US20050282954A1 - Perfluoroelastomer gels - Google Patents

Perfluoroelastomer gels Download PDF

Info

Publication number
US20050282954A1
US20050282954A1 US11/153,919 US15391905A US2005282954A1 US 20050282954 A1 US20050282954 A1 US 20050282954A1 US 15391905 A US15391905 A US 15391905A US 2005282954 A1 US2005282954 A1 US 2005282954A1
Authority
US
United States
Prior art keywords
per
latex
perfluoroelastomer
gel
perfluoroelastomeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/153,919
Inventor
Stefano Arrigoni
Marco Apostolo
Margherita Albano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Specialty Polymers Italy SpA
Original Assignee
Solvay Solexis SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Solexis SpA filed Critical Solvay Solexis SpA
Assigned to SOLVAY SOLEXIS S.P.A. reassignment SOLVAY SOLEXIS S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBANO, MARGHERITA, APOSTOLO, MARCO, ARRIGONI, STEFANO
Publication of US20050282954A1 publication Critical patent/US20050282954A1/en
Priority to US13/921,929 priority Critical patent/US9029464B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to perfluoroelastomeric compositions having an improved thermal resistance, improved sealing properties, improved mechanical properties.
  • the cured perfluoroelastomers of the present invention are used in the preparation of manufactured articles as O-ring, gaskets, shaft seals, fuel hoses, etc., showing the combination of the above improved properties.
  • fluoroelastomers are used for their high properties of chemical resistance, thermal resistance, good sealing properties and low permeability.
  • the market request is to have available perfluoroelastomers having improved above properties. See for example patents EP 1,031,607, EP 1,031,606, U.S. Pat. No. 5,585,449, U.S. Pat. No. 5,948,868, U.S. Pat. No. 5,902,857.
  • perfluoroelastomers are used up to temperatures of 230° C. If an improvement of thermal resistance is desired, it is necessary to use particular curing systems. See patents U.S. Pat. No. 5,902,857 and U.S. Pat. No. 5,948,868 wherein the crosslinking agent is a bis-olefin, which allows to obtain manufactured articles usable up to temperatures of the order of 300° C. Generally it is also known that by increasing the use temperature, for example from 275° C. to 300° C., the sealing and thermal resistance properties notably worsen.
  • perfluoroelastomers are required, which, cured with conventional crosslinking agents, for example triallylisocyanurate can be mentioned, show an improved combination of the above properties, in particular an use temperature higher than those obtained by using this crosslinking agnt according to the prior art.
  • the perfluoroelastomers on the market are usable at most up to 230° C.
  • Perfluoroelastomers cured with triallylisocyanurate having a higher thermal rating are desired by users.
  • Perfluoroelastomers are likewise required, which, cured with bis-olefins, show an improved combination of the above properties, in particular an use temperature higher than those obtained by using said crosslinking agents according to the prior art.
  • the perfluoroelastomers on the market are usable at most up to 300° C. See for example patents U.S. Pat. No. 5,948,868 and U.S. Pat. No. 5,902,857.
  • Perfluoroelastomers cured with bis-olefins having a higher thermal rating are desired by users.
  • the Applicant has found a solution to the above technical problem and to obtain perfluoroelastomers having the combination of the above improved properties.
  • An object of the present invention are perfluoroelastomeric gels having the following properties:
  • the gel satisfying the following test the gel subjected to drying in a stove at 90° C. up to a constant weight gives a curable perfluoroelastomer.
  • curable perfluoroelastomers From said curable perfluoroelastomers, cured perfluoroelastomers are obtained having an improved thermal resistance, improved sealing properties, improved mechanical properties compared with the perfluoroelastomers obtained according to the prior art, therefore not from perfluoroelastomeric gels.
  • the invention perfluoroelastomeric gel contains TFE-based perfluoroelastomers with at least another (per)fluorinated comonomer having at least one unsaturation of ethylene type.
  • the comonomer is selected from the following:
  • CF 2 ⁇ CFOX (per)fluoro-oxyalkylvinylethers, wherein X is a C 1 -C 12 (per)fluorooxyalkyl, containing one or more ether groups;
  • R′ Fn is equal to R Fn or OR Fn wherein R Fn is a linear or branched perfluoroalkyl radical with 1-5 carbon atoms, preferably R′ Fn ⁇ OCF 3 ;
  • X 1n and X 2n equal to or different from each other, are F, CF 3 ;
  • (per)fluorovinylethers of general formula CFX AI ⁇ CX AI OCF 2 OR AI (A-I) wherein R AI is a C 2 -C 6 linear, branched or C 5 -C 6 cyclic perfluoroalkyl group, or a C 2 -C 6 linear, branched perfluorooxyalkyl group containing from one to three oxygen atoms; R AI can optionally contain from 1 to 2 atoms, equal or different, selected from the following: Cl, Br, I; X AI ⁇ F; the compounds of general formula: CFX AI ⁇ CX AI OCF 2 OCF 2 CF 2 Y AI (A-II) are preferred, wherein Y AI ⁇ F, OCF 3 ; X AI as above; in particular (MOVE 1 ) CF 2 ⁇ CFOCF 2 OCF 2 CF 3 and (MOVE 2 ) CF 2 ⁇ CFOCF 2 OCF 2 CF 2 OCF 3 ; C 3 -C
  • Preferred monomeric compositions of the perfluoroelastomers of the invention are the following, the sum of the comonomer percentages being 100%:
  • TFE tetrafluoroethylene
  • PAVE perfluoroalkylvinylether
  • MOVE perfluorovinyl-ethers
  • compositions are the following, the sum of the comonomer percent being 100%:
  • perfluoroelastomers comprise also monomeric units deriving from a bis-olefin of general formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 equal to or different from each other, are H or C 1 -C 5 alkyls;
  • Z is a C 1 -C 18 linear or branched alkylene or cycloalkylene radical, optionally containing oxygen atoms, preferably at least partially fluorinated, or a (per)fluoropolyoxyalkylene radical, as described in EP 661,304 in the name of the Applicant.
  • Z is preferably a C 4 -C 12 , more preferably C 4 -C 8 , perfluoroalkylene radical, while R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are preferably hydrogen;
  • Z is a (per)fluoropolyoxyalkylene radical, it can comprise units selected from the following:
  • Z has formula: -(Q) p —CF 2 O—(CF 2 CF 2 O) m (CF 2 O) n —CF 2 —(Q) p — (II)
  • Q is a C 1 l-C 10 alkylene or oxyalkylene radical
  • p is 0 or 1
  • m and n are numbers such that the m/n ratio is between 0.2 and 5 and the molecular weight of said (per)fluoropolyoxyalkylene radical is in the range 500-10,000, preferably 700-2,000.
  • Q is selected from:
  • the bis-olefins of formula (I) wherein Z is an alkylene or cycloalkylene radical can be prepared according to what described, for example, by I. L. Knunyants et al. in “Izv. Akad. Nauk. SSSR”, Ser. Khim., 1964(2), 384-6.
  • the bis-olefins containing (per) fluoropolyoxyalkylene structures are described in U.S. Pat. No. 3,810,874.
  • the unit amount in the chain deriving from the bis-olefins of formula (I) is generally from 0.01 to 1.0 moles, preferably from 0.03 to 0.5 moles, still more preferably from 0.05 to 0.2 moles per 100 moles of the other above mentioned monomeric units, constituting the basic perfluoroelastomer structure.
  • perfluoroelastomeric gel contains a semicrystalline (per) fluoropolymer, in an amount in per cent by weight referred to the total dry weight perfluoroelastomer+semicrystalline perfluoropolymer, from 0% to 70%, preferably from 0% to 50% by weight, still more preferably from 2% to 30% by weight, on the total of the monomer moles.
  • semicrystalline (per)fluoropolymer it is meant a (per)fluoropolymer showing, besides the glass transition temperature Tg, at least a crystalline melting temperature.
  • the semicrystalline (per)fluoropolymer is constituted of tetrafluoroethylene (TFE) homopolymers, or TFE copolymers with one or more monomers containing at least one unsaturation of ethylene type, in an amount from 0.01% to 10% by moles, preferably from 0.05% to 7% by moles.
  • TFE tetrafluoroethylene
  • Said comonomers having an ethylene unsaturation are of hydrogenated and fluorinated type.
  • ethylene, propylene, acrylic monomers for example methylmethacrylate, (meth)acrylic acid, butylacrylate, hydroxyethylhexylacrylate, styrene monomers, can be mentioned.
  • C 2 -C 8 hydrogenated fluoroolefins as vinyl fluoride (VF), vinylidene fluoride (VDF), trifluoroethylene, CH 2 ⁇ CH—R f perfluoroalkylethylene, wherein R f is a C 1 -C 6 perfluoroalkyl;
  • C 2 -C 8 chloro- and/or bromo- and/or iodo-fluoroolefins, as chlorotrifluoroethylene (CTFE);
  • CF 2 ⁇ CFOX (per)fluoro-oxyalkylvinylethers, wherein X is: a C 1 -C 12 alkyl, or a C 1 -C 12 oxyalkyl, or a C 1 -C 12 (per)fluoro-oxyalkyl having one or more ether groups;
  • PAVEs in particular perfluoromethyl-, perfluoroethyl-, perfluoropropylvinylether and (per) fluorodioxoles, preferably perfluorodioxoles, are preferred comonomers.
  • the semicrystalline (per)fluoropolymer is coated by a shell of a semicrystalline (per)fluoropolymer containing bromine and/or iodine atoms in the chain deriving from brominated and/or iodinated comonomers, in an amount from 0.1% to 10% by moles referred to the total moles of the basic monomeric units of the semicrystalline (per) fluoropolymer core+shell, the semicrystalline (per)fluoropolymer in the core and in the shell can be of different composition. See EP 1,031,606.
  • the preparation of a perfluoroelastomers and the semicrystalline (per)fluoropolymers of the present invention is carried out by polymerization of the monomers in aqueous emulsion in the presence of an emulsion, dispersion or microemulsion of perfluoropolyoxyalkylenes, according to patents U.S. Pat. No. 4,789,717 and U.S. Pat. No. 4,864,006.
  • the synthesis is carried out in the presence of a perfluoropolyoxyalkylene microemulsion.
  • radical initiators for example, alkaline or ammonium persulphates, perphosphates, perborates or percarbonates, optionally in combination with ferrous, cuprous or silver salts, or other easily oxidizable metals, are used.
  • surfactants of various type are optionally present in the reaction medium, among which fluorinated surfactants of formula: R 3 f —X k ⁇ M + are particularly preferred, wherein R 3 f is a C 5 -C 16 (per) fluoroalkyl chain or (per)fluoropolyoxyalkyl chain, X k ⁇ is —COO ⁇ or —SO 3 ⁇ , M + is selected among: H + , NH 4 + , or an alkaline metal ion.
  • the polymerization reaction is generally carried out at temperatures between 25° C. and 150° C., at a pressure between that atmospheric up to 10 MPa.
  • a further object of the present invention is a process to prepare perfluoroelastomer gels starting from a polymerization latex comprising the following steps:
  • step Ao with dry weight of perfluoroelastomer+semicrystalline (per)fluoropolymer it is meant the residue weight after having dried the latex mixture in a stove at 90° C. until a constant weight.
  • the perfluoroelastomer obtained at the end of the polymerization appears under aqueous latex form.
  • the perfluoroelastomer concentration in the latex expressed in g of polymer/kg of latex, is between 50 and 600.
  • the latex concentration for the process to form perfluoroelastomer gels of the present invention is in the range 50-300, still more preferably 100-250 g polymer/kg latex.
  • Step A can be omitted when, after having carried out the optional step Ao, the perfluoroelastomer concentration is within the above ranges.
  • the optional step A can be carried out even before the optional step Ao.
  • step B the addition of one or more organic compounds soluble in the latex aqueous phase depends on the Tg (° C.) of the latex perfluoroelastomer.
  • Step B is optional when the perfluoroelastomer has a glass transition temperature higher than 0° C.
  • the organic compounds used in step B must be such, and/or added in an amount such as to lower the latex freezing point, without giving coagulation, down to a temperature value lower than or equal to the latex perfluoroelastomer Tg.
  • those organic compounds lowering the freezing point of at least 1-2° C., more preferably of at least 3-6° C. with respect to the perfluoroelastomer Tg are preferred.
  • step C as said, one or more organic compounds as defined in B can be used. Said compounds can be equal to or different from those used in step B.
  • the amount of said organic compounds in the mixtures prepared in B and in C is generally from 5% to 70%, preferably from 10% to 50%, more preferably from 10% to 35%, referred to the total weight of the mixture. However the amount of said compounds is such to assure a freezing point of the mixtures prepared, respectively, in B and in C, with the above requirements.
  • the soluble organic compounds in the latex aqueous phase usable in steps B and C of the invention process have a solubility in water higher than 1% w/w and are preferably liquid at room temperature (20-25° C.).
  • C 1 -C 5 aliphatic alcohols for example ethyl alcohol, C 3 -C 4 ketones as, for example, acetone, diols for example ethylene glycol and propylene glycol can, for example, be mentioned; ethyl alcohol is preferred.
  • Examples of electrolytes usable in C are inorganic salts, inorganic bases, inorganic acids.
  • inorganic salts are aluminum sulphate, sodium sulphate;
  • examples of inorganic bases are potassium hydroxide and sodium hydroxide;
  • examples of inorganic acids are nitric acid, hydrochloric acid.
  • inorganic acids more preferably nitric acid, are used.
  • step F there is the gel formation from the polymeric latex.
  • the latter is kept under stirring so that the gel remains in suspension and does not deposit on the reactor bottom.
  • Soft stirrings for example from 10 to 100 rpm, can be used.
  • step G the gel washing is generally carried out at temperatures between the one used in step F and 80° C., preferably from 10° C. to 40° C.
  • temperatures between the one used in step F and 80° C. preferably from 10° C. to 40° C.
  • neutral and/or acid aqueous solutions having pH from 1 to 7.
  • the gel pH is brought to a value between 3 and 7, for example by washing with water.
  • step H drying is carried out at temperatures in the range 60° C.-140° C., preferably 90° C.-110° C., until a constant weight of the residue.
  • the process to form the gels of the present invention can be carried out batchwise or continuously.
  • the invention perfluoroelastomeric gel allows to obtain manufactured articles having an improved thermal resistance, improved sealing properties, improved mechanical propeties compared with those obtainable with the perfluoroelastomers obtained by latex coagulation according to the prior art.
  • a perfluoroelastomer which is crosslinked to produce manufactured articles to be used, as said, in the preparation of O-ring, gaskets, shaft seals, fuel hoses, etc., having an improved thermal resistance, improved sealing properties, improved mechanical properties in comparison with those obtainable according to the prior art.
  • the perfluoroelastomers obtainable from the perfluoroelastomeric gel, for example by using the optional step H of the invention process, are cured for obtaining manufactured articles having the improved combination of the above properties.
  • the perfluoroelastomer contains in the chain and/or in end position to the macromolecule iodine and/or bromine atoms.
  • the introduction in the perfluoroelastomeric matrix of such iodine and/or bromine atoms can be carried out by the addition of brominated and/or iodinated “cure-site” comonomers, as bromo and/or iodo olefins having from 2 to 10 carbon atoms, as described, for example, in patents U.S. Pat. No. 4,035,565 and U.S. Pat. No.
  • iodinated usable compounds are the tri-iodinated compounds deriving from triazines as described in the European patent application EP 860,436 and in the European patent application EP 979,832.
  • the total iodine and/or bromine amount in end position ranges from 0.001% to 3%, preferably from 0.01% to 1,5% by weight with respect to the total polymer weight.
  • perfluoroelastomers contain iodine; more preferably the iodine is in end position.
  • chain transfer agents containing iodine and/or bromine In combination with the chain transfer agents containing iodine and/or bromine, other chain transfer agents Known in the prior art, as ethyl acetate, diethylmalonate, etc., can be used.
  • peroxides capable to generate radicals by heating, for example: dialkylperoxides, in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane; dialkylarylperoxides as, for example, dicumyl peroxide; dibenzoyl peroxide; diterbutyl perbenzoate; di[1,3-dimethyl-3-(terbutylperoxy)butyl]-carbonate.
  • dialkylperoxides in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane
  • dialkylarylperoxides as, for example, dicumyl peroxide
  • dibenzoyl peroxide diterbutyl perbenzoate
  • di[1,3-dimethyl-3-(terbutylperoxy)butyl]-carbonate are described, for example, in patent applications EP 136,
  • the peroxide amount is generally from 0.5% to 10% by weight with respect to the polymer, preferably 0.6%-4% by weight;
  • curing coagents in amounts generally between 0.5 and 10%, preferably between 1 and 7%, by weight with respect to the polymer; among them, bis-olefins of formula (I); triallyl-cyanurate, triallyl-isocyanurate (TAIC), tris-(diallylamine)-s-triazine; triallylphosphite; N,N-dial-lyl-acrylamide; N,N,N′,N′-tetraallyl-malonamide; tri-vinyl-isocyanurate; and 4,6-tri-vinyl-methyltrisiloxane, etc., are commonly used: TAIC and the bis-olefin of formula CH 2 ⁇ CH—(CF 2 ) 6 —CH ⁇ CH 2 ;
  • a metal compound in amounts between 1 and 15%, preferably from 2 to 10% by weight with respect to the polymer, selected from divalent metal oxides or hydroxides as, for example, Mg, Zn, Ca or Pb, optionally associated to a weak acid salt, as stearates, benzoates, carbonates, oxalates or phosphites of Ba, Na, K, Pb, Ca;
  • mineral fillers such as mineral fillers, semicrystalline fluoropolymers in powder, pigments, antioxidants, stabilizers and the like.
  • peroxidic crosslinking system comprising:
  • crosslinking agent a bis-olefin having general formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and Z are as above defined; the crosslinking agent amount generally being from 0.5% to 10% by weight with respect to the polymer, preferably 1%-5% by weight;
  • peroxides capable to generate radicals by heating, for example: dialkylperoxides, in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane; dialkylarylperoxides such as for example dicumyl peroxide; dibenzoyl peroxide; diterbutyl perbenzoate; di[1,3-dimethyl-3-(terbutylperoxy)butyl-carbonate.
  • dialkylperoxides in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane
  • dialkylarylperoxides such as for example dicumyl peroxide
  • dibenzoyl peroxide diterbutyl perbenzoate
  • di[1,3-dimethyl-3-(terbutylperoxy)butyl-carbonate are described, for example, in patent applications EP 136,596 and EP
  • the peroxide amount is generally from 0.5% to 10% by weight with respect to the polymer, preferably 0.6%-4% by weight.
  • crosslinking agents preferably TAIC
  • TAIC crosslinking agent
  • the addition of small amounts of TAIC to the crosslinking system allows to further improve the perfluoro-elastomer properties as, for example, the thermal stability and the mechanical properties.
  • the gel obtained with the invention process can be used to confer an improved chemical resistance and a reduced permeability to solvents, to sealing manufactured articles, for example O-ring or shaft seals, obtained with non fluorinated or fluorinated elastomers.
  • the gel is preferably additioned of the crosslinking ingredients, for example those above mentioned, the obtained mixture is spread on the coating and is cured.
  • non fluorinated elastomers examples include: polyisoprene, poly(styrene/butadiene), poly(acrylonitrile/butadiene), poly(ethylene/propylene/diene), polychloroprene, polyurethanes, polyisobutylene.
  • fluorinated elastomers examples include VDF-based elastomers with comonomers as hexafluoropropene, methylvinylether, tetrafluoroethylene.
  • the polymer Tg is determined by DSC on a latex portion, coagulated by conventional methods, for example in stove at 90° C. until a constant weight. See ASTM D 3418.
  • the Applicant has found that the thermal stability of the manufactured articles obtained with the perfluoroelatomers of the present invention, for example O-ring, is maintained even over 300° C.
  • n/m 10, having average molecular weight 600;
  • n/m 20, having average molecular weight of 450.
  • the autoclave was then heated to 80° C. and maintained at said temperature for the whole reaction. Then 35 g of 1,4-diiodoperfluorobutane (C 4 F 8 I 2 ) were introduced in the autoclave.
  • TFE tetrafluoroethylene
  • MVE perfluoromethylvinylether
  • the bis-olefin addition was carried out in 20 portions, each of 0.9 g, starting from the polymerization start and for every 5% increase in the monomer conversion.
  • TFE tetrafluoroethylene
  • MVE perfluoromethylvinylether
  • the autoclave After having fed 6,600 g of the monomeric mixture, the autoclave is cooled and the latex discharged. The reaction lasted on the whole 160 min.
  • the so obtained latex has a concentration equal to 290 g polymer /kg latex and is used in the invention Examples and in the comparative Examples.
  • n/m 10, having average molecular weight 600;
  • n/m 20, having average molecular weight of 450.
  • the autoclave was then heated to 80° C. and maintained at said temperature for the whole reaction.
  • the autoclave was brought to the pressure of 0.6 bar (0.06 MPa) with ethane and then to the pressure of 20 bar (2 MPa) with a monomeric mixture constituted of 6.5% by moles of perfluoromethylvinylether (PMVE) and 93.5% by moles of tetrafluoroethylene (TFE).
  • PMVE perfluoromethylvinylether
  • TFE tetrafluoroethylene
  • ammonium persulphate (APS) as initiator were then introduced in the autoclave.
  • the so obtained latex is used in the Examples and in the comparative Examples.
  • the content of the 30 l reactor is fed under stirring into the 50 l reactor, maintaining the temperature at ⁇ 9° C.
  • the temperature is brought to 10° C. and one proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the 50 l reactor. The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • the aqueous phase as a pH equal to 3.3.
  • the perfluoroelastomeric gel is discharged from the reactor bottom.
  • the obtained gel contains 42% by weight of perfluoroelastomer, density equal to 1.4 g/cm 3 , and it appears as a transparent gelatinous solid.
  • the imbibition water is removed by pressing; it has a pH equal to 2.9.
  • Successively the perfluoroelastomer is dried at 90° C. in an air-circulation oven for 16 hours.
  • the obtained perfluoroelastomer is mixed by using an open mixer with the crosslinking ingredients reported in Table 1.
  • the so obtained mixture is molded at 170° C. for 8 min.
  • the polymer is discharged from the reactor bottom; the imbibition water is removed by pressing. Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • the content of the 30 l reactor is fed under stirring into the 50 l reactor, maintaining the temperature at ⁇ 9° C.
  • the temperature is brought to 10° C. and one proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the 50 l reactor. The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • the aqueous phase has a pH equal to 4.
  • the perfluoroelastomeric gel is discharged from the reactor bottom.
  • the obtained gel contains 48% by weight of perfluoropolymer, density equal to 1.6 g/cm 3 , and it appears as a transparent gelatinous solid.
  • the imbibition water is removed by pressing; it has a pH equal to 3.1.
  • Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • the obtained polymer is mixed by using an open mixer with the crosslinking ingredients reported in Table 1.
  • the so obtained mixture is molded at 170° C. for 8 min.
  • the material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • the polymer is discharged from the reactor bottom; the imbibition water is removed by pressing. Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • the latex obtained according to the Example A is gelled and the obtained gel washed according to the process described in the Example 1.
  • the polymer is dried as described in the Example l and formulated as reported in Table 2.
  • the so obtained blend is molded at 170° C. for 8 min.
  • the latex obtained according to the Example A is coagulated and the obtained polymer washed according to the process described in the Example 2 (comparative).
  • the polymer is dried as described in the Example 2 (comparative) and formulated as reported in Table 2.
  • the so obtained blend is molded at 170° C. for 8 min.

Abstract

Perfluoroelastomeric gel having the following properties: appearance: transparent gelatinous solid; water content between 10% and 90% by weight;
    • density between 1.1 and 2.1 g/cm3; said gel satisfies the following test: dried in a stove at 90° C. until a constant weight gives curable perfluoroelastomers.

Description

  • The present invention relates to perfluoroelastomeric compositions having an improved thermal resistance, improved sealing properties, improved mechanical properties.
  • The cured perfluoroelastomers of the present invention are used in the preparation of manufactured articles as O-ring, gaskets, shaft seals, fuel hoses, etc., showing the combination of the above improved properties.
  • It is known that fluoroelastomers are used for their high properties of chemical resistance, thermal resistance, good sealing properties and low permeability. The market request is to have available perfluoroelastomers having improved above properties. See for example patents EP 1,031,607, EP 1,031,606, U.S. Pat. No. 5,585,449, U.S. Pat. No. 5,948,868, U.S. Pat. No. 5,902,857.
  • Generally in the prior art perfluoroelastomers are used up to temperatures of 230° C. If an improvement of thermal resistance is desired, it is necessary to use particular curing systems. See patents U.S. Pat. No. 5,902,857 and U.S. Pat. No. 5,948,868 wherein the crosslinking agent is a bis-olefin, which allows to obtain manufactured articles usable up to temperatures of the order of 300° C. Generally it is also known that by increasing the use temperature, for example from 275° C. to 300° C., the sealing and thermal resistance properties notably worsen.
  • The need was felt to have available cured perfluoroelastomers having an improved thermal resistance, improved sealing properties, improved mechanical properties.
  • As a matter of fact perfluoroelastomers are required, which, cured with conventional crosslinking agents, for example triallylisocyanurate can be mentioned, show an improved combination of the above properties, in particular an use temperature higher than those obtained by using this crosslinking agnt according to the prior art. For example by using triallylisocyanurate, the perfluoroelastomers on the market are usable at most up to 230° C. Perfluoroelastomers cured with triallylisocyanurate having a higher thermal rating are desired by users.
  • Perfluoroelastomers are likewise required, which, cured with bis-olefins, show an improved combination of the above properties, in particular an use temperature higher than those obtained by using said crosslinking agents according to the prior art. For example by using bis-olefins, the perfluoroelastomers on the market are usable at most up to 300° C. See for example patents U.S. Pat. No. 5,948,868 and U.S. Pat. No. 5,902,857. Perfluoroelastomers cured with bis-olefins having a higher thermal rating are desired by users.
  • The Applicant has found a solution to the above technical problem and to obtain perfluoroelastomers having the combination of the above improved properties.
  • An object of the present invention are perfluoroelastomeric gels having the following properties:
  • appearance: transparent gelatinous solid;
  • water content between 10% and 90% by weight;
  • density between 1.1 and 2.1 g/cm3;
  • the gel satisfying the following test: the gel subjected to drying in a stove at 90° C. up to a constant weight gives a curable perfluoroelastomer.
  • From said curable perfluoroelastomers, cured perfluoroelastomers are obtained having an improved thermal resistance, improved sealing properties, improved mechanical properties compared with the perfluoroelastomers obtained according to the prior art, therefore not from perfluoroelastomeric gels.
  • Said gels are obtainable with the process described hereunder.
  • The invention perfluoroelastomeric gel contains TFE-based perfluoroelastomers with at least another (per)fluorinated comonomer having at least one unsaturation of ethylene type.
  • Preferably the comonomer is selected from the following:
  • CF2═CFORf (per)fluoroalkylvinylethers (PAVE), wherein Rf is a C1-C6 (per)fluoroalkyl;
  • CF2═CFOX (per)fluoro-oxyalkylvinylethers, wherein X is a C1-C12 (per)fluorooxyalkyl, containing one or more ether groups;
  • perfluorodioxoles of formula:
    Figure US20050282954A1-20051222-C00001

    wherein R′Fn is equal to RFn or ORFn wherein RFn is a linear or branched perfluoroalkyl radical with 1-5 carbon atoms, preferably R′Fn═OCF3; X1n and X2n, equal to or different from each other, are F, CF3;
  • (per)fluorovinylethers (MOVE) of general formula CFXAI═CXAIOCF2ORAI (A-I) wherein RAI is a C2-C6 linear, branched or C5-C6 cyclic perfluoroalkyl group, or a C2-C6 linear, branched perfluorooxyalkyl group containing from one to three oxygen atoms; RAI can optionally contain from 1 to 2 atoms, equal or different, selected from the following: Cl, Br, I; XAI═F; the compounds of general formula: CFXAI═CXAIOCF2OCF2CF2YAI (A-II) are preferred, wherein YAI═F, OCF3; XAI as above; in particular (MOVE 1) CF2═CFOCF2OCF2CF3 and (MOVE 2) CF2═CFOCF2OCF2CF2OCF3; C3-C8 perfluoroolefins; as, for example, hexafluoropropene;
  • C2-C8 (per)fluoroolefins containing chlorine and/or bromine and/or iodine atoms;
  • perfluorovinylethers containing hydrocyanic groups as described in patents U.S. Pat. No. 4,281,092, U.S. Pat. No. 5,447,993, U.S. Pat. No. 5,789,489.
  • Preferred monomeric compositions of the perfluoroelastomers of the invention are the following, the sum of the comonomer percentages being 100%:
  • tetrafluoroethylene (TFE) 50-85%, perfluoroalkylvinylether (PAVE) and/or perfluorovinyl-ethers (MOVE) 15-50%.
  • Particularly preferred specific compositions are the following, the sum of the comonomer percent being 100%:
  • TFE 50-85%, PAVE 15-50%;
  • TFE 50-85%, MOVE 1 15-50%;
  • TFE 50-85%, MOVE 2 15-50%;
  • TFE 50-85%, PAVE 1-40%, MOVE 1 1-40%;
  • TFE 50-85%, PAVE 1-40%, MOVE 2 1-40%.
  • Preferably perfluoroelastomers comprise also monomeric units deriving from a bis-olefin of general formula:
    Figure US20050282954A1-20051222-C00002
  • wherein:
  • R1, R2, R3, R4, R5, R6, equal to or different from each other, are H or C1-C5 alkyls;
  • Z is a C1-C18 linear or branched alkylene or cycloalkylene radical, optionally containing oxygen atoms, preferably at least partially fluorinated, or a (per)fluoropolyoxyalkylene radical, as described in EP 661,304 in the name of the Applicant.
  • In formula (I), Z is preferably a C4-C12, more preferably C4-C8, perfluoroalkylene radical, while R1, R2, R3, R4, R5, R6 are preferably hydrogen;
  • when Z is a (per)fluoropolyoxyalkylene radical, it can comprise units selected from the following:
  • —CF2CF2O—, —CF2CF(CF3)O—, —CFX1O— wherein X1═F, CF3, —CF2CF2CF2O—, —CF2—CH2CH2O—, —C3F6O—.
  • Preferably Z has formula:
    -(Q)p—CF2O—(CF2CF2O)m(CF2O)n—CF2—(Q)p—  (II)
  • wherein: Q is a C1l-C10 alkylene or oxyalkylene radical; p is 0 or 1; m and n are numbers such that the m/n ratio is between 0.2 and 5 and the molecular weight of said (per)fluoropolyoxyalkylene radical is in the range 500-10,000, preferably 700-2,000.
  • Preferably Q is selected from:
  • —CH2OCH2—; —CH2—(CH2CH2O)sCH2—, s being=1-3.
  • The bis-olefins of formula (I) wherein Z is an alkylene or cycloalkylene radical can be prepared according to what described, for example, by I. L. Knunyants et al. in “Izv. Akad. Nauk. SSSR”, Ser. Khim., 1964(2), 384-6. The bis-olefins containing (per) fluoropolyoxyalkylene structures are described in U.S. Pat. No. 3,810,874.
  • The unit amount in the chain deriving from the bis-olefins of formula (I) is generally from 0.01 to 1.0 moles, preferably from 0.03 to 0.5 moles, still more preferably from 0.05 to 0.2 moles per 100 moles of the other above mentioned monomeric units, constituting the basic perfluoroelastomer structure.
  • Optionally the invention perfluoroelastomeric gel contains a semicrystalline (per) fluoropolymer, in an amount in per cent by weight referred to the total dry weight perfluoroelastomer+semicrystalline perfluoropolymer, from 0% to 70%, preferably from 0% to 50% by weight, still more preferably from 2% to 30% by weight, on the total of the monomer moles.
  • With semicrystalline (per)fluoropolymer it is meant a (per)fluoropolymer showing, besides the glass transition temperature Tg, at least a crystalline melting temperature.
  • The semicrystalline (per)fluoropolymer is constituted of tetrafluoroethylene (TFE) homopolymers, or TFE copolymers with one or more monomers containing at least one unsaturation of ethylene type, in an amount from 0.01% to 10% by moles, preferably from 0.05% to 7% by moles.
  • Said comonomers having an ethylene unsaturation are of hydrogenated and fluorinated type. Among those hydrogenated, ethylene, propylene, acrylic monomers, for example methylmethacrylate, (meth)acrylic acid, butylacrylate, hydroxyethylhexylacrylate, styrene monomers, can be mentioned.
  • Among fluorinated comonomers it can be mentioned:
  • C3-C8 perfluoroolefins, as hexafluoropropene (HFP), hexafluoroisobutene;
  • C2-C8 hydrogenated fluoroolefins, as vinyl fluoride (VF), vinylidene fluoride (VDF), trifluoroethylene, CH2═CH—Rf perfluoroalkylethylene, wherein Rf is a C1-C6 perfluoroalkyl;
  • C2-C8 chloro- and/or bromo- and/or iodo-fluoroolefins, as chlorotrifluoroethylene (CTFE);
  • CF2═CFORf (per) fluoroalkylvinylethers (PAVE), wherein Rf is a C1-C6 (per)fluoroalkyl, for example CF3, C2F5, C3F7;
  • CF2═CFOX (per)fluoro-oxyalkylvinylethers, wherein X is: a C1-C12 alkyl, or a C1-C12 oxyalkyl, or a C1-C12 (per)fluoro-oxyalkyl having one or more ether groups;
  • (per)fluorodioxoles, preferably perfluorodioxoles.
  • PAVEs, in particular perfluoromethyl-, perfluoroethyl-, perfluoropropylvinylether and (per) fluorodioxoles, preferably perfluorodioxoles, are preferred comonomers.
  • Optionally the semicrystalline (per)fluoropolymer is coated by a shell of a semicrystalline (per)fluoropolymer containing bromine and/or iodine atoms in the chain deriving from brominated and/or iodinated comonomers, in an amount from 0.1% to 10% by moles referred to the total moles of the basic monomeric units of the semicrystalline (per) fluoropolymer core+shell, the semicrystalline (per)fluoropolymer in the core and in the shell can be of different composition. See EP 1,031,606.
  • The preparation of a perfluoroelastomers and the semicrystalline (per)fluoropolymers of the present invention is carried out by polymerization of the monomers in aqueous emulsion in the presence of an emulsion, dispersion or microemulsion of perfluoropolyoxyalkylenes, according to patents U.S. Pat. No. 4,789,717 and U.S. Pat. No. 4,864,006. Preferably the synthesis is carried out in the presence of a perfluoropolyoxyalkylene microemulsion.
  • According to well known methods of the prior art, radical initiators, for example, alkaline or ammonium persulphates, perphosphates, perborates or percarbonates, optionally in combination with ferrous, cuprous or silver salts, or other easily oxidizable metals, are used. Also surfactants of various type are optionally present in the reaction medium, among which fluorinated surfactants of formula:
    R3 f—Xk M+
    are particularly preferred, wherein R3 f is a C5-C16 (per) fluoroalkyl chain or (per)fluoropolyoxyalkyl chain, Xk is —COO or —SO3 , M+ is selected among: H+, NH4 +, or an alkaline metal ion. Among the most commonly used we remember: ammonium perfluorooctanoate, (per)fluoropolyoxyalkylenes ended with one or more carboxylic groups, etc. See patents U.S. Pat. No. 4,990,28.3 and U.S. Pat. No. 4,864,006.
  • The polymerization reaction is generally carried out at temperatures between 25° C. and 150° C., at a pressure between that atmospheric up to 10 MPa.
  • A further object of the present invention is a process to prepare perfluoroelastomer gels starting from a polymerization latex comprising the following steps:
    • Ao. optionally, mixing of the perfluoroelastomer latex with a semicrystalline (per)fluoropolymer latex, in an amount from 0% to 70% by weight, preferably from 0% to 50%, still more preferably from 2% to 30% by weight, referred to the total of dry weight perfluoroelastomer+semicrystalline (per)fluoropolymer;
    • A. optionally, dilution with water of the polymerization latex of the perfluoroelastomer, or of the mixture Ao, until obtaining a perfluoroelastomer concentration, expressed in g polymer/kg latex, in the range 50-600;
    • B. optionally, mixing of the polymerization latex Ao, or of the diluted latex A, or of the starting latex, with one or more organic compounds soluble in the latex aqueous phase, capable to lower the latex freezing point without causing the latex coagulation, said one or more organic compounds being such and/or in an amount such that the resulting mixture has the freezing point at a temperature lower than or equal to the glass transition temperature Tg (° C.) of the latex perfluoroelastomer;
    • C. preparation of an aqueous solution containing an electrolyte, optionally addition of one or more organic compounds as defined in B, soluble in the latex aqueous phase, capable to lower the freezing point of the solution C, and such and/or in an amount such that the resulting solution C has a freezing point lower than or equal to the freezing point of the mixture prepared in B;
    • D. cooling of the polymerization latex, or of the mixture Ao, or of the diluted latex A, or of the mixture B, down to a temperature T1 lower than or equal to the glass transition temperature of the latex perfluoroelastomer;
    • E. cooling of the aqueous solution C to a temperature T2 lower than or equal to the glass transition temperature of the latex perfluoroelastomer, preferably T2 being substantially equal to T1;
    • F. formation of a gel by dripping of the mixture D into the solution E;
    • G. optionally, washing with water of the gel obtained in F;
    • H. optionally, gel drying and perfluoroelastomer obtainment.
  • In step Ao with dry weight of perfluoroelastomer+semicrystalline (per)fluoropolymer it is meant the residue weight after having dried the latex mixture in a stove at 90° C. until a constant weight.
  • As said, the perfluoroelastomer obtained at the end of the polymerization appears under aqueous latex form. In step A, as said, generally the perfluoroelastomer concentration in the latex, expressed in g of polymer/kg of latex, is between 50 and 600. Preferably the latex concentration for the process to form perfluoroelastomer gels of the present invention, is in the range 50-300, still more preferably 100-250 g polymer/kg latex.
  • Step A can be omitted when, after having carried out the optional step Ao, the perfluoroelastomer concentration is within the above ranges.
  • According to the process of the present invention the optional step A can be carried out even before the optional step Ao.
  • In the optional step B the addition of one or more organic compounds soluble in the latex aqueous phase depends on the Tg (° C.) of the latex perfluoroelastomer. Step B is optional when the perfluoroelastomer has a glass transition temperature higher than 0° C.
  • The organic compounds used in step B must be such, and/or added in an amount such as to lower the latex freezing point, without giving coagulation, down to a temperature value lower than or equal to the latex perfluoroelastomer Tg. Generally those organic compounds lowering the freezing point of at least 1-2° C., more preferably of at least 3-6° C. with respect to the perfluoroelastomer Tg, are preferred.
  • In step C, as said, one or more organic compounds as defined in B can be used. Said compounds can be equal to or different from those used in step B.
  • The amount of said organic compounds in the mixtures prepared in B and in C is generally from 5% to 70%, preferably from 10% to 50%, more preferably from 10% to 35%, referred to the total weight of the mixture. However the amount of said compounds is such to assure a freezing point of the mixtures prepared, respectively, in B and in C, with the above requirements.
  • The soluble organic compounds in the latex aqueous phase usable in steps B and C of the invention process have a solubility in water higher than 1% w/w and are preferably liquid at room temperature (20-25° C.). C1-C5 aliphatic alcohols, for example ethyl alcohol, C3-C4 ketones as, for example, acetone, diols for example ethylene glycol and propylene glycol can, for example, be mentioned; ethyl alcohol is preferred.
  • Examples of electrolytes usable in C are inorganic salts, inorganic bases, inorganic acids. Examples of inorganic salts are aluminum sulphate, sodium sulphate; examples of inorganic bases are potassium hydroxide and sodium hydroxide; examples of inorganic acids are nitric acid, hydrochloric acid. Preferably inorganic acids, more preferably nitric acid, are used.
  • In step F, as said, there is the gel formation from the polymeric latex. Preferably, during the dripping of the cooled mixture obtained in D into the cooled solution obtained in E, the latter is kept under stirring so that the gel remains in suspension and does not deposit on the reactor bottom. Soft stirrings, for example from 10 to 100 rpm, can be used.
  • In step G the gel washing is generally carried out at temperatures between the one used in step F and 80° C., preferably from 10° C. to 40° C. Instead of water it is possible to use also neutral and/or acid aqueous solutions having pH from 1 to 7.
  • Preferably, at the end of this step the gel pH is brought to a value between 3 and 7, for example by washing with water.
  • In the optional step H drying is carried out at temperatures in the range 60° C.-140° C., preferably 90° C.-110° C., until a constant weight of the residue.
  • The process to form the gels of the present invention can be carried out batchwise or continuously.
  • It has been unexpectedly and surprisingly found by the Applicant that the invention perfluoroelastomeric gel allows to obtain manufactured articles having an improved thermal resistance, improved sealing properties, improved mechanical propeties compared with those obtainable with the perfluoroelastomers obtained by latex coagulation according to the prior art.
  • When the perfluoroelastomeric gel is dried as, for example, described in the optional step H, a perfluoroelastomer is obtained which is crosslinked to produce manufactured articles to be used, as said, in the preparation of O-ring, gaskets, shaft seals, fuel hoses, etc., having an improved thermal resistance, improved sealing properties, improved mechanical properties in comparison with those obtainable according to the prior art.
  • The perfluoroelastomers obtainable from the perfluoroelastomeric gel, for example by using the optional step H of the invention process, are cured for obtaining manufactured articles having the improved combination of the above properties.
  • The results obtained by the Applicant with the present invention are, as said, surprising and unexpected since they are not obtainable with the coagulation process carried out according to the prior art, generally comprising the following steps:
  • latex coagulation by using destabilizing electrolytes (salts, bases or acids);
  • separation of the coagulated polymer from the mother liquors;
  • optionally, polymer washing with water;
  • polymer drying.
  • See the comparative Examples.
  • Curing is carried out by proxidic way. Therefore, preferably, the perfluoroelastomer contains in the chain and/or in end position to the macromolecule iodine and/or bromine atoms. The introduction in the perfluoroelastomeric matrix of such iodine and/or bromine atoms can be carried out by the addition of brominated and/or iodinated “cure-site” comonomers, as bromo and/or iodo olefins having from 2 to 10 carbon atoms, as described, for example, in patents U.S. Pat. No. 4,035,565 and U.S. Pat. No. 4,694,045, or iodo and/or bromo fluoroalkylvinylethers, as described in patents U.S. Pat. No. 4,745,165, U.S. Pat. No. 4,564,662 and EP 199,138, in amounts such that the content of “cure-site” comonomers in the end product is generally from 0.05 to 4 moles per 100 moles of the other basic monomeric units.
  • Other iodinated usable compounds are the tri-iodinated compounds deriving from triazines as described in the European patent application EP 860,436 and in the European patent application EP 979,832.
  • Alternatively or also in combination with “cure-site” comonomers, it is possible to introduce in the perfluoroelastomer iodine and/or bromine atoms in end position by addition to the reaction mixture of iodinated and/or brominated chain transfer agents as, for example, the compounds of formula RII f(I)xi(Br)yi, wherein RII f is a (per)fluoroalkyl or a (per)fluorochloroalkyl having from 1 to 8 carbon atoms, xi and yi are integers between 0 and 2, with 1≦xi+yi≦2 (see, for example, pstents U.S. Pat. No. 4,243,770 and U.S. Pat. No. 4,943,622). It is also possible to use as chain transfer agents alkaline or alkaline-earth metal iodides and/or bromides, according to patent U.S. Pat. No. 5,173,553.
  • The total iodine and/or bromine amount in end position ranges from 0.001% to 3%, preferably from 0.01% to 1,5% by weight with respect to the total polymer weight.
  • Preferably the invention perfluoroelastomers contain iodine; more preferably the iodine is in end position.
  • In combination with the chain transfer agents containing iodine and/or bromine, other chain transfer agents Known in the prior art, as ethyl acetate, diethylmalonate, etc., can be used.
  • To the curing blend other products are then added as, for example, the following:
  • peroxides capable to generate radicals by heating, for example: dialkylperoxides, in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane; dialkylarylperoxides as, for example, dicumyl peroxide; dibenzoyl peroxide; diterbutyl perbenzoate; di[1,3-dimethyl-3-(terbutylperoxy)butyl]-carbonate. Other peroxidic systems are described, for example, in patent applications EP 136,596 and EP 410,351.
  • The peroxide amount is generally from 0.5% to 10% by weight with respect to the polymer, preferably 0.6%-4% by weight;
  • curing coagents, in amounts generally between 0.5 and 10%, preferably between 1 and 7%, by weight with respect to the polymer; among them, bis-olefins of formula (I); triallyl-cyanurate, triallyl-isocyanurate (TAIC), tris-(diallylamine)-s-triazine; triallylphosphite; N,N-dial-lyl-acrylamide; N,N,N′,N′-tetraallyl-malonamide; tri-vinyl-isocyanurate; and 4,6-tri-vinyl-methyltrisiloxane, etc., are commonly used: TAIC and the bis-olefin of formula
    CH2═CH—(CF2)6—CH═CH2;
  • are particularly preferred; optionally
  • a metal compound, in amounts between 1 and 15%, preferably from 2 to 10% by weight with respect to the polymer, selected from divalent metal oxides or hydroxides as, for example, Mg, Zn, Ca or Pb, optionally associated to a weak acid salt, as stearates, benzoates, carbonates, oxalates or phosphites of Ba, Na, K, Pb, Ca;
  • other conventional additives, as mineral fillers, semicrystalline fluoropolymers in powder, pigments, antioxidants, stabilizers and the like.
  • The preferred curing for perfluoroelastomers comprising iodine is carried out by using a peroxidic crosslinking system comprising:
  • as crosslinking agent a bis-olefin having general formula:
    Figure US20050282954A1-20051222-C00003
  • wherein:
  • R1, R2, R3, R4, R5, R6 and Z are as above defined; the crosslinking agent amount generally being from 0.5% to 10% by weight with respect to the polymer, preferably 1%-5% by weight;
  • peroxides capable to generate radicals by heating, for example: dialkylperoxides, in particular di-terbutyl-peroxide and 2,5-dimethyl-2,5-di(terbutylperoxy)hexane; dialkylarylperoxides such as for example dicumyl peroxide; dibenzoyl peroxide; diterbutyl perbenzoate; di[1,3-dimethyl-3-(terbutylperoxy)butyl-carbonate. Other peroxidic systems are described, for example, in patent applications EP 136,596 and EP 410,351.
  • The peroxide amount is generally from 0.5% to 10% by weight with respect to the polymer, preferably 0.6%-4% by weight.
  • It has been found, furthermore, that besides the above crosslinking system, known crosslinking agents, preferably TAIC, can also be used. It has been found by the Applicant that the addition of small amounts of TAIC to the crosslinking system allows to further improve the perfluoro-elastomer properties as, for example, the thermal stability and the mechanical properties.
  • The gel obtained with the invention process can be used to confer an improved chemical resistance and a reduced permeability to solvents, to sealing manufactured articles, for example O-ring or shaft seals, obtained with non fluorinated or fluorinated elastomers. For this purpose the gel is preferably additioned of the crosslinking ingredients, for example those above mentioned, the obtained mixture is spread on the coating and is cured.
  • Examples of non fluorinated elastomers are: polyisoprene, poly(styrene/butadiene), poly(acrylonitrile/butadiene), poly(ethylene/propylene/diene), polychloroprene, polyurethanes, polyisobutylene. Examples of fluorinated elastomers are VDF-based elastomers with comonomers as hexafluoropropene, methylvinylether, tetrafluoroethylene.
  • The polymer Tg is determined by DSC on a latex portion, coagulated by conventional methods, for example in stove at 90° C. until a constant weight. See ASTM D 3418.
  • The Applicant has found that the thermal stability of the manufactured articles obtained with the perfluoroelatomers of the present invention, for example O-ring, is maintained even over 300° C. The O-ring prepared with perfluoroelastomers obtained with known coagulation processes, for example by coagulation with inorganic salts, show instead higher compression set values.
  • The following Examples are given for illustrative but not limitative purposes of the present invention.
  • EXAMPLES Example A
  • Polymerization of the Perfluoroelastomer Latex
  • In a 22 l (litres) steel autoclave, equipped with stirrer working at 460 rpm there have been introduced, after evacuation, 14.5 litres of demineralized water and 145 ml of a microemulsion obtained by mixing:
  • 32 ml of a perfluoropolyoxyalkylene having acid end groups of formula:
    CF2ClO(CF2—CF(CF3)O)n(CF2O)mCF2COOH
  • wherein n/m=10, having average molecular weight 600;
  • 32 ml of an aqueous solution of NH4OH at 30% by volume;
  • 62 ml of demineralized water;
  • 19 ml of Galden® D02 of formula:
    CF3O (CF2—CF(CF3)O)n(CF2O)mCF3
  • wherein n/m=20, having average molecular weight of 450.
  • The autoclave was then heated to 80° C. and maintained at said temperature for the whole reaction. Then 35 g of 1,4-diiodoperfluorobutane (C4F8I2) were introduced in the autoclave.
  • The mixture of monomers having the following molar composition is then fed: tetrafluoroethylene (TFE) 35%, perfluoromethylvinylether (MVE) 65%, so as to bring the pressure to 25 bar rel (2.5 MPa).
  • In the autoclave are then introduced:
  • 0.7 g of ammonium persulphate (APS) as initiator;
  • 18 g of bis-olefin of formula CH2═CH—(CF2)6—CH═CH2.
  • The bis-olefin addition was carried out in 20 portions, each of 0.9 g, starting from the polymerization start and for every 5% increase in the monomer conversion.
  • The pressure of 25 bar rel (2.5 MPa) is maintained constant for the whole polymerization by feeding a mixture having the following molar composition: tetrafluoroethylene (TFE) 60%, perfluoromethylvinylether (MVE) 40%.
  • After having fed 6,600 g of the monomeric mixture, the autoclave is cooled and the latex discharged. The reaction lasted on the whole 160 min.
  • The so obtained latex has a concentration equal to 290 gpolymer/kglatex and is used in the invention Examples and in the comparative Examples.
  • 50 ml of the latex are coagulated by dripping into an aluminum sulphate solution. The obtained polymer is dried at 90° C. in an air-circulation oven for 16 hours. By DSC the material Tg is determined, being equal to −3° C.
  • Example B
  • Obtainment of the Semicrystalline (per)fluoropolymer Latex
  • In a 10 l autoclave, equipped with stirrer working at 545 rpm there have been introduced, after evacuation, 6.5 litres of demineralized water and 260 ml of a perfluoropolyoxyalkylene microemulsion previously obtained by mixing:
  • 56.4 ml of a perfluoropolyoxyalkylene having acid end group of formula:
    CF2ClO(CF2—CF(CF3)O)n(CF2O)mCF2COOH
  • wherein n/m=10, having average molecular weight 600;
  • 56.4 ml of an aqueous solution of NH4OH at 30% by volume;
  • 112.8 ml of demineralized water;
  • 34.4 ml of Galden® D02 of formula:
    CF3O(CF2—CF(CF3)O)n(CF2O)mCF3
  • wherein n/m=20, having average molecular weight of 450.
  • The autoclave was then heated to 80° C. and maintained at said temperature for the whole reaction. The autoclave was brought to the pressure of 0.6 bar (0.06 MPa) with ethane and then to the pressure of 20 bar (2 MPa) with a monomeric mixture constituted of 6.5% by moles of perfluoromethylvinylether (PMVE) and 93.5% by moles of tetrafluoroethylene (TFE).
  • Then 0.13 g of ammonium persulphate (APS) as initiator were then introduced in the autoclave.
  • During the reaction the pressure is maintained at 20 bar by continuously feeding the following monomeric mixture: 2% by moles of PMVE and 98% of TFE.
  • After 160 minutes of reaction, corresponding to 100% of monomer conversion, the autoclave was cooled and the latex discharged.
  • The so obtained latex is used in the Examples and in the comparative Examples.
  • Example 1
  • Latex Gelling and Gel Washing
  • 8 l of demineralized water, 3 l of ethyl alcohol at 95% in water, and 8 l of the latex prepared according to the Example A are fed in sequence in a 30 l jacketed glass reactor and equipped with stirrer. The reactor content is brought to the temperature of −9° C.
  • 17 l of demineralized water, 3.5 l of ethyl alcohol at 95% in water, and 1.5 l of a nitric acid solution in water at 20% by weight are fed in sequence in another 50 l jacketed glass reactor and equipped with stirrer. The reactor content is brought to the temperature of −9° C.
  • Successively, by means of a peristaltic pump, the content of the 30 l reactor is fed under stirring into the 50 l reactor, maintaining the temperature at −9° C.
  • When the feeding is over, stirring is stopped; the obtained gel is allowed to separate on the bottom and the aqueous supernatant phase is drained.
  • The temperature is brought to 10° C. and one proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the 50 l reactor. The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • At the end of the fourth washing, the aqueous phase as a pH equal to 3.3. The perfluoroelastomeric gel is discharged from the reactor bottom. The obtained gel contains 42% by weight of perfluoroelastomer, density equal to 1.4 g/cm3, and it appears as a transparent gelatinous solid. Then, the imbibition water is removed by pressing; it has a pH equal to 2.9. Successively the perfluoroelastomer is dried at 90° C. in an air-circulation oven for 16 hours.
  • The obtained perfluoroelastomer is mixed by using an open mixer with the crosslinking ingredients reported in Table 1. The so obtained mixture is molded at 170° C. for 8 min.
  • The obtained results are reported in Table 1.
  • Example 2 (Comparative)
  • Latex Coagulum With Aluminum Sulphate
  • All the operations described in this Example, where not otherwise indicated, are carried out at room temperature (20° C.-25° C.).
  • 15 l of demineralized water and 90 g of hydrated aluminum sulphate (Al2(SO4)3.13H2O) are fed in sequence into a 40 l glass reactor and equipped with stirrer. Then 8 l of the latex produced according to the Example A are dripped under stirring.
  • When the feeding is over, stirring is stopped; the coagulated polymer is let separate on the bottom and the aqueous supernatant phase is drained. One proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the reactor. The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • At the end of the fourth washing, the polymer is discharged from the reactor bottom; the imbibition water is removed by pressing. Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • One proceeds then to the blend preparation and to the characterizations as described in the Example 1.
  • Example 3
  • Latex Gelling and Gel Washing
  • 8 l of demineralized water, 3 l of ethyl alcohol at 95% in water, 6.4 l of the perfluoroelastomer latex prepared according to the Example A and 1.6 l of the semicrystalline (per)fluoropolymer latex prepared according to the Example B are fed in sequence in a 30 l jacketed glass reactor and equipped with stirrer. The reactor content is brought to the temperature of −9° C.
  • 17 l of demineralized water, 3.5 l of ethyl alcohol at 95% in water and 1.5 l of a nitric acid solution in water at 20% by weight are fed in sequence in another 50 l jacketed glass reactor and equipped with stirrer. The reactor content is brought to the temperature of −9° C.
  • Successively, by a peristaltic pump, the content of the 30 l reactor is fed under stirring into the 50 l reactor, maintaining the temperature at −9° C.
  • When the feeding is over, stirring is stopped; the obtained gel is let separate on the bottom and the aqueous supernatant phase is drained.
  • The temperature is brought to 10° C. and one proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the 50 l reactor. The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • At the end of the fourth washing, the aqueous phase has a pH equal to 4. The perfluoroelastomeric gel is discharged from the reactor bottom. The obtained gel contains 48% by weight of perfluoropolymer, density equal to 1.6 g/cm3, and it appears as a transparent gelatinous solid. Then, the imbibition water is removed by pressing; it has a pH equal to 3.1. Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • The obtained polymer is mixed by using an open mixer with the crosslinking ingredients reported in Table 1. The so obtained mixture is molded at 170° C. for 8 min.
  • The obtained results are reported in Table 1.
  • Example 4 (Comparative)
  • Latex Coagulum With Aluminum Sulphate
  • All the operations described in this Example, where not otherwise indicated, are carried out at room temperature (20° C.-25° C.).
  • 15 l of demineralized water and 90 g of hydrated aluminum sulphate (Al2(SO4)3.13H2O) are fed in sequence in a 40 l glass reactor and equipped with stirrer. Then a mixture composed of 6.4 l of the latex produced according to the Example A and 1.6 l of the latex prepared according to the Example B is dripped under stirring.
  • When the feeding is over, stirring is stopped; the coagulated polymer is let separate on the bottom and the aqueous supernatant phase is drained. One proceeds then to carry out 4 washings: for each of said washings 25 l of demineralized water are fed under stirring to the reactor.
  • The material is let under stirring for 10 minutes, stirring is stopped and the aqueous supernatant phase is drained.
  • At the end of the fourth washing, the polymer is discharged from the reactor bottom; the imbibition water is removed by pressing. Successively the polymer is dried at 90° C. in an air-circulation oven for 16 hours.
  • One proceeds then to the preparation of the blend and to the characterizations as described in the Example 3.
  • Example 5
  • The latex obtained according to the Example A is gelled and the obtained gel washed according to the process described in the Example 1. The polymer is dried as described in the Example l and formulated as reported in Table 2. The so obtained blend is molded at 170° C. for 8 min.
  • The obtained results are reported in Table 2.
  • Example 6 (Comparative)
  • The latex obtained according to the Example A is coagulated and the obtained polymer washed according to the process described in the Example 2 (comparative). The polymer is dried as described in the Example 2 (comparative) and formulated as reported in Table 2. The so obtained blend is molded at 170° C. for 8 min.
  • The obtained results are reported in Table 2. Comment to the results reported in Tables 1 and 2
  • The results of the Tables show that the cured manufactured articles obtained from the invention perfluoroelastomers have improved thermal resistance properties (see the mechanical properties data after thermal treatment) and improved compression set in comparison with the manufactured articles of the same polymers obtained according to the prior art.
    TABLE 1
    Composition in phr Ex. 1 Ex. 2 comp. Ex. 3 Ex. 4 comp
    Polymer 100 100 100 100
    bis-olefin 1.5 1.5 1.5 1.5
    Luperox ® 101 XL 45 1.5 1.5 1.5 1.5
    ZnO 5 5 4 4
    Austin Black ® 8 8 0 0
    Sevacarb ® MT-LS 7 7 0 0
    Mechanical properties after post-treatment:
    8 hours of gradient + 16 hours of residence at 290° C. (ASTM D 412C)
    Stress at break (MPa) 19.6 18.4 22.1 19.1
    Elongation at break (%) 180 190 235 228
    Hardness (Shore A) 73 73 73 70
    Thermal treatment: 70 hours at 316° C. (ASTM D 573)
    Δ% Stress at break −40 −50 −73 −74
    Δ% Elongation at break +60 +85 +148 +173
    Δ Hardness (Shore A) −2 −2 −3 −3
    Compression set: 70 hours at 316° C. (ASTM D 395 method B)
    O-ring #214 65 80
    Compression set: 70 hours at 300° C. (ASTM D 395 method B)
    O-ring #214 48 75
    Compression set: 70 hours at 250° C. (ASTM D 395 method B)
    O-ring #214 40 55
  • TABLE 2
    Composition in phr Ex. 5 Ex. 6 comp.
    Polymer 100 100
    TAIC Drimix ® 2 2
    Luperox ® 101 XL 45 1.5 1.5
    ZnO 5 5
    Black ® N990 MT 15 15
    Mechanical properties after post-treatment:
    1 hour of gradient + 4 hours of residence at 230° C. (ASTM D 412C)
    Stress at break (MPa) 20.4 18.1
    Elongation at break (%) 118 142
    Hardness (Shore A) 74 68
    Thermal treatment: 70 hours at 275° C. (ASTM D 573)
    Δ% Stress at break −9 −15
    Δ% Elongation at break +74 +100
    Δ Hardness (Shore A) −1 +1
    Thermal treatment: 24 hours at 290° C. (ASTM D 573)
    Δ% Stress at break −7 −12
    Δ% Elongation at break +46 +68
    Δ Hardness (Shore A) −2 −2

Claims (35)

1. Perfluoroelastomeric gel having the following properties:
appearance: transparent gelatinous solid;
water content between 10% and 90% by weight;
density between 1.1 and 2.1 g/cm3;
said gel satisfies the following test: the gel, subjected to drying in a stove at 90° C. until a constant weight, gives a curable perfluoroelastomer.
2. Perfluoroelastomeric gel according to claim 1, containing TFE-based perfluoroelastomers with at least another (per) fluorinated comonomer having at least one unsaturation of ethylene type.
3. Perfluoroelastomeric gel according to claim 2, wherein the comonomer in the perfluoroelastomers is selected from the following:
CF2═CFORf (per)fluoroalkylvinyl ethers (PAVE), wherein Rf is a C1-C6 (per)fluoroalkyl;
CF2═CFOX (per)fluoro-oxyalkylvinylethers, wherein X
is a C1-C12 (per)fluorooxyalkyl, containing one or more or
more ether groups;
perfluorodioxoles of formula
Figure US20050282954A1-20051222-C00004
wherein R′Fn is equal to RFn or ORFn wherein RFn is a linear or branched perfluoroalkyl radical with 1-5 carbon atoms, preferably R′Fn═OCF3; X1n and X2n, equal to or different from each other, are F, CF3; (per)fluorovinylethers (MOVE) of general formula CFXAI═CXAIOCF2ORAI (A-I) wherein RAI is a C2-C6, linear, branched or C5-C6 cyclic perfluoroalkyl group, or a C2-C6 linear, branched perfluorooxyalkyl group containing from one to three oxygen atoms; RAI can optionally contain from 1 to 2 atoms, equal or different, selected from the following: Cl, Br, I; XAI═F; the compounds general formula: CFXAI═CXAIOCF2OCF2CF2YAI (A-II) are preferred, wherein YAI═F, OCF3; XAI as above; the following: (MOVE 1) CF2═CFOCF2OCF2CF3 and (MOVE 2) CF2═CFOCF2OCF3 are more preferred;
C3-C8 perfluoroolefins; preferably hexafluoropropene;
C2-C8 (per) fluoroolefins containing chlorine and/or
bromine and/or iodine atoms;
perfluorovinylethers containing hydrocyanic groups
4. Perfluoroelastomeric gel according to claim 2, wherein the monomeric compositions of the perfluoroelastomers are the following, the sum of the comonomer percentages being 100%:
tetrafluoroethylene (TFE) 50-85%, perfluoroalkyl-vinylether (PAVE) and/or perfluorovinylethers (MOVE) 15-50%.
5. Perfluoroelastomeric gel according to claim 4, wherein the monomeric compositions of the perfluoroelastomers are the following, the sum of the comonomer percentages being 100%: TFE 50-85%, PAVE 15-50%; TFE 50-85%, MOVE 1 15-50%; TFE 50-85%, MOVE 2 15-50%; TFE 50-85%, PAVE 1-40%, MOVE 1 1-40%; TFE 50-85%, PAVE 1-40%, MOVE 2 1-40%.
6. Perfluoroelastomeric gel according to claim 1, wherein the perfluoroelastomers comprise also monomeric units deriving from a bisolefin of general formula:
Figure US20050282954A1-20051222-C00005
wherein:
R1, R2, R3, R4, R5, R6, equal to or different from each other, are H or C1-C5 alkyls; Z is a C1-C18 linear or branched alkylene or cycloalkylene radical, optionally containing oxygen atoms, preferably at least partially fluorinated, or a (per) fluoropolyoxyalkylene radical.
7. Perfluoroelastomeric gel according to claim 6, wherein, in formula (I), Z is a C4-C12, preferably C4-C8, perfluoroalkylene radical; R1, R2, R3, R4, R5, R6 are hydrogen; when Z is a (per) fluoropolyoxyalkylene radical, it comprises units selected from the following:
—CF2CF20—, —CF2CF(CF3)0—, CFX10 wherein X1═F, CF3, —CF2CF2CF20—, —CF2—CH2CH20—, —C3F6O—.
8. Perfluoroelastomeric gel according to claim 6, wherein Z has formula:

-(Q)p-CF20—(CF2CF20)m(CF2O)n—CF2—(Q)p—  (II)
wherein: Q is a C1-C10 alkylene or oxyalkylene radical; p is 0 or 1; m and n are numbers such that the m/n ratio is between 0.2 and 5 and the molecular weight of said (per) fluoropolyoxyalkylene radical is in the range 50010,000, preferably 700-2,000.
9. Perfluoroelastomeric gel according to claim 8, wherein Q is selected from: —CH2OCH2—; —CH20(CH2CH20)sCH2—, s being=1-3.
10. Perfluoroelastomeric gel according to claim 6, wherein the unit amount in the chain deriving from the bis-olefins of formula (I) is from 0.01 to 1.0 moles, preferably from 0.03 to 0.5 moles, still more preferably from 0.05 to 0.2 moles per 100 moles of the other monomeric units, constituting the basic perfluoroelastomer structure.
11. Perfluoroelastomeric gel according to claim 1 containing a semicrystalline (per) fluoropolymer, in an amount in per cent by weight referred to the total dry weight perfluoroelastomer+semicrystalline perfluoropolymer, from 0% to 70%, preferably from 0% to 50% by weight, still more preferably from 2% to 30% by weight.
12. Perfluoroelastomeric gel according to claim 11, wherein the semicrystalline (per) fluoropolymer is constituted of tetrafluoroethylene (TFE) homopolymers, or TFE copolymers with one or more monomers containing at least one unsaturation of ethylene type, in an amount from 0.01% to 10% by moles, preferably from 0.050 to 7% by moles, on the total of the monomer moles.
13. Perfluoroelastomeric gel according to claim 12, wherein the comonomers having an ethylene unsaturation of the semicrystalline (per)fluoropolymer are hydrogenated and fluorinated.
14. Perfluoroelastomeric gel according to claim 13, wherein the hydrogenated comonomers having an ethylene unsaturation are selected from ethylene, propylene, acrylic monomers, selected from methylmethacrylate, (meth acrylic acid, butylacrylate, hydroxyethylhexylacrylate, styrene monomers.
15. Perfluoroelastomeric gel according to claim 13, wherein the fluorinated comonomers having an ethylene unsaturation are selected from the following:
C3-C8 perfluoroolefins, preferably hexafluoropropene
(HFP), hexafluoroisobutene;
C2-C8, hydrogenated fluoroolefins, preferably vinyl fluoride (VF), vinylidene fluoride (VDF), trifluoroethylene, CH2═CH—Rf perfluoroalkylethylene, wherein Rf is a C1-C6 perfluoroalkyl;
C2-C8 chloro- and/or bromo- and/or iodo-fluoroole-fins, as chlorotrifluoroethylene (CTFE);
CF2═CFORf (per) fluoroalkylvinylethers (PAVE), wherein Rf is a C1-C6 (per) fluoroalkyl, preferably CF3, C2F5, C3F7;
CF2═CFOX (per) fluoro-oxyalkylvinylethers, wherein X is: a C1-C12 alkyl, or a C1-C12 oxyalkyl, or a C1-C12 (per) fluoro-oxyalkyl having one or more ether groups;
(per) fluorodioxoles, preferably perfluorodioxoles.
16. Perfluoroelastomeric gel according to claim 12, wherein the comonomers of the semicrystalline (per)fluoropolymer are selected from PAVE, preferably perfluoromethyl-, perfluoroethyl-, perfluoropropylvinylether and (per)fluorodioxoles, preferably perfluorodioxoles.
17. Perfluoroelastomeric gel according to claim 12, wherein the semicrystalline (per)fluoropolymer is coated by a shell of a semicrystalline (per)fluoropolymer containing bromine and/or iodine atoms in the chain deriving from brominated and/or iodinated comonomers, in an amount from 0.1 s to 10% by moles referred to the total moles of the basic monomeric units of the semicrystalline (per) fluoropolymer core+shell, the semicrystalline (per) fluoropolymer in the core and in the shell can be of different composition.
18. A process to form perfluoroelastomer gels according to claim 1, comprising the following steps, starting from a perfluoroelastomer polymerization latex:
Ao. optionally, mixing of the perfluoroelastomer latex with a semicrystalline (per)fluoropolymer latex, in an amount from 0% to 70% by weight, preferably from 0% to 50%, still more preferably from 2% to 30% by weight, referred to the total dry weight perfluoroelastomer+semicrystalline (per)fluoropolymer;
A. optionally, dilution with water of the polymerization latex of the perfluoroelastomer, or of the mixture Ao, until obtaining a perfluoroelastomer concentration, expressed in g polymer/kg latex, between 50 and 600;
B. optionally, mixing of the polymerization latex Ao, or of the diluted latex A, or of the starting latex, with one or more organic compounds soluble in the latex aqueous phase, capable to lower, the latex freezing point without causing the latex coagulation, said one or more organic compounds being such and/or in an amount such that the resulting mixture has the freezing point at a temperature lower than or equal to the glass transition temperature Tg (C) of the latex perfluoroelastomer;
C. preparation of an aqueous solution containing an electrolyte, optionally said solution being added of one or more organic compounds as defined in B, soluble in the latex aqueous phase, i.e. capable to lower the freezing point of the solution C, and such and/or in an amount such that the resulting solution C has a freezing point lower than or equal to the freezing point of the mixture prepared in B;
D. cooling of the polymerization latex, or of the mixture Ao, or of the diluted latex A, or of the mixture B, down to a temperature T1 lower than or equal to the glass transition temperature of the latex perfluoroelastomer;
E. cooling of the aqueous solution C to a temperature T2 lower than or equal to the glass transition temperature of the latex perfluoroelastomer, preferably T2 being substantially equal to T1;
F. formation of a gel by dripping of the mixture D into the solution E;
G. optionally, washing with water of the gel obtained in F;
H. optionally, gel drying and obtainment of the perfluoroelastomer.
19. A process according to claim 18, wherein in step A the perfluoroelastomer concentration in the latex, expressed in g polymer/kg latex, is between 50 and 600, preferably between 100 and 250 g polymer/kg latex.
20. A process according to claim 18, wherein step A is omitted if, after having carried out the optional step Ao, the perfluoroelastomer concentration is within the above limits.
21. A process according to claim 18, wherein the optional step A can be carried out before the optional step Ao.
22. A process according to claim 18, wherein step B is optional if the perfluoroelastomer has a glass transition temperature higher than 0° C.
23. A process according to claim 18, wherein organic compounds are used lowering the freezing point of at least 1-2° C., more preferably of at least 3-6° C., with respect to the perfluoroelastomer Tg.
24. A process according to claim 18, wherein the amount of the organic compounds as defined in B, in the mixtures prepared in B and in C, is from 5% to 70%, preferably from 10% to 50%, more preferably from 10% to 35%, referred to the total weight of the mixture.
25. A process according to claim 18, wherein the organic compounds usable in steps B and C have a solubility in water higher than 1% to w/w and are liquid at room temperature (20-25° C.).
26. A process according to claim 25, wherein the organic compounds are selected from C1-C5 aliphatic alcohols, C3-C4 ketones, diols selected from ethylene glycol and propylene glycol; preferably ethyl alcohol.
27. A process according to claim 18, wherein the electrolytes used in C are selected from inorganic salts, inorganic bases, inorganic acids, preferably inorganic acids.
28. A process according to claim 18, wherein in step G the gel washing is carried out at temperatures between that used in step F and 80° C., preferably between 10 C and 40° C. and at the place of water, neutral and/or acid aqueous solutions having pH from 1 to 7 are optionally used.
29. A process according to claim 18, wherein at the end of step G the gel pH is brought to a value between 3 and 7.
30. A process according to claim 18, wherein in step H the drying is carried out at temperatures in the range 60° C.-140° C.; preferably 90° C.-110° C., until a constant weight of the residue.
31. A process according to claim 18, carried out batchwise or continuously.
32. Crosslinkable perfluoroelastomers obtainable from the perfluoroelastomeric gel according to claim 1.
33. Cured perfluoroelastomers obtainable by crosslinking the perfluoroelastomers according to claim 32.
34. Manufactured articles comprising the cured perfluoroelastomers according to claim 33.
35. Use of the gel according to claim 1 to obtain coatings on manufactured articles.
US11/153,919 2004-06-22 2005-06-16 Perfluoroelastomer gels Abandoned US20050282954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/921,929 US9029464B2 (en) 2004-06-22 2013-06-19 Perfluoroelastomer gels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT001251A ITMI20041251A1 (en) 2004-06-22 2004-06-22 PERFLUOROELASTOMER GEL
ITMI2004A001251 2004-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/921,929 Division US9029464B2 (en) 2004-06-22 2013-06-19 Perfluoroelastomer gels

Publications (1)

Publication Number Publication Date
US20050282954A1 true US20050282954A1 (en) 2005-12-22

Family

ID=34993364

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/153,919 Abandoned US20050282954A1 (en) 2004-06-22 2005-06-16 Perfluoroelastomer gels
US13/921,929 Active US9029464B2 (en) 2004-06-22 2013-06-19 Perfluoroelastomer gels

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/921,929 Active US9029464B2 (en) 2004-06-22 2013-06-19 Perfluoroelastomer gels

Country Status (9)

Country Link
US (2) US20050282954A1 (en)
EP (1) EP1626068B1 (en)
JP (1) JP4989860B2 (en)
KR (1) KR101276148B1 (en)
CN (1) CN1712430B (en)
BR (2) BRPI0502534B1 (en)
DE (1) DE602005007544D1 (en)
IT (1) ITMI20041251A1 (en)
RU (1) RU2394043C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264596A1 (en) * 1999-02-23 2009-10-22 Margherita Albano Fluoroelastomer compositions
US9029464B2 (en) 2004-06-22 2015-05-12 Solvay Solexis S.P.A. Perfluoroelastomer gels
US20160083489A1 (en) * 2013-06-14 2016-03-24 3M Innovative Properties Company Fluoropolymers comprising monomeric units derived from a vinyl perfluoroalkyl or vinyl perfluoroalkylenoxide perfluorovinyl ether

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041253A1 (en) * 2004-06-22 2004-09-22 Solvay Solexis Spa FLUOROELASTOMER GEL
ITMI20060480A1 (en) * 2006-03-16 2007-09-17 Solvay Solexis Spa USOM OF PERFLUOROPOLYMERS IN THE DTERMIBNAZIONE OF THE LIGANDO-RECEPTOR BOND CONSTANT
TWI482784B (en) 2009-02-13 2015-05-01 Solvay Solexis Spa Perfluoroelastomer
TWI496796B (en) 2009-02-13 2015-08-21 Solvay Solexis Spa Perfluoroelastomer
US9688786B2 (en) 2011-06-09 2017-06-27 Solvay Specialty Polymers Italy S.P.A. Hyperbranched fluoroelastomer additive
WO2016087439A1 (en) 2014-12-05 2016-06-09 Solvay Specialty Polymers Italy S.P.A. One-dimensional planar photonic crystals including fluoropolymer compositions and corresponding fabrication methods
CN115873161A (en) * 2023-01-10 2023-03-31 浙江巨圣氟化学有限公司 Preparation method of low-compression permanent deformation easy-processing perfluoroether rubber

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752787A (en) * 1972-01-28 1973-08-14 Du Pont Fluoroelastomer composition containing a triarylphosphorane vulcanization accelerator
US3810874A (en) * 1969-03-10 1974-05-14 Minnesota Mining & Mfg Polymers prepared from poly(perfluoro-alkylene oxide) compounds
US3876654A (en) * 1970-12-23 1975-04-08 Du Pont Fluoroelastomer composition
US4035565A (en) * 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
US4115481A (en) * 1977-09-16 1978-09-19 E. I. Du Pont De Nemours And Company Fluoroelastomer blend composition
US4233427A (en) * 1978-01-16 1980-11-11 Rhone-Poulenc Industries Elastomeric organopolysiloxane block copolymers and non-elastomeric organosilicic copolymer blocks therefor
US4243770A (en) * 1977-04-08 1981-01-06 Daikin Kogyo Co., Ltd. Cross linkable fluorine-containing polymer and its production
US4259463A (en) * 1977-12-14 1981-03-31 Montedison S.P.A. Vulcanizable compositions based on copolymers of vinylidene fluoride and containing vulcanization accelerators which are aminophosphinic compounds
US4281092A (en) * 1978-11-30 1981-07-28 E. I. Du Pont De Nemours And Company Vulcanizable fluorinated copolymers
US4320216A (en) * 1979-05-29 1982-03-16 E. I. Du Pont De Nemours And Company Fluoroelastomer gelling agents and products made therefrom
US4564662A (en) * 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
US4745165A (en) * 1985-07-08 1988-05-17 Ausimont S.P.A. Process for the preparation of curable fluoroelastomers and products so obtained
US4789717A (en) * 1986-04-29 1988-12-06 Ausimont S.P.A. Process for the polymerization in aqueous dispersion of fluorinated monomers
US4864006A (en) * 1986-06-26 1989-09-05 Ausimont S.P.A. Process for the polymerization in aqueous dispersion of fluorinated monomers
US4943622A (en) * 1987-06-04 1990-07-24 Nippon Mektron, Limited Process for producing peroxide-vulcanizable, fluorine-containing elastomer
US4990283A (en) * 1986-06-26 1991-02-05 Ausimont S.P.A. Microemulsions containing perfluoropolyethers
US5447993A (en) * 1994-04-19 1995-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer curing
US5585449A (en) * 1993-12-29 1996-12-17 Ausimont S.P.A. Fluoroelastomers comprising monomeric units deriving from a bis-olefin
US5674959A (en) * 1994-05-18 1997-10-07 Ausimont S.P.A. Peroxide curable fluoroelastomers, particularly suitable for manufacturing O-rings
US5789489A (en) * 1996-11-25 1998-08-04 E. I. Du Pont De Nemours And Company Fast-curing perfluoroelastomer composition
US5902857A (en) * 1995-10-20 1999-05-11 Ausimont S.P.A. Fluoroelastomeric compositions
US6160053A (en) * 1998-03-06 2000-12-12 Nippon Medtron, Limited Flourine-containing copolymer composition
US6173553B1 (en) * 1992-09-04 2001-01-16 Southpac Trust International, Inc. Method of wrapping a flower pot with a cover having an expandable portion
US20020177664A1 (en) * 1999-02-23 2002-11-28 Ausimont Spa Fluoroelastomer compositions
US20020193525A1 (en) * 2001-05-22 2002-12-19 Ausimonti S.P.A. Fluoroelastomeric compositions
US20030060568A1 (en) * 2001-05-22 2003-03-27 Ausimont S.P.A. Fluoroelastomeric composition
US20030153674A1 (en) * 2002-02-12 2003-08-14 Solvay Solexis S.P.A Fluoropolymer aqueous dispersions
US20030187144A1 (en) * 2002-03-22 2003-10-02 Ausimont S.P.A. Curable fluoroelastomers
US20040019153A1 (en) * 2000-12-14 2004-01-29 Coughlin Michael Cregg Process for making hig purity translucent perfluoroelastomer articles
US6734254B1 (en) * 2003-01-13 2004-05-11 3M Innovative Properties Company Co-curable blends featuring bromine-and iodine-containing fluoroplastic polymers
US20040092653A1 (en) * 2002-08-02 2004-05-13 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US6764763B1 (en) * 1998-01-06 2004-07-20 Daikin Industries Ltd. Water-based vulcanizable fluororubber composition and coated article
US20040167272A1 (en) * 2001-07-26 2004-08-26 Ausimont S.P.A. Purification process of thermoprocessable tetrafluoroethylene copolymers
US20040220361A1 (en) * 2003-05-01 2004-11-04 Kenichi Fukuda Method of removing sealant used for the protection of electric or electronic part
US6948868B2 (en) * 2003-12-11 2005-09-27 Benson Sherrie L Keyboard structure

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1276980B1 (en) * 1995-10-20 1997-11-03 Ausimont Spa FLUOROELASTOMERIC COMPOSITIONS
IT1293516B1 (en) 1997-07-31 1999-03-01 Ausimont Spa DISPERSION OF PERFLUOROPOLYMERS
WO1999050319A1 (en) * 1998-03-25 1999-10-07 Daikin Industries, Ltd. Method of reducing metal content in fluoroelastomer
US6720360B1 (en) * 2000-02-01 2004-04-13 3M Innovative Properties Company Ultra-clean fluoropolymers
US6593416B2 (en) * 2000-02-01 2003-07-15 3M Innovative Properties Company Fluoropolymers
JP4513175B2 (en) * 2000-06-16 2010-07-28 ソニー株式会社 Gel electrolyte and non-aqueous electrolyte battery
JP2004525239A (en) * 2001-05-02 2004-08-19 スリーエム イノベイティブ プロパティズ カンパニー Emulsifier-free aqueous emulsion polymerization process for producing fluoropolymers
US6844030B2 (en) * 2001-12-14 2005-01-18 3M Innovative Properties Company Process for modifying a polymeric surface
JP2003277445A (en) * 2002-01-18 2003-10-02 Nichias Corp Tetrafluoroethylene-propylene based copolymer and method for producing the same
ITMI20041253A1 (en) * 2004-06-22 2004-09-22 Solvay Solexis Spa FLUOROELASTOMER GEL
ITMI20041251A1 (en) 2004-06-22 2004-09-22 Solvay Solexis Spa PERFLUOROELASTOMER GEL
EP2096580B1 (en) 2008-02-29 2011-12-21 Carl Freudenberg KG Product marking
US8030412B2 (en) 2008-04-30 2011-10-04 Dic Corporation Active-energy-ray-curable coating composition, cured product thereof, and novel curable resin
TWI482784B (en) 2009-02-13 2015-05-01 Solvay Solexis Spa Perfluoroelastomer
TWI496796B (en) 2009-02-13 2015-08-21 Solvay Solexis Spa Perfluoroelastomer
US9688786B2 (en) 2011-06-09 2017-06-27 Solvay Specialty Polymers Italy S.P.A. Hyperbranched fluoroelastomer additive

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810874A (en) * 1969-03-10 1974-05-14 Minnesota Mining & Mfg Polymers prepared from poly(perfluoro-alkylene oxide) compounds
US3876654A (en) * 1970-12-23 1975-04-08 Du Pont Fluoroelastomer composition
US3752787A (en) * 1972-01-28 1973-08-14 Du Pont Fluoroelastomer composition containing a triarylphosphorane vulcanization accelerator
US4035565A (en) * 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
US4243770A (en) * 1977-04-08 1981-01-06 Daikin Kogyo Co., Ltd. Cross linkable fluorine-containing polymer and its production
US4115481A (en) * 1977-09-16 1978-09-19 E. I. Du Pont De Nemours And Company Fluoroelastomer blend composition
US4259463A (en) * 1977-12-14 1981-03-31 Montedison S.P.A. Vulcanizable compositions based on copolymers of vinylidene fluoride and containing vulcanization accelerators which are aminophosphinic compounds
US4233427A (en) * 1978-01-16 1980-11-11 Rhone-Poulenc Industries Elastomeric organopolysiloxane block copolymers and non-elastomeric organosilicic copolymer blocks therefor
US4281092A (en) * 1978-11-30 1981-07-28 E. I. Du Pont De Nemours And Company Vulcanizable fluorinated copolymers
US4320216A (en) * 1979-05-29 1982-03-16 E. I. Du Pont De Nemours And Company Fluoroelastomer gelling agents and products made therefrom
US4564662A (en) * 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
US4745165A (en) * 1985-07-08 1988-05-17 Ausimont S.P.A. Process for the preparation of curable fluoroelastomers and products so obtained
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
US4789717A (en) * 1986-04-29 1988-12-06 Ausimont S.P.A. Process for the polymerization in aqueous dispersion of fluorinated monomers
US4864006A (en) * 1986-06-26 1989-09-05 Ausimont S.P.A. Process for the polymerization in aqueous dispersion of fluorinated monomers
US4990283A (en) * 1986-06-26 1991-02-05 Ausimont S.P.A. Microemulsions containing perfluoropolyethers
US4943622A (en) * 1987-06-04 1990-07-24 Nippon Mektron, Limited Process for producing peroxide-vulcanizable, fluorine-containing elastomer
US6173553B1 (en) * 1992-09-04 2001-01-16 Southpac Trust International, Inc. Method of wrapping a flower pot with a cover having an expandable portion
US5585449A (en) * 1993-12-29 1996-12-17 Ausimont S.P.A. Fluoroelastomers comprising monomeric units deriving from a bis-olefin
US5447993A (en) * 1994-04-19 1995-09-05 E. I. Du Pont De Nemours And Company Perfluoroelastomer curing
US5674959A (en) * 1994-05-18 1997-10-07 Ausimont S.P.A. Peroxide curable fluoroelastomers, particularly suitable for manufacturing O-rings
US5902857A (en) * 1995-10-20 1999-05-11 Ausimont S.P.A. Fluoroelastomeric compositions
US5789489A (en) * 1996-11-25 1998-08-04 E. I. Du Pont De Nemours And Company Fast-curing perfluoroelastomer composition
US6764763B1 (en) * 1998-01-06 2004-07-20 Daikin Industries Ltd. Water-based vulcanizable fluororubber composition and coated article
US6160053A (en) * 1998-03-06 2000-12-12 Nippon Medtron, Limited Flourine-containing copolymer composition
US20020177664A1 (en) * 1999-02-23 2002-11-28 Ausimont Spa Fluoroelastomer compositions
US20040019153A1 (en) * 2000-12-14 2004-01-29 Coughlin Michael Cregg Process for making hig purity translucent perfluoroelastomer articles
US20020193525A1 (en) * 2001-05-22 2002-12-19 Ausimonti S.P.A. Fluoroelastomeric compositions
US20030060568A1 (en) * 2001-05-22 2003-03-27 Ausimont S.P.A. Fluoroelastomeric composition
US20040167272A1 (en) * 2001-07-26 2004-08-26 Ausimont S.P.A. Purification process of thermoprocessable tetrafluoroethylene copolymers
US20030153674A1 (en) * 2002-02-12 2003-08-14 Solvay Solexis S.P.A Fluoropolymer aqueous dispersions
US20030187144A1 (en) * 2002-03-22 2003-10-02 Ausimont S.P.A. Curable fluoroelastomers
US20040092653A1 (en) * 2002-08-02 2004-05-13 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US6734254B1 (en) * 2003-01-13 2004-05-11 3M Innovative Properties Company Co-curable blends featuring bromine-and iodine-containing fluoroplastic polymers
US20040220361A1 (en) * 2003-05-01 2004-11-04 Kenichi Fukuda Method of removing sealant used for the protection of electric or electronic part
US6948868B2 (en) * 2003-12-11 2005-09-27 Benson Sherrie L Keyboard structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264596A1 (en) * 1999-02-23 2009-10-22 Margherita Albano Fluoroelastomer compositions
US9029464B2 (en) 2004-06-22 2015-05-12 Solvay Solexis S.P.A. Perfluoroelastomer gels
US20160083489A1 (en) * 2013-06-14 2016-03-24 3M Innovative Properties Company Fluoropolymers comprising monomeric units derived from a vinyl perfluoroalkyl or vinyl perfluoroalkylenoxide perfluorovinyl ether

Also Published As

Publication number Publication date
US20130317162A1 (en) 2013-11-28
BRPI0502534B1 (en) 2015-12-01
JP4989860B2 (en) 2012-08-01
JP2006009011A (en) 2006-01-12
EP1626068B1 (en) 2008-06-18
DE602005007544D1 (en) 2008-07-31
KR101276148B1 (en) 2013-06-18
BRPI0502531B1 (en) 2016-03-29
RU2005119134A (en) 2006-12-27
CN1712430A (en) 2005-12-28
RU2394043C2 (en) 2010-07-10
BRPI0502531A (en) 2006-02-07
ITMI20041251A1 (en) 2004-09-22
CN1712430B (en) 2011-06-15
BRPI0502534A (en) 2006-02-07
US9029464B2 (en) 2015-05-12
KR20060048462A (en) 2006-05-18
EP1626068A1 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US9029464B2 (en) Perfluoroelastomer gels
US7408006B2 (en) Perfluoroelastomeric compositions
US8476356B2 (en) (Per)fluoroelastomeric compositions
US8729175B2 (en) Fluoroelastomer gels
US8168714B2 (en) (Per)fluoroelastomeric compositions
US7022773B2 (en) Fluoroelastomer compositions
US6310142B1 (en) Fluoroelastomer compositions
US6750295B2 (en) Fluoroelastomeric compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLVAY SOLEXIS S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARRIGONI, STEFANO;APOSTOLO, MARCO;ALBANO, MARGHERITA;REEL/FRAME:016894/0103

Effective date: 20050706

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION