US20050284029A1 - Aluminum and zirconium oxynitride abrasive grains - Google Patents

Aluminum and zirconium oxynitride abrasive grains Download PDF

Info

Publication number
US20050284029A1
US20050284029A1 US11/152,783 US15278305A US2005284029A1 US 20050284029 A1 US20050284029 A1 US 20050284029A1 US 15278305 A US15278305 A US 15278305A US 2005284029 A1 US2005284029 A1 US 2005284029A1
Authority
US
United States
Prior art keywords
abrasive grains
aluminum
grains according
zirconia
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/152,783
Inventor
Florent Bourlier
Florence Peillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PEM Abrasifs Refractaires
Original Assignee
PEM Abrasifs Refractaires
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PEM Abrasifs Refractaires filed Critical PEM Abrasifs Refractaires
Assigned to PEM ABRASIFS-REFRACTAIRES reassignment PEM ABRASIFS-REFRACTAIRES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOURLIER, FLORENT, PEILLON, FLORENCE
Publication of US20050284029A1 publication Critical patent/US20050284029A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1418Abrasive particles per se obtained by division of a mass agglomerated by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to the domain of abrasive grains, and particularly agglomerated grains intended for grinding wheels, grains applied to fabric and paper type supports, and grains used for spraying or contained in a polishing paste.
  • Patent U.S. Pat. No. 3,181,939 filed in 1962, describes alumina-zirconia type electromolten abrasives with ZrO 2 content between 10 and 60%, and a microstructure comprising an alumina-zirconia eutectic and zirconia and ⁇ alumina crystals.
  • Patent U.S. Pat. No. 3,891,408 filed in 1971 relates to alumina-zirconia type electromolten abrasives with ZrO 2 content of between 35 and 50%.
  • Patent U.S. Pat. No. 4,457,767, 1984 protects alumina-zirconia type electromolten abrasives with a content of yttrium oxide Y 2 O 3 between 0.1 and 2%.
  • the abrasive grains always contain either yttrium oxide or at least one rare earth oxide, in one manner or another.
  • patent EP 0 509 940 issued by the applicant describes a wide range of electromolten products for abrasive or refractory applications, composed of one or several oxynitrides of metallic elements in the list containing aluminum and zirconium; but there is no example of the case that mentions aluminum and zirconium oxynitrides nor double aluminum and zirconium oxynitrides.
  • the purpose of the invention is to provide abrasive grains to be applied onto fabric or paper supports or agglomerated in grinding wheels, or sprayed or contained in a polishing paste, and that have a better tenacity and machining performances than corundum—zirconia abrasives according to prior art with an equivalent content of zirconia.
  • the subject of the invention is corundum—zirconia abrasive grains containing more than 50% of a eutectic alumina—zirconia mixture, characterised in that they contain more than 0.3% of nitrogen, preferably from 0.3% to 3% of nitrogen, and more preferably from 0.3 to 1% of nitrogen, and in that less than 25% of the zirconia crystals are in monoclinic form.
  • more than 75% of the zirconia crystals are in tetragonal or cubic form.
  • more than 75% of the zirconia crystals are in cubic form
  • the content of metallic aluminum is less than 0.1% and preferably 0.01%, and the content of aluminum nitride is less than 0.1% and preferably less than 0.01%.
  • Another purpose of the invention is a process for manufacturing this type of abrasive grains by melting in an electric arc furnace with a load composed of alumina and baddeleyite, by adding a nitride material to this load composed of aluminum nitride and/or one or several aluminum oxynitrides.
  • Another purpose is a process for preparation of abrasive grains including the preparation of a mixture of aluminum nitride and/or oxynitride Al X O Y N Z , alumina and zirconia powders, the reactive sintering of this mixture at a temperature between 1500° C. and 1600° C., and fast cooling of the sintered grains between 1100° C. and ambient temperature.
  • Products according to the invention contain oxides, nitrides and oxynitrides of aluminum and zirconium, and it is not always easy to measure the content of each of these compounds. However, it is easy to measure the elementary contents of aluminum, zirconium and nitrogen. This is why the “equivalent content” concept is used by arbitrarily considering the product as being a mixture of Al 2 O 3 , ZrO 2 and AlN.
  • the equivalent content of AlN is the content for which all the nitrogen would be in AlN form
  • the equivalent content of ZrO 2 is the content for which all the zirconium would be in ZrO 2 form
  • the equivalent content of Al 2 O 3 is the content for which aluminum would be in Al 2 O 3 form, except aluminum corresponding to the equivalent content of AlN.
  • Another advantage of this concept of equivalent content is that the product can be compared with corundum—zirconia abrasives according to prior art.
  • Products according to the invention are of the corundum—zirconia type with an equivalent content of ZrO 2 between 21 and 44%, an equivalent content of Al 2 O 3 between 57 and 80% and a nitrogen content between 0.3 and 3%, and preferably between 0.3 and 1%.
  • their structure consists of a eutectic mixture of ⁇ alumina and zirconia crystals. More than 75% of the zirconia crystals are in cubic form, the remainder being in monoclinical form.
  • Nitrogen is present essentially in the form of zirconium nitride, more than 90% of the remainder being in the form of aluminum oxynitride.
  • zirconium nitride is a perfectly stable product in contact with the water and acids, which is not the case for aluminum nitride, which makes it an excellent stabilising agent.
  • These products may be obtained by melting in an electric arc furnace with a load composed of alumina, zirconia, for example in the form of baddeleyite, and a nitride compound based on aluminum nitride and/or oxynitride.
  • the aluminum nitride and/or oxynitride react with the zirconia during melting to form zirconium nitride.
  • the molten mass is cast and solidified quickly by any means known to those skilled in the art to cause efficient quenching; during these tests, the applicant used the technique described in patent U.S. Pat. No. 3,993,119, but using fixed casting equipment considering the size of the tests. Casting is done on a cold support, with a mass equal to at least twice the mass of the molten mass, and at a temperature of between 50° C. and 350° C. before casting.
  • nitride compound a product prepared by direct nitriding according to patent EP 0494129 issued by the applicant and containing aluminum nitride and oxynitride is used as the nitride compound, a product is obtained in which the content of free aluminum nitride is small, and typically less than 0.1%. Furthermore, this content can be reduced to less than 0.01% by slight acid etching, with final washing of the grains by a solution with a pH between 2 and 7, without reducing the mechanical strength of the material. The same is true for metallic aluminum.
  • Abrasive grains according to the invention can also be prepared by reactive sintering starting from a mixture of alumina, zirconia, and aluminum nitride and/or oxynitride powders.
  • Sintering is done at a temperature between 1500 and 1600° C., followed by fast cooling of the grains starting from 1100° C.
  • Exceptional mechanical properties are obtained using abrasive grains according to the invention, and particularly a Knoop hardness greater than or equal to 19 GPa, or even 20 GPa, and between 19 and 21 GPa, a tenacity of at least 2.3 MPa.m 1/2 , very often more than 2.7 MPa.m 1/2 , and performances in the machining test equal to 70% more than is obtained with a conventional corundum—zirconia abrasive with the same content of zirconia.
  • the nitrogen content was measured on 5 mg samples weighed to the nearest 0.1 mg, by combustion in a LECO TC 436 gas analyser, and analysis by thermal conductivity of the gas obtained. The result indicated on each sample is the average of five measurements.
  • Nitriding began at about 700° C., and the nitrogen pressure was maintained to facilitate the increase in the temperature of the load.
  • the exothermal reaction resulted in a temperature of about 1750° C. at the end of the operation.
  • the grains according to the invention are slightly harder and with higher tenacity than grains of corundum—zirconium with the same zirconia content.
  • a batch of F80 abrasive grains (according to the FEPA standard) was prepared starting from the product prepared in Example 2 and tested in grinding according to the following procedure:
  • a single layer of grains is fixed on the side part of a 160 mm diameter metallic drum using an acrylic thermosetting resin.
  • the grinding test consists of attacking an 18-8 stainless steel bar with section 12 mm ⁇ 12 mm pushed perpendicular with a force of 85 Newtons, in contact with the side face of the drum driven at 6000 rpm. The duration of the operation is three times one minute.
  • the grains according to the invention have significantly better abrasive performances than corundum—zirconia grains with the same zirconia content.

Abstract

Corundum-zirconia abrasive grains containing more than 50 wt % of an alumina-zirconia eutectic mixture. The grains contain 0.3 to 3% nitrogen, and more than 75% of the zirconia crystals are cubic in shape. The abrasive grains are of particular use for making grinding wheels, abrasive fabrics and papers, polishing compounds and sprayed abrasives.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to the domain of abrasive grains, and particularly agglomerated grains intended for grinding wheels, grains applied to fabric and paper type supports, and grains used for spraying or contained in a polishing paste.
  • Description of Related Art
  • Alumina-zirconia based electromolten abrasives have been known for more than forty years and in particular have been described in several patents by the Norton company. Patent U.S. Pat. No. 3,181,939, filed in 1962, describes alumina-zirconia type electromolten abrasives with ZrO2 content between 10 and 60%, and a microstructure comprising an alumina-zirconia eutectic and zirconia and α alumina crystals. Patent U.S. Pat. No. 3,891,408 filed in 1971 relates to alumina-zirconia type electromolten abrasives with ZrO2 content of between 35 and 50%. Patent U.S. Pat. No. 3,993,119 published in 1976 describes a molten abrasive oxides casting machine capable of vigorously quenching the molten mass. Patent U.S. Pat. No. 4,457,767, 1984, protects alumina-zirconia type electromolten abrasives with a content of yttrium oxide Y2O3 between 0.1 and 2%.
  • More recently, the 3M Innovative Properties Company has deposited patent applications:
      • WO 02/08143 that claims an electromolten abrasive grain characterised by a fraction of at least 20% by volume, composed of a eutectic mixture formed between firstly ZrO2 and secondly at least two other constituents, including Al2O3 and/or defined compounds of the Al2O3, Y2O3 type.
      • WO 02/08146 that claims an electromolten abrasive grain with eutectic composition in which eutectic is formed between firstly ZrO2 and secondly at least two constituents including Al2O3 and/or defined compounds of the Al2O3— rare earth oxides type.
  • The common point between these patent applications is that the abrasive grains always contain either yttrium oxide or at least one rare earth oxide, in one manner or another.
  • The Inorganic Chemistry Treaty by Paul Pascal, Masson, 1962, already described that ZrO2 had three allotropic varieties. The monoclinical form stable at low temperature is transformed into quadratic zirconia at about 1100° C., and then into cubic zirconia. The cubic form is metastable at ambient temperature and it can be obtained by quenching; some elements, without any further precision, stabilise the cubic form.
  • The patents mentioned above always indicate that the product is prepared by casting the molten product followed by vigorous quenching, a process that tends to stabilise the metastable cubic form; however, experience shows that the efficiency of this quenching is fairly limited, which is the reason for the interest in patent U.S. Pat. No. 4,457,767 that divulges that yttrium oxide stabilises the cubic phase of ZrO2. Patent application WO 02/08146 suggests that other stabilising elements exist in the group of rare earth metals.
  • Furthermore, patent EP 0 509 940 issued by the applicant describes a wide range of electromolten products for abrasive or refractory applications, composed of one or several oxynitrides of metallic elements in the list containing aluminum and zirconium; but there is no example of the case that mentions aluminum and zirconium oxynitrides nor double aluminum and zirconium oxynitrides.
  • SUMMARY OF THE INVENTION
  • The purpose of the invention is to provide abrasive grains to be applied onto fabric or paper supports or agglomerated in grinding wheels, or sprayed or contained in a polishing paste, and that have a better tenacity and machining performances than corundum—zirconia abrasives according to prior art with an equivalent content of zirconia.
  • The subject of the invention is corundum—zirconia abrasive grains containing more than 50% of a eutectic alumina—zirconia mixture, characterised in that they contain more than 0.3% of nitrogen, preferably from 0.3% to 3% of nitrogen, and more preferably from 0.3 to 1% of nitrogen, and in that less than 25% of the zirconia crystals are in monoclinic form. According to the invention, more than 75% of the zirconia crystals are in tetragonal or cubic form. Preferably, more than 75% of the zirconia crystals are in cubic form
  • The content of metallic aluminum is less than 0.1% and preferably 0.01%, and the content of aluminum nitride is less than 0.1% and preferably less than 0.01%.
  • Another purpose of the invention is a process for manufacturing this type of abrasive grains by melting in an electric arc furnace with a load composed of alumina and baddeleyite, by adding a nitride material to this load composed of aluminum nitride and/or one or several aluminum oxynitrides.
  • Another purpose is a process for preparation of abrasive grains including the preparation of a mixture of aluminum nitride and/or oxynitride AlXOYNZ, alumina and zirconia powders, the reactive sintering of this mixture at a temperature between 1500° C. and 1600° C., and fast cooling of the sintered grains between 1100° C. and ambient temperature.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Within the very wide range of abrasive compositions described in patent EP 0509940, the applicant has demonstrated that products based on aluminum and zirconium oxynitrides have better performances than products according to prior art of the corundum—zirconia type or the aluminum oxynitride type such as AlON.
  • Products according to the invention contain oxides, nitrides and oxynitrides of aluminum and zirconium, and it is not always easy to measure the content of each of these compounds. However, it is easy to measure the elementary contents of aluminum, zirconium and nitrogen. This is why the “equivalent content” concept is used by arbitrarily considering the product as being a mixture of Al2O3, ZrO2 and AlN. The equivalent content of AlN is the content for which all the nitrogen would be in AlN form, the equivalent content of ZrO2 is the content for which all the zirconium would be in ZrO2 form, and the equivalent content of Al2O3 is the content for which aluminum would be in Al2O3 form, except aluminum corresponding to the equivalent content of AlN. Another advantage of this concept of equivalent content is that the product can be compared with corundum—zirconia abrasives according to prior art.
  • Products according to the invention are of the corundum—zirconia type with an equivalent content of ZrO2 between 21 and 44%, an equivalent content of Al2O3 between 57 and 80% and a nitrogen content between 0.3 and 3%, and preferably between 0.3 and 1%. For more than 50% of their weight, their structure consists of a eutectic mixture of α alumina and zirconia crystals. More than 75% of the zirconia crystals are in cubic form, the remainder being in monoclinical form. Nitrogen is present essentially in the form of zirconium nitride, more than 90% of the remainder being in the form of aluminum oxynitride.
  • It has been experimentally observed that the presence of zirconium nitride in the product is accompanied by a large increase in the relative proportion of the cubic form in the zirconia contained. Zirconium nitride is a perfectly stable product in contact with the water and acids, which is not the case for aluminum nitride, which makes it an excellent stabilising agent.
  • These products may be obtained by melting in an electric arc furnace with a load composed of alumina, zirconia, for example in the form of baddeleyite, and a nitride compound based on aluminum nitride and/or oxynitride. The aluminum nitride and/or oxynitride react with the zirconia during melting to form zirconium nitride.
  • The molten mass is cast and solidified quickly by any means known to those skilled in the art to cause efficient quenching; during these tests, the applicant used the technique described in patent U.S. Pat. No. 3,993,119, but using fixed casting equipment considering the size of the tests. Casting is done on a cold support, with a mass equal to at least twice the mass of the molten mass, and at a temperature of between 50° C. and 350° C. before casting.
  • If a product prepared by direct nitriding according to patent EP 0494129 issued by the applicant and containing aluminum nitride and oxynitride is used as the nitride compound, a product is obtained in which the content of free aluminum nitride is small, and typically less than 0.1%. Furthermore, this content can be reduced to less than 0.01% by slight acid etching, with final washing of the grains by a solution with a pH between 2 and 7, without reducing the mechanical strength of the material. The same is true for metallic aluminum.
  • Abrasive grains according to the invention can also be prepared by reactive sintering starting from a mixture of alumina, zirconia, and aluminum nitride and/or oxynitride powders.
  • Sintering is done at a temperature between 1500 and 1600° C., followed by fast cooling of the grains starting from 1100° C.
  • Exceptional mechanical properties are obtained using abrasive grains according to the invention, and particularly a Knoop hardness greater than or equal to 19 GPa, or even 20 GPa, and between 19 and 21 GPa, a tenacity of at least 2.3 MPa.m1/2, very often more than 2.7 MPa.m1/2, and performances in the machining test equal to 70% more than is obtained with a conventional corundum—zirconia abrasive with the same content of zirconia.
  • EXAMPLES
  • Analysis and Test Methods
  • The nitrogen content was measured on 5 mg samples weighed to the nearest 0.1 mg, by combustion in a LECO TC 436 gas analyser, and analysis by thermal conductivity of the gas obtained. The result indicated on each sample is the average of five measurements.
  • Example 1
  • 2500 kg of powder Bayer alumina with a size grading of less than 100 μm was mixed with 1000 kg of powder aluminum with a size grading of less than 1.2 mm. This mixture was placed in a sealed furnace, vacuum degassed and then heated under a nitrogen pressure of 1 atm.
  • Nitriding began at about 700° C., and the nitrogen pressure was maintained to facilitate the increase in the temperature of the load. The exothermal reaction resulted in a temperature of about 1750° C. at the end of the operation.
  • After cooling, and at the end of the operation, the mass of porous, homogenous and mechanically unsound aluminum oxynitride recovered was 4010 kg.
  • The operation was repeated three times and finally a batch of 16 100 kg of product was obtained and was ground to a size grading of less than 10 mm, and then sampled and analysed; the result of the analysis gave an equivalent AlN content equal to 35.6%.
  • Example 2
  • 400 kg of a mixture composed of 30 kg of the product obtained in example No. 1, 100 kg of baddeleyite with 95% of ZrO2 and 270 kg of Bayer alumina, was prepared.
  • This load was melted in a 100 kW melting arc furnace; the molten mass was cast on an ingot mould composed of 12 vertical cast iron plates (0.8 m×0.8 m×0.05 m) separated by 0.025 m. The cast mass was 390 kg; the product analysis was:
    Equivalent AlN content: 2.3%
    Zr content expressed in ZrO2: 23.6%
    Al content expressed in Al2O3: 73.7%
  • An examination of the product structure demonstrated the existence of two majority phases:
  • α alumina and cubic zirconia, and two minority phases: zirconium nitride and monoclinical zirconia. The chemical analysis also gave a free AlN content of 0.07% in the product.
  • The hardness and tenacity measurements are shown in Table 1, which also shows the results for similar product:
    TABLE 1
    Knoop Vickers
    hardness hardness Tenacity
    Product in 19.9 GPa 18.9 GPa 2.8 MPa · m1/2
    example 2
    Corundum - 18.7 GPa 17.9 GPa 2.1 MPa · m1/2
    Zirconia with
    25% ZrO2
    according to
    prior art
    White corundum 20.3 GPa 20 GPa 2.0 MPa · m1/2
  • It can be seen that the grains according to the invention are slightly harder and with higher tenacity than grains of corundum—zirconium with the same zirconia content.
  • Example 3
  • A batch of F80 abrasive grains (according to the FEPA standard) was prepared starting from the product prepared in Example 2 and tested in grinding according to the following procedure:
  • A single layer of grains is fixed on the side part of a 160 mm diameter metallic drum using an acrylic thermosetting resin. The grinding test consists of attacking an 18-8 stainless steel bar with section 12 mm×12 mm pushed perpendicular with a force of 85 Newtons, in contact with the side face of the drum driven at 6000 rpm. The duration of the operation is three times one minute.
  • The mass of the stainless steel bar is tested after one minute, two minutes and three minutes to evaluate the weight loss. The steel mass removed expressed in grams per minute are shown in Table 2, which also shows the results of this test obtained with other products using F80 grains.
    TABLE 2
    Mass removed minute by
    minute
    Product Supplier 1 2 3
    Corundum The applicant 11.0 7.5 6.8
    zirconia with
    25% ZrO2
    Corundum Competitive 10.8 7.9 7.7
    zirconia with product
    25% ZrO2
    Product in The applicant 19.6 16.5 14.9
    example 2
  • It can be seen that the grains according to the invention have significantly better abrasive performances than corundum—zirconia grains with the same zirconia content.

Claims (21)

1. Abrasive grains containing more than 50% of a eutectic alumina—zirconia mixture by weight, containing more than 0.3% of nitrogen, wherein less than 25% of the zirconia crystals are in monoclinic form
2. Abrasive grains according to claim 1 containing from 0.3% to 3% of nitrogen, preferably from 0.3% to 1% of nitrogen.
3. Abrasive grains according to claim 1 wherein more than 75% of the zirconia crystals are in tetragonal or in cubic form.
4. Abrasive grains according to claim 1 wherein more than 75% of the zirconia crystals are in cubic form.
5. Abrasive grains according to claim 1, wherein most of the nitrogen is in zirconium nitride form.
6. Abrasive grains according to claim 1, wherein the content of metallic aluminum is less than 0.1% by weight and the content of free aluminum nitride AlN is less than 0.1%.
7. Abrasive grains according to claim 6, wherein the content of metallic aluminum is less than 0.01% and the content of free aluminum nitride AlN is less than 0.01%.
8. Abrasive grains according to claim 5, wherein more than 90% of the nitrogen not combined in the form of zirconium nitride is combined in the form of aluminum oxynitride.
9. Abrasive grains according to claim 1, wherein the total contents of zirconium and aluminum in the form of oxides, nitrides and oxynitrides expressed in the form of equivalent contents of oxides, are between 21 and 44% for ZrO2 and between 57 and 80% for Al2O3.
10. Abrasive grains according to claim 1, characterised in that they have a Knoop hardness equal to or greater than 19 GPa and a tenacity equal to or greater than 2.3 MPa1/2.
11. Abrasive grains according to claim 1, having a Knoop hardness equal to or greater than 20 GPa and a tenacity equal to or greater than 2.7 MPa.m1/2.
12. Process of manufacturing abrasive grains according to claim 1, by melting in an electric arc furnace with a load composed of alumina and baddeleyite, characterised in that a nitride material is added to this load composed of aluminum nitride and/or one or several aluminum oxynitrides.
13. Process according to claim 12, wherein the nitride material is prepared by nitriding of a load composed of an alumina and aluminum powder mixture.
14. Process according to claim 12, wherein the nitride and/or the aluminum oxynitrides react with zirconium during melting to form zirconium nitride.
15. Process according to claim 12, wherein the mass melted in the electric furnace is cast and solidified quickly.
16. Process according to claim 15, in which the fast solidification of the molten mass is obtained by pouring it on a cold support, wherein the mass of the cold support is equal to at least twice the mass of the molten mass, and wherein its temperature before casting is between 50° C. and 350° C.
17. Process for preparation of abrasive grains according to claim 1, including the preparation of a mixture of aluminum nitride AlN and/or oxynitride AlXOYNZ, alumina and zirconia powders, the reactive sintering of this mixture at a temperature between 1500° C. and 1600° C., and fast cooling of the sintered grains between 1100° C. and ambient temperature.
18. Process according to claim 17, comprising a final washing of the grains with a solution with a pH between 2 and 7.
19. Grinding wheels designed for grinding metals and metallic alloys or for precision grinding containing abrasive grains according to claim 1.
20. Abrasive fabrics and papers designed for polishing containing abrasive grains according to claim 1.
21. Polishing paste containing abrasive grains according to claim 1.
US11/152,783 2002-12-23 2005-06-15 Aluminum and zirconium oxynitride abrasive grains Abandoned US20050284029A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0216498A FR2848889B1 (en) 2002-12-23 2002-12-23 ABRASIVE GRAINS BASED ON ALUMINUM AND ZIRCONIUM OXYNITRIDE
FR02/16498 2002-12-23
PCT/FR2003/003787 WO2004063306A1 (en) 2002-12-23 2003-12-18 Aluminium and zirconium oxynitride abrasive grains

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003787 Continuation-In-Part WO2004063306A1 (en) 2002-12-23 2003-12-18 Aluminium and zirconium oxynitride abrasive grains

Publications (1)

Publication Number Publication Date
US20050284029A1 true US20050284029A1 (en) 2005-12-29

Family

ID=32406380

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/152,783 Abandoned US20050284029A1 (en) 2002-12-23 2005-06-15 Aluminum and zirconium oxynitride abrasive grains

Country Status (11)

Country Link
US (1) US20050284029A1 (en)
EP (1) EP1576069B1 (en)
AT (1) ATE331009T1 (en)
AU (1) AU2003299340A1 (en)
BR (1) BRPI0317694B1 (en)
CA (1) CA2511069C (en)
DE (1) DE60306428T2 (en)
ES (1) ES2266912T3 (en)
FR (1) FR2848889B1 (en)
PT (1) PT1576069E (en)
WO (1) WO2004063306A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128462A1 (en) * 2003-08-20 2007-06-07 F.A.R. - Fonderie Acciaierie Roiale-Spa Method to produce an element subject to wear, and element subject to wear thus obtained
US20110146509A1 (en) * 2009-12-22 2011-06-23 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US8034137B2 (en) 2007-12-27 2011-10-11 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8753558B2 (en) 2011-12-30 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
US8753742B2 (en) 2012-01-10 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US8758461B2 (en) 2010-12-31 2014-06-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8764865B2 (en) 2008-12-17 2014-07-01 3M Innovative Properties Company Shaped abrasive particles with grooves
US8764863B2 (en) 2011-12-30 2014-07-01 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
WO2015158009A1 (en) * 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2020-08-07 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474796B (en) * 2017-07-27 2019-04-23 郑州威源新材料有限公司 A kind of nitride modified aluminas abrasive material and its production technology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891408A (en) * 1972-09-08 1975-06-24 Norton Co Zirconia-alumina abrasive grain and grinding tools
US4457767A (en) * 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
US5248318A (en) * 1990-10-09 1993-09-28 Japan Abrasive Co., Ltd. Lapping abrasive of alumina-zirconia system and method for producing the same
US5336280A (en) * 1991-04-15 1994-08-09 Pechiney Electrometallurgie Abrasive and/or refractory products based on melted and solidified oxynitrides and process preparing the same
US6583080B1 (en) * 2000-07-19 2003-06-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials
US6589305B1 (en) * 2000-07-19 2003-07-08 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3 • rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001234702A1 (en) * 2000-07-19 2002-02-05 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-al2o3. rare earth oxide eutectic materials, abrasive particles, abrasive articles, and methods of makingand using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891408A (en) * 1972-09-08 1975-06-24 Norton Co Zirconia-alumina abrasive grain and grinding tools
US4457767A (en) * 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
US5248318A (en) * 1990-10-09 1993-09-28 Japan Abrasive Co., Ltd. Lapping abrasive of alumina-zirconia system and method for producing the same
US5336280A (en) * 1991-04-15 1994-08-09 Pechiney Electrometallurgie Abrasive and/or refractory products based on melted and solidified oxynitrides and process preparing the same
US6583080B1 (en) * 2000-07-19 2003-06-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials
US6589305B1 (en) * 2000-07-19 2003-07-08 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3 • rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820299B2 (en) * 2003-08-20 2010-10-26 F.A.R.- Fonderie Acciaierie Roiale-Spa Method to produce an element subject to wear, and element subject to wear thus obtained
US20070128462A1 (en) * 2003-08-20 2007-06-07 F.A.R. - Fonderie Acciaierie Roiale-Spa Method to produce an element subject to wear, and element subject to wear thus obtained
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US8034137B2 (en) 2007-12-27 2011-10-11 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
US9890309B2 (en) 2008-12-17 2018-02-13 3M Innovative Properties Company Abrasive article with shaped abrasive particles with grooves
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US10987780B2 (en) 2008-12-17 2021-04-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US9938439B2 (en) 2008-12-17 2018-04-10 3M Innovative Properties Company Production tool to make abrasive particles with grooves
US11767454B2 (en) 2008-12-17 2023-09-26 3M Innovative Properties Company Production tool to make abrasive particles with grooves
US8764865B2 (en) 2008-12-17 2014-07-01 3M Innovative Properties Company Shaped abrasive particles with grooves
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US9150765B2 (en) 2009-12-22 2015-10-06 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US20110146509A1 (en) * 2009-12-22 2011-06-23 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
US8758461B2 (en) 2010-12-31 2014-06-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9017439B2 (en) 2010-12-31 2015-04-28 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9598620B2 (en) 2011-06-30 2017-03-21 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
US9303196B2 (en) 2011-06-30 2016-04-05 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8764863B2 (en) 2011-12-30 2014-07-01 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US10428255B2 (en) 2011-12-30 2019-10-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8753558B2 (en) 2011-12-30 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
US8753742B2 (en) 2012-01-10 2014-06-17 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9567505B2 (en) 2012-01-10 2017-02-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9238768B2 (en) 2012-01-10 2016-01-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10364383B2 (en) 2012-01-10 2019-07-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
US9200187B2 (en) 2012-05-23 2015-12-01 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9428681B2 (en) 2012-05-23 2016-08-30 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10668598B2 (en) 2013-03-29 2020-06-02 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9457453B2 (en) 2013-03-29 2016-10-04 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10563106B2 (en) 2013-09-30 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9566689B2 (en) 2013-12-31 2017-02-14 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US10597568B2 (en) 2014-01-31 2020-03-24 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2015158009A1 (en) * 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US10351745B2 (en) 2014-12-23 2019-07-16 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10358589B2 (en) 2015-03-31 2019-07-23 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10711171B2 (en) 2015-06-11 2020-07-14 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2020-08-07 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Also Published As

Publication number Publication date
FR2848889A1 (en) 2004-06-25
DE60306428D1 (en) 2006-08-03
EP1576069B1 (en) 2006-06-21
BRPI0317694B1 (en) 2015-08-25
ATE331009T1 (en) 2006-07-15
AU2003299340A1 (en) 2004-08-10
ES2266912T3 (en) 2007-03-01
BR0317694A (en) 2005-11-22
FR2848889B1 (en) 2005-10-21
EP1576069A1 (en) 2005-09-21
WO2004063306A1 (en) 2004-07-29
PT1576069E (en) 2006-10-31
CA2511069C (en) 2011-10-18
CA2511069A1 (en) 2004-07-29
DE60306428T2 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US20050284029A1 (en) Aluminum and zirconium oxynitride abrasive grains
Kim et al. Microstructure control of in‐situ‐toughened α‐SiAlON Ceramics
Faber et al. Intergranular crack‐deflection toughening in silicon carbide
JPH0312597B2 (en)
US4687655A (en) Process for the manufacture of shaped articles from reaction-bonded silicon nitride by nitridation under elevated nitrogen gas pressure
US9908816B2 (en) Refractory powder comprising coated mullite grains
EP1140730B1 (en) Composite material
JP2002531641A (en) Fused alumina-zirconia grit (abrasive), polishing tool, and refractory parts made from the grit
US7011689B2 (en) Melted alumina-zirconia ceramic grains, abrasive tools and refractory parts produced from said grains
Lee et al. Thermomechanical Properties of β‐Sialon Synthesized from Kaolin
US5449649A (en) Monolithic silicon nitride having high fracture toughness
EP0365553B1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
Kanai et al. Hot-Pressed BN-AlN Ceramic Composites with High Thermal Conductivity. Part III
JPS6131071B2 (en)
Bai et al. Comparative study of β-Si3N4 powders prepared by SHS sintered by spark plasma sintering and hot pressing
JP3605297B2 (en) Thread guide and fishing line guide using this
JP2001526175A (en) Dense refractories with improved heat shock resistance
JPS62148367A (en) Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture
JPH0813702B2 (en) Composite ceramics
RU2243955C2 (en) Composite
Itatani et al. Sinterability of magnesium silicon nitride powder with yttrium oxide addition coated using the homogeneous precipitation method
JPH037623B2 (en)
JP4500515B2 (en) Parts for semiconductor manufacturing equipment and mirrors for length measurement
Ekström et al. Yttria Doped Si 2 N 2 O Ceramics
JPH0254298B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: PEM ABRASIFS-REFRACTAIRES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOURLIER, FLORENT;PEILLON, FLORENCE;REEL/FRAME:016963/0453;SIGNING DATES FROM 20050822 TO 20050825

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION