical code (e.g., a bar code) or target to be imaged, sensor control circuitry 14, processing circuitry 16, control circuitry 22, processor 62, range finder system 64, and communication circuitry 508 interfaced with cable 510 for non-wirelessly transmitting signals to a terminal 512, such as a point-of-sale terminal. Alternatively, the optical code reading system 200 may be designed for wireless operation.
  • The imaging engine 502 is configured and dimensioned for fitting within a predetermined form factor 514 of the imaging device 500, such as the SE1200 form factor developed by Symbol Technologies, Inc., and includes the two-position focus system 202 with positions NEAR 204 and FAR 206. The processing circuitry 16, control circuitry 22 and/or the processor 62 control the operation of the imaging device 500, such as the auto-exposure system 10, the optical zoom system 50, the means for actuating an image and decode process upon a user pressing a trigger button 516, controlling the illumination source 504, the aiming source 506 and the communication circuitry 508, for operating the imaging device 500 in a particular imaging mode, such as a continuous imaging mode, and for executing a set of programmable instructions for decoding the imaged optical code or target or controlling operation of the decoder 518 for decoding the imaged optical code or target. The decoder 518 can be external to the processing circuitry 16 or the processor 62, as shown by FIG. 4, or resident within the processing circuitry 16 or the processor 62.
  • The processing circuitry 16, the control circuitry 22 and/or the processor 62 further include a memory for storing pixel output data and other data, such as the sets of programmable instructions for performing the high-speed decoding methods described herein. The processing circuitry 16, the control circuitry 22 and/or the processor 62 further determine an imaging resolution for imaging the optical code and control the variable resolution imaging sensor 12 either directly or via the sensor control circuitry 14 for imaging the optical code according to the determined imaging resolution.
  • The communication circuitry 508 outputs data indicative of the decoded and/or processed optical code or target to an external computing device, such as terminal 512, and receives data, such as data for changing at least one operational parameter of the imaging device 500 as known in the art. The operational parameters can also be changed by imaging an optical code or target corresponding to at least one operational parameter and decoding and/or processing the imaged optical code or target, and subsequently changing the at least one operational parameter indicative of the decoded and/or processed optical code or target.
  • The described embodiments of the present disclosure are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present disclosure. Various modifications and variations can be made without departing from the spirit or scope of the disclosure as set forth in the following claims both literally and in equivalents recognized in law.

Claims (46)

1. An auto-exposure control system for an optical system, said auto-exposure system comprising:
a processor for receiving from a variable resolution imaging sensor a low resolution image having at least one characteristic, determining at least one value for the at least one characteristic, associating said at least one value with at least one corresponding exposure-related parameter value, and transmitting at least one auto-exposure control signal for communicating the at least one corresponding exposure-related parameter value, wherein the variable resolution imaging sensor can output images having at least two different resolutions; and
control circuitry for receiving said at least one auto-exposure control signal and controlling at least one exposure-related feature of said optical system in accordance with said at least one corresponding exposure-related parameter value.
2. The auto-exposure control system according to claim 1, wherein the at least one characteristic is selected from the group consisting of light intensity for one pixel of the low resolution image, and a statistical function of a group of pixels of the low resolution image.
3. The auto-exposure control system according to claim 1, wherein the processor accesses at least one data structure for associating the at least one value with the at least one corresponding exposure-related parameter value.
4. The auto-exposure control system according to claim 1, further comprising sensor control circuitry for controlling the imaging sensor for generating the low resolution image.
5. An optical zoom system for an optical system, said optical zoom system comprising:
an imaging sensor having a pixel array and circuitry for combining two or more pixels to form an enlarged pixel; and
a processor for determining a zoom setting from at least two zoom settings and controlling said imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of the imaging sensor and an image corresponding to a portion of the pixel array of the imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of individual pixels or two or more pixels combined to form an enlarged pixel.
6. The optical zoom system according to claim 5, further comprising a range finder system for determining distance information from said imaging sensor to a target.
7. The optical zoom system according to claim 6, further comprising means for communicating the distance information to the processor for use in determining the zoom setting from the at least two zoom settings.
8. The optical zoom system according to claim 7, further comprising a data structure capable of being accessed by said processor for correlating the distance information with one of the at least two zoom settings.
9. An optical code reading system comprising:
an auto-exposure control system comprising:
a processor for receiving from an imaging sensor a low resolution image having at least one characteristic, determining at least one value for the at least one characteristic, associating said at least one value with at least one corresponding exposure-related parameter value, and transmitting at least one auto-exposure control signal for communicating the at least one corresponding exposure-related parameter value; and
control circuitry for receiving said at least one auto-exposure control signal and controlling at least one exposure-related feature of said optical system in accordance with said at least one corresponding exposure-related parameter value; and
an optical zoom system, wherein the imaging sensor has a pixel array and circuitry for combining two or more pixels to form an enlarged pixel, and wherein said processor determines a zoom setting from at least two zoom settings and controls said imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of the imaging sensor and an image corresponding to a portion of the pixel array of the imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of individual pixels or two or more pixels combined to form an enlarged pixel.
10. The optical code reading system according to claim 9, wherein the at least one characteristic is selected from the group consisting of light intensity for one pixel of the low resolution image, and a statistical function of a group of pixels of the low resolution image.
11. The optical code reading system according to claim 9, wherein the processor accesses at least one data structure for associating the at least one value with the at least one corresponding exposure-related parameter value.
12. The optical code reading system according to claim 9, further comprising sensor control circuitry for controlling the imaging sensor for generating the low resolution image.
13. The optical code reading system according to claim 9, further comprising a range finder system for determining distance information from said imaging sensor to a target.
14. The optical code reading system according to claim 13, further comprising means for communicating the distance information to the processor for use in determining the zoom setting from the at least two zoom settings.
15. The optical code reading system according to claim 14, further comprising a data structure capable of being accessed by said processor for correlating the distance information with one of the at least two zoom settings.
16. The optical code reading system according to claim 9, wherein the imaging sensor is a variable resolution imaging sensor capable of outputting images having at least two different resolutions.
17. An optical code reading system comprising:
an imaging sensor capable of generating and outputting images having at least two different resolutions;
means for controlling the imaging sensor for generating and outputting an image having a particular resolution for an optical code; and
means for analyzing the image having the particular resolution.
18. The optical code reading system according to claim 17, wherein the particular resolution is a low resolution.
19. The optical code reading system according to claim 17, further comprising:
means for determining whether an image having a higher resolution than the image having the particular resolution should be generated and outputted by said imaging sensor; and
means for controlling the imaging sensor for generating and outputting the image having the higher resolution in accordance with the determination.
20. A method for decoding an optical code comprising the steps of:
providing an imaging sensor capable of generating and outputting images having at least two different resolutions;
controlling the imaging sensor for generating and outputting an image having a particular resolution for the optical code; and
processing the image for decoding the optical code.
21. The method according to claim 20, wherein the particular resolution is a low resolution.
22. The method according to claim 20, further comprising the steps of:
if the optical code was not decoded, controlling the imaging sensor for generating and outputting an image having a higher resolution than the image having the particular resolution; and
repeating the method starting from the processing step.
23. An optical code reading system comprising:
an imaging sensor capable of generating and outputting images having at least two different resolutions;
means for controlling the imaging sensor for generating and outputting an image having a low resolution and an image having a high resolution for the optical code;
means for attempting to decode said optical code imaged by the low resolution image;
means for determining whether the optical code imaged by the low resolution image was decoded and attempting to decode said optical code imaged by the high resolution image, if the optical code imaged by the low resolution image was not decoded; and
means for determining whether the optical code imaged by the high resolution image was decoded.
24. A method for decoding an optical code comprising the steps of:
providing an imaging sensor capable of generating and outputting images having at least two different resolutions;
controlling the imaging sensor for generating and outputting an image having a low resolution and an image having a high resolution for the optical code;
attempting to decode said optical code imaged by the low resolution image;
determining whether the optical code imaged by the low resolution image was decoded;
attempting to decode said optical code imaged by the high resolution image, if according to the determining step, the optical code imaged by the low resolution image was not decoded; and
determining whether the optical code imaged by the high resolution image was decoded.
25. The method according to claim 24, further comprising the step of repeating the method starting from the controlling step, if according to the last determining step, the optical code imaged by the high resolution image was not decoded.
26. The method according to claim 24, wherein the step of controlling comprises the steps of:
setting a focus position of an optical code reading system to a NEAR position for generating and outputting the image having the low resolution; and
setting the focus position of the optical code reading system to a FAR position for generating and outputting the image having the high resolution.
27. An optical code reading system comprising:
a variable resolution imaging sensor capable of generating images having at least two different resolutions; and
a trigger for actuating an image and decode feature for imaging an optical code with the variable resolution imaging sensor and for decoding said optical code using a decoder.
28. The optical code reading system according to claim 27, further comprising:
means for determining an imaging resolution for said variable resolution imaging sensor; and
means for controlling said variable resolution imaging sensor for imaging said optical code according to the determined imaging resolution.
29. The optical code reading system according to claim 27, further comprising:
a processor for receiving from said variable resolution imaging sensor a low resolution image having at least one characteristic, determining at least one value for the at least one characteristic, associating said at least one value with at least one corresponding exposure-related parameter value, and transmitting at least one auto-exposure control signal for communicating the at least one corresponding exposure-related parameter value; and
control circuitry for receiving said at least one auto-exposure control signal and controlling at least one exposure-related feature of said optical system in accordance with said at least one corresponding exposure-related parameter value.
30. The optical code reading system according to claim 29, wherein the at least one characteristic is selected from the group consisting of light intensity for one pixel of the low resolution image, and a statistical function of a group of pixels of the low resolution image.
31. The optical code reading system according to claim 29, wherein the processor accesses at least one data structure for associating the at least one value with the at least one corresponding exposure-related parameter value.
32. The optical code reading system according to claim 29, further comprising sensor control circuitry for controlling the variable resolution imaging sensor for generating the low resolution image.
33. The optical code reading system according to claim 27, further comprising an optical zoom system comprising:
means for combining two or more pixels of a pixel array of said variable resolution imaging sensor to form an enlarged pixel; and
a processor for determining a zoom setting from at least two zoom settings and controlling said variable resolution imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of said variable resolution imaging sensor and an image corresponding to a portion of the pixel array of the variable resolution imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of individual pixels or two or more pixels combined to form an enlarged pixel.
34. The optical code reading system according to claim 27, further comprising an optical zoom system comprising:
means for subsampling at least one pixel from a set of pixels; and
a processor for determining a zoom setting from at least two zoom settings and controlling said imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of the imaging sensor and an image corresponding to a portion of the pixel array of the imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of at least one pixel from the set of pixels.
35. The optical code reading system according to claim 33, further comprising a range finder system for determining distance information from said variable resolution imaging sensor to a target.
36. The optical code reading system according to claim 35, further comprising means for communicating the distance information to the processor for use in determining the zoom setting from the at least two zoom settings.
37. The optical code reading system according to claim 35, further comprising a data structure capable of being accessed by said processor for correlating the distance information with one of the at least two zoom settings.
38. An optical zoom system for an optical system, said optical zoom system comprising:
an imaging sensor having a pixel array and circuitry for subsampling at least one pixel from a set of pixels; and
a processor for determining a zoom setting from at least two zoom settings and controlling said imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of the imaging sensor and an image corresponding to a portion of the pixel array of the imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of at least one pixel from the set of pixels.
39. An optical code reading system comprising:
an auto-exposure control system comprising:
a processor for receiving from an imaging sensor a low resolution image having at least one characteristic, determining at least one value for the at least one characteristic, associating said at least one value with at least one corresponding exposure-related parameter value, and transmitting at least one auto-exposure control signal for communicating the at least one corresponding exposure-related parameter value; and
control circuitry for receiving said at least one auto-exposure control signal and controlling at least one exposure-related feature of said optical system in accordance with said at least one corresponding exposure-related parameter value; and
an optical zoom system, wherein the imaging sensor has a pixel array and circuitry for subsampling at least one pixel from a set of pixels, and wherein said processor determines a zoom setting from at least two zoom settings and controls said imaging sensor for outputting an image corresponding to the determined zoom setting, wherein the outputted image is one of an image corresponding to the pixel array of the imaging sensor and an image corresponding to a portion of the pixel array of the imaging sensor, wherein said image corresponding to the portion of the pixel array is comprised of at least one pixel from the set of pixels.
40. The optical code reading system according to claim 39, wherein the at least one characteristic is selected from the group consisting of light intensity for one pixel of the low resolution image, and a statistical function of a group of pixels of the low resolution image.
41. The optical code reading system according to claim 39, wherein the processor accesses at least one data structure for associating the at least one value with the at least one corresponding exposure-related parameter value.
42. The optical code reading system according to claim 39, further comprising sensor control circuitry for controlling the imaging sensor for generating the low resolution image.
43. The optical code reading system according to claim 39, further comprising a range finder system for determining distance information from said imaging sensor to a target.
44. The optical code reading system according to claim 43, further comprising means for communicating the distance information to the processor for use in determining the zoom setting from the at least two zoom settings.
45. The optical code reading system according to claim 44, further comprising a data structure capable of being accessed by said processor for correlating the distance information with one of the at least two zoom settings.
46. The optical code reading system according to claim 39, wherein the imaging sensor is a variable resolution imaging sensor capable of outputting images having at least two different resolutions.
US10/891,851 2004-07-15 2004-07-15 Optical code reading system and method using a variable resolution imaging sensor Abandoned US20060011724A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/891,851 US20060011724A1 (en) 2004-07-15 2004-07-15 Optical code reading system and method using a variable resolution imaging sensor
PCT/US2005/024902 WO2006019847A1 (en) 2004-07-15 2005-07-12 Optical code reading system and method using a variable resolution imaging sensor
US11/644,399 US8083146B2 (en) 2004-07-15 2006-12-22 Optical code reading system and method for processing multiple resolution representations of an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/891,851 US20060011724A1 (en) 2004-07-15 2004-07-15 Optical code reading system and method using a variable resolution imaging sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/644,399 Continuation-In-Part US8083146B2 (en) 2004-07-15 2006-12-22 Optical code reading system and method for processing multiple resolution representations of an image

Publications (1)

Publication Number Publication Date
US20060011724A1 true US20060011724A1 (en) 2006-01-19

Family

ID=35219459

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/891,851 Abandoned US20060011724A1 (en) 2004-07-15 2004-07-15 Optical code reading system and method using a variable resolution imaging sensor
US11/644,399 Active 2027-10-14 US8083146B2 (en) 2004-07-15 2006-12-22 Optical code reading system and method for processing multiple resolution representations of an image

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/644,399 Active 2027-10-14 US8083146B2 (en) 2004-07-15 2006-12-22 Optical code reading system and method for processing multiple resolution representations of an image

Country Status (2)

Country Link
US (2) US20060011724A1 (en)
WO (1) WO2006019847A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202036A1 (en) * 2005-03-11 2006-09-14 Ynjiun Wang Bar code reading device with global electronic shutter control
US20060202038A1 (en) * 2005-03-11 2006-09-14 Ynjiun Wang System and method to automatically focus an image reader
US20060274171A1 (en) * 2005-06-03 2006-12-07 Ynjiun Wang Digital picture taking optical reader having hybrid monochrome and color image sensor array
US20070063048A1 (en) * 2005-09-14 2007-03-22 Havens William H Data reader apparatus having an adaptive lens
US7227117B1 (en) * 2006-05-30 2007-06-05 Symbol Technologies, Inc. High speed auto-exposure control
US20090002544A1 (en) * 2007-06-29 2009-01-01 Sony Ericsson Mobile Communications Ab Methods of adding additional parameters during automatic exposure for a digital camera and related electronic devices and computer program products
US20090026267A1 (en) * 2007-06-04 2009-01-29 Hand Held Products, Inc. Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
WO2010008529A1 (en) * 2008-07-17 2010-01-21 Eastman Kodak Company Zoom by multiple image capture
US20100147956A1 (en) * 2008-12-16 2010-06-17 Hand Held Products, Inc. Indicia reading terminal including frame processing
US7770799B2 (en) 2005-06-03 2010-08-10 Hand Held Products, Inc. Optical reader having reduced specular reflection read failures
US20100316291A1 (en) * 2009-06-11 2010-12-16 Shulan Deng Imaging terminal having data compression
US20110036910A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal operative for processing of frames having plurality of frame featurizations
US20110038563A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal having multiple exposure periods and methods for same
US20110036911A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal having image sensor and variable lens assembly
US20110080500A1 (en) * 2009-10-05 2011-04-07 Hand Held Products, Inc. Imaging terminal, imaging sensor having multiple reset and/or multiple read mode and methods for operating the same
US20110163165A1 (en) * 2010-01-07 2011-07-07 Metrologic Instruments, Inc. Terminal having illumination and focus control
US20110186639A1 (en) * 2010-02-04 2011-08-04 Metrologic Instruments, Inc. Contact aperture for imaging apparatus
CN102289643A (en) * 2010-06-17 2011-12-21 手持产品公司 Intelligent indicia reader
US20120006897A1 (en) * 2010-07-12 2012-01-12 Symbol Technologies, Inc. High performance image capture reader with low resolution image sensor
US8387881B2 (en) 2010-12-01 2013-03-05 Hand Held Products, Inc. Terminal with screen reading mode
CN102971745A (en) * 2010-06-30 2013-03-13 数据逻辑Adc公司 Adaptive data reader and method of operating
CN102982300A (en) * 2011-06-20 2013-03-20 计量仪器公司 Indicia reading terminal with color frame processing
WO2013067671A1 (en) * 2011-11-07 2013-05-16 Honeywell Scanning And Mobility Optical indicia reading terminal with color image sensor
US20130162678A1 (en) * 2006-07-21 2013-06-27 Jerry G. Harris Progressive refinement of an edited image using secondary high resolution image processing
US8487963B1 (en) 2008-05-30 2013-07-16 Adobe Systems Incorporated Preview representation of pixels effected by a brush tip area
US8537245B2 (en) 2011-03-04 2013-09-17 Hand Held Products, Inc. Imaging and decoding device with quantum dot imager
US8561903B2 (en) 2011-01-31 2013-10-22 Hand Held Products, Inc. System operative to adaptively select an image sensor for decodable indicia reading
US8596542B2 (en) 2002-06-04 2013-12-03 Hand Held Products, Inc. Apparatus operative for capture of image data
US8608071B2 (en) 2011-10-17 2013-12-17 Honeywell Scanning And Mobility Optical indicia reading terminal with two image sensors
US8628013B2 (en) 2011-12-13 2014-01-14 Honeywell International Inc. Apparatus comprising image sensor array and illumination control
US8629926B2 (en) 2011-11-04 2014-01-14 Honeywell International, Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
US8636215B2 (en) 2011-06-27 2014-01-28 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US8640958B2 (en) 2010-01-21 2014-02-04 Honeywell International, Inc. Indicia reading terminal including optical filter
US8640960B2 (en) 2011-06-27 2014-02-04 Honeywell International Inc. Optical filter for image and barcode scanning
US8646692B2 (en) 2011-09-30 2014-02-11 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US8777108B2 (en) 2012-03-23 2014-07-15 Honeywell International, Inc. Cell phone reading mode using image timer
US8881983B2 (en) 2011-12-13 2014-11-11 Honeywell International Inc. Optical readers and methods employing polarization sensing of light from decodable indicia
US8978981B2 (en) 2012-06-27 2015-03-17 Honeywell International Inc. Imaging apparatus having imaging lens
US8985459B2 (en) 2011-06-30 2015-03-24 Metrologic Instruments, Inc. Decodable indicia reading terminal with combined illumination
US20150144693A1 (en) * 2013-11-22 2015-05-28 Ncr Corporation Optical Code Scanner Optimized for Reading 2D Optical Codes
WO2016074548A1 (en) * 2014-11-14 2016-05-19 Beijing Zhigu Rui Tuo Tech Co., Ltd Visible light signal receiving and control method, control apparatus, and receiving device
CN105657282A (en) * 2014-11-11 2016-06-08 宁波舜宇光电信息有限公司 Visual identification method capable of initiatively optimizing image brightness
US9418269B2 (en) 2009-08-12 2016-08-16 Hand Held Products, Inc. Laser scanning indicia reading terminal having variable lens assembly
US9418270B2 (en) 2011-01-31 2016-08-16 Hand Held Products, Inc. Terminal with flicker-corrected aimer and alternating illumination
US9489554B2 (en) 2015-04-06 2016-11-08 Symbol Technologies, Llc Arrangement for and method of assessing efficiency of transactions involving products associated with electro-optically readable targets
US9495564B2 (en) * 2015-04-06 2016-11-15 Symbol Technologies, Llc Arrangement for and method of assessing a cause of poor electro-optical reading performance by displaying an image of a symbol that was poorly read
US10311424B2 (en) 2010-12-09 2019-06-04 Hand Held Products, Inc. Indicia encoding system with integrated purchase and payment information
CN111527742A (en) * 2017-09-01 2020-08-11 特利丹E2V半导体简化股份公司 Method for capturing images by means of a CMOS-type image sensor for optically readable code recognition
US11216628B2 (en) 2020-04-01 2022-01-04 Scandit Ag High-speed scanning of optical patterns using a digital camera
US11244147B2 (en) * 2020-05-15 2022-02-08 Scandit Ag Optical data exchange while preserving social distancing
US11290643B1 (en) 2020-06-26 2022-03-29 Scandit Ag Efficient digital camera image acquisition and analysis
US11295163B1 (en) 2020-04-01 2022-04-05 Scandit Ag Recognition of optical patterns in images acquired by a robotic device
US11334736B2 (en) * 2018-12-03 2022-05-17 Zebra Technologies Corporation Dual mode reader and method of reading DPM codes therewith
CN114697561A (en) * 2020-12-29 2022-07-01 恒景科技股份有限公司 Method and apparatus for automatic exposure control of image sensor by context switching
US11403477B1 (en) 2020-05-15 2022-08-02 Scandit Ag Image exposure performance improvements for recognition of optical patterns
US11495036B1 (en) 2021-01-29 2022-11-08 Scandit Ag Segmenting images for optical character recognition
US11514665B2 (en) 2020-04-01 2022-11-29 Scandit Ag Mapping optical-code images to an overview image
US11532149B1 (en) 2020-04-01 2022-12-20 Scandit Ag Recognition and selection of a discrete pattern within a scene containing multiple patterns
US11557136B1 (en) 2022-02-23 2023-01-17 Scandit Ag Identity document verification based on barcode structure
US11810304B1 (en) 2020-07-27 2023-11-07 Scandit Ag Perspective distortion correction of discrete optical patterns in images using depth sensing
US11880738B1 (en) 2021-08-17 2024-01-23 Scandit Ag Visual odometry for optical pattern scanning in a real scene
US11893786B1 (en) * 2021-08-17 2024-02-06 Amazon Technologies, Inc. Scan-free barcode reading
US11922271B1 (en) 2020-05-15 2024-03-05 Scandit Ag Virtual screen standby mode for mobile device camera

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650692A1 (en) 1998-11-02 2006-04-26 DATALOGIC S.p.A. Device and method for the acquisition of data obtained from optical codes
US20060027657A1 (en) 2004-08-04 2006-02-09 Laurens Ninnink Method and apparatus for high resolution decoding of encoded symbols
US8201740B2 (en) * 2007-09-28 2012-06-19 Symbol Technologies, Inc. Imaging reader for and method of improving visibility of aiming pattern
EP2093697B1 (en) * 2008-02-25 2017-08-23 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for retrieving information comprised in a barcode
JP4971483B2 (en) 2010-05-14 2012-07-11 任天堂株式会社 Image display program, image display apparatus, image display system, and image display method
EP2395474A3 (en) 2010-06-11 2014-03-26 Nintendo Co., Ltd. Storage medium having image recognition program stored therein, image recognition apparatus, image recognition system, and image recognition method
JP5083395B2 (en) * 2010-09-17 2012-11-28 カシオ計算機株式会社 Information reading apparatus and program
JP5822527B2 (en) * 2011-05-09 2015-11-24 キヤノン株式会社 Information processing apparatus, control method thereof, and control program
US9152834B2 (en) 2012-08-09 2015-10-06 Symbol Technologies, Llc Image capture based on scanning resolution setting compared to determined scanning resolution relative to target distance in barcode reading
US9282244B2 (en) 2013-03-14 2016-03-08 Microsoft Technology Licensing, Llc Camera non-touch switch
DE102013110615B3 (en) * 2013-09-26 2014-11-27 Sick Ag 3D camera according to the stereoscopic principle and method for acquiring depth maps
US9451178B2 (en) 2014-05-22 2016-09-20 Microsoft Technology Licensing, Llc Automatic insertion of video into a photo story
US9503644B2 (en) * 2014-05-22 2016-11-22 Microsoft Technology Licensing, Llc Using image properties for processing and editing of multiple resolution images
US11184580B2 (en) 2014-05-22 2021-11-23 Microsoft Technology Licensing, Llc Automatically curating video to fit display time
CN205910700U (en) * 2015-08-21 2017-01-25 手持产品公司 A equipment that is used for camera that has that accelerated bar code scanning read
US10244180B2 (en) 2016-03-29 2019-03-26 Symbol Technologies, Llc Imaging module and reader for, and method of, expeditiously setting imaging parameters of imagers for imaging targets to be read over a range of working distances
US9646188B1 (en) * 2016-06-02 2017-05-09 Symbol Technologies, Llc Imaging module and reader for, and method of, expeditiously setting imaging parameters of an imager based on the imaging parameters previously set for a default imager
US11049219B2 (en) 2017-06-06 2021-06-29 Gopro, Inc. Methods and apparatus for multi-encoder processing of high resolution content
US10354110B2 (en) * 2017-11-01 2019-07-16 Symbol Technologies, Llc Barcode readers having multiple image sensors and methods associated therewith
US11334732B2 (en) * 2018-12-12 2022-05-17 Zebra Technologies Corporation Systems and approaches for reducing power consumption in industrial digital barcode scanners
US11228781B2 (en) 2019-06-26 2022-01-18 Gopro, Inc. Methods and apparatus for maximizing codec bandwidth in video applications
US11481863B2 (en) 2019-10-23 2022-10-25 Gopro, Inc. Methods and apparatus for hardware accelerated image processing for spherical projections
JP2023037125A (en) * 2021-09-03 2023-03-15 東芝テック株式会社 Code reader and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262871A (en) * 1989-11-13 1993-11-16 Rutgers, The State University Multiple resolution image sensor
US5461491A (en) * 1993-12-29 1995-10-24 Hewlett-Packard Company Procedure for reducing processing time for image elements by combining charge of adjacent pixels into a new composite pixel
US5572006A (en) * 1994-07-26 1996-11-05 Metanetics Corporation Automatic exposure single frame imaging systems
US5600121A (en) * 1995-03-20 1997-02-04 Symbol Technologies, Inc. Optical reader with independent triggering and graphical user interface
US6123264A (en) * 1994-06-30 2000-09-26 Symbol Technologies, Inc. Apparatus and method for determining a distance to a target
US20020039137A1 (en) * 2000-09-30 2002-04-04 Harper Jeffrey D. Methods and apparatus for automatic exposure control
US6794627B2 (en) * 2001-10-24 2004-09-21 Foveon, Inc. Aggregation of active pixel sensor signals
US20050218231A1 (en) * 2004-01-23 2005-10-06 Intermec Ip Corp. Autofocus barcode scanner and the like employing micro-fluidic lens
US6991168B2 (en) * 1991-07-25 2006-01-31 Symbol Technologies, Inc. Multi-channel signal processing in an optical reader

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250551B1 (en) 1998-06-12 2001-06-26 Symbol Technologies, Inc. Autodiscrimination and line drawing techniques for code readers
US6688525B1 (en) * 1999-09-22 2004-02-10 Eastman Kodak Company Apparatus and method for reading a coded pattern
US6539177B2 (en) * 2001-07-17 2003-03-25 Eastman Kodak Company Warning message camera and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262871A (en) * 1989-11-13 1993-11-16 Rutgers, The State University Multiple resolution image sensor
US6991168B2 (en) * 1991-07-25 2006-01-31 Symbol Technologies, Inc. Multi-channel signal processing in an optical reader
US5461491A (en) * 1993-12-29 1995-10-24 Hewlett-Packard Company Procedure for reducing processing time for image elements by combining charge of adjacent pixels into a new composite pixel
US6123264A (en) * 1994-06-30 2000-09-26 Symbol Technologies, Inc. Apparatus and method for determining a distance to a target
US5572006A (en) * 1994-07-26 1996-11-05 Metanetics Corporation Automatic exposure single frame imaging systems
US5600121A (en) * 1995-03-20 1997-02-04 Symbol Technologies, Inc. Optical reader with independent triggering and graphical user interface
US20020039137A1 (en) * 2000-09-30 2002-04-04 Harper Jeffrey D. Methods and apparatus for automatic exposure control
US6794627B2 (en) * 2001-10-24 2004-09-21 Foveon, Inc. Aggregation of active pixel sensor signals
US20050218231A1 (en) * 2004-01-23 2005-10-06 Intermec Ip Corp. Autofocus barcode scanner and the like employing micro-fluidic lens

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224023B2 (en) 2002-06-04 2015-12-29 Hand Held Products, Inc. Apparatus operative for capture of image data
US8596542B2 (en) 2002-06-04 2013-12-03 Hand Held Products, Inc. Apparatus operative for capture of image data
US10721429B2 (en) 2005-03-11 2020-07-21 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US10958863B2 (en) 2005-03-11 2021-03-23 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US20060202038A1 (en) * 2005-03-11 2006-09-14 Ynjiun Wang System and method to automatically focus an image reader
US8720781B2 (en) 2005-03-11 2014-05-13 Hand Held Products, Inc. Image reader having image sensor array
US8733660B2 (en) 2005-03-11 2014-05-27 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US20060202036A1 (en) * 2005-03-11 2006-09-14 Ynjiun Wang Bar code reading device with global electronic shutter control
US20110163166A1 (en) * 2005-03-11 2011-07-07 Hand Held Products, Inc. Image reader comprising cmos based image sensor array
US8978985B2 (en) 2005-03-11 2015-03-17 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US9305199B2 (en) 2005-03-11 2016-04-05 Hand Held Products, Inc. Image reader having image sensor array
US11863897B2 (en) 2005-03-11 2024-01-02 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US8146820B2 (en) 2005-03-11 2012-04-03 Hand Held Products, Inc. Image reader having image sensor array
US20100044440A1 (en) * 2005-03-11 2010-02-25 Hand Held Products, Inc. System and method to automatically focus an image reader
US9465970B2 (en) 2005-03-11 2016-10-11 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US11323650B2 (en) 2005-03-11 2022-05-03 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US11323649B2 (en) 2005-03-11 2022-05-03 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US9578269B2 (en) 2005-03-11 2017-02-21 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US9576169B2 (en) 2005-03-11 2017-02-21 Hand Held Products, Inc. Image reader having image sensor array
US11317050B2 (en) 2005-03-11 2022-04-26 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US10171767B2 (en) 2005-03-11 2019-01-01 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US10735684B2 (en) 2005-03-11 2020-08-04 Hand Held Products, Inc. Image reader comprising CMOS based image sensor array
US7909257B2 (en) 2005-03-11 2011-03-22 Hand Held Products, Inc. Apparatus having coordinated exposure period and illumination period
US11238252B2 (en) 2005-06-03 2022-02-01 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US9058527B2 (en) 2005-06-03 2015-06-16 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US20110049245A1 (en) * 2005-06-03 2011-03-03 Wang Ynjiun P Optical reader having reduced specular reflection read failures
US11238251B2 (en) 2005-06-03 2022-02-01 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US8720785B2 (en) 2005-06-03 2014-05-13 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US10949634B2 (en) 2005-06-03 2021-03-16 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US8720784B2 (en) 2005-06-03 2014-05-13 Hand Held Products, Inc. Digital picture taking optical reader having hybrid monochrome and color image sensor array
US10691907B2 (en) 2005-06-03 2020-06-23 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US9092654B2 (en) 2005-06-03 2015-07-28 Hand Held Products, Inc. Digital picture taking optical reader having hybrid monochrome and color image sensor array
US20060274171A1 (en) * 2005-06-03 2006-12-07 Ynjiun Wang Digital picture taking optical reader having hybrid monochrome and color image sensor array
US20100315536A1 (en) * 2005-06-03 2010-12-16 Hand Held Products, Inc. Method utilizing digital picture taking optical reader having hybrid monochrome and color image sensor
US8002188B2 (en) 2005-06-03 2011-08-23 Hand Held Products, Inc. Method utilizing digital picture taking optical reader having hybrid monochrome and color image sensor
US10002272B2 (en) 2005-06-03 2018-06-19 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US9438867B2 (en) 2005-06-03 2016-09-06 Hand Held Products, Inc. Digital picture taking optical reader having hybrid monochrome and color image sensor array
US7780089B2 (en) 2005-06-03 2010-08-24 Hand Held Products, Inc. Digital picture taking optical reader having hybrid monochrome and color image sensor array
US7770799B2 (en) 2005-06-03 2010-08-10 Hand Held Products, Inc. Optical reader having reduced specular reflection read failures
US11604933B2 (en) 2005-06-03 2023-03-14 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US9454686B2 (en) 2005-06-03 2016-09-27 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US11625550B2 (en) 2005-06-03 2023-04-11 Hand Held Products, Inc. Apparatus having hybrid monochrome and color image sensor array
US8196839B2 (en) 2005-06-03 2012-06-12 Hand Held Products, Inc. Optical reader having reduced specular reflection read failures
US20070063048A1 (en) * 2005-09-14 2007-03-22 Havens William H Data reader apparatus having an adaptive lens
WO2007142787A3 (en) * 2006-05-30 2009-04-16 Symbol Technologies Inc High speed auto-exposure control
US7227117B1 (en) * 2006-05-30 2007-06-05 Symbol Technologies, Inc. High speed auto-exposure control
WO2007142787A2 (en) 2006-05-30 2007-12-13 Symbol Technologies, Inc. High speed auto-exposure control
US8885208B2 (en) * 2006-07-21 2014-11-11 Adobe Systems Incorporated Progressive refinement of an edited image using secondary high resolution image processing
US20130162678A1 (en) * 2006-07-21 2013-06-27 Jerry G. Harris Progressive refinement of an edited image using secondary high resolution image processing
US20090026267A1 (en) * 2007-06-04 2009-01-29 Hand Held Products, Inc. Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
US20090072038A1 (en) * 2007-06-04 2009-03-19 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
US20110174880A1 (en) * 2007-06-04 2011-07-21 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
US8794526B2 (en) 2007-06-04 2014-08-05 Hand Held Products, Inc. Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
US9996720B2 (en) 2007-06-04 2018-06-12 Hand Held Products, Inc. Indicia reading terminal processing plurality of frames of image data responsively to trigger signal activation
US8292183B2 (en) 2007-06-04 2012-10-23 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
US7918398B2 (en) 2007-06-04 2011-04-05 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
WO2009003533A1 (en) * 2007-06-29 2009-01-08 Sony Ericsson Mobile Communications Ab Methods of adding additional parameters during automatic exposure for a digital camera and related electronic devices and computer program products
US20090002544A1 (en) * 2007-06-29 2009-01-01 Sony Ericsson Mobile Communications Ab Methods of adding additional parameters during automatic exposure for a digital camera and related electronic devices and computer program products
US8487963B1 (en) 2008-05-30 2013-07-16 Adobe Systems Incorporated Preview representation of pixels effected by a brush tip area
TWI465766B (en) * 2008-07-17 2014-12-21 Intellectual Ventures Fund 83 Llc Image sensor assembly and image capture device
WO2010008529A1 (en) * 2008-07-17 2010-01-21 Eastman Kodak Company Zoom by multiple image capture
CN102077575A (en) * 2008-07-17 2011-05-25 柯达公司 Zoom by multiple image capture
JP2011528531A (en) * 2008-07-17 2011-11-17 イーストマン コダック カンパニー Zoom by capturing multiple images
US8134589B2 (en) * 2008-07-17 2012-03-13 Eastman Kodak Company Zoom by multiple image capture
US20100013906A1 (en) * 2008-07-17 2010-01-21 Border John N Zoom by multiple image capture
EP2202666A3 (en) * 2008-12-16 2010-08-04 Hand Held Products, Inc. Indicia reading terminal including frame processing
CN101877047A (en) * 2008-12-16 2010-11-03 手持产品公司 Comprise the indicia reading terminal that frame is handled
US20100147956A1 (en) * 2008-12-16 2010-06-17 Hand Held Products, Inc. Indicia reading terminal including frame processing
US8083148B2 (en) 2008-12-16 2011-12-27 Hand Held Products, Inc. Indicia reading terminal including frame processing
US8646694B2 (en) 2008-12-16 2014-02-11 Hand Held Products, Inc. Indicia reading terminal including frame processing
EP2202666A2 (en) 2008-12-16 2010-06-30 Hand Held Products, Inc. Indicia reading terminal including frame processing
US20100316291A1 (en) * 2009-06-11 2010-12-16 Shulan Deng Imaging terminal having data compression
US20110036911A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal having image sensor and variable lens assembly
US9418269B2 (en) 2009-08-12 2016-08-16 Hand Held Products, Inc. Laser scanning indicia reading terminal having variable lens assembly
US8256678B2 (en) 2009-08-12 2012-09-04 Hand Held Products, Inc. Indicia reading terminal having image sensor and variable lens assembly
US9189660B2 (en) 2009-08-12 2015-11-17 Hand Held Products, Inc. Imaging terminal having image sensor and lens assembly
US8596539B2 (en) 2009-08-12 2013-12-03 Hand Held Products, Inc. Imaging terminal having image sensor and lens assembly
US20110036910A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal operative for processing of frames having plurality of frame featurizations
US8295601B2 (en) 2009-08-12 2012-10-23 Hand Held Products, Inc. Indicia reading terminal having multiple exposure periods and methods for same
US20110038563A1 (en) * 2009-08-12 2011-02-17 Hand Held Products, Inc. Indicia reading terminal having multiple exposure periods and methods for same
US8373108B2 (en) 2009-08-12 2013-02-12 Hand Held Products, Inc. Indicia reading terminal operative for processing of frames having plurality of frame featurizations
US20110080500A1 (en) * 2009-10-05 2011-04-07 Hand Held Products, Inc. Imaging terminal, imaging sensor having multiple reset and/or multiple read mode and methods for operating the same
US20110163165A1 (en) * 2010-01-07 2011-07-07 Metrologic Instruments, Inc. Terminal having illumination and focus control
US9501678B2 (en) 2010-01-21 2016-11-22 Honeywell Internations, Inc. Indicia reading terminal including optical filter
US9292723B2 (en) 2010-01-21 2016-03-22 Honeywell International Inc. Indicia reading terminal including optical filter
US8640958B2 (en) 2010-01-21 2014-02-04 Honeywell International, Inc. Indicia reading terminal including optical filter
US20110186639A1 (en) * 2010-02-04 2011-08-04 Metrologic Instruments, Inc. Contact aperture for imaging apparatus
US20110309150A1 (en) * 2010-06-17 2011-12-22 Hand Held Products, Inc. Intelligent indicia reader
CN102289643A (en) * 2010-06-17 2011-12-21 手持产品公司 Intelligent indicia reader
CN106022191A (en) * 2010-06-17 2016-10-12 手持产品公司 Intelligent optical code reader
US10621397B2 (en) * 2010-06-17 2020-04-14 Hand Held Products, Inc. Intelligent indicia reader
CN102971745A (en) * 2010-06-30 2013-03-13 数据逻辑Adc公司 Adaptive data reader and method of operating
US20120006897A1 (en) * 2010-07-12 2012-01-12 Symbol Technologies, Inc. High performance image capture reader with low resolution image sensor
US8261991B2 (en) * 2010-07-12 2012-09-11 Symbol Technologies, Inc. High performance image capture reader with low resolution image sensor
US8387881B2 (en) 2010-12-01 2013-03-05 Hand Held Products, Inc. Terminal with screen reading mode
US10311424B2 (en) 2010-12-09 2019-06-04 Hand Held Products, Inc. Indicia encoding system with integrated purchase and payment information
US9418270B2 (en) 2011-01-31 2016-08-16 Hand Held Products, Inc. Terminal with flicker-corrected aimer and alternating illumination
US8561903B2 (en) 2011-01-31 2013-10-22 Hand Held Products, Inc. System operative to adaptively select an image sensor for decodable indicia reading
US9659199B2 (en) 2011-01-31 2017-05-23 Hand Held Products, Inc. Terminal with flicker-corrected aimer and alternating illumination
US8537245B2 (en) 2011-03-04 2013-09-17 Hand Held Products, Inc. Imaging and decoding device with quantum dot imager
CN102982300A (en) * 2011-06-20 2013-03-20 计量仪器公司 Indicia reading terminal with color frame processing
US9224025B2 (en) 2011-06-27 2015-12-29 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US9489557B2 (en) 2011-06-27 2016-11-08 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US8640960B2 (en) 2011-06-27 2014-02-04 Honeywell International Inc. Optical filter for image and barcode scanning
US8636215B2 (en) 2011-06-27 2014-01-28 Hand Held Products, Inc. Decodable indicia reading terminal with optical filter
US8985459B2 (en) 2011-06-30 2015-03-24 Metrologic Instruments, Inc. Decodable indicia reading terminal with combined illumination
US9087249B2 (en) 2011-09-30 2015-07-21 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US9734370B2 (en) 2011-09-30 2017-08-15 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US8646692B2 (en) 2011-09-30 2014-02-11 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US10210365B2 (en) 2011-09-30 2019-02-19 Hand Held Products, Inc. Devices and methods employing dual target auto exposure
US8608071B2 (en) 2011-10-17 2013-12-17 Honeywell Scanning And Mobility Optical indicia reading terminal with two image sensors
US8629926B2 (en) 2011-11-04 2014-01-14 Honeywell International, Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
US9407840B2 (en) 2011-11-04 2016-08-02 Honeywell International, Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
US9066032B2 (en) 2011-11-04 2015-06-23 Honeywell International Inc. Imaging apparatus comprising image sensor array having shared global shutter circuitry
WO2013067671A1 (en) * 2011-11-07 2013-05-16 Honeywell Scanning And Mobility Optical indicia reading terminal with color image sensor
US8628013B2 (en) 2011-12-13 2014-01-14 Honeywell International Inc. Apparatus comprising image sensor array and illumination control
US9262661B2 (en) 2011-12-13 2016-02-16 Honeywell International, Inc. Optical readers and methods employing polarization sensing of light from decodable indicia
US9292722B2 (en) 2011-12-13 2016-03-22 Honeywell International, Inc. Apparatus comprising image sensor array and illumination control
US8881983B2 (en) 2011-12-13 2014-11-11 Honeywell International Inc. Optical readers and methods employing polarization sensing of light from decodable indicia
US9087250B2 (en) 2012-03-23 2015-07-21 Honeywell International, Inc. Cell phone reading mode using image timer
US8777108B2 (en) 2012-03-23 2014-07-15 Honeywell International, Inc. Cell phone reading mode using image timer
US8978981B2 (en) 2012-06-27 2015-03-17 Honeywell International Inc. Imaging apparatus having imaging lens
US9147095B2 (en) * 2013-11-22 2015-09-29 Ncr Corporation Optical code scanner optimized for reading 2D optical codes
US20150144693A1 (en) * 2013-11-22 2015-05-28 Ncr Corporation Optical Code Scanner Optimized for Reading 2D Optical Codes
CN105657282A (en) * 2014-11-11 2016-06-08 宁波舜宇光电信息有限公司 Visual identification method capable of initiatively optimizing image brightness
WO2016074548A1 (en) * 2014-11-14 2016-05-19 Beijing Zhigu Rui Tuo Tech Co., Ltd Visible light signal receiving and control method, control apparatus, and receiving device
US10348402B2 (en) 2014-11-14 2019-07-09 Beijing Zhigu Rui Tuo Tech Co., Ltd. Visible light signal receiving and control method, control apparatus, and receiving device
US9495564B2 (en) * 2015-04-06 2016-11-15 Symbol Technologies, Llc Arrangement for and method of assessing a cause of poor electro-optical reading performance by displaying an image of a symbol that was poorly read
US9489554B2 (en) 2015-04-06 2016-11-08 Symbol Technologies, Llc Arrangement for and method of assessing efficiency of transactions involving products associated with electro-optically readable targets
CN111527742A (en) * 2017-09-01 2020-08-11 特利丹E2V半导体简化股份公司 Method for capturing images by means of a CMOS-type image sensor for optically readable code recognition
US11334736B2 (en) * 2018-12-03 2022-05-17 Zebra Technologies Corporation Dual mode reader and method of reading DPM codes therewith
US11615610B1 (en) 2020-04-01 2023-03-28 Scandit Ag Recognition and indication of discrete patterns within a scene or image
US11900653B1 (en) 2020-04-01 2024-02-13 Scandit Ag Mapping items to locations within an environment based on optical recognition of patterns in images
US11886954B2 (en) 2020-04-01 2024-01-30 Scandit Ag Image analysis for mapping objects in an arrangement
US11295163B1 (en) 2020-04-01 2022-04-05 Scandit Ag Recognition of optical patterns in images acquired by a robotic device
US11803718B1 (en) 2020-04-01 2023-10-31 Scandit Ag High-speed scanning of optical patterns with a torch for an aimer
US11514665B2 (en) 2020-04-01 2022-11-29 Scandit Ag Mapping optical-code images to an overview image
US11532149B1 (en) 2020-04-01 2022-12-20 Scandit Ag Recognition and selection of a discrete pattern within a scene containing multiple patterns
US11216628B2 (en) 2020-04-01 2022-01-04 Scandit Ag High-speed scanning of optical patterns using a digital camera
US11403477B1 (en) 2020-05-15 2022-08-02 Scandit Ag Image exposure performance improvements for recognition of optical patterns
US11636709B2 (en) 2020-05-15 2023-04-25 Scandit Ag Optical data exchange while preserving social distancing
US11803719B1 (en) 2020-05-15 2023-10-31 Scandit Ag Performance improvements for recognition of optical patterns in images using incremental magnification
US11244147B2 (en) * 2020-05-15 2022-02-08 Scandit Ag Optical data exchange while preserving social distancing
US11922271B1 (en) 2020-05-15 2024-03-05 Scandit Ag Virtual screen standby mode for mobile device camera
US11290643B1 (en) 2020-06-26 2022-03-29 Scandit Ag Efficient digital camera image acquisition and analysis
US11810304B1 (en) 2020-07-27 2023-11-07 Scandit Ag Perspective distortion correction of discrete optical patterns in images using depth sensing
CN114697561A (en) * 2020-12-29 2022-07-01 恒景科技股份有限公司 Method and apparatus for automatic exposure control of image sensor by context switching
US11495036B1 (en) 2021-01-29 2022-11-08 Scandit Ag Segmenting images for optical character recognition
US11880738B1 (en) 2021-08-17 2024-01-23 Scandit Ag Visual odometry for optical pattern scanning in a real scene
US11893786B1 (en) * 2021-08-17 2024-02-06 Amazon Technologies, Inc. Scan-free barcode reading
US11557136B1 (en) 2022-02-23 2023-01-17 Scandit Ag Identity document verification based on barcode structure

Also Published As

Publication number Publication date
US8083146B2 (en) 2011-12-27
US20070102520A1 (en) 2007-05-10
WO2006019847A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
US20060011724A1 (en) Optical code reading system and method using a variable resolution imaging sensor
US9609241B2 (en) Image sensor pixel array having output response curve including logarithmic pattern for image sensor based terminal
US8910875B2 (en) Indicia reading terminal with color frame processing
US9129172B2 (en) Indicia reading terminal with color frame processing
JP5592643B2 (en) Indicia reading terminal including frame processing
JP4795345B2 (en) System and method for decoding optical code read by an imaging device based optical code reader
JP4250420B2 (en) Optical reader having partial frame operation mode
KR101953813B1 (en) Smart image sensor with integrated memory and processor
CN100493148C (en) Lens position adjusting apparatus, lens position adjusting method
EP2084647B1 (en) High speed auto-exposure control
US20070247542A1 (en) Camera
US8451366B2 (en) Image capturing device with automatic focus function
US10110829B2 (en) System and method for determination and adjustment of camera parameters using multi-gain images
JP2010527457A (en) Imaging method and imaging apparatus for imaging moving object
JP4853707B2 (en) Imaging apparatus and program thereof
JP2008299784A (en) Object determination device and program therefor
JP2004213331A (en) Optical information reading device
US20080266444A1 (en) Method, apparatus, and system for continuous autofocusing
EP1791074A1 (en) Exposure setting in machine vision
JP6929099B2 (en) Focus adjuster
KR100759856B1 (en) Imaging device and recording medium in which program of auto focus control method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYMBOL TECHNOLOGIES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOSEPH, EUGENE;CARLSON, BRAD;REEL/FRAME:016096/0898

Effective date: 20041122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION