US20050274074A1 - Plant and mushroom growth medium - Google Patents

Plant and mushroom growth medium Download PDF

Info

Publication number
US20050274074A1
US20050274074A1 US10/600,672 US60067203A US2005274074A1 US 20050274074 A1 US20050274074 A1 US 20050274074A1 US 60067203 A US60067203 A US 60067203A US 2005274074 A1 US2005274074 A1 US 2005274074A1
Authority
US
United States
Prior art keywords
peat
growth medium
sphagnum
ppm
mill mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/600,672
Inventor
John Stamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP5695A external-priority patent/AUPP569598A0/en
Priority claimed from AUPQ0998A external-priority patent/AUPQ099899A0/en
Application filed by Individual filed Critical Individual
Priority to US10/600,672 priority Critical patent/US20050274074A1/en
Publication of US20050274074A1 publication Critical patent/US20050274074A1/en
Priority to US11/741,279 priority patent/US20080148629A9/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/25Dry fruit hulls or husks, e.g. chaff or coir
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/27Pulp, e.g. bagasse
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/28Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing peat, moss or sphagnum
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention is directed towards a growth medium for plants.
  • the present invention is also directed towards a growth medium for use as a casing soil in mushroom cultivation.
  • casing soil In commercial mushroom cultivation it is general practice to provide a lower layer of compost which is covered by a layer of a material referred to as casing soil. It is important in mushroom cultivation that the casing soil assists in maintaining a desirable moisture level for mushroom growth. It should also maintain a desirable carbon dioxide and oxygen ratio. Further the casing soil should maintain the nutrient balance of the compost and also act as a barrier to disease and insect pests.
  • Sphagnum peat is partially decomposed sphagnum moss and is obtained from Ireland, Holland and Canada (known as blonde peat). Sphagnum peat has the required ability to retain moisture at levels suitable for mushroom growth, together with required porosity and nutrient levels.
  • a difficulty with obtaining an alternative to sphagnum peat is that any alternative must satisfy the particular requirements for mushroom cultivation.
  • a casing soil must have a moisture holding capacity to ensure that there is sufficient moisture to support mushroom growth.
  • Other important properties include neutral pH, low salt levels and suitable nutrient levels. It has been observed that although other types of peat such as sedge peat are available they do not satisfy the above requirements and are unsuitable as casing soils. To date, there is no commercially available alternative to sphagnum peat.
  • Typical commercial potting mixes include a mixture of coarse sand and an organic material. Such a mixture on its own is generally deficient in many nutrients necessary for plant growth. Thus, to provide a satisfactory mix, it is necessary to add the nutrients required for plant growth.
  • Typical organic materials are timber products such as bark chips and composted bark material. Although these materials are generally obtained from byproducts of timber production, their supply does rely on diminishing natural resources.
  • Filler materials such as bagasse are fibrous materials which contain no significant levels of nutrients. Thus, it is necessary to add the nutrient rich sphagnum moss or peat. However, as mentioned above, sphagnum peat is in a finite supply. To date, it is believed there is no acceptable alternative to the use of sphagnum peat in the horticulture or mushroom industries.
  • a growth medium for plants or mushrooms comprising sugarcane mill mud and a non-sphagnum peat material selected from the group consisting of a non-sphagnum peat and coconut fibre.
  • the growth medium of the present invention may be used in a wide range of applications including potting mixes, soil additive, mulch, mushroom casing soil and also as a top dressing material for germination of grass seeds.
  • non-sphagnum peat includes any peat material which is not derived from sphagnum moss. Such peat materials include peat derived from sedges or trees. Another suitable material is coconut fibre, which is known as coco peat. Typically, coco peat consists of shredded coconut coir (the fibrous part of a coconut shell). The coconut fibre may be either partially composted or used in its raw state. Combinations of any two or more types of peat and/or coconut fibre may also be used. Sphagnum peat may also be included as a minor component of the composition if desired.
  • sugarcane mill mud in the present specification and claims refers to washing material from sugar cane mills.
  • the washings include cane washings, lime, cane juice impurities and fine bagasse.
  • non sphagnum-peat materials or sugarcane mill mud when used exclusively as a plant growth medium or casing soil are suitable for satisfactory plant or mushroom growth.
  • the present inventor has surprisingly discovered that when a sugarcane mill mud and non-sphagnum peat are used in combination, a material suitable for use as a plant growth medium or casing soil may be obtained.
  • the ratio of non sphagnum-peat material to sugarcane mill mud is typically between about 1.4:1 to about 2:1 parts by weight. Preferably the ratio is about 1.7:1.
  • the amount may very depending upon the type of peat and source of the sugarcane mill mud. For example, tho composition of the sugar cane mill mud may vary, depending upon the source mill.
  • the respective amounts of sugar cane mill mud and non sphagnum-peat material component are selected so as to optimise desirable properties such as waster retention, aeration, pH, salt content and nutrient level.
  • non sphagnum-peat materials typically have undesirable properties such as low pH, low nutrient levels and low air porosity. These properties may be offset by the sugarcane mill mud which has near neutral pH, suitable nutrient levels and good air porosity.
  • undesirable properties of the sugarcane mill mud such as high salt levels, low moisture retention, high levels or susceptibility to unwanted biological organisms are offset by the non sphagnum-peat material which was as low salt levels, good moisture retention and is substantially free of nematodes and other soil pathogens.
  • the non sphagnum-peat material sugarcane mill mud are mixed to provide a composition having the ranges as defined in the following Table 1.
  • Table 1 Nutrient Range Air Filled Porosity % 17-25 Water Holding Capacity % 67-74 pH 6.7-7.2 Electrical Conductivity 0.3-0.45 Chloride (ppm) 18-30 Nitrate Nitrogen (ppm) 100-150 Ammonium Nitrogen (ppm) ⁇ 50 Total Nitrogen (ppm) 60-100 Sulphur (ppm) 25-50 Phosphorus (ppm) 18-40 Potassium (ppm) 16-30 Calcium (ppm) 150-350 Magnesium (ppm) 30-60 Sodium (ppm) 5-20 Iron (ppm) 25-50 Copper (ppm) 1.0-4.5 Manganese (ppm) 2-7
  • water is also added to the peat and/or coconut fibre sugarcane mill mud mixture to provide a water content of between about 65-75% (wt/vol).
  • the casing soil composition is sterilised prior to use.
  • Other optional additives may also be added.
  • Such additives include wetting agents fungicides, nematicides, insecticides and texture and pH controlling agents. Such additives are known to those skilled in the art.
  • the composition may also be supplemented with nutrients, if desired, such that the concentrations of the respective chemicals fall within the ranges in Table 1.
  • the medium is to be used as a plant growth medium such as potting mix or top dressing soil
  • a filler material to modify porosity and/or water retention.
  • the amount of filler can be varied, depending upon the desired properties of the mix. This can depend on the type of plant to be grown. Suitably, about 30 to about 80 wt % of filler may be added. Potting mixes will typically include about 60 to about 70 wt % filler where top dressing soils can contain lower levels of filler.
  • a preferred filler is an inert material.
  • An especially preferred filler is bagasse.
  • additives include wetting agents, insecticides, nematicides, nutrients and a pH modifying agent.
  • a 10 tonne batch of casing soil was prepared as follows: Sugarcane mill mud having a composition according to Table 2 and sedge peat having a composition according to Table 3 are sterilised separately at 70° C. for 5 hours. 6,250 kg of peat and 3,750 kg of sugarcane mill mud are mixed in a mixer. An effective amount of a pH controlling agent such as gypsum and/or lime is added such that the pH of the mixture is near neutral, typically between about 6.7 to about 7.2. Generally about 100-130 kg of the pH controlling agent is added.
  • a pH controlling agent such as gypsum and/or lime
  • a 10 L solution of one or more fungicides is prepared.
  • Preferred fungicides are those available under the trade names Prochloraz and Benomyl.
  • a 10 L solution of an insecticide, nematicide and disinfectant is also prepared.
  • a preferred insecticide is available under the trade name Fipronil (0.2-0.4 L)
  • a preferred nematicide is available under the trade name Fenamiphos (0.1-0.3 L)
  • a preferred disinfectant is Formalin (1.5-2.25 L).
  • the moisture level of the mix is measured and the amount of water required to achieve a moisture content of about 75% is calculated.
  • a wetting agent is then added to the calculated amount of water.
  • a preferred wetting agent is Alcohol Ethoxylate. Typically about 0.8-1.5 L of ethoxylate is added to about 0.8-1.0 KL of water.
  • the sugarcane mill mud and peat are mixed in the mixer at a speed not more than about 50 rpm for between about 8 to 10 minutes.
  • the three aqueous solutions, prepared above are sprinkled onto the mixture. After the solutions have been added, mixing is continued for between about 3 to about 5 minutes.
  • Example 1 was repeated with the sedge peat being replaced by coco peat.
  • the coco peat has a composition according to Table 4.
  • the composition of the casing soil prepared by Examples 1 and 2 has a composition according to Table 5. This mixture may also be used as a plant growth medium or as a soil additive. TABLE 5 Available limits Nutrient of new casing mix Air Filled Porosity % 21-25 Water Holding Capacity % 70-72 pH 6.8-7.0 Electrical Conductivity 0.375-0.4 Chloride (ppm) 24-28 Nitrate Nitrogen (ppm) 110-125 Ammonium Nitrogen (ppm) 0.0 Total Nitrogen (ppm) 75-90 Sulphur (ppm) 30-80 Phosphorus (ppm) 25-35 Potassium (ppm) 20-30 Calcium (ppm) 225 300 Magnesium (ppm) 36-45 Sodium (ppm) 14-20 Iron (ppm) 42-45 Copper (ppm) 3.5-4.0 Manganese (ppm) 4-8
  • the casing soils prepared by Examples 1 and 2 are chemically balanced and ready to use.
  • the texture of the material is able to maintain a ratio of carbon dioxide and oxygen which facilitates the initial growth of the mushroom mycellium. (Carbon dioxide is typically generated by the lower compost layer).
  • the casing soil prepared according to Examples 1 and 2 were observed to have a high carbon content (which is desirable for optimum vegetative growth), a low ash content (about 15 to about 25%), a high level of organic materials (about 540 mg/kg) to be substantially nematode free, substantially free from soil borne pathogens have a moisture content of between about 45 to about 55% and a high moisture holding capacity (ie. a water holding capacity at dry bulb density of 0.4 m/cc at 0.4 m suction is 137% on a dry basis and 55% on a volumetric basis at temperature ranges of 15° C. to 32° C.).
  • the casing soil was also observed to maintain the moisture holding capacity at a minimum level of about 67 to about 72%, to maintain an optimum level of resistance against unwanted biological organisms during the cropping cycle, optimum nutrient levels, a pH of between about 6.7 to about 7.2 and also to maintain a desirable texture.
  • the growth and quality of mushrooms produced using the composition of the present invention was compared with the growth and quality of mushrooms produced using sphagnum peat.
  • the quality and quality of the mushrooms produced using the composition of the present invention was found to be comparable to that using sphagnum peat. Comparative tests in which sedge peat and sugarcane mill mud were used on their own showed that the mushroom growth was unsatisfactory.
  • a potting mix was prepared by mixing 1.7 parts by weight sedge peat to 1 part by weight sugar mill mud. To this mix was added 4 parts by weight bagasse.
  • a top dressing material was prepared according to Example 3 except that 2 parts by weight bagasse was added.
  • the top dressing material was spread on a ground surface. Grass seeds were spread on the material at regular intervals. Grass germination and growth was evident over a period of about one week. This time was observed to be less than that when using conventional top dressing materials.
  • the potting mix and top dressing material were also observed to exhibit at least equivalent and generally superior results over conventional materials.
  • the medium of the present invention can be prepared using waste products such as sugar cane mill mud.
  • the medium can replace conventional materials currently prepared from limited natural resources.
  • composition of the present invention provides an alternative to conventional sphagnum peat in the production of mushrooms and use as a plant growth medium or soil additive.
  • the composition enables the production of mushrooms of a quality and quantity comparable to sphagnum peat.

Abstract

A growth medium for plants or mushrooms, the medium comprising sugar cane mill mud and non sphagnum-peat material selected from the group consisting of a non-sphagnum-peat and coconut fibre.

Description

    FIELD OF THE INVENTION
  • The present invention is directed towards a growth medium for plants. The present invention is also directed towards a growth medium for use as a casing soil in mushroom cultivation.
  • BACKGROUND ART
  • In commercial mushroom cultivation it is general practice to provide a lower layer of compost which is covered by a layer of a material referred to as casing soil. It is important in mushroom cultivation that the casing soil assists in maintaining a desirable moisture level for mushroom growth. It should also maintain a desirable carbon dioxide and oxygen ratio. Further the casing soil should maintain the nutrient balance of the compost and also act as a barrier to disease and insect pests.
  • To date, the only material which has been recognised by commercial mushroom growers as being acceptable for use as casing material is sphagnum peat. Sphagnum peat is partially decomposed sphagnum moss and is obtained from Ireland, Holland and Canada (known as blonde peat). Sphagnum peat has the required ability to retain moisture at levels suitable for mushroom growth, together with required porosity and nutrient levels.
  • However, existing sphagnum peat supplies are becoming depleted. Thus, there is a need in the industry for an alternative to sphagnum peat. Still further, the costs of obtaining imported sphagnum peat are high and adds considerably to a mushroom grower's costs. Thus, there is a further need in the industry for an economically viable alternative to sphagnum peat.
  • A difficulty with obtaining an alternative to sphagnum peat is that any alternative must satisfy the particular requirements for mushroom cultivation. As mentioned above, a casing soil must have a moisture holding capacity to ensure that there is sufficient moisture to support mushroom growth. Other important properties include neutral pH, low salt levels and suitable nutrient levels. It has been observed that although other types of peat such as sedge peat are available they do not satisfy the above requirements and are unsuitable as casing soils. To date, there is no commercially available alternative to sphagnum peat.
  • In the horticultural industry, it is common practice to prepare artificial growth medium for use as potting mixes. Such growth media must have desirable air porosity, water retention properties and sufficient nutrients to sustain plant growth.
  • Typical commercial potting mixes include a mixture of coarse sand and an organic material. Such a mixture on its own is generally deficient in many nutrients necessary for plant growth. Thus, to provide a satisfactory mix, it is necessary to add the nutrients required for plant growth.
  • Typical organic materials are timber products such as bark chips and composted bark material. Although these materials are generally obtained from byproducts of timber production, their supply does rely on diminishing natural resources.
  • In an attempt to provide a plant growth medium with desirable properties a number of different combinations of materials have been researched. Examples of these earlier studies include the use of filler materials such as bagasse, coconut fibre and rice husks with sphagnum peat moss and sphagnum peat.
  • Filler materials such as bagasse are fibrous materials which contain no significant levels of nutrients. Thus, it is necessary to add the nutrient rich sphagnum moss or peat. However, as mentioned above, sphagnum peat is in a finite supply. To date, it is believed there is no acceptable alternative to the use of sphagnum peat in the horticulture or mushroom industries.
  • It is therefore an object of the present invention to provide a growth medium for plants and mushrooms which may at least partially overcome the above disadvantages or provide the public with a useful choice. It is also an object of the present invention to provide a material for use as a casing soil which may be used as an alternative to sphagnum peat.
  • SUMMARY OF THE INVENTION
  • According to a first broad form of the invention there is provided a growth medium for plants or mushrooms, the medium comprising sugarcane mill mud and a non-sphagnum peat material selected from the group consisting of a non-sphagnum peat and coconut fibre.
  • The growth medium of the present invention may be used in a wide range of applications including potting mixes, soil additive, mulch, mushroom casing soil and also as a top dressing material for germination of grass seeds.
  • In the present specification and claims, the term “non-sphagnum peat” includes any peat material which is not derived from sphagnum moss. Such peat materials include peat derived from sedges or trees. Another suitable material is coconut fibre, which is known as coco peat. Typically, coco peat consists of shredded coconut coir (the fibrous part of a coconut shell). The coconut fibre may be either partially composted or used in its raw state. Combinations of any two or more types of peat and/or coconut fibre may also be used. Sphagnum peat may also be included as a minor component of the composition if desired.
  • The term “sugarcane mill mud” in the present specification and claims refers to washing material from sugar cane mills. The washings include cane washings, lime, cane juice impurities and fine bagasse.
  • Neither non sphagnum-peat materials or sugarcane mill mud when used exclusively as a plant growth medium or casing soil are suitable for satisfactory plant or mushroom growth. However, the present inventor has surprisingly discovered that when a sugarcane mill mud and non-sphagnum peat are used in combination, a material suitable for use as a plant growth medium or casing soil may be obtained.
  • Neither product on its own is suitable for satisfactorily supporting plant or mushroom growth.
  • The ratio of non sphagnum-peat material to sugarcane mill mud is typically between about 1.4:1 to about 2:1 parts by weight. Preferably the ratio is about 1.7:1. The amount may very depending upon the type of peat and source of the sugarcane mill mud. For example, tho composition of the sugar cane mill mud may vary, depending upon the source mill.
  • Typically, the respective amounts of sugar cane mill mud and non sphagnum-peat material component are selected so as to optimise desirable properties such as waster retention, aeration, pH, salt content and nutrient level. For example, non sphagnum-peat materials typically have undesirable properties such as low pH, low nutrient levels and low air porosity. These properties may be offset by the sugarcane mill mud which has near neutral pH, suitable nutrient levels and good air porosity. Conversely, undesirable properties of the sugarcane mill mud such as high salt levels, low moisture retention, high levels or susceptibility to unwanted biological organisms are offset by the non sphagnum-peat material which was as low salt levels, good moisture retention and is substantially free of nematodes and other soil pathogens.
  • Preferably, the non sphagnum-peat material sugarcane mill mud are mixed to provide a composition having the ranges as defined in the following Table 1.
    TABLE 1
    Nutrient Range
    Air Filled Porosity % 17-25
    Water Holding Capacity % 67-74
    pH 6.7-7.2
    Electrical Conductivity  0.3-0.45
    Chloride (ppm) 18-30
    Nitrate Nitrogen (ppm) 100-150
    Ammonium Nitrogen (ppm) <50
    Total Nitrogen (ppm)  60-100
    Sulphur (ppm) 25-50
    Phosphorus (ppm) 18-40
    Potassium (ppm) 16-30
    Calcium (ppm) 150-350
    Magnesium (ppm) 30-60
    Sodium (ppm)  5-20
    Iron (ppm) 25-50
    Copper (ppm) 1.0-4.5
    Manganese (ppm) 2-7
  • When used as a casing soil composition, preferably water is also added to the peat and/or coconut fibre sugarcane mill mud mixture to provide a water content of between about 65-75% (wt/vol). Typically, the casing soil composition is sterilised prior to use. Other optional additives may also be added. Such additives include wetting agents fungicides, nematicides, insecticides and texture and pH controlling agents. Such additives are known to those skilled in the art. The composition may also be supplemented with nutrients, if desired, such that the concentrations of the respective chemicals fall within the ranges in Table 1.
  • Where the medium is to be used as a plant growth medium such as potting mix or top dressing soil, it may be desirable to add a filler material to modify porosity and/or water retention. The amount of filler can be varied, depending upon the desired properties of the mix. This can depend on the type of plant to be grown. Suitably, about 30 to about 80 wt % of filler may be added. Potting mixes will typically include about 60 to about 70 wt % filler where top dressing soils can contain lower levels of filler.
  • A preferred filler is an inert material. An especially preferred filler is bagasse.
  • Optionally, further additions known in the art may be added to the medium of the present invention. Such additives include wetting agents, insecticides, nematicides, nutrients and a pH modifying agent.
  • BEST MODE
  • By way of Example only, the present invention will be described with reference to the following Examples.
  • Example 1
  • A 10 tonne batch of casing soil was prepared as follows: Sugarcane mill mud having a composition according to Table 2 and sedge peat having a composition according to Table 3 are sterilised separately at 70° C. for 5 hours. 6,250 kg of peat and 3,750 kg of sugarcane mill mud are mixed in a mixer. An effective amount of a pH controlling agent such as gypsum and/or lime is added such that the pH of the mixture is near neutral, typically between about 6.7 to about 7.2. Generally about 100-130 kg of the pH controlling agent is added.
  • A 10 L solution of one or more fungicides is prepared. Preferred fungicides are those available under the trade names Prochloraz and Benomyl. Preferably a 10 L solution of Prochloraz (0.4-0.8 kg) and Benomyl (0.3-0.7 kg) is prepared.
  • A 10 L solution of an insecticide, nematicide and disinfectant is also prepared. A preferred insecticide is available under the trade name Fipronil (0.2-0.4 L), a preferred nematicide is available under the trade name Fenamiphos (0.1-0.3 L) and a preferred disinfectant is Formalin (1.5-2.25 L).
  • The moisture level of the mix is measured and the amount of water required to achieve a moisture content of about 75% is calculated.
  • A wetting agent is then added to the calculated amount of water. A preferred wetting agent is Alcohol Ethoxylate. Typically about 0.8-1.5 L of ethoxylate is added to about 0.8-1.0 KL of water.
  • The sugarcane mill mud and peat are mixed in the mixer at a speed not more than about 50 rpm for between about 8 to 10 minutes. During mixing, the three aqueous solutions, prepared above, are sprinkled onto the mixture. After the solutions have been added, mixing is continued for between about 3 to about 5 minutes.
  • The casing mixture is then ready to be used or packaged.
    TABLE 2
    SEDGE PEAT*
    Optimum Analytical Range at
    Nutrient/Test Range different depth
    Air Filled Porosity % 15-25 2-10
    Water Holding Capacity % >40 54-82 
    pH 0.5-7.2 3.6-4.4 
    Electrical Conductivity 0.2-0.5 0.08-0.12 
    Chloride  0-100 10 13
    Nitrate Nitrogen 100-150 1-2 
    Ammonium Nitrogen  0-150 0.0
    Total Nitrogen 150-250 1 2
    Sulphur >40 4-8 
    Phosphorus  8-40 1-2 
    Potassium  35-250 2-4 
    Calcium  50-340 17-22 
    Magnesium 25-80 20-24 
    Sodium  0-70 18-23 
    Iron 35-70 52-72 
    Copper 0.4-10  0.04-0.15 
    Manganese 1.0-15  1-3 

    *The sedge peat is sourced from Butcher's Creek in Atherton. This peat contains high levels of minerals and a large percentage of undecomposed grasses, roots and the like which can tie up tree nitrogen. Further, this material can break down to a very fine particle size that can clog pore spaces.
  • TABLE 3
    SUGARCANE MILL MUD
    Nutrient/Test Analytical Range
    Moisture Level % 67.9-75.5
    Water holding capacity % 46.9-62.3
    pH 5.8-6.4
    Electrical conductivity 0.54-0.77
    Total Nitrogen % dm 0.52-0.83
    Ammonium Nitrogen ppm  5-45
    Phosphorus % dm 0.45-0.69
    Potassium % dm 0.69-0.89
    Calcium % dm 1.01 1.53
    Magnesium % dm 0.37-0.43
    Sulfur % dm 0.13-0.19
  • Example 2
  • Example 1 was repeated with the sedge peat being replaced by coco peat. The coco peat has a composition according to Table 4.
    TABLE 4
    COCO PEAT
    Optimum Analytical Range at
    Nutrient/Test Range different depth
    Air Filled Porosity % 15-25 13-18
    Water Holding Capacity % >40 63-77
    pH 6.5-7.2 6.1-6.4
    Electrical Conductivity 0.2-0.5 0.29-0.31
    Chloride  0-100 59-71
    Nitrate Nitrogen 100-150 1-3
    Ammonium Nitrogen  0-150 >5
    Total Nitrogen 150-250   1-3.5
    Sulphur >40 2.9-6.3
    Phosphorus  8-40 1-6
    Potassium  35-250 132-166
    Calcium  50-340 42-68
    Magnesium 25-80 14-23
    Sodium  0-70 53-57
    Iron 35-70 10.1-24.6
    Copper 0.4-10    4-7.6
    Manganese 1.0-15  2.2-7.5
  • The composition of the casing soil prepared by Examples 1 and 2 has a composition according to Table 5. This mixture may also be used as a plant growth medium or as a soil additive.
    TABLE 5
    Available limits
    Nutrient of new casing mix
    Air Filled Porosity % 21-25
    Water Holding Capacity % 70-72
    pH 6.8-7.0
    Electrical Conductivity 0.375-0.4 
    Chloride (ppm) 24-28
    Nitrate Nitrogen (ppm) 110-125
    Ammonium Nitrogen (ppm) 0.0
    Total Nitrogen (ppm) 75-90
    Sulphur (ppm) 30-80
    Phosphorus (ppm) 25-35
    Potassium (ppm) 20-30
    Calcium (ppm) 225 300
    Magnesium (ppm) 36-45
    Sodium (ppm) 14-20
    Iron (ppm) 42-45
    Copper (ppm) 3.5-4.0
    Manganese (ppm) 4-8
  • The casing soils prepared by Examples 1 and 2 are chemically balanced and ready to use. The texture of the material is able to maintain a ratio of carbon dioxide and oxygen which facilitates the initial growth of the mushroom mycellium. (Carbon dioxide is typically generated by the lower compost layer).
  • The casing soil prepared according to Examples 1 and 2 were observed to have a high carbon content (which is desirable for optimum vegetative growth), a low ash content (about 15 to about 25%), a high level of organic materials (about 540 mg/kg) to be substantially nematode free, substantially free from soil borne pathogens have a moisture content of between about 45 to about 55% and a high moisture holding capacity (ie. a water holding capacity at dry bulb density of 0.4 m/cc at 0.4 m suction is 137% on a dry basis and 55% on a volumetric basis at temperature ranges of 15° C. to 32° C.).
  • The casing soil was also observed to maintain the moisture holding capacity at a minimum level of about 67 to about 72%, to maintain an optimum level of resistance against unwanted biological organisms during the cropping cycle, optimum nutrient levels, a pH of between about 6.7 to about 7.2 and also to maintain a desirable texture.
  • The growth and quality of mushrooms produced using the composition of the present invention was compared with the growth and quality of mushrooms produced using sphagnum peat. The quality and quality of the mushrooms produced using the composition of the present invention was found to be comparable to that using sphagnum peat. Comparative tests in which sedge peat and sugarcane mill mud were used on their own showed that the mushroom growth was unsatisfactory.
  • Example 3
  • A potting mix was prepared by mixing 1.7 parts by weight sedge peat to 1 part by weight sugar mill mud. To this mix was added 4 parts by weight bagasse.
  • Example 4
  • A top dressing material was prepared according to Example 3 except that 2 parts by weight bagasse was added. The top dressing material was spread on a ground surface. Grass seeds were spread on the material at regular intervals. Grass germination and growth was evident over a period of about one week. This time was observed to be less than that when using conventional top dressing materials.
  • The potting mix and top dressing material were also observed to exhibit at least equivalent and generally superior results over conventional materials. However, the medium of the present invention can be prepared using waste products such as sugar cane mill mud. Thus, the medium can replace conventional materials currently prepared from limited natural resources.
  • It will be appreciated that in the present specification and claims, the term “comprising” and its derivatives “comprise” and “comprises” will imply the inclusion of the stated integers but not the exclusion of any further integer or integers.
  • It can be seen that the composition of the present invention provides an alternative to conventional sphagnum peat in the production of mushrooms and use as a plant growth medium or soil additive. The composition enables the production of mushrooms of a quality and quantity comparable to sphagnum peat.

Claims (14)

1-16. (canceled)
17. A growth medium for plants or mushrooms, the medium comprising sugar cane mill mud and a non sphagnum-peat material, the material being a non sphagnum-peat.
18. The growth medium of claim 17 wherein the ratio of sugar cane mill mud to non sphagnum-peat is between about 1:1.4 to about 1:2 parts by weight.
19. The growth medium of claim 18, wherein the ratio is about 1:1.4.
20. The growth medium of claim 17, wherein the peat is sedge peat.
21. The growth medium of claim 17 which is in the form of a casing soil composition.
22. The growth medium of claim 21, further comprising about 65 to 75% wt/vol water.
23. The growth medium of claim 22, which further includes an additive selected from the group comprising a fungicide, an insecticide, a nematicide, a wetting agent and a pH controlling agent.
24. The growth medium of claim 17, which further includes about 30 to about 80 wt % of an inert filler.
25. The growth medium of claim 24, which includes between about 60 to about 70% of an inert filler.
26. The growth medium of claim 24, wherein the inert filler is bagasse.
27. A growth medium for plants or mushrooms, the medium comprising sugar cane mill mud and a non sphagnum-peat material selected from the group consisting of a non sphagnum-peat and coconut fibre.
28. The growth medium of claim 27, wherein the material is coconut fibre and the ratio of sugar cane mill mud to non sphagnum-peat material is between about 1:1.4 to about 1:2 parts by weight.
29. The growth medium of claim 28 which is in the form of a casing soil composition.
US10/600,672 1998-09-04 2003-06-20 Plant and mushroom growth medium Abandoned US20050274074A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/600,672 US20050274074A1 (en) 1998-09-04 2003-06-20 Plant and mushroom growth medium
US11/741,279 US20080148629A9 (en) 1998-09-04 2007-04-27 Plant and mushroom growth medium

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AUPP5695 1998-09-04
AUPP5695A AUPP569598A0 (en) 1998-09-04 1998-09-04 Casing soil composition
AUPQ0998A AUPQ099899A0 (en) 1999-06-16 1999-06-16 Plant and mushroom growth medium
AUPQ0998 1999-06-16
US09/786,497 US6609331B1 (en) 1998-09-04 1999-09-06 Plant and mushroom growth medium
PCT/AU1999/000730 WO2000014030A1 (en) 1998-09-04 1999-09-06 A plant and mushroom growth medium
US10/600,672 US20050274074A1 (en) 1998-09-04 2003-06-20 Plant and mushroom growth medium

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/AU1999/000730 Continuation WO2000014030A1 (en) 1998-09-04 1999-09-06 A plant and mushroom growth medium
US09/786,497 Continuation US6609331B1 (en) 1998-09-04 1999-09-06 Plant and mushroom growth medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/741,279 Continuation US20080148629A9 (en) 1998-09-04 2007-04-27 Plant and mushroom growth medium

Publications (1)

Publication Number Publication Date
US20050274074A1 true US20050274074A1 (en) 2005-12-15

Family

ID=25645860

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/786,497 Expired - Fee Related US6609331B1 (en) 1998-09-04 1999-09-06 Plant and mushroom growth medium
US10/600,672 Abandoned US20050274074A1 (en) 1998-09-04 2003-06-20 Plant and mushroom growth medium
US11/741,279 Abandoned US20080148629A9 (en) 1998-09-04 2007-04-27 Plant and mushroom growth medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/786,497 Expired - Fee Related US6609331B1 (en) 1998-09-04 1999-09-06 Plant and mushroom growth medium

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/741,279 Abandoned US20080148629A9 (en) 1998-09-04 2007-04-27 Plant and mushroom growth medium

Country Status (7)

Country Link
US (3) US6609331B1 (en)
JP (1) JP2002524067A (en)
CN (1) CN1354735A (en)
CA (1) CA2342879A1 (en)
ID (1) ID29882A (en)
NZ (1) NZ510895A (en)
WO (1) WO2000014030A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024890B2 (en) 2007-10-29 2011-09-27 Oms Investments, Inc. Compressed coconut coir pith granules and methods for the production and use thereof
US8256160B2 (en) 2004-11-19 2012-09-04 Rubin Patti D Compressed growing medium
US9756798B2 (en) 2004-11-19 2017-09-12 Patti D. Rubin Burrow filling compressed growing medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609331B1 (en) * 1998-09-04 2003-08-26 John Wesley Stamp Plant and mushroom growth medium
GB2358394B (en) * 2001-01-12 2002-01-30 David Lindsay Dodd Method of growing mushrooms
US6711850B2 (en) * 2001-11-09 2004-03-30 Oms Investments, Inc. Plant growth media and processes for production thereof and compositions for use therein
AU2002952352A0 (en) * 2002-10-30 2002-11-14 Soil Sub Technologies Pty Ltd Process for the treatment of oil palm waste
GB2459856B (en) * 2008-05-07 2010-05-26 Frank Henry Parker A method and composition to improve mushroom cultivation
CN101743855B (en) * 2008-11-28 2013-04-24 宝生物工程株式会社 Fungal bed cultivation method of hon-shimeji mushroom
ZA201008305B (en) * 2010-11-19 2012-08-29 Univ Pretoria Method for preparing casing material
TW201431482A (en) * 2013-02-04 2014-08-16 Min-Nan Lai Substrate of culture medium
CN103553729A (en) * 2013-10-29 2014-02-05 大连创达技术交易市场有限公司 Soil additive
CN103553744A (en) * 2013-10-29 2014-02-05 大连创达技术交易市场有限公司 Canned mixture for plant growth
CN103583335A (en) * 2013-10-29 2014-02-19 大连创达技术交易市场有限公司 Interlayer soil composition
CN103553743A (en) * 2013-10-29 2014-02-05 大连创达技术交易市场有限公司 Top-dressing matter for culture medium
CN103553824B (en) * 2013-11-10 2015-06-17 邬方成 Method for preparing mushroom cultivation material from sugarcane leaf blades and sugarcane leaf tips
CN106170203B (en) * 2014-02-27 2020-09-22 株式会社松永植物研究 Low-potassium vegetable and its cultivation method
CN104193475A (en) * 2014-07-24 2014-12-10 安徽天都灵芝制品公司 Oyster mushroom culture medium containing rape stalk and preparation method of oyster mushroom culture medium
CN104591896A (en) * 2015-01-09 2015-05-06 广西大学 Covering soil material for cultivating agaricus bisporus and preparation method for covering soil material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876522A (en) * 1932-09-06 Becoveby of by-products of sugab extraction
US3102364A (en) * 1961-07-03 1963-09-03 Pullen Molded Products Inc Cellulosic molded transplanter pot or other products containing bagasse components
US3163517A (en) * 1963-01-14 1964-12-29 Harry M May Method of preparing a soil conditioning composition from sugar cane bagasse
US3337326A (en) * 1964-12-28 1967-08-22 Harry M May Process for preparing a soil conditioning and erosion preventing composition from sugar cane bagasse
US4219966A (en) * 1979-03-21 1980-09-02 Mccalister William J Method of rapid grass growth
US4237582A (en) * 1978-08-28 1980-12-09 Process Evaluation & Development Corporation Bagasse preparation
US4304361A (en) * 1979-11-19 1981-12-08 Campbell George E Bagasse process and product
US5106648A (en) * 1989-01-06 1992-04-21 Agricultural Genetics Company Limited Method of preparing coated seeds
US5173122A (en) * 1991-01-04 1992-12-22 Tilby Sydney E Apparatus for washing sugarcane billets
US5542962A (en) * 1991-06-01 1996-08-06 Fi-Pro Limited Treating biomass material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435821A (en) * 1985-12-12 1995-07-25 Exxon Research & Engineering Co. Controlled release vegetation enhancement agents coated with sulfonated polymers, method of production and prcesses of use
US6609331B1 (en) * 1998-09-04 2003-08-26 John Wesley Stamp Plant and mushroom growth medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876522A (en) * 1932-09-06 Becoveby of by-products of sugab extraction
US3102364A (en) * 1961-07-03 1963-09-03 Pullen Molded Products Inc Cellulosic molded transplanter pot or other products containing bagasse components
US3163517A (en) * 1963-01-14 1964-12-29 Harry M May Method of preparing a soil conditioning composition from sugar cane bagasse
US3337326A (en) * 1964-12-28 1967-08-22 Harry M May Process for preparing a soil conditioning and erosion preventing composition from sugar cane bagasse
US4237582A (en) * 1978-08-28 1980-12-09 Process Evaluation & Development Corporation Bagasse preparation
US4219966A (en) * 1979-03-21 1980-09-02 Mccalister William J Method of rapid grass growth
US4304361A (en) * 1979-11-19 1981-12-08 Campbell George E Bagasse process and product
US5106648A (en) * 1989-01-06 1992-04-21 Agricultural Genetics Company Limited Method of preparing coated seeds
US5173122A (en) * 1991-01-04 1992-12-22 Tilby Sydney E Apparatus for washing sugarcane billets
US5542962A (en) * 1991-06-01 1996-08-06 Fi-Pro Limited Treating biomass material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256160B2 (en) 2004-11-19 2012-09-04 Rubin Patti D Compressed growing medium
US8316581B2 (en) 2004-11-19 2012-11-27 Rubin Patti D Compressed growing medium
US8544206B2 (en) 2004-11-19 2013-10-01 Patti D. Rubin Compressed growing medium
US9756798B2 (en) 2004-11-19 2017-09-12 Patti D. Rubin Burrow filling compressed growing medium
US8024890B2 (en) 2007-10-29 2011-09-27 Oms Investments, Inc. Compressed coconut coir pith granules and methods for the production and use thereof
US8429849B2 (en) 2007-10-29 2013-04-30 Oms Investments, Inc. Compressed coconut coir pith granules and methods for the production and use thereof

Also Published As

Publication number Publication date
CN1354735A (en) 2002-06-19
US20070209273A1 (en) 2007-09-13
ID29882A (en) 2001-10-18
US6609331B1 (en) 2003-08-26
NZ510895A (en) 2002-08-28
WO2000014030A1 (en) 2000-03-16
JP2002524067A (en) 2002-08-06
US20080148629A9 (en) 2008-06-26
CA2342879A1 (en) 2000-03-16

Similar Documents

Publication Publication Date Title
US20070209273A1 (en) Plant and mushroom growth medium
EP1453374B1 (en) Plant growth media and processes for production thereof and compositions for use therein
JP4922697B2 (en) Plant seedling materials and their use
Spiers et al. Green waste compost as a component in soilless growing media
AU2002348181A1 (en) Plant growth media and processes for production thereof and compositions for use therein
US4767440A (en) Potting media
US5114457A (en) Soil amendment
AU749283B2 (en) A plant and mushroom growth medium
KR100420449B1 (en) Fertilizer for organic crops
AU712824B3 (en) A growth medium
DE2600186C3 (en)
CN101219916A (en) A plant and mushroom growth medium
JP3302342B2 (en) Cyclamen cultivation medium
AU708546B3 (en) Casing soil composition
JPH02124037A (en) Light-weight artificial culture soil for agricultural use
Maas et al. Peat, bark and sawdust mixtures for nursery substrates
WO2020141461A2 (en) Composition for plants&#39; root development and growing bag comprising it
EP1473984B1 (en) Substrate
SU1755741A1 (en) Substrate for growing plants in sheltered ground
JP2003313555A (en) Soil-improving material
JPH05227833A (en) Culture soil for agriculture and horticulture
JP3486651B2 (en) Cultivation soil for connected plastic tray
Sudhagar et al. Effect of coco peat medium on growth and quality of poinsettia (Euphorbia pulcherrima Willd.).
Chandrashekhar Chapter-1 Propagation Media
Leiser Improving the quality of compost amended peat pots for vegetable plantlets in organic farming

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION