US20050273152A1 - Balloon catheter device - Google Patents

Balloon catheter device Download PDF

Info

Publication number
US20050273152A1
US20050273152A1 US11/182,874 US18287405A US2005273152A1 US 20050273152 A1 US20050273152 A1 US 20050273152A1 US 18287405 A US18287405 A US 18287405A US 2005273152 A1 US2005273152 A1 US 2005273152A1
Authority
US
United States
Prior art keywords
balloon
catheter according
balloon catheter
film
mounted onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/182,874
Inventor
Carey Campbell
Alvaro Laguna
Mark Spencer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
Gore Enterprise Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/532,905 external-priority patent/US5752934A/en
Application filed by Gore Enterprise Holdings Inc filed Critical Gore Enterprise Holdings Inc
Priority to US11/182,874 priority Critical patent/US20050273152A1/en
Publication of US20050273152A1 publication Critical patent/US20050273152A1/en
Priority to US11/556,258 priority patent/US20070061000A1/en
Assigned to GORE ENTERPRISE HOLDINGS, INC. reassignment GORE ENTERPRISE HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMPBELL, CAREY V., LAGUNA, ALVARO J., SPENCER, MARK S.
Priority to US12/146,194 priority patent/US20080312730A1/en
Assigned to W. L. GORE & ASSOCIATES, INC. reassignment W. L. GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GORE ENTERPRISE HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0014Connecting a tube to a hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1034Joining of shaft and balloon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1075Balloon catheters with special features or adapted for special applications having a balloon composed of several layers, e.g. by coating or embedding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1081Balloon catheters with special features or adapted for special applications having sheaths or the like for covering the balloon but not forming a permanent part of the balloon, e.g. retractable, dissolvable or tearable sheaths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]

Definitions

  • the present invention relates to catheter balloons used in a variety of surgical procedures and to balloon covers for use with catheter balloons.
  • Balloon catheters of various forms are commonly employed in a number of surgical procedures. These devices comprise a thin catheter tube that can be guided through a body conduit of a patient such as a blood vessel and a distensible balloon located at the distal end of the catheter tube. Actuation of the balloon is accomplished through use of a fluid filled syringe or similar device that can inflate the balloon by filling it with fluid (e.g., water or saline solution) to a desired degree of expansion and then deflate the balloon by withdrawing the fluid back into the syringe.
  • fluid e.g., water or saline solution
  • a physician will guide the balloon catheter into a desired position and then expand the balloon to accomplish the desired result (e.g., clear a blockage, or install or actuate some other device). Once the procedure is accomplished, the balloon is then deflated and withdrawn from the blood vessel.
  • the desired result e.g., clear a blockage, or install or actuate some other device.
  • Angioplasty catheters employ a balloon made of relatively strong but generally inelastic material (e.g., polyester) folded into a compact, small diameter cross section. These relatively stiff catheters are used to compact hard deposits in vessels. Due to the need for strength and stiffness, these devices are rated to high pressures, usually up to about 8 to 12 atmospheres depending on rated diameter. They tend to be self-limiting as to diameter in that they will normally distend up to the rated diameter and not distend appreciably beyond this diameter until rupture due to over-pressurization.
  • relatively strong but generally inelastic material e.g., polyester
  • the inelastic material of the balloon is generally effective in compacting deposits, it tends to collapse unevenly upon deflation, leaving a flattened, wrinkled bag, substantially larger in cross section than the balloon was when it was originally installed. Because of their tendency to assume a flattened cross section upon inflation and subsequent deflation, their deflated maximum width tends to approximate a dimension corresponding to one-half of the rated diameter times pi. This enlarged, wrinkled bag may be difficult to remove, especially from small vessels. Further, because these balloons are made from inelastic materials, their time to complete deflation is inherently slower than elastic balloons.
  • embolectomy catheters employ a soft, very elastic material (e.g., natural rubber latex) as the balloon.
  • a soft, very elastic material e.g., natural rubber latex
  • These catheters are employed to remove soft deposits, such as thrombus, where a soft and tacky material such as latex provides an effective extraction means.
  • Latex and other highly elastic materials generally will expand continuously upon increased internal pressure until the material bursts.
  • these catheters are generally rated by volume (e.g., 0.3 cc) in order to properly distend to a desired size.
  • volume e.g., 0.3 cc
  • U.S. Pat. No. 4,706,670 describes a balloon dilatation catheter constructed of a shaft made of an elastomeric tube and reinforced with longitudinally inelastic filaments. This device incorporates a movable portion of the shaft to enable the offset of the reduction in length of the balloon portion as the balloon is inflated. The construction facilitates the inflation and deflation of the balloon.
  • balloon catheters are widely employed, currently available devices experience a number of shortcomings.
  • the strongest materials for balloon construction tend to be relatively inelastic.
  • the flattening of catheter balloons made from inelastic materials that occurs upon inflation and subsequent deflation makes extraction and navigation of a deflated catheter somewhat difficult.
  • highly elastic materials tend to have excellent recovery upon deflation, but are not particularly strong when inflated nor are they self-limiting to a maximum rated diameter regardless of increasing pressure. This severely limits the amount of pressure that can be applied with these devices. It is also somewhat difficult to control the inflated diameter of these devices.
  • Other primary purposes of the present invention are to strengthen elastic balloons, to provide them with distension limits and provide them with a lubricious outer surface.
  • deflation herein is used to describe a condition subsequent to inflation.
  • Pre-inflation is used to describe the condition prior to initial inflation.
  • the present invention is an improved balloon catheter device for use in a variety of surgical procedures.
  • the balloon catheter device of the present invention comprises a catheter tube having a continuous lumen connected to an inflatable and deflatable balloon at one end of the catheter tube.
  • the catheter tube may have additional lumens provided for other purposes.
  • the balloon can have a burst strength equal to or greater than that of conventional PTA catheter balloons.
  • the balloon also has a maximum inflation diameter in a similar fashion to conventional PTA catheter balloons.
  • the inventive balloon offers the recovery characteristics of a latex balloon that when deflated is of about the same maximum diameter as it was prior to inflation.
  • inventive balloon to be withdrawn following deflation more easily than conventional PTA balloons which assume a flattened, irregular cross section following deflation and so have a deflated maximum diameter much larger than the pre-inflation maximum diameter.
  • the balloon also has a smooth and lubricious surface which also aids in insertion and withdrawal.
  • the inventive balloon possesses all of the above attributes even when made in small sizes heretofore commercially unavailable in balloon catheters without a movable portion of the catheter shaft or some other form of mechanical assist.
  • the present invention eliminates the need for a movable portion of the shaft and associated apparatuses to aid in balloon deflation.
  • the present invention is made from polytetrafluoroethylene (hereinafter PTFE) materials and elastomeric materials.
  • PTFE polytetrafluoroethylene
  • the PTFE is preferably porous PTFE made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390, both of which are incorporated by reference herein.
  • An additional optional construction step, longitudinally compressing a porous PTFE tube prior to addition of the elastomeric component, allows the balloon or balloon cover to sufficiently change in length to enable the construction of higher pressure balloons, again without the need for mechanical assist.
  • Particularly small sizes can be achieved by decreasing the wall thickness of the balloon via impregnation of a porous PTFE tube with silicone adhesive, silicone elastomer, silicone dispersion, polyurethane or another suitable elastomeric material instead of using a separate elastomeric member.
  • Impregnation involves at least partially filling the pores of the porous PTFE.
  • the pores (void spaces) are considered to be the space or volume within the bulk volume of the porous PTFE material (i.e., within the overall length, width and thickness of the of the porous PTFE material) not occupied by PTFE material.
  • the void spaces of the porous PTFE material from which the balloon is at least partially constructed may be substantially sealed in order that the balloon is liquid-tight at useful pressures by either the use of a separate tubular elastomeric substrate in laminated relationship with the porous PTFE, or by impregnation of the void spaces of the porous PTFE with elastomeric material, or by both methods.
  • U.S. Pat. No. 5,519,172 teaches in detail the impregnation of porous PTFE with elastomers. In that this patent relates primarily to the construction of a jacket material for the protection of electrical conductors, the suitability of each of the various described materials for in vivo use as catheter balloon materials must be considered.
  • the balloon may be made from the materials described herein as a complete, stand-alone balloon or alternatively may be made as a cover for either conventional polyester PTA balloons or for latex embolectomy balloons.
  • the use of the balloon cover of the present invention provides the covered balloon, regardless of type, with the best features of conventional PTA balloons and renders viable the use of elastic balloons for PTA procedures. That is to say, the covered balloon will have high burst strength, a predetermined maximum diameter, the ability to recover to substantially its pre-inflation size following deflation, and a lubricious exterior surface (unless it is desired to construct the balloon such that the elastomeric material is present on the outer surface of the balloon).
  • the balloon cover substantially reduces the risk of rupture of an elastic balloon.
  • the presence of the balloon cover may serve to contain the fragments of the ruptured balloon.
  • the inventive balloon and balloon cover can increase the rate of deflation of PTA balloons thereby reducing the time that the inflated balloon occludes the conduit in which it resides.
  • the present invention also enables the distension of a vessel and side branch or even a prosthesis within a vessel and its side branch without exerting significant force on the vessel or its branch. Further, it has been shown to be useful for flaring the ends of prostheses, thereby avoiding unwanted constrictions at the ends of the prostheses. Prostheses can slip along the length of prior art balloons during distension; the present invention not only reduces such slippage, it also can be used to create a larger diameter at the end of the graft than prior art materials.
  • the inventive balloon and balloon cover also maintain a substantially circular cross section during inflation and deflation in the absence of external constraint.
  • the balloon and balloon cover can be designed to inflate at lower pressure in one portion of the length than another. This can be accomplished, for example, by altering the thickness of the elastomer content along the length of the balloon in order to increase the resistance to distension along the length of the balloon.
  • the substrate tube may be constructed with varying wall thickness or varying amounts of helically-applied film may be applied along the tube length in order to achieve a similar effect.
  • the balloon catheter according to the present invention has opposing ends affixed to the catheter by opposing securing means.
  • the balloon has a length measured between the opposing ends wherein the length preferably varies less than about ten percent, and more preferably less than about five percent, between when the balloon is in a deflated state and when the balloon is inflated to a pressure of eight atmospheres.
  • Balloons of the present invention can also be constructed to elute fluids at pressures exceeding the balloon inflation pressure. Such balloons could have utility in delivering drugs inside a vessel.
  • a catheter balloon of the present invention is anticipated to be particularly useful for various surgical vascular procedures, including graft delivery, graft distension, stent delivery, stent distension, and angioplasty. It may have additional utility for various other surgical procedures such as, for example, supporting skeletal muscle left ventricular assist devices during the healing and muscle conditioning period and as an intra-aortic balloon.
  • FIGS. 1A, 1B and 1 C are perspective views describing manufacture of the tubular component forming the balloon or balloon cover of the present invention.
  • FIG. 2 is a perspective view describing the tubular component as it appears when inflated.
  • FIGS. 3A and 3B describe longitudinal cross sectional views of a balloon cover of the present invention without elastomer.
  • FIGS. 4A and 4B describe longitudinal cross sectional views of a balloon cover of the present invention incorporating a layer of elastomer.
  • FIGS. 5A and 5B describe longitudinal cross sectional views of a catheter balloon of the present invention having the same material construction as the balloon cover of FIGS. 4A and 4B .
  • FIGS. 6A, 6B and 6 C describe longitudinal cross sectional views of a catheter balloon of the type described by FIGS. 5A and 5B using a non-elastomeric material in place of the layer of elastomer.
  • FIG. 7 describes a transverse cross section taken at the center of the length of a flattened, deflated angioplasty balloon which describes how the compaction efficiency ratio of the deflated balloon is determined.
  • FIG. 8 describes a longitudinal cross section of a balloon affixed to the shaft of a dual lumen catheter, the balloon having a first PTFE material oriented substantially parallel to the longitudinal axis of the balloon and a second PTFE material oriented substantially circumferential to the longitudinal axis, wherein the PTFE materials is impregnated with an elastomer.
  • FIG. 8A describes a longitudinal cross section of an alternative embodiment to that of FIG. 8 wherein the balloon during inflation exhibits a larger diameter at a first portion of its length than at a second portion of its length.
  • FIGS. 9 and 9 A describe cross sections of the proximal end of a balloon catheter of the present invention.
  • FIGS. 10A-10F describe the construction of an alternative embodiment of a balloon catheter of the present invention wherein the balloon has separate substrate layers of an elastomeric material and a porous PTFE material in laminated relationship and wherein each end of each substrate material is separately affixed to a catheter shaft by separate wrappings of porous PTFE film.
  • FIGS. 11A, 11B and 11 C describe the construction of an alternative embodiment of a balloon catheter of the present invention similar to that of FIGS. 10A-10F wherein a catheter shaft is used which comprises a tubular elastomeric material provided with a reinforcing wrapping of porous PTFE film.
  • FIGS. 12A, 12B and 12 C describe the construction of an alternative embodiment of a balloon catheter of the present invention wherein a laminated tube of separate substrates of an elastomeric material and helically wrapped porous PTFE film are affixed to a catheter shaft by a wrapping of porous PTFE film at each end of the laminated tube.
  • the catheter balloon and catheter balloon cover of the present invention are preferably made from porous PTFE films having a microstructure of interconnected fibrils. These films are made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390.
  • the balloon and balloon cover may also incorporate a porous PTFE substrate tube in the form, for example, of an extruded and expanded tube or a tube constructed of film containing at least one seam. Also, the balloon may be impregnated with an elastomeric material.
  • FIG. 1A shows the first layer 14 of porous PTFE film helically wrapped over the mandrel 12 with the traverse direction of the wrap applied in a first direction 20 parallel to the longitudinal axis 18 .
  • the longitudinal axis of a balloon is defined as coincident with the longitudinal axis of the balloon catheter shaft, that is along the length of the shaft.
  • FIG. 1B describes the application of the second layer of porous PTFE film 16 helically wrapped over the top of the first layer 14 , wherein second layer 16 is wrapped in a second traverse direction 22 parallel to longitudinal axis 18 and opposite to the first traverse direction 20 .
  • both layers 14 and 16 are wrapped with the same pitch angle measured with respect to the longitudinal axis but measured in opposite directions. If, for example, film layers 14 and 16 are applied at pitch angles of 70° measured from opposite directions with respect to longitudinal axis 18 , then included angle A between both 70° pitch angles is 40°.
  • More than two layers of helically wrapped film may be applied. Alternate layers of film should be wrapped from opposing directions and an even number of film layers should be used whereby an equal number of layers are applied in each direction.
  • the helically wrapped mandrel is placed into an oven for suitable time and temperature to cause adjacent layers to heat-bond together. After removal from the oven and subsequent cooling, the resulting film tube may be removed from the mandrel. The film tube is next placed over the balloon, tensioned longitudinally and affixed in place over the balloon.
  • the inflated balloon or balloon cover 10 of the present invention has an increased diameter which results in included angle A being substantially reduced as shown by FIG. 2 .
  • the balloon or balloon cover thus reaches its pre-determined diametrical limit as included angle A approaches zero.
  • the inventive balloon or balloon cover 10 is reduced in diameter following deflation by one of two ways.
  • tension may be applied to the balloon or balloon cover parallel to longitudinal axis 18 to cause it to reduce in diameter following deflation to the form described by FIG. 1C .
  • the application of tension is necessary if low profile is desired.
  • a layer of elastomer, applied to the luminal surface of the balloon 10 and allowed to cure prior to use of the balloon, will cause the balloon to retract to substantially its pre-inflation size shown by FIG. 1C following deflation.
  • the elastomer may take the form of a coating of elastomer applied directly to the luminal surface of the balloon or balloon cover 10 , or an elastomeric balloon such as a latex balloon or a silicone tube may be adhered to the luminal surface of the inventive balloon 10 by the use of an elastomeric adhesive.
  • elastomer can be impregnated into the porous material to create a balloon or balloon cover.
  • FIG. 3A describes a cross sectional view of a balloon cover 10 of the present invention in use with a conventional balloon catheter of either the angioplasty or embolectomy type.
  • the figure describes a balloon cover without an elastomeric luminal coating.
  • the balloon cover 10 is closed at distal end 26 of the balloon catheter 11 .
  • Balloon cover 10 extends in length part of the way to the proximal end 27 of balloon catheter 11 whereby balloon cover 10 completely covers catheter balloon 25 and at least a portion of the catheter 11 .
  • FIG. 3B describes the same balloon catheter 11 with catheter balloon 25 in an inflated state. Layers 14 and 16 of balloon cover 10 allow the cover to increase in diameter along with catheter balloon 25 .
  • FIG. 4A describes a cross sectional view of a balloon cover 10 of the present invention wherein the balloon cover 10 has a liquid-tight layer of elastomer 34 applied to the inner surface of helically wrapped porous PTFE film layers 14 and 16 . Balloon cover 10 is closed at distal end 26 .
  • the figure describes a ligated closure, such as by a thread or filament, however, other suitable closing means may be used.
  • Proximal end 27 of balloon cover 10 is affixed to the distal end 32 of catheter 24 .
  • Balloon 25 may be of either the angioplasty or embolectomy type. If an elastomeric embolectomy balloon is used, it is preferred that the cover be adhered to the balloon by the use of an elastomeric adhesive to liquid-tight layer of elastomer 34 .
  • elastomeric adhesive to liquid-tight layer of elastomer 34 .
  • helically wrapped porous PTFE film layers 14 and 16 and liquid-tight elastomer layer 34 increase in diameter along with balloon 25 .
  • liquid-tight elastomer layer 34 causes helically wrapped porous PTFE film layers 14 and 16 to reduce in diameter as described previously, thereby returning substantially to the state described by FIG. 4A .
  • FIGS. 5A and 5B describe cross sectional views of a catheter balloon 10 made in the same fashion as the balloon cover described by FIGS. 4A and 4B .
  • the presence of liquid-tight elastomer layer 34 allows this construction to function as an independent balloon 42 as described previously without requiring a conventional angioplasty or embolectomy balloon.
  • FIGS. 6A, 6B and 6 C describe cross sectional views of an alternative embodiment of the catheter balloon 10 of the present invention.
  • helically wrapped porous PTFE film layers 14 and 16 are provided with a luminal coating 44 which is liquid-tight but is not elastomeric.
  • the resulting balloon behaves in the fashion of a conventional angioplasty balloon but offers the advantages of a lubricious and chemically inert exterior surface.
  • FIG. 6A describes the appearance of the balloon prior to inflation.
  • FIG. 6B describes the balloon in an inflated state.
  • collapsed balloon 46 has a somewhat wrinkled appearance and an irregular transverse cross section in the same fashion as a conventional angioplasty balloon made from polyester or similar inelastic material.
  • balloon and balloon cover of the present invention may be provided with an additional reinforcing mesh or braid on the exterior or interior surface of the balloon (or balloon cover), or more preferably between layers of the film whereby the mesh or braid is in the middle.
  • a mesh or braid of PTFE may be used as a balloon cover without including a continuous tube.
  • a continuous tube does not include openings through its wall as does a conventional mesh or braid.
  • FIG. 7 is provided as a description of the maximum dimension 72 and minimum dimension 74 (taken transversely to the longitudinal axis of the balloon) of a flattened, deflated angioplasty balloon 70 wherein the figure describes a transverse cross section of a typical flattened angioplasty balloon.
  • the transverse cross section shown is meant to describe a typical deflated, flattened inelastic angioplasty balloon 70 having a somewhat irregular shape.
  • Balloon 70 includes a catheter tube 76 having a guidewire lumen 78 and a balloon inflation lumen 79 and two opposing sides 82 and 84 of balloon 70 .
  • Maximum dimension 72 may be considered to be the maximum width of the flattened balloon 70 while minimum dimension 74 may be considered to be the maximum thickness across the two opposing sides 82 and 84 of the flattened balloon 70 . All balloon and catheter measurements are expressed in terms of dimensions even if the shape is substantially circular.
  • This example illustrates the use of a balloon cover of the present invention over a commercially available angioplasty balloon.
  • the balloon cover provides a means of returning the angioplasty balloon close to its original compact geometry after inflation and subsequent deflation, as well as providing the known chemical inertness and low coefficient of friction afforded by PTFE.
  • the balloon used was a MATCH 35® Percutaneous Transluminal Angioplasty (PTA) Catheter model number B508-412, manufactured by SCHNEIDER (Minneapolis, Minn.). This balloon when measured immediately after being removed from the protective sheath provided by the manufacturer had a minimum dimension of 2.04 mm and a maximum dimension of 2.42 mm. These measurements were taken from approximately the center of the balloon, as defined by the midpoint between the circumferentially-oriented radiopaque marker bands located at both ends of the balloon. A Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis.
  • PTA Percutaneous Transluminal Angioplasty
  • the shaft onto which the balloon was attached had a minimum dimension of 1.74 mm and a maximum dimension of 1.77 mm measured adjacent to the point of balloon attachment closest to the center of the length of the shaft.
  • the balloon when inflated to 8 atmospheres internal water pressure, had a minimum dimension of 8.23 mm and a maximum dimension of 8.25 mm at the center of the length of the balloon.
  • the balloon at its mid-length had a minimum dimension of 1.75 mm, and a maximum dimension of 11.52 mm as measured using Mitutoyo digital caliper model CD-6′′P.
  • the inventive balloon cover was made from a length of porous PTFE film made as described above cut to a width of 2.5 cm.
  • the film thickness was approximately 0.02 mm, the density was 0.2 g/cc, and the fibril length was approximately 70 microns. Thickness was measured using a Mitutoyo snap gauge model 2804-10 and density was calculated based on sample dimensions and mass. Fibril length of the porous PTFE films used to construct the examples was estimated from scanning electron photomicrographs of an exterior surface of film samples.
  • This film was helically wrapped onto the bare surface of an 8 mm diameter stainless steel mandrel at an angle of approximately 70° with respect to the longitudinal axis of the mandrel so that about 5 overlapping layers of film cover the mandrel.
  • another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction.
  • the second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers.
  • the film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 10 minutes to heat bond the layers of film, then removed and allowed to cool.
  • the resulting 8 mm inside diameter film tube formed from the helically wrapped layers was then removed from the mandrel and one end was ligated onto a self-sealing injection site (Injection Site with Luer Lock manufactured by Baxter Healthcare Corporation, Deerfield, Ill.).
  • a hole was created through the injection site, and the balloon end of the previously measured PTA catheter was passed through this hole, coaxially fitting the film tube over the balloon portion as well as a portion of the shaft of the PTA catheter.
  • the film tube was approximately 25 cm in length.
  • the minimum dimension was found to be 2.33 mm and the maximum dimension 2.63 mm. As before, these measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements.
  • the balloon when inflated to 8 atmospheres internal water pressure had a minimum dimension of 7.93 mm and a maximum dimension of 8.06 mm at the center of the balloon.
  • the balloon at its mid-length had a minimum dimension of 1.92 mm and a maximum dimension of 11.17 mm.
  • This example shows that the balloon cover can be used effectively to compact a PTA balloon which was inflated and subsequently deflated to approximately the geometry of the balloon in an unused state.
  • the measurements taken on the balloon (in both the uncovered and covered states) after inflation and subsequent deflation show that rather than undergoing a uniform circular compaction, the balloon tended to flatten.
  • This flattening can be quantified by calculating the ratio of the minimum dimension to the maximum dimension measured after inflation and subsequent deflation. This ratio is defined as the compaction efficiency ratio. Note that a circular cross section yields a compaction efficiency ratio of unity.
  • the uncovered balloon had a compaction efficiency ratio of 1.75 divided by 11.52, or 0.15.
  • the balloon after being provided with the inventive balloon cover, had a compaction efficiency ratio of 3.43 divided by 3.87, or 0.89. Additionally, the ratio of the maximum dimension prior to any inflation, to the maximum dimension after inflation and subsequent deflation, is defined as the compaction ratio.
  • the uncovered balloon had a compaction ratio of 2.42 divided by 11.52, or 0.21.
  • the balloon after being provided with the inventive balloon cover, had a compaction ratio of 2.63 divided by 3.87, or 0.68.
  • This example illustrates the use of a balloon cover over a commercially available latex embolectomy balloon.
  • the balloon cover provides a defined limit to the growth of the embolectomy balloon, a substantial increase in burst strength, and the known chemical inertness and low coefficient of friction afforded by PTFE.
  • the balloon used was a Fogarty® Thru-Lumen Embolectomy Catheter model 12TL0805F manufactured by Baxter Healthcare Corporation (Irvine, Calif.). This natural rubber latex balloon when measured immediately after being removed from the protective sheath provided by the manufacturer had a minimum dimension of 1.98 mm and a maximum dimension of 2.02 mm. These measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands.
  • a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis.
  • the shaft onto which the balloon was attached had a minimum dimension of 1.64 mm and a maximum dimension of 1.68 mm measured adjacent to the point of balloon attachment closest to the center of the length of the shaft.
  • the balloon when filled with 0.8 cubic centimeters of water had a minimum dimension of 10.71 mm and a maximum dimension of 10.77 mm at the center of the balloon.
  • the balloon at its mid-length had a minimum dimension of 1.97 mm and a maximum dimension of 2.04 mm.
  • the balloon when tested using a hand-held inflation syringe had a burst strength of 60 psi.
  • embolectomy catheter of the same type was covered using a porous PTFE film tube made as described in Example 1.
  • the method used to cover the embolectomy catheter was the same as that used to cover the PTA catheter in Example 1.
  • the now covered balloon was measured in a pre-inflated state.
  • the minimum dimension was found to be 2.20 mm and the maximum dimension 2.27 mm.
  • these measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands, and a Lasermike model 183, manufactured by Lasermike (Dayton, Ohio) was used to make the measurements.
  • the balloon when filled with 0.8 cubic centimeters of water had a minimum dimension of 8.29 mm and a maximum dimension of 8.34 mm at mid-length.
  • the balloon at its mid-length had a minimum dimension of 3.15 mm and a maximum dimension of 3.91 mm.
  • the covered balloon was determined to have a burst strength of 188 psi, failing solely due the burst of the underlying embolectomy balloon.
  • the inventive balloon cover exhibited no indication of rupture.
  • a balloon made from the composite material described below exhibits a predictable inflated diameter, high strength, exceptional compaction ratio and compaction efficiency ratio, as well as the known chemical inertness and low coefficient of friction afforded by PTFE.
  • the silicone tubing was coated with a thin layer of Translucent RTV 108 Silicone Rubber Adhesive Sealant manufactured by General Electric Company (Waterford, N.Y.).
  • An 8 mm inner diameter film tube made in the same manner described in Example 1 was fitted coaxially over the stainless steel mandrel and the silicone tubing. Tension was manually applied to the ends of the film tube causing it to reduce in diameter and fit snugly onto the underlying segment of silicone tubing secured to the stainless steel mandrel.
  • this composite tube was gently massaged to ensure that no voids were present between the silicone tube and the porous PTFE film tube.
  • the entire silicone-PTFE composite tube was allowed to cure in an air convection oven set at 35° C. for a minimum of 12 hours. Once cured, the composite tube was removed from the stainless steel mandrel.
  • One end of the composite tube was then fitted coaxially over a section of 5 Fr catheter shaft taken from a model B507-412 MATCH 35® Percutaneous Transluminal Angioplasty (PTA) Catheter, manufactured by SCHNEIDER (Minneapolis, Minn.) and clamped to the catheter shaft using a model 03.3 RER Ear Clamp manufactured by Oetiker (Livingston, N.J.) such that a watertight seal was present.
  • PTA Percutaneous Transluminal Angioplasty
  • Oetiker Livingston, N.J.
  • the balloon was measured in a pre-inflated state.
  • the minimum dimension was found to be 2.31 mm and the maximum dimension 2.42 mm.
  • these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis.
  • the balloon when inflated to 8 atmospheres internal water pressure, had a minimum dimension of 7.64 mm and a maximum dimension of 7.76 mm at the center of the balloon.
  • the balloon at its mid-length had a minimum dimension of 2.39 mm and a maximum dimension of 2.57 mm.
  • the silicone-PTFE composite balloon when tested using a hand-held inflation device had a burst strength of 150 psi, reaching a maximum dimension of about 7.9 mm prior to rupture.
  • This example describes the construction of a PTA balloon made by helically wrapping a porous PTFE film having a non-porous FEP coating over a thin porous PTFE tube.
  • the FEP-coated porous expanded PTFE film was made by a process which comprises the steps of:
  • thermoplastic polymers including thermoplastic fluoropolymers may also be used to make this coated film.
  • the adhesive coating on the porous expanded PTFE film may be either continuous (non-porous) or discontinuous (porous) depending primarily on the amount and rate of stretching, the temperature during stretching, and the thickness of the adhesive prior to stretching.
  • the FEP-coated porous PTFE film used to construct this example was a continuous (non-porous) film.
  • the total thickness of the coated film was about 0.02 mm.
  • the film was helically wrapped onto an 8 mm diameter stainless steel mandrel that had been coaxially covered with a porous expanded PTFE tube, made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390.
  • the porous PTFE tube was a 3 mm inside diameter tube having a wall thickness of about 0.10 mm and a fibril length of about 30 microns. Fibril length is measured as taught by U.S. Pat. No. 4,972,846.
  • the 3 mm tube had been stretched to fit snugly over the 8 mm mandrel.
  • the FEP-coated porous PTFE film was then wrapped over the outer surface of this porous PTFE tube in the same manner as described by Example 1, with the FEP-coated side of the film placed against the porous PTFE tube surface.
  • the wrapped mandrel was placed into an air convection set at 380° C. for 2.5 minutes, removed and allowed to cool, at which time the resulting tube was removed from the mandrel.
  • This tube was fitted coaxially over the end of a 5 Fr catheter shaft taken from a model number B507-412 PTA catheter manufactured by Schneider (Minneapolis, Minn.), and clamped to the catheter shaft using a model 03.3 RER Ear Clamp manufactured by Oetiker (Livingston, N.J.) such that a watertight seal was present.
  • the resulting balloon was packed into the protective sheath which was provided by Schneider as part of the packaged balloon catheter assembly.
  • the balloon was then removed from the protective sheath by sliding the sheath proximally off of the balloon and over the catheter shaft. Prior to inflation, the minimum and maximum diameters of the balloon were determined to be 2.25 and 2.61 mm.
  • the distal end of the balloon was then closed using hemostats for expediency, however, a conventional ligature such as waxed thread could have been used to provide a suitable closure.
  • a conventional ligature such as waxed thread could have been used to provide a suitable closure.
  • This example describes a balloon constructed by impregnating silicone dispersion into a porous PTFE tube with helically applied porous PTFE film.
  • a balloon made in this way exhibits a very small initial diameter, predictable inflated diameter, high strength, exceptional compaction ratio and compaction efficiency ratio, as well as the known chemical inertness and low coefficient of friction afforded by PTFE.
  • the impregnation with silicone dispersion enables the construction of a thinner balloon.
  • the use of a thin porous PTFE tube as a substrate provides longitudinal strength to resist elongation of the balloon at high pressures.
  • a longitudinally extruded and expanded porous PTFE substrate tube was obtained.
  • the substrate tube was 1.5 mm inside diameter, having a wall thickness of about 0.17 mm and a fibril length of about 45 microns.
  • the tube was fitted coaxially onto a 1.5 mm diameter stainless steel mandrel.
  • a length of porous expanded PTFE film was obtained that had been cut to a width of 2.54 cm.
  • This film had a thickness of about 0.02 mm, a density of about 0.2 g/cc, and a fibril length of about 70 microns. Thickness was measured using a Mitutoyo snap gauge model No. 2804-10.
  • the film bulk density was calculated based on dimensions and mass of a film sample. Density of non-porous PTFE was considered to be 2.2 g/cc. Fibril length of the porous PTFE film used to construct the example was estimated from scanning electron photomicrographs of an exterior surface of samples of the film.
  • This film was helically wrapped directly onto the bare metal surface of a 7 mm diameter stainless steel mandrel at about 65° with respect to the longitudinal axis of the mandrel so that about two overlapping layers of film covered the mandrel. Both edges of the film were colored with black ink in order to measure the pitch angles of the film during the construction or use of the completed balloon. Following this, another approximately two layers of the same film were helically wrapped over the first two layers. The second two layers were applied at the same bias angle with respect to the longitudinal axis, but in the opposite direction. This procedure was repeated three times, providing approximately 16 total layers of film. The film-wrapped mandrel was then placed into a convection oven set at 380° C. for 10 minutes to heat-bond the adjacent layers of film, then removed and allowed to cool. The resulting 7 mm inside diameter film tube formed from the helically wrapped layers of films was then removed from the mandrel.
  • This 7 mm inside diameter porous PTFE film tube was then fitted coaxially over the 1.5 mm inside diameter PTFE substrate tube and mandrel.
  • the film tube was then tensioned longitudinally to cause it to reduce in diameter to the extent that it fit snugly over the outer surface of the 1.5 mm tube.
  • the ends of this reinforced tube were then secured to the mandrel in order to prevent longitudinal shrinkage during heating.
  • the combined tube and mandrel assembly was placed into an air convention oven set at 380° C. for 190 seconds to heat bond the film tube to the outer surface of the substrate tube.
  • the reinforced tube and mandrel assembly was then removed from the oven and allowed to cool.
  • Additional porous PTFE film was then helically applied to outer surface of the reinforced tube to inhibit wrinkling of the tube in the subsequent step.
  • the tube was then compressed in the longitudinal direction to reduce the tube length to approximately 0.6 of the length just prior to this compression step. Care was taken to ensure a high degree of uniformity of compression along the length of the tube. Wire was used to temporarily affix the ends of the tube to the mandrel.
  • the mandrel-loaded reinforced tube with the additional helically applied film covering was then placed into a convention oven set at 380° C. for 28 seconds, removed from the oven and allowed cool.
  • the additional outer film was removed from the reinforced tube, followed by removing the reinforced tube from the mandrel.
  • the reinforced tube was then gently elongated by hand to a length of about 0.8 of the length just prior to the compression step.
  • the reinforced tube was then ready for impregnation with silicone dispersion (Medical Implant Grade Dimethyl Silicone Elastomer Dispersion in Xylene, Applied Silicone Corp., PN 40000, Ventura, Calif.).
  • silicone dispersion was first prepared by mixing 2.3 parts n-Heptane (J. T. Barker, lot #J07280) with one part silicone dispersion.
  • Another mixture with n-Heptane was prepared by mixing 0.5 parts with 1 part silicone dispersion. Each mixture was loaded into an injection syringe.
  • the dispensing needle of each of the injection syringes was inserted inside one end of the reinforced tube. Wire was used to secure the tube around the needles.
  • One of the dispensing needles was capped and the syringe containing the 2.3:1 silicone dispersion solution was connected to the other.
  • the solution was dispensed inside the reinforced tube with about 6 psi pressure. Pressure was maintained for approximately one minute, until the outer surface of the tube started to become wetted with the solution, indicating that the dispersion entered the pores of the PTFE material. It was ensured that the silicone dispersion coated the inside of the PTFE tube.
  • the impregnated reinforced tube was removed from the oven and allowed to cool. Both ends of the tube were opened and the 0.5:1 silicone dispersion solution was injected in one end to again fill the lumen, the needle ends were then capped, then the dispersion was cured in the same manner as described above. At this point the balloon construction was complete.
  • the balloon was then ready for mounting on a 5 Fr catheter shaft obtained from a balloon dilatation catheter (Schneider Match 35 PTA Catheter, 6 mm dia., 4 cm length, model no. B506-412) This balloon was mounted on the 1.67 mm diameter catheter shaft as described by FIG. 8 . Both ends of the balloon were mounted to the shaft. The catheter tip portion plus the balloon of the balloon dilatation catheter were cut off in the dual lumen portion of the shaft leaving only the catheter shaft 24 . Guidewires serving as mandrels (not shown) were inserted into both lumens of the shaft. A 0.32 mm mandrel was inserted into the inflation lumen 87 and a 0.6 mm mandrel was inserted into the wire lumen 83 .
  • portion 24 A of the shaft 24 containing the inflation lumen 87 was shaved off longitudinally to a length approximately 1 cm longer than the length of the balloon to be placed on the shaft; therefore, this portion 24 A of the shaft 24 then contained only the wire lumen 83 which possessed a semi-circular exterior transverse cross section. (The extra 1 cm length accommodates room for a tip portion of the catheter, without a balloon covering, in the final assembly.) With the mandrels still in place, portion 24 B of the shaft 24 was inserted for about 30 seconds into a heated split die containing 1.5 mm diameter bore when the dies were placed together. The dies were heated to a temperature of 180° C.
  • the balloon 10 (having circumferentially oriented film layers 14 and 16 , and longitudinally oriented substrate tube 81 ) was slipped over the modified distal end of the shaft 24 such that the proximal end of the balloon 10 was approximately 0.5 cm from the end of the landing 91 .
  • This approximately 0.5 cm segment of the landing 91 adjacent to the abutment was primed for fifteen seconds (Loctite PrismTM Primer 770, Item #18397, Newington, Conn.) and then cyanoacrylate glue (Loctite 4014 Instant Adhesive, Part #18014, Rocky Hill, Conn.) was applied to that segment.
  • the balloon 10 was moved proximally such that the proximal end of the balloon abutted against the end of the landing 91 and the glue was allowed to set.
  • the distal end of the balloon 10 was attached in the same manner, while ensuring against wrinkling of the balloon during the attachment. At this point, a radiopaque marker could have been fitted at each end of the balloon.
  • the last step in the mounting process involved securing the ends of the balloon with shrink tubing 93 (Advanced Polymers, Inc., Salem, N.H., polyester shrink tubing—clear, item #085100CST).
  • shrink tubing 93 Advanced Polymers, Inc., Salem, N.H., polyester shrink tubing—clear, item #085100CST.
  • Approximately 0.25 cm of the proximal end of the balloon and approximately 0.75 cm of the shaft adjacent to the end of the balloon were treated with the same primer and glue as described above.
  • Approximately 1 cm length of shrink tubing 93 was placed over the treated regions of the shaft 24 and balloon 10 .
  • the same process was followed to both prepare the distal end the balloon and the adjacent modified shaft portion and to attach another approximately 1 cm length of shrink tubing 93 .
  • the entire assembly was then placed into a convection oven set at 150° C. for at least about 2 minutes in order to shrink the shrink tubing.
  • the pre-inflation balloon possessed 2.03 mm and 2.06 mm minimum and maximum dimensions, respectively.
  • the balloon catheter was tested under pressure as described in Example 1.
  • the inflated balloon possessed 5.29 mm and 5.36 mm minimum and maximum dimensions, respectively.
  • the deflated balloon possessed 2.19 mm and 3.21 mm minimum and maximum dimensions, respectively.
  • the resulting compaction efficiency and the compaction ratio were 0.68 and 0.64, respectively.
  • the pitch angles of the film were also measured pre-inflation, at inflation (8 atm), and at deflation, yielding values of about 20°, 50°, and 25°, respectively.
  • the balloon was reinflated with 10 atm and the pitch angles of the film were measured for the inflation and deflation conditions. The angles were the same for both inflation pressures.
  • the balloon was subjected to even higher pressures to determine the pressure at failure.
  • the balloon withstood 19.5 atm pressure prior to failure due to breakage of the shrink tubing at the distal end of the balloon.
  • Another balloon catheter was made using a piece of the same balloon material, following the same procedures described in this example. This balloon catheter was used to distend a 3 mm GORE-TEX Vascular Graft (item no. V03050L, W. L. Gore and Associates, Inc., Flagstaff Ariz.) from which the outer reinforcing film had been removed. The graft was placed over the balloon such that the distal end of the graft was positioned approximately 1 cm from the distal end of the balloon.
  • the balloon was inflated to 8 atm, the graft distended uniformly without moving in the longitudinal direction with respect to the balloon.
  • Another piece of the same graft was tested in the same manner using a 6 mm diameter, 4 cm long Schneider Match 35 PTA Catheter (model no. B506-412). In this case, the graft slid along the length of the balloon proximally during the balloon inflation; the distal end of the graft was not distended.
  • a balloon catheter was made following all of the steps of Example 5 with one exception in order to provide a balloon that bends during inflation.
  • Example 5 All of the same steps were followed as in Example 5 with the exception of eliminating the manual elongation step that immediately followed the longitudinal compression step. That is, at the point of being impregnated with silicone dispersion, the film-covered porous PTFE tube was 0.6 of its initial length (instead of 0.8 as in Example 5).
  • a balloon catheter was constructed using this balloon.
  • the length of the balloon was 4.0 cm.
  • the bend of the balloon was tested by inflating the balloon to 8 atm and measuring the bend angle created by inflation. Measurements were made via the balloon aligned coincident with the 0° scribe line of a protractor, with the middle of the balloon positioned at the origin. The bend angle was 50°.
  • the balloon was then bent an additional 90° and allowed to relax. No kinking occurred even at 140°. The angle of the still inflated, relaxed balloon stabilized at 90°.
  • the balloon of an intact 6 mm diameter, 4 cm long Schneider Match 35 PTA Catheter (model no. B506-412) was tested in the same manner.
  • the bend angle under 8 atm pressure was 0°.
  • the inflated balloon was then bent to 90°, which created a kink.
  • the inflated balloon was allowed to relax.
  • the balloon bend angle stabilized at 25°.
  • the bending characteristics of an article of the present invention should enable the dilatation of a vessel and a side branch of the same vessel simultaneously.
  • the inventive balloon is easily bendable without kinking. Kinking is defined as wrinkling of the balloon material.
  • This example illustrates an alternative construction for a balloon catheter assembly of the present invention.
  • the described construction relates to a balloon made from tubular substrates of helically-wrapped porous PTFE film and elastomeric tubing in laminar relationship wherein ends of the balloon are secured to a catheter shaft using wraps of porous PTFE film.
  • the balloon does not require an additional layer of porous PTFE having fibrils oriented longitudinally with respect to the lengths of the balloon and catheter shaft.
  • the proximal end of the balloon catheter assembly 100 was created using three segments of catheter tubing joined together at an injection molded Y-fitting.
  • the distal end of the balloon catheter is considered to be the end to which is affixed the balloon and the end which is first inserted into the body of a patient; the proximal end is considered to be the end of the balloon catheter opposite the distal end. All tubing segments were Pebax 7233 tubing unless noted otherwise; all of the described tubing is available from Infinity Extrusions and Engineering, Santa Clara, Calif. unless noted otherwise.
  • the primary component of catheter shaft 101 was a dual lumen segment of tubing 103 having an outside diameter of about 2.3 mm, a guidewire lumen 105 of about 1.07 mm inside diameter and a crescent-shaped inflation lumen 107 of about 0.5 mm height.
  • a transverse cross section of this tubing is described by FIG. 9A .
  • the guidewire lumen 105 of this main shaft 101 was joined at the Y-fitting 109 to one end of a 12 cm length of single lumen tubing 111 having an outside diameter of about 2.34 mm and an inside diameter of about 1.07 mm; the inflation lumen 107 of the main shaft 101 was joined to a 12 cm length of Pebax 4033 single lumen tubing 115 .
  • Joining was accomplished by placing a length of 1.0 mm outside diameter steel wire (not shown) into one end of the guidewire lumen 105 of the dual lumen tubing 103 and sliding one end of single lumen tube 111 onto the opposite end of the steel wire until the ends of dual lumen tube 103 and single lumen tube 111 abutted.
  • a length of 0.48 mm diameter wire (also not shown) having a 30 degree bend at the midpoint of its length was inserted into the crescent-shaped inflation lumen 107 of the dual lumen tubing 103 up to the point of the bend in the wire; the lumen 117 of the second length of single lumen tubing 115 was fitted over the opposite end of this wire until it also reached the bend point of the wire, abutting the end of the dual lumen tubing 103 at that point.
  • the presence of the wires in the region of the abutted tube ends thus maintained the continuity of both lumens at the point of abutment.
  • the region of the abutted tubing ends was placed into the cavity of a mold designed to encapsulate the junction.
  • the distal or balloon end of the catheter assembly 100 was then fabricated as follows, beginning according to the longitudinal cross section shown by FIG. 10A .
  • a 1.00 mm diameter stainless steel wire (not shown) approximately 30 cm long was inserted approximately 15 cm into the distal end of the guidewire lumen 105 of the dual lumen tubing 103 .
  • a 13 cm length of single lumen tubing 119 having an inner diameter of 1.02 mm and an outer diameter of 1.58 mm was placed over the exposed wire protruding from the guidewire lumen 105 such that it abutted the end of the dual lumen tubing 103 .
  • a 0.49 mm stainless steel wire approximately 30 cm long was placed inside the distal end of the crescent-shaped inflation lumen 107 of the dual lumen tubing 103 .
  • the abutted ends of the two tubes 103 and 119 and the resident wires were placed into a PIRF® Thermoplastic Forming and Welding System (part numbers 3220, 3226, 3262 and 3263, Sebra® Engineering and Research Associates, Inc., Arlington Ariz.) and a butt connection between the single lumen tubing 119 and the dual lumen catheter shaft 103 was completed.
  • the 0.49 mm stainless steel wire resident within the distal portion of the crescent-shaped inflation lumen 107 of the dual lumen catheter tubing 103 ensured that the distal end of lumen 107 would remain open during this operation.
  • the heated die used in this step was specifically fabricated to accommodate the dimensions of the dual lumen catheter tubing 103 and the single lumen tubing 119 .
  • the heating and other parameters used in the operation were derived by trial and error to result in adequate reflow and butt welding of the abutted ends of the two tubes.
  • the 0.49 mm stainless steel wire resident within the distal portion of the inflation lumen 107 of the dual lumen catheter tubing 103 was replaced by a 0.39 mm stainless steel wire approximately 30 cm long (also not shown). Again the wire was placed about 15 cm into the inflation lumen 107 .
  • the assembly Upon heating, the assembly was advanced approximately 2.0 cm into the heated die of the system, causing a 2 cm length of the distal end of the outer diameter of the dual lumen catheter tubing 103 to decrease to the same dimension as the 1.83 mm inner diameter of the heated die.
  • the longitudinal cross section of FIG. 10B describes the appearance of the assembly after heating wherein region “a” has the 1.58 mm outside diameter of single lumen tube 119 , region “b” has been modified to the outside diameter of 1.83 mm and region “c” retains the original 2.3 mm outside diameter of dual lumen tubing 103 .
  • the 0.39 mm stainless steel wire resident within the inflation lumen 107 of the dual lumen catheter tubing 103 ensured that the lumen 107 would remain open during this operation.
  • elastomeric tubing used for this example was silicone tubing, it is believed that tubings made from other elastomeric materials such as polyurethane or fluoroelastomer tubings may also be suitably employed.
  • any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the shaft 101 was completely dry.
  • a small amount of Medical Implant Grade Dimethyl Silicone Elastomer Dispersion In Xylene Part 40000, Applied Silicone, Ventura, Calif. was applied between the ends of the silicone tubing 123 and the underlying exterior surface of the catheter shaft 101 .
  • a small blunt needle was inserted between the ends of the silicone tubing 123 and the underlying catheter shaft 101 for a distance of approximately 7.5 mm as measured in a direction parallel to the length of the catheter shaft 101 .
  • the silicone elastomer dispersion was carefully applied, using a 3 cc syringe connected to the blunt needle, around the entire circumference of the catheter shaft 101 such that the dispersion remained within and fully coated the 7.5 mm length of the area to be bonded under the ends of silicone tubing 123 .
  • the silicone elastomer dispersion was then allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C.
  • a length of porous PTFE film as described above was manually wrapped over the end regions of the silicone tubing 123 under which the silicone elastomer dispersion was present, and onto the adjacent portions of the catheter shaft 101 not covered by silicone tubing 123 , for a length of approximately 7.5 mm measured from the ends of the silicone tubing 123 .
  • the entire length of the porous PTFE film was coated with a small amount of the silicone elastomer dispersion, the dispersion impregnating the porous PTFE film such that the void spaces in the porous PTFE film were substantially filled by the dispersion.
  • the dispersion was thus used as an adhesive material to affix the porous PTFE film to the underlying components. It is believed that other adhesive material may also be used such as other elastomers (e.g., polyurethane or fluoroelastomers, also optionally in dispersion form), cyanoacrylates or thermoplastic adhesives such as fluorinated ethylene propylene which may be activated by the subsequent application of heat. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIG. 10C ) covered each of the regions; the very thin porous PTFE film did not add significantly to the outside diameter of the catheter assembly 100 . At this point the silicone elastomer dispersion used to coat the porous PTFE film was allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C.
  • other adhesive material may also be used such as other elastomers (e.g.
  • a film tube was constructed in a fashion similar to that described in example 1.
  • another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction.
  • the second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers.
  • additional layers of film were applied five layers at a time with each successive group of five layers applied in an opposing direction to the previous group until a total of about 30 layers of helically wrapped film covered the mandrel.
  • This film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 11.5 minutes to heat bond the layers of film, then removed and allowed to cool.
  • the film tube may also be constructed using more film or less film than described above; the use of increasing or decreasing amounts of film will result in a catheter balloon that is respectively stronger (in terms of hoop strength) and less compliant, or weaker and more compliant.
  • the use of slightly different porous PTFE materials e.g., porosity, thickness and width
  • the amount of porous PTFE material used and its orientation with respect to the longitudinal axis and adjacent material layers can all be expected to affect the performance properties of the resulting balloon; these variables may be optimized for specific performance requirements by ordinary experimentation.
  • the resulting 8 mm inside diameter film tube was then removed from the 8 mm mandrel, fitted coaxially over a 1.76 mm diameter stainless steel mandrel, and manually tensioned longitudinally to cause it to reduce in diameter.
  • the ends of the film tube (extending beyond the mandrel ends) were then placed into a model 4201 Tensile Testing Machine manufactured by Instron (Canton, Mass.) equipped with flat faced jaws and pulled at a constant rate of 200 mm/min until a force between 4.8 and 4.9 kg was achieved.
  • the film tube was then secured to the mandrel ends by tying with wire.
  • the 1.76 mm mandrel with the film tube secured onto it was then placed into an air convection oven set at 380° C. for 30 seconds.
  • the mandrel and film tube were then removed, allowed to cool, and then helically wrapped manually (using a pitch angle of about 70 degrees with respect to the longitudinal axis) with a length of 1.9 cm wide porous PTFE film made as described above, so that about 2 overlapping layers of film covered the mandrel and film tube.
  • another 2 layers of the same film were helically wrapped over the first 2 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction.
  • the film tube having visible pen marks at 5 mm increments, was manually tensioned longitudinally until the pen marks were spaced at approximately 1 cm increments, and then allowed to retract. The resulting 1.76 mm inside diameter film tube then had visible pen marks spaced between 7 mm and 8 mm apart.
  • the film tube was then placed in a jar containing a mixture of 1 part MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 6 parts n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight, wetting the film tube with the mixture. Void spaces within the porous PTFE film tube 127 were thus impregnated with and substantially filled by the silicone adhesive mixture. It is believed that this step may also be accomplished by other types of elastomeric adhesives including fluoroelastomers and polyurethanes.
  • the catheter shaft 101 with the silicone tubing 123 affixed to it via porous PTFE film 125 and silicone elastomer dispersion was then carefully coated with a thin layer of a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight.
  • the 1.76 mm inside diameter film tube was removed from the silicone-Heptane mixture, and the coated catheter shaft 101 was carefully fitted coaxially within the film tube 127 as shown by the longitudinal cross section of FIG.
  • film tube 127 was then helically wrapped by hand with a length of 1.9 cm wide porous PTFE film, made as described above, so that about 2 overlapping layers of film covered its length.
  • This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step.
  • This distal portion of the catheter assembly 100 was then placed into a steam bath for a period of time between 15 and 30 minutes to cure the previously applied silicone adhesive mixture.
  • the catheter assembly 100 was then removed from the steam bath, and the outer helically-wrapped film layers were removed.
  • the entire length of the porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (shown schematically as layers 129 in FIG. 10D ) covered the region without adding significantly to the diameter of the catheter.
  • the diameter of the catheter assembly 100 at the location of film layers 129 and 125 was very close to the diameter of catheter tubing 101 proximal to these layers of film.
  • the distal portion of the catheter was then placed into a steam bath for a minimum of 8 hours to achieve final curing. After final curing the distal-most portion of the catheter shaft was cut off transversely at the distal-most edge 131 of the porous PTFE film on the exterior of the film tube.
  • the construction of the distal region of the catheter assembly 100 incorporating the balloon portion was now complete. The resulting balloon portion of this construction is represented as region 133 .
  • the ends of the balloon and the length of the balloon are defined by the bracketed region 133 , shown as beginning at the edges of porous PTFE film layer 129 (the termination or securing means) closest to the balloon portion 133 .
  • the balloon portion 133 thus was secured to the outer surface of the catheter shaft by two separate terminations (or securing means) at each end of the balloon; these take the form of film layers 125 used to secure the silicone tube 123 and film layers 129 used to secure the porous PTFE film tube 127 .
  • the presence of two separate terminations (i.e., separate layers 125 and 129 ) at one end of the balloon can be demonstrated by taking a transverse cross section through the termination region and examining it with suitable microscopy methods such as scanning electron microscopy.
  • the inflatable balloon portion 133 was the result of two substrates, porous PTFE film tube 127 and elastomeric slilcone tube 123 being joined in laminated relationship.
  • the void spaces of the porous PTFE film tube 127 were thus substantially sealed by the silicone tube 123 and the previously applied silicone adhesive mixture which impregnated the void spaces of the porous PTFE film tube 127 and adhered the film tube to the silicone tube 123 .
  • the diameter of the balloon portion 133 was measured in a pre-inflated state.
  • the minimum diameter was found to be 2.14 mm and the maximum diameter 2.31 mm.
  • these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis.
  • the balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 10E ) for a period of 1 minute or less, had a minimum diameter of 6.89 mm and a maximum diameter of 6.93 mm at the center of its length.
  • the balloon portion 133 was substantially straight with respect to the longitudinal axis of the catheter shaft 101 , and that the distance from the point at which the balloon portion 133 was attached to the catheter shaft 101 to the point on the balloon portion 133 at which the balloon was at its full diameter was relatively short. This is to say that the balloon when inflated possessed blunt ends of substantially the same diameter as the midpoint of the length of the balloon portion 133 , as opposed to having a tapered appearance along the length with a smaller diameter adjacent the balloon ends.
  • the balloon at its mid-length had a minimum diameter of 2.22 mm and a maximum diameter of 2.46 mm.
  • This silicone-PTFE composite balloon when tested using a hand-held inflation device, had a burst pressure of approximately 22 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.95 mm prior to failure by rupture.
  • FIG. 10F A flow chart describing the process used to create the balloon catheter described by this example is presented as FIG. 10F ; it will be apparent that variations on this process may be used to create the same or similar balloon catheters.
  • This example teaches a method of balloon catheter construction using a catheter shaft made of elastomeric material. While this example was made using only a single lumen silicone catheter shaft with the lumen for intended for inflation, it will be apparent that a dual or multiple lumen shaft may also be used.
  • a silicone model 4 EMB 40 Arterial Embolectomy Catheter manufactured by the Cathlab Division of American Biomed Inc. (Irvine, Calif.) having a 4 fr shaft outside diameter (about 1.35 mm) and a length of 40 cm was acquired.
  • the embolectomy catheter included a Luer fitting at the proximal end of the shaft and a balloon made of a silicone elastomer at the distal end of the shaft. The most distal 20 cm portion of the catheter (including the balloon) was cut off, and a 0.38 mm diameter wire was inserted completely through the open lumen of the shaft.
  • elastomeric tubing used for this example was silicone tubing, it is believed that other elastomeric tubing materials such as polyurethane tubings may also be suitably employed.
  • any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the shaft 219 was completely dry.
  • a small amount of Medical Implant Grade Dimethyl Silicone Elastomer Dispersion In Xylene Part 40000, Applied Silicone, Ventura, Calif. was applied between the ends of the silicone tubing 123 and the underlying exterior surface of the silicone catheter shaft 219 .
  • a small blunt needle was inserted between the ends of the silicone tubing 123 and the underlying silicone catheter shaft 219 for a distance of approximately 7.5 mm as measured in a direction parallel to the length of the catheter shaft 219 .
  • the silicone elastomer dispersion was carefully applied, using a 3 cc syringe connected to the blunt needle, around the entire circumference of the shaft 219 such that the dispersion remained within, and fully coated the 7.5 mm length of the area to be bonded under the ends of the silicone tubing 123 .
  • the silicone elastomer dispersion was then allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C.
  • a length of porous PTFE film as described above was manually wrapped over the end regions of the silicone tubing 123 under which the silicone elastomer dispersion was present, and onto the adjacent portions of the silicone catheter shaft 219 not covered by the silicone tubing 123 , for a length of approximately 7.5 mm measured from the ends of the silicone tubing 123 .
  • the entire length of the porous PTFE film was coated with a small amount of the silicone elastomer dispersion.
  • Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIGS.
  • a film tube was constructed in the same manner as described in Example 7.
  • the silicone catheter shaft 219 with the silicone tubing 123 affixed to it via porous PTFE film 125 and silicone elastomer dispersion was then carefully coated with a thin layer of a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight.
  • the 1.76 mm inside diameter film tube was removed from the silicone-Heptane mixture, and the coated silicone catheter shaft 219 was carefully fitted coaxially within the film tube 127 such that the entire silicone tube 123 affixed to the catheter shaft 219 , as well as an adjacent portion of the catheter shaft 219 proximal to both ends of the silicone tube 123 , were covered by the film tube 127 .
  • the ends of the film tube 127 were trimmed so that the distal end of the film tube 127 was located 7.5 mm distal from the distal end of the underlying silicone tubing 123 , and the proximal end was located 7.5 mm proximal from the proximal end of the underlying silicone tubing 123 .
  • the exterior surface of film tube 127 was then helically wrapped by hand with a length of 1.9 cm wide porous PTFE film, made as described above, so that about 2 overlapping layers of film covered its length. This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step. This distal portion of the catheter assembly 200 was then placed into a steam bath for a period of time between 15 and 30 minutes.
  • the catheter assembly 200 was then removed from the steam bath, and the outer helically-wrapped film layers were removed.
  • lengths of porous PTFE film as described above, approximately 1.0 cm wide were manually wrapped over the ends of the film tube 127 approximately 15 mm proximal from the distal edge of the film tube 127 , and approximately 15 mm distal from the proximal edge of the film tube 127 . These regions were covered by approximately 3 overlapping film layers, shown schematically as layers 129 .
  • a length of porous PTFE film (shown schematically as layer 221 ) was wrapped helically along the length of the catheter shaft 219 from the proximal edge of the silicone tube 123 to the Luer fitting at the proximal end of the catheter shaft 219 so that about 2 overlapping layers of film covered the catheter shaft 219 , and then another 2 layers of the same film were helically wrapped over the first 2 layers at the same pitch angle (about 70 degrees) with respect to the longitudinal axis, but in the opposite direction.
  • each length of porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A, manufactured by NuSil Silicone Technology (Carpinteria, Calif.), and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. Great care was taken to ensure that the porous PTFE film was applied without adding significantly to the catheter diameter. This was possible as a result of the thin character of the porous PTFE film.
  • the catheter assembly 200 was then placed into a steam bath for a minimum of 8 hours to achieve curing.
  • the distal-most portion of the catheter shaft 219 was cut off transversely at the distal-most edge 131 of the porous PTFE film 129 on the exterior of the film tube 127 , and the open inflation lumen 107 was sealed by insertion of a 1 cm long section of 0.38 mm wire 225 which was dipped into a mixture of equal parts of MED1137 Adhesive Silicone Type A, manufactured by NuSil Silicone Technology (Carpinteria, Calif.), and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight.
  • the catheter assembly 200 was then placed into a steam bath for a minimum of 8 hours to achieve final curing.
  • the diameter of balloon portion 133 was measured in a pre-inflated state.
  • the minimum diameter was found to be 2.13 mm and the maximum diameter 2.28 mm.
  • these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis.
  • the balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 11B ) for a period of 1 minute or less, had a minimum diameter of 6.00 mm and a maximum diameter of 6.11 mm at the center of its length.
  • the balloon at its mid-length had a minimum diameter of 2.16 mm and a maximum diameter of 2.64 mm.
  • This silicone-PTFE composite balloon when tested using a hand-held inflation device had a burst pressure of approximately 21 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.54 mm prior to failure.
  • the balloon failed by developing a leak in the silicone tubing component 123 of the balloon portion 133 .
  • the leak caused separation between the film tube 127 and the silicone tubing 123 , allowing fluid to pass through the film tube 127 .
  • Another balloon was constructed in an identical manner as described above, except that the length of the silicone catheter shaft 219 from the proximal edge of the silicone tube 123 to the Luer fitting at the proximal end of the shaft 219 was not covered by porous PTFE film 221 .
  • the minimum diameter was found to be 2.14 mm and the maximum diameter 2.21 mm. These measurements were made as described above.
  • the balloon when inflated to 8 atmospheres internal water pressure for a period of 1 minute or less, had a minimum diameter of 5.98 mm and a maximum diameter of 6.03 mm at the center of its length.
  • the balloon at its mid-length had a minimum diameter of 2.10 mm and a maximum diameter of 2.45 mm.
  • This silicone-PTFE composite balloon when tested using a hand-held inflation device had a burst pressure of approximately 15 atmospheres, reaching a maximum dimension of about 6.72 mm prior to failure. The failure mode of the balloon was shaft rupture.
  • This example describes an alternative method of creating a silicone-PTFE laminated balloon portion, and the use of the balloon portion as an angioplasty balloon.
  • a catheter shaft was constructed in the same manner as described in Example 7.
  • a film tube was created as follows. A length of porous PTFE film, cut to a width of 2.5 cm, made as described above, was wrapped onto the bare surface of an 8 mm stainless steel mandrel at an angle of approximately 70° with respect to the longitudinal axis of the mandrel so that about 5 overlapping layers of film covered the mandrel (i.e., any transverse cross section of the film tube transects about five layers of film). Following this, another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction.
  • the second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers.
  • additional layers of film were applied five layers at a time with each successive group of five layers applied in an opposing direction to the previous group until a total of about 30 layers of helically wrapped film covered the mandrel.
  • This film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 11.5 minutes to heat bond the layers of film, then removed from the oven and allowed to cool. Once cool, the resulting film tube was removed from the 8 mm mandrel.
  • the 8 mm inside diameter film tube was then manually tensioned longitudinally, causing it to reduce in diameter.
  • the film tube was then knotted at one end, and a blunt needle was inserted into the other.
  • a 20 cc syringe connected to the blunt needle, a mixture of 1 part MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 4 parts n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight was injected into the film tube.
  • the mixture while in the lumen of the film tube was pressurized manually via the syringe, causing it to flow through the porous PTFE, completely wetting and saturating the film tube.
  • the 1.14 mm mandrel and the overlying silicone tubing were coated with a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight.
  • the blunt needle was removed from the PTFE film tube.
  • the 1.14 mm mandrel and overlying silicone tubing were then fitted coaxially within the film tube with the ends of the film tube extending beyond the mandrel ends.
  • the ends of the film tube were then placed into a model 4201 Tensile Testing Machine manufactured by Instron (Canton, Mass.) equipped with flat faced jaws and pulled at a constant rate of 200 mm/min until a force between 4.8 and 4.9 kg was achieved.
  • the film tube was massaged, ensuring contact between the PTFE and the silicone tubing. Small needle holes were made into the film tube so that the resident silicone-heptane mixture could escape.
  • the film tube was left within the jaws of the machine for a minimum of 24 hours, allowing the silicone to cure completely. Once the silicone was completely cured, the resulting silicone-PTFE composite tubing was carefully removed from the 1.14 mm mandrel.
  • the balloon has also been constructed using only the porous PTFE film tube made as described for example 7 and impregnated with the elastomeric material (i.e., the balloon was constructed without the silicone tubing substrate).
  • the use of a silicone elastomer dispersion in Xylene is preferred as the elastomeric material intended to substantially seal the void spaces in the porous PTFE tube (i.e., wherein a substantial portion of the elastomeric material is located within the void spaces within the porous PTFE tube).
  • the balloon so constructed was joined to the catheter shaft in the same manner described as follows.
  • the resulting balloon had a particularly thin wall having excellent compaction efficiency ratio and compaction ratio; a balloon catheter incorporating this balloon is anticipated to be particularly useful as a neural balloon dilatation catheter.
  • a segment of the silicone-PTFE composite tubing 223 (comprising the inner substrate of the elastomeric material (silicone tubing) joined to the outer substrate of the porous PTFE film tube in laminated relationship) approximately 9 cm in length was placed over the distal end of the catheter shaft 101 such that such that the proximal edge of the composite tubing 223 was approximately 7 mm distal from the point at which the catheter shaft 101 outer diameter changed from 1.83 mm to 2.3 mm. This was done very carefully to ensure that no section of the composite tubing 223 was longitudinally stretched (i.e., under tension) when at its final position on the catheter shaft 101 . Isopropyl alcohol was used as a lubricant between the catheter shaft 101 and the composite tubing 223 .
  • any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the catheter shaft 101 was completely dry.
  • a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane J. T.
  • a thin thread was temporarily wrapped around composite tubing adjacent to the edge of porous PTFE film layer 125 closest to balloon portion 133 .
  • lengths of porous PTFE film as described above approximately 1.0 cm wide were helically wrapped by hand over the composite tube over the areas in which the silicone mixture was applied. This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step. The silicone mixture was then allowed to cure within a steam bath for approximately 30 minutes. The catheter was then removed from the steam bath, and the 1.0 cm wide PTFE film was removed along with the temporary thread.
  • a length of porous PTFE film as described above, approximately 1.0 cm wide was manually wrapped over the end regions of the composite tubing 223 under which the silicone mixture was present, and onto the adjacent portions of the catheter shaft 101 not covered by the composite tube 223 , for a length of approximately 7.5 mm measured from the ends of the composite tubing 223 .
  • the entire length of the porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight.
  • the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIG. 12 ) covered each of the regions without adding significantly to the diameter of the catheter. Because of the reduced diameter region at the distal end of dual lumen tubing 103 and the very thin character of the porous PTFE film used for layers 125 , the diameter of the catheter assembly 100 at the location of film layers 125 was very close to the diameter of catheter shaft 101 proximal to film layers 125 . Finally, the silicone mixture used to coat the porous PTFE film was allowed to cure for a minimum of 8 hours within a steam bath.
  • the diameters of the balloon portion 133 were measured in a pre-inflated state using the same methods described above.
  • the minimum diameter was found to be 2.21 mm and the maximum diameter 2.47 mm.
  • the balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 12B ) for a period of 1 minute or less, had a minimum diameter of 6.51 mm and a maximum diameter of 6.65 mm at the center. It was noted during the 8 atmosphere pressurization that the balloon portion was substantially straight with respect to the longitudinal axis of the catheter shaft, and that the distance from the point at which the balloon portion was attached to the catheter shaft to the point on the balloon portion at which the balloon was at its full diameter was relatively short.
  • the balloon at its mid-length When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length, had a minimum diameter of 2.28 mm and a maximum diameter of 2.58 mm.
  • This silicone-PTFE composite balloon when tested using a hand-held inflation device, had a burst pressure of approximately 15 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.06 mm prior to failure.
  • This example illustrates that the balloon, constructed as described above using a silicone-PTFE composite balloon portion, exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component.
  • the compaction ratio as previously defined was 2.47 divided by 2.58, or 0.96, and the compaction efficiency ratio as previously defined was 2.28 divided by 2.58, or 0.88.
  • the ability of the balloon to inflate to the described pressures without water leakage demonstrated effectively that the void spaces of the porous PTFE had been substantially sealed by the elastomeric material.
  • FIG. 12C A flow chart describing the process used to create the balloon catheter described by this example is presented as FIG. 12C ; it will be apparent that variations on this process may be used to create the same or similar balloon catheters.

Abstract

Balloon catheters having the strength and maximum inflated diameter characteristics of an angioplasty balloon and having the recovery characteristics during deflation of an elastic embolectomy balloon. The balloon catheter can be made in very small sizes and has a lubricious and chemically inert outer surface. The balloon catheter is easy to navigate through tortuous passageways, is capable of rapid inflation and deflation and has high burst strengths. Balloon covers having these same characteristics are also described for use with conventional embolectomy balloons or angioplasty balloons.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 08/858,309 filed May 19, 1997 which is a continuation-in-part of application Ser. No. 08/673,635 filed Jun. 26, 1996 which is a continuation-in-part of application Ser. No. 08/532,905 filed Sep. 18, 1995.
  • FIELD OF THE INVENTION
  • The present invention relates to catheter balloons used in a variety of surgical procedures and to balloon covers for use with catheter balloons.
  • BACKGROUND OF THE INVENTION
  • Balloon catheters of various forms are commonly employed in a number of surgical procedures. These devices comprise a thin catheter tube that can be guided through a body conduit of a patient such as a blood vessel and a distensible balloon located at the distal end of the catheter tube. Actuation of the balloon is accomplished through use of a fluid filled syringe or similar device that can inflate the balloon by filling it with fluid (e.g., water or saline solution) to a desired degree of expansion and then deflate the balloon by withdrawing the fluid back into the syringe.
  • In use, a physician will guide the balloon catheter into a desired position and then expand the balloon to accomplish the desired result (e.g., clear a blockage, or install or actuate some other device). Once the procedure is accomplished, the balloon is then deflated and withdrawn from the blood vessel.
  • There are two main forms of balloon catheter devices. Angioplasty catheters employ a balloon made of relatively strong but generally inelastic material (e.g., polyester) folded into a compact, small diameter cross section. These relatively stiff catheters are used to compact hard deposits in vessels. Due to the need for strength and stiffness, these devices are rated to high pressures, usually up to about 8 to 12 atmospheres depending on rated diameter. They tend to be self-limiting as to diameter in that they will normally distend up to the rated diameter and not distend appreciably beyond this diameter until rupture due to over-pressurization. While the inelastic material of the balloon is generally effective in compacting deposits, it tends to collapse unevenly upon deflation, leaving a flattened, wrinkled bag, substantially larger in cross section than the balloon was when it was originally installed. Because of their tendency to assume a flattened cross section upon inflation and subsequent deflation, their deflated maximum width tends to approximate a dimension corresponding to one-half of the rated diameter times pi. This enlarged, wrinkled bag may be difficult to remove, especially from small vessels. Further, because these balloons are made from inelastic materials, their time to complete deflation is inherently slower than elastic balloons.
  • By contrast, embolectomy catheters employ a soft, very elastic material (e.g., natural rubber latex) as the balloon. These catheters are employed to remove soft deposits, such as thrombus, where a soft and tacky material such as latex provides an effective extraction means. Latex and other highly elastic materials generally will expand continuously upon increased internal pressure until the material bursts. As a result, these catheters are generally rated by volume (e.g., 0.3 cc) in order to properly distend to a desired size. Although relatively weak, these catheters do have the advantage that they tend to readily return to their initial size and dimensions following inflation and subsequent deflation.
  • Some catheter balloons constructed of both elastomeric and non-elastomeric materials have been described previously. U.S. Pat. No. 4,706,670 describes a balloon dilatation catheter constructed of a shaft made of an elastomeric tube and reinforced with longitudinally inelastic filaments. This device incorporates a movable portion of the shaft to enable the offset of the reduction in length of the balloon portion as the balloon is inflated. The construction facilitates the inflation and deflation of the balloon.
  • While balloon catheters are widely employed, currently available devices experience a number of shortcomings. First, as has been noted, the strongest materials for balloon construction tend to be relatively inelastic. The flattening of catheter balloons made from inelastic materials that occurs upon inflation and subsequent deflation makes extraction and navigation of a deflated catheter somewhat difficult. Contrastly, highly elastic materials tend to have excellent recovery upon deflation, but are not particularly strong when inflated nor are they self-limiting to a maximum rated diameter regardless of increasing pressure. This severely limits the amount of pressure that can be applied with these devices. It is also somewhat difficult to control the inflated diameter of these devices.
  • Second, in instances where the catheter is used to deliver some other device into the conduit, it is particularly important that a smooth separation of the device and the catheter balloon occur without interfering with the placement of the device. Neither of the two catheter devices described above is ideal in these instances. A balloon that does not completely compact to its original size is prone to snag the device causing placement problems or even damage to the conduit or balloon. Similarly, the use of a balloon that is constructed of tacky material will likewise cause snagging problems and possible displacement of the device. Latex balloons are generally not used for device placement in that they are considered to have inadequate strength for such use. Accordingly, it is a primary purpose of the present invention to create a catheter balloon that is small and slippery for initial installation, strong for deployment, and returns to its compact size and dimensions for ease in removal and further navigation following deflation. It is also believed desirable to provide a catheter balloon that will remain close to its original compact pre-inflation size even after repeated cycles of inflation and deflation. Other primary purposes of the present invention are to strengthen elastic balloons, to provide them with distension limits and provide them with a lubricious outer surface. The term “deflation” herein is used to describe a condition subsequent to inflation. “Pre-inflation” is used to describe the condition prior to initial inflation.
  • SUMMARY OF THE INVENTION
  • The present invention is an improved balloon catheter device for use in a variety of surgical procedures. The balloon catheter device of the present invention comprises a catheter tube having a continuous lumen connected to an inflatable and deflatable balloon at one end of the catheter tube. The catheter tube may have additional lumens provided for other purposes. The balloon can have a burst strength equal to or greater than that of conventional PTA catheter balloons. The balloon also has a maximum inflation diameter in a similar fashion to conventional PTA catheter balloons. The inventive balloon offers the recovery characteristics of a latex balloon that when deflated is of about the same maximum diameter as it was prior to inflation. This allows the inventive balloon to be withdrawn following deflation more easily than conventional PTA balloons which assume a flattened, irregular cross section following deflation and so have a deflated maximum diameter much larger than the pre-inflation maximum diameter. The balloon also has a smooth and lubricious surface which also aids in insertion and withdrawal. The inventive balloon possesses all of the above attributes even when made in small sizes heretofore commercially unavailable in balloon catheters without a movable portion of the catheter shaft or some other form of mechanical assist. The present invention eliminates the need for a movable portion of the shaft and associated apparatuses to aid in balloon deflation.
  • The present invention is made from polytetrafluoroethylene (hereinafter PTFE) materials and elastomeric materials. The PTFE is preferably porous PTFE made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390, both of which are incorporated by reference herein. An additional optional construction step, longitudinally compressing a porous PTFE tube prior to addition of the elastomeric component, allows the balloon or balloon cover to sufficiently change in length to enable the construction of higher pressure balloons, again without the need for mechanical assist. Particularly small sizes (useful in applications involving small tortuous paths such as is present in brain, kidney, and liver procedures) can be achieved by decreasing the wall thickness of the balloon via impregnation of a porous PTFE tube with silicone adhesive, silicone elastomer, silicone dispersion, polyurethane or another suitable elastomeric material instead of using a separate elastomeric member. Impregnation involves at least partially filling the pores of the porous PTFE. The pores (void spaces) are considered to be the space or volume within the bulk volume of the porous PTFE material (i.e., within the overall length, width and thickness of the of the porous PTFE material) not occupied by PTFE material. The void spaces of the porous PTFE material from which the balloon is at least partially constructed may be substantially sealed in order that the balloon is liquid-tight at useful pressures by either the use of a separate tubular elastomeric substrate in laminated relationship with the porous PTFE, or by impregnation of the void spaces of the porous PTFE with elastomeric material, or by both methods. U.S. Pat. No. 5,519,172 teaches in detail the impregnation of porous PTFE with elastomers. In that this patent relates primarily to the construction of a jacket material for the protection of electrical conductors, the suitability of each of the various described materials for in vivo use as catheter balloon materials must be considered.
  • The balloon may be made from the materials described herein as a complete, stand-alone balloon or alternatively may be made as a cover for either conventional polyester PTA balloons or for latex embolectomy balloons. The use of the balloon cover of the present invention provides the covered balloon, regardless of type, with the best features of conventional PTA balloons and renders viable the use of elastic balloons for PTA procedures. That is to say, the covered balloon will have high burst strength, a predetermined maximum diameter, the ability to recover to substantially its pre-inflation size following deflation, and a lubricious exterior surface (unless it is desired to construct the balloon such that the elastomeric material is present on the outer surface of the balloon). The balloon cover substantially reduces the risk of rupture of an elastic balloon. Further, if rupture of the underlying balloon should occur, the presence of the balloon cover may serve to contain the fragments of the ruptured balloon. Still further, the inventive balloon and balloon cover can increase the rate of deflation of PTA balloons thereby reducing the time that the inflated balloon occludes the conduit in which it resides.
  • The present invention also enables the distension of a vessel and side branch or even a prosthesis within a vessel and its side branch without exerting significant force on the vessel or its branch. Further, it has been shown to be useful for flaring the ends of prostheses, thereby avoiding unwanted constrictions at the ends of the prostheses. Prostheses can slip along the length of prior art balloons during distension; the present invention not only reduces such slippage, it also can be used to create a larger diameter at the end of the graft than prior art materials.
  • The inventive balloon and balloon cover also maintain a substantially circular cross section during inflation and deflation in the absence of external constraint. Plus, the balloon and balloon cover can be designed to inflate at lower pressure in one portion of the length than another. This can be accomplished, for example, by altering the thickness of the elastomer content along the length of the balloon in order to increase the resistance to distension along the length of the balloon. Alternatively, the substrate tube may be constructed with varying wall thickness or varying amounts of helically-applied film may be applied along the tube length in order to achieve a similar effect.
  • The balloon catheter according to the present invention has opposing ends affixed to the catheter by opposing securing means. The balloon has a length measured between the opposing ends wherein the length preferably varies less than about ten percent, and more preferably less than about five percent, between when the balloon is in a deflated state and when the balloon is inflated to a pressure of eight atmospheres.
  • Balloons of the present invention can also be constructed to elute fluids at pressures exceeding the balloon inflation pressure. Such balloons could have utility in delivering drugs inside a vessel.
  • A catheter balloon of the present invention is anticipated to be particularly useful for various surgical vascular procedures, including graft delivery, graft distension, stent delivery, stent distension, and angioplasty. It may have additional utility for various other surgical procedures such as, for example, supporting skeletal muscle left ventricular assist devices during the healing and muscle conditioning period and as an intra-aortic balloon.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A, 1B and 1C are perspective views describing manufacture of the tubular component forming the balloon or balloon cover of the present invention.
  • FIG. 2 is a perspective view describing the tubular component as it appears when inflated.
  • FIGS. 3A and 3B describe longitudinal cross sectional views of a balloon cover of the present invention without elastomer.
  • FIGS. 4A and 4B describe longitudinal cross sectional views of a balloon cover of the present invention incorporating a layer of elastomer.
  • FIGS. 5A and 5B describe longitudinal cross sectional views of a catheter balloon of the present invention having the same material construction as the balloon cover of FIGS. 4A and 4B.
  • FIGS. 6A, 6B and 6C describe longitudinal cross sectional views of a catheter balloon of the type described by FIGS. 5A and 5B using a non-elastomeric material in place of the layer of elastomer.
  • FIG. 7 describes a transverse cross section taken at the center of the length of a flattened, deflated angioplasty balloon which describes how the compaction efficiency ratio of the deflated balloon is determined.
  • FIG. 8 describes a longitudinal cross section of a balloon affixed to the shaft of a dual lumen catheter, the balloon having a first PTFE material oriented substantially parallel to the longitudinal axis of the balloon and a second PTFE material oriented substantially circumferential to the longitudinal axis, wherein the PTFE materials is impregnated with an elastomer.
  • FIG. 8A describes a longitudinal cross section of an alternative embodiment to that of FIG. 8 wherein the balloon during inflation exhibits a larger diameter at a first portion of its length than at a second portion of its length.
  • FIGS. 9 and 9A describe cross sections of the proximal end of a balloon catheter of the present invention.
  • FIGS. 10A-10F describe the construction of an alternative embodiment of a balloon catheter of the present invention wherein the balloon has separate substrate layers of an elastomeric material and a porous PTFE material in laminated relationship and wherein each end of each substrate material is separately affixed to a catheter shaft by separate wrappings of porous PTFE film.
  • FIGS. 11A, 11B and 11C describe the construction of an alternative embodiment of a balloon catheter of the present invention similar to that of FIGS. 10A-10F wherein a catheter shaft is used which comprises a tubular elastomeric material provided with a reinforcing wrapping of porous PTFE film.
  • FIGS. 12A, 12B and 12C describe the construction of an alternative embodiment of a balloon catheter of the present invention wherein a laminated tube of separate substrates of an elastomeric material and helically wrapped porous PTFE film are affixed to a catheter shaft by a wrapping of porous PTFE film at each end of the laminated tube.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The catheter balloon and catheter balloon cover of the present invention are preferably made from porous PTFE films having a microstructure of interconnected fibrils. These films are made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390. The balloon and balloon cover may also incorporate a porous PTFE substrate tube in the form, for example, of an extruded and expanded tube or a tube constructed of film containing at least one seam. Also, the balloon may be impregnated with an elastomeric material.
  • To form the balloon or balloon cover, both of which are made in the shape of a tube, a thin, porous PTFE film of the type described above is slit into relatively narrow lengths. The slit film is helically wrapped onto the surface of a mandrel in two opposing directions, thereby forming a tube of at least two layers. FIGS. 1A, 1B and 1C describe this procedure. FIG. 1A shows the first layer 14 of porous PTFE film helically wrapped over the mandrel 12 with the traverse direction of the wrap applied in a first direction 20 parallel to the longitudinal axis 18. The longitudinal axis of a balloon is defined as coincident with the longitudinal axis of the balloon catheter shaft, that is along the length of the shaft. Substantially parallel is defined as between about 0° and 45°, or between about 135° and 180°, with respect to the longitudinal axis of the catheter shaft and substantially circumferential is defined as between about 45° and 135° with respect to the longitudinal axis of the catheter shaft. FIG. 1B describes the application of the second layer of porous PTFE film 16 helically wrapped over the top of the first layer 14, wherein second layer 16 is wrapped in a second traverse direction 22 parallel to longitudinal axis 18 and opposite to the first traverse direction 20.
  • Preferably both layers 14 and 16 are wrapped with the same pitch angle measured with respect to the longitudinal axis but measured in opposite directions. If, for example, film layers 14 and 16 are applied at pitch angles of 70° measured from opposite directions with respect to longitudinal axis 18, then included angle A between both 70° pitch angles is 40°.
  • More than two layers of helically wrapped film may be applied. Alternate layers of film should be wrapped from opposing directions and an even number of film layers should be used whereby an equal number of layers are applied in each direction.
  • Following completion of film wrapping, the helically wrapped mandrel is placed into an oven for suitable time and temperature to cause adjacent layers to heat-bond together. After removal from the oven and subsequent cooling, the resulting film tube may be removed from the mandrel. The film tube is next placed over the balloon, tensioned longitudinally and affixed in place over the balloon.
  • During use, the inflated balloon or balloon cover 10 of the present invention has an increased diameter which results in included angle A being substantially reduced as shown by FIG. 2. The balloon or balloon cover thus reaches its pre-determined diametrical limit as included angle A approaches zero.
  • The inventive balloon or balloon cover 10 is reduced in diameter following deflation by one of two ways. First, tension may be applied to the balloon or balloon cover parallel to longitudinal axis 18 to cause it to reduce in diameter following deflation to the form described by FIG. 1C. The application of tension is necessary if low profile is desired. Alternatively, a layer of elastomer, applied to the luminal surface of the balloon 10 and allowed to cure prior to use of the balloon, will cause the balloon to retract to substantially its pre-inflation size shown by FIG. 1C following deflation. The elastomer may take the form of a coating of elastomer applied directly to the luminal surface of the balloon or balloon cover 10, or an elastomeric balloon such as a latex balloon or a silicone tube may be adhered to the luminal surface of the inventive balloon 10 by the use of an elastomeric adhesive. Alternatively, elastomer can be impregnated into the porous material to create a balloon or balloon cover.
  • FIG. 3A describes a cross sectional view of a balloon cover 10 of the present invention in use with a conventional balloon catheter of either the angioplasty or embolectomy type. The figure describes a balloon cover without an elastomeric luminal coating. The balloon cover 10 is closed at distal end 26 of the balloon catheter 11. Balloon cover 10 extends in length part of the way to the proximal end 27 of balloon catheter 11 whereby balloon cover 10 completely covers catheter balloon 25 and at least a portion of the catheter 11. FIG. 3B describes the same balloon catheter 11 with catheter balloon 25 in an inflated state. Layers 14 and 16 of balloon cover 10 allow the cover to increase in diameter along with catheter balloon 25. During or following deflation of catheter balloon 25, tension is applied to the balloon cover 10 at the proximal end 27 of balloon catheter 11 as shown by arrows 28, thereby causing balloon cover 10 to reduce in diameter and substantially return to the state described by FIG. 3A. FIG. 4A describes a cross sectional view of a balloon cover 10 of the present invention wherein the balloon cover 10 has a liquid-tight layer of elastomer 34 applied to the inner surface of helically wrapped porous PTFE film layers 14 and 16. Balloon cover 10 is closed at distal end 26. The figure describes a ligated closure, such as by a thread or filament, however, other suitable closing means may be used. Proximal end 27 of balloon cover 10 is affixed to the distal end 32 of catheter 24. Balloon 25 may be of either the angioplasty or embolectomy type. If an elastomeric embolectomy balloon is used, it is preferred that the cover be adhered to the balloon by the use of an elastomeric adhesive to liquid-tight layer of elastomer 34. During inflation of balloon 25 as shown by FIG. 4B, helically wrapped porous PTFE film layers 14 and 16 and liquid-tight elastomer layer 34 increase in diameter along with balloon 25. During subsequent deflation, liquid-tight elastomer layer 34 causes helically wrapped porous PTFE film layers 14 and 16 to reduce in diameter as described previously, thereby returning substantially to the state described by FIG. 4A.
  • FIGS. 5A and 5B describe cross sectional views of a catheter balloon 10 made in the same fashion as the balloon cover described by FIGS. 4A and 4B. The presence of liquid-tight elastomer layer 34 allows this construction to function as an independent balloon 42 as described previously without requiring a conventional angioplasty or embolectomy balloon.
  • FIGS. 6A, 6B and 6C describe cross sectional views of an alternative embodiment of the catheter balloon 10 of the present invention. According to this embodiment helically wrapped porous PTFE film layers 14 and 16 are provided with a luminal coating 44 which is liquid-tight but is not elastomeric. The resulting balloon behaves in the fashion of a conventional angioplasty balloon but offers the advantages of a lubricious and chemically inert exterior surface. FIG. 6A describes the appearance of the balloon prior to inflation. FIG. 6B describes the balloon in an inflated state. As shown by FIG. 6C, following deflation, collapsed balloon 46 has a somewhat wrinkled appearance and an irregular transverse cross section in the same fashion as a conventional angioplasty balloon made from polyester or similar inelastic material.
  • It is also anticipated that the balloon and balloon cover of the present invention may be provided with an additional reinforcing mesh or braid on the exterior or interior surface of the balloon (or balloon cover), or more preferably between layers of the film whereby the mesh or braid is in the middle.
  • Alternatively, a mesh or braid of PTFE may be used as a balloon cover without including a continuous tube. A continuous tube does not include openings through its wall as does a conventional mesh or braid.
  • The following examples describe in detail the construction of various embodiments of the balloon cover and catheter balloon of the present invention. Evaluation of these balloons is also described in comparison to conventional angioplasty and embolectomy balloons. FIG. 7 is provided as a description of the maximum dimension 72 and minimum dimension 74 (taken transversely to the longitudinal axis of the balloon) of a flattened, deflated angioplasty balloon 70 wherein the figure describes a transverse cross section of a typical flattened angioplasty balloon. The transverse cross section shown is meant to describe a typical deflated, flattened inelastic angioplasty balloon 70 having a somewhat irregular shape. Balloon 70 includes a catheter tube 76 having a guidewire lumen 78 and a balloon inflation lumen 79 and two opposing sides 82 and 84 of balloon 70. Maximum dimension 72 may be considered to be the maximum width of the flattened balloon 70 while minimum dimension 74 may be considered to be the maximum thickness across the two opposing sides 82 and 84 of the flattened balloon 70. All balloon and catheter measurements are expressed in terms of dimensions even if the shape is substantially circular.
  • EXAMPLE 1
  • This example illustrates the use of a balloon cover of the present invention over a commercially available angioplasty balloon. The balloon cover provides a means of returning the angioplasty balloon close to its original compact geometry after inflation and subsequent deflation, as well as providing the known chemical inertness and low coefficient of friction afforded by PTFE.
  • The balloon used was a MATCH 35® Percutaneous Transluminal Angioplasty (PTA) Catheter model number B508-412, manufactured by SCHNEIDER (Minneapolis, Minn.). This balloon when measured immediately after being removed from the protective sheath provided by the manufacturer had a minimum dimension of 2.04 mm and a maximum dimension of 2.42 mm. These measurements were taken from approximately the center of the balloon, as defined by the midpoint between the circumferentially-oriented radiopaque marker bands located at both ends of the balloon. A Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis. The shaft onto which the balloon was attached had a minimum dimension of 1.74 mm and a maximum dimension of 1.77 mm measured adjacent to the point of balloon attachment closest to the center of the length of the shaft. The balloon, when inflated to 8 atmospheres internal water pressure, had a minimum dimension of 8.23 mm and a maximum dimension of 8.25 mm at the center of the length of the balloon. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length, had a minimum dimension of 1.75 mm, and a maximum dimension of 11.52 mm as measured using Mitutoyo digital caliper model CD-6″P. Upon completion of the measurements the balloon portion of the PTA catheter was carefully repackaged into the protective sheath.
  • The inventive balloon cover was made from a length of porous PTFE film made as described above cut to a width of 2.5 cm. The film thickness was approximately 0.02 mm, the density was 0.2 g/cc, and the fibril length was approximately 70 microns. Thickness was measured using a Mitutoyo snap gauge model 2804-10 and density was calculated based on sample dimensions and mass. Fibril length of the porous PTFE films used to construct the examples was estimated from scanning electron photomicrographs of an exterior surface of film samples.
  • This film was helically wrapped onto the bare surface of an 8 mm diameter stainless steel mandrel at an angle of approximately 70° with respect to the longitudinal axis of the mandrel so that about 5 overlapping layers of film cover the mandrel. Following this, another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction. The second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers. Following this, another 5 layers of the same film were helically wrapped over the first and second 5 layers at the same bias angle with respect to the longitudinal axis as the first 5 layers, and then another 5 layers of the same film were helically wrapped over the first, second, and third 5 layers at the same bias angle with respect to the longitudinal axis as the second 5 layers. This resulted in a total of about 20 layers of helically wrapped film covering the mandrel.
  • The film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 10 minutes to heat bond the layers of film, then removed and allowed to cool. The resulting 8 mm inside diameter film tube formed from the helically wrapped layers was then removed from the mandrel and one end was ligated onto a self-sealing injection site (Injection Site with Luer Lock manufactured by Baxter Healthcare Corporation, Deerfield, Ill.). A hole was created through the injection site, and the balloon end of the previously measured PTA catheter was passed through this hole, coaxially fitting the film tube over the balloon portion as well as a portion of the shaft of the PTA catheter. The film tube was approximately 25 cm in length. With the film tube over the PTA catheter and attached to the injection site, tension was applied manually to the free end of the film tube while the injection site was held fixed, causing the film tube to reduce in diameter and fit snugly onto the underlying segment of PTA catheter. Next, the film tube was ligated at the distal end of the PTA catheter shaft so that the balloon cover remained taut and snugly fit.
  • At this point the now covered balloon was measured in a deflated state. The minimum dimension was found to be 2.33 mm and the maximum dimension 2.63 mm. As before, these measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements. The balloon, when inflated to 8 atmospheres internal water pressure had a minimum dimension of 7.93 mm and a maximum dimension of 8.06 mm at the center of the balloon. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length, had a minimum dimension of 1.92 mm and a maximum dimension of 11.17 mm. Next, tension was manually applied to the injection site causing the balloon cover to reduce the size of the underlying balloon, particularly along the plane of the 11.17 mm measurement taken previously. After the application of tension the covered balloon was measured again, and the minimum and maximum dimensions were found as 3.43 and 3.87 mm respectively.
  • This example shows that the balloon cover can be used effectively to compact a PTA balloon which was inflated and subsequently deflated to approximately the geometry of the balloon in an unused state. The measurements taken on the balloon (in both the uncovered and covered states) after inflation and subsequent deflation show that rather than undergoing a uniform circular compaction, the balloon tended to flatten. This flattening can be quantified by calculating the ratio of the minimum dimension to the maximum dimension measured after inflation and subsequent deflation. This ratio is defined as the compaction efficiency ratio. Note that a circular cross section yields a compaction efficiency ratio of unity. For this example, the uncovered balloon had a compaction efficiency ratio of 1.75 divided by 11.52, or 0.15. The balloon, after being provided with the inventive balloon cover, had a compaction efficiency ratio of 3.43 divided by 3.87, or 0.89. Additionally, the ratio of the maximum dimension prior to any inflation, to the maximum dimension after inflation and subsequent deflation, is defined as the compaction ratio. A balloon which has the same maximum dimension prior to any inflation, and after inflation and subsequent deflation, has a compaction ratio of unity. For this example, the uncovered balloon had a compaction ratio of 2.42 divided by 11.52, or 0.21. The balloon, after being provided with the inventive balloon cover, had a compaction ratio of 2.63 divided by 3.87, or 0.68.
  • EXAMPLE 2
  • This example illustrates the use of a balloon cover over a commercially available latex embolectomy balloon. The balloon cover provides a defined limit to the growth of the embolectomy balloon, a substantial increase in burst strength, and the known chemical inertness and low coefficient of friction afforded by PTFE.
  • The balloon used was a Fogarty® Thru-Lumen Embolectomy Catheter model 12TL0805F manufactured by Baxter Healthcare Corporation (Irvine, Calif.). This natural rubber latex balloon when measured immediately after being removed from the protective sheath provided by the manufacturer had a minimum dimension of 1.98 mm and a maximum dimension of 2.02 mm. These measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands. A Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis. The shaft onto which the balloon was attached had a minimum dimension of 1.64 mm and a maximum dimension of 1.68 mm measured adjacent to the point of balloon attachment closest to the center of the length of the shaft. The balloon, when filled with 0.8 cubic centimeters of water had a minimum dimension of 10.71 mm and a maximum dimension of 10.77 mm at the center of the balloon. When deflated by removing the entire volume of water introduced, the balloon at its mid-length, had a minimum dimension of 1.97 mm and a maximum dimension of 2.04 mm. The balloon when tested using a hand-held inflation syringe had a burst strength of 60 psi.
  • Another embolectomy catheter of the same type was covered using a porous PTFE film tube made as described in Example 1. The method used to cover the embolectomy catheter was the same as that used to cover the PTA catheter in Example 1.
  • At this point, the now covered balloon was measured in a pre-inflated state. The minimum dimension was found to be 2.20 mm and the maximum dimension 2.27 mm. As before, these measurements were taken from approximately the center of the balloon, as defined by the midpoint between the radiopaque marker bands, and a Lasermike model 183, manufactured by Lasermike (Dayton, Ohio) was used to make the measurements. The balloon, when filled with 0.8 cubic centimeters of water had a minimum dimension of 8.29 mm and a maximum dimension of 8.34 mm at mid-length. When deflated by removing the entire volume of water introduced, the balloon at its mid-length, had a minimum dimension of 3.15 mm and a maximum dimension of 3.91 mm. Next, tension was manually applied to the injection site causing the balloon cover to reduce in size. After the application of tension the covered balloon was measured again, and the minimum and maximum dimensions were found as 2.95 and 3.07 mm respectively. The covered balloon was determined to have a burst strength of 188 psi, failing solely due the burst of the underlying embolectomy balloon. The inventive balloon cover exhibited no indication of rupture.
  • This example shows that the inventive balloon cover effectively provides a limit to the growth, and a substantial increase in the burst strength of an embolectomy balloon. The measurements taken on the uncovered balloon show that when filled with 0.8 cubic centimeters of water the balloon reached a maximum dimension of 10.77 mm. Under the same test conditions, the covered balloon reached a maximum dimension of 8.34 mm. The burst strength of the uncovered balloon was 60 psi while the burst strength of the covered balloon was 188 psi when inflated until rupture using a hand-operated liquid-filled syringe. This represents more than a three fold increase in burst strength.
  • EXAMPLE 3
  • This example illustrates the use of a composite material in a balloon application. A balloon made from the composite material described below exhibits a predictable inflated diameter, high strength, exceptional compaction ratio and compaction efficiency ratio, as well as the known chemical inertness and low coefficient of friction afforded by PTFE.
  • A length of SILASTIC®Rx50 Silicone Tubing manufactured by Dow Corning Corporation (Midland, Mich.) having an inner diameter of 1.5 mm and an outer diameter of 2.0 mm was fitted coaxially over a 1.1 mm stainless steel mandrel and secured at both ends. The silicone tubing was coated with a thin layer of Translucent RTV 108 Silicone Rubber Adhesive Sealant manufactured by General Electric Company (Waterford, N.Y.). An 8 mm inner diameter film tube made in the same manner described in Example 1 was fitted coaxially over the stainless steel mandrel and the silicone tubing. Tension was manually applied to the ends of the film tube causing it to reduce in diameter and fit snugly onto the underlying segment of silicone tubing secured to the stainless steel mandrel. With the film tube in substantial contact with the silicone tubing, this composite tube was gently massaged to ensure that no voids were present between the silicone tube and the porous PTFE film tube. Next the entire silicone-PTFE composite tube was allowed to cure in an air convection oven set at 35° C. for a minimum of 12 hours. Once cured, the composite tube was removed from the stainless steel mandrel. One end of the composite tube was then fitted coaxially over a section of 5 Fr catheter shaft taken from a model B507-412 MATCH 35® Percutaneous Transluminal Angioplasty (PTA) Catheter, manufactured by SCHNEIDER (Minneapolis, Minn.) and clamped to the catheter shaft using a model 03.3 RER Ear Clamp manufactured by Oetiker (Livingston, N.J.) such that a watertight seal was present. The distal end of the balloon was closed using hemostats for expediency, however, a conventional ligature such as waxed thread may be used to provide a suitable closure. In this manner a balloon catheter was fashioned, utilizing the silicone-PTFE composite tube as the balloon material.
  • At this point, the balloon was measured in a pre-inflated state. The minimum dimension was found to be 2.31 mm and the maximum dimension 2.42 mm. As before, these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis. The balloon, when inflated to 8 atmospheres internal water pressure, had a minimum dimension of 7.64 mm and a maximum dimension of 7.76 mm at the center of the balloon. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length, had a minimum dimension of 2.39 mm and a maximum dimension of 2.57 mm. The silicone-PTFE composite balloon when tested using a hand-held inflation device had a burst strength of 150 psi, reaching a maximum dimension of about 7.9 mm prior to rupture.
  • This example illustrates that the balloon made from the silicone-PTFE composite tube exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst strength test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component. The compaction ratio as previously defined was 2.42 divided by 2.57, or 0.94, and the compaction efficiency ratio as previously defined was 2.39 divided by 2.57, or 0.93.
  • EXAMPLE 4
  • This example describes the construction of a PTA balloon made by helically wrapping a porous PTFE film having a non-porous FEP coating over a thin porous PTFE tube.
  • The FEP-coated porous expanded PTFE film was made by a process which comprises the steps of:
      • a) contacting a porous PTFE film with another layer which is preferably a film of FEP or alternatively of another thermoplastic polymer;
      • b) heating the composition obtained in step a) to a temperature above the melting point of the thermoplastic polymer;
      • c) stretching the heated composition of step b) while maintaining the temperature above the melting point of the thermoplastic polymer; and
      • d) cooling the product of step c).
  • In addition to FEP, other thermoplastic polymers including thermoplastic fluoropolymers may also be used to make this coated film. The adhesive coating on the porous expanded PTFE film may be either continuous (non-porous) or discontinuous (porous) depending primarily on the amount and rate of stretching, the temperature during stretching, and the thickness of the adhesive prior to stretching.
  • The FEP-coated porous PTFE film used to construct this example was a continuous (non-porous) film. The total thickness of the coated film was about 0.02 mm. The film was helically wrapped onto an 8 mm diameter stainless steel mandrel that had been coaxially covered with a porous expanded PTFE tube, made as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390. The porous PTFE tube was a 3 mm inside diameter tube having a wall thickness of about 0.10 mm and a fibril length of about 30 microns. Fibril length is measured as taught by U.S. Pat. No. 4,972,846. The 3 mm tube had been stretched to fit snugly over the 8 mm mandrel. The FEP-coated porous PTFE film was then wrapped over the outer surface of this porous PTFE tube in the same manner as described by Example 1, with the FEP-coated side of the film placed against the porous PTFE tube surface. The wrapped mandrel was placed into an air convection set at 380° C. for 2.5 minutes, removed and allowed to cool, at which time the resulting tube was removed from the mandrel. One end of this tube was fitted coaxially over the end of a 5 Fr catheter shaft taken from a model number B507-412 PTA catheter manufactured by Schneider (Minneapolis, Minn.), and clamped to the catheter shaft using a model 03.3 RER Ear Clamp manufactured by Oetiker (Livingston, N.J.) such that a watertight seal was present. The resulting balloon was packed into the protective sheath which was provided by Schneider as part of the packaged balloon catheter assembly. The balloon was then removed from the protective sheath by sliding the sheath proximally off of the balloon and over the catheter shaft. Prior to inflation, the minimum and maximum diameters of the balloon were determined to be 2.25 and 2.61 mm. The distal end of the balloon was then closed using hemostats for expediency, however, a conventional ligature such as waxed thread could have been used to provide a suitable closure. When inflated to a pressure of 6 atmospheres, the minimum and maximum diameters were 8.43 and 8.49 mm. After being deflated the minimum and maximum diameters were 1.19 and 12.27 mm. These diameters resulted in a compaction ratio of 0.21 and a compaction efficiency of 0.10.
  • EXAMPLE 5
  • This example describes a balloon constructed by impregnating silicone dispersion into a porous PTFE tube with helically applied porous PTFE film. A balloon made in this way exhibits a very small initial diameter, predictable inflated diameter, high strength, exceptional compaction ratio and compaction efficiency ratio, as well as the known chemical inertness and low coefficient of friction afforded by PTFE. The impregnation with silicone dispersion enables the construction of a thinner balloon. The use of a thin porous PTFE tube as a substrate provides longitudinal strength to resist elongation of the balloon at high pressures.
  • A longitudinally extruded and expanded porous PTFE substrate tube was obtained. The substrate tube was 1.5 mm inside diameter, having a wall thickness of about 0.17 mm and a fibril length of about 45 microns. The tube was fitted coaxially onto a 1.5 mm diameter stainless steel mandrel. Next, a length of porous expanded PTFE film was obtained that had been cut to a width of 2.54 cm. This film had a thickness of about 0.02 mm, a density of about 0.2 g/cc, and a fibril length of about 70 microns. Thickness was measured using a Mitutoyo snap gauge model No. 2804-10. The film bulk density was calculated based on dimensions and mass of a film sample. Density of non-porous PTFE was considered to be 2.2 g/cc. Fibril length of the porous PTFE film used to construct the example was estimated from scanning electron photomicrographs of an exterior surface of samples of the film.
  • This film was helically wrapped directly onto the bare metal surface of a 7 mm diameter stainless steel mandrel at about 65° with respect to the longitudinal axis of the mandrel so that about two overlapping layers of film covered the mandrel. Both edges of the film were colored with black ink in order to measure the pitch angles of the film during the construction or use of the completed balloon. Following this, another approximately two layers of the same film were helically wrapped over the first two layers. The second two layers were applied at the same bias angle with respect to the longitudinal axis, but in the opposite direction. This procedure was repeated three times, providing approximately 16 total layers of film. The film-wrapped mandrel was then placed into a convection oven set at 380° C. for 10 minutes to heat-bond the adjacent layers of film, then removed and allowed to cool. The resulting 7 mm inside diameter film tube formed from the helically wrapped layers of films was then removed from the mandrel.
  • This 7 mm inside diameter porous PTFE film tube was then fitted coaxially over the 1.5 mm inside diameter PTFE substrate tube and mandrel. The film tube was then tensioned longitudinally to cause it to reduce in diameter to the extent that it fit snugly over the outer surface of the 1.5 mm tube. The ends of this reinforced tube were then secured to the mandrel in order to prevent longitudinal shrinkage during heating. The combined tube and mandrel assembly was placed into an air convention oven set at 380° C. for 190 seconds to heat bond the film tube to the outer surface of the substrate tube. The reinforced tube and mandrel assembly was then removed from the oven and allowed to cool.
  • Additional porous PTFE film was then helically applied to outer surface of the reinforced tube to inhibit wrinkling of the tube in the subsequent step. The tube was then compressed in the longitudinal direction to reduce the tube length to approximately 0.6 of the length just prior to this compression step. Care was taken to ensure a high degree of uniformity of compression along the length of the tube. Wire was used to temporarily affix the ends of the tube to the mandrel. The mandrel-loaded reinforced tube with the additional helically applied film covering was then placed into a convention oven set at 380° C. for 28 seconds, removed from the oven and allowed cool.
  • The additional outer film was removed from the reinforced tube, followed by removing the reinforced tube from the mandrel. The reinforced tube was then gently elongated by hand to a length of about 0.8 of the length just prior to the compression step.
  • The reinforced tube was then ready for impregnation with silicone dispersion (Medical Implant Grade Dimethyl Silicone Elastomer Dispersion in Xylene, Applied Silicone Corp., PN 40000, Ventura, Calif.). The silicone dispersion was first prepared by mixing 2.3 parts n-Heptane (J. T. Barker, lot #J07280) with one part silicone dispersion. Another mixture with n-Heptane was prepared by mixing 0.5 parts with 1 part silicone dispersion. Each mixture was loaded into an injection syringe.
  • The dispensing needle of each of the injection syringes was inserted inside one end of the reinforced tube. Wire was used to secure the tube around the needles. One of the dispensing needles was capped and the syringe containing the 2.3:1 silicone dispersion solution was connected to the other. The solution was dispensed inside the reinforced tube with about 6 psi pressure. Pressure was maintained for approximately one minute, until the outer surface of the tube started to become wetted with the solution, indicating that the dispersion entered the pores of the PTFE material. It was ensured that the silicone dispersion coated the inside of the PTFE tube. At this point, the syringe was removed, the cap was removed from the other needle, and the syringe containing the 0.5:1 silicone dispersion solution was connected to the previously-capped needle. This higher viscosity dispersion was then introduced into the tube with the syringe, displacing the lower viscocity dispersion through the needle at the other end, until the higher viscosity dispersion began to exit the tube through the needle. After ensuring that the tube was completely filled with dispersion, both needles were capped. Curing of the silicone dispersion was effected by heating the assembly in a convection oven set at 150° C. for a minimum of one hour. The solvent evaporated during the curing process, thereby recreating the lumen in the tube. The impregnated reinforced tube was removed from the oven and allowed to cool. Both ends of the tube were opened and the 0.5:1 silicone dispersion solution was injected in one end to again fill the lumen, the needle ends were then capped, then the dispersion was cured in the same manner as described above. At this point the balloon construction was complete.
  • The above-described process preserved PTFE as the outermost surface of the balloon. Alternatively, longer impregnation times or higher injection pressures during the initial impregnation could cause more thorough wetting of the PTFE structure with the silicone dispersion, thereby driving more dispersion to the outermost surface of the balloon.
  • The balloon was then ready for mounting on a 5 Fr catheter shaft obtained from a balloon dilatation catheter (Schneider Match 35 PTA Catheter, 6 mm dia., 4 cm length, model no. B506-412) This balloon was mounted on the 1.67 mm diameter catheter shaft as described by FIG. 8. Both ends of the balloon were mounted to the shaft. The catheter tip portion plus the balloon of the balloon dilatation catheter were cut off in the dual lumen portion of the shaft leaving only the catheter shaft 24. Guidewires serving as mandrels (not shown) were inserted into both lumens of the shaft. A 0.32 mm mandrel was inserted into the inflation lumen 87 and a 0.6 mm mandrel was inserted into the wire lumen 83. The portion 24A of the shaft 24 containing the inflation lumen 87 was shaved off longitudinally to a length approximately 1 cm longer than the length of the balloon to be placed on the shaft; therefore, this portion 24A of the shaft 24 then contained only the wire lumen 83 which possessed a semi-circular exterior transverse cross section. (The extra 1 cm length accommodates room for a tip portion of the catheter, without a balloon covering, in the final assembly.) With the mandrels still in place, portion 24B of the shaft 24 was inserted for about 30 seconds into a heated split die containing 1.5 mm diameter bore when the dies were placed together. The dies were heated to a temperature of 180° C. to form the semicircular cross sectional shape of the portion of the shaft into a round 1.5 mm cross section and to create a landing 91 in the area proximal to the distal end of the inflation lumen 87. Next, the balloon 10 (having circumferentially oriented film layers 14 and 16, and longitudinally oriented substrate tube 81) was slipped over the modified distal end of the shaft 24 such that the proximal end of the balloon 10 was approximately 0.5 cm from the end of the landing 91. This approximately 0.5 cm segment of the landing 91 adjacent to the abutment was primed for fifteen seconds (Loctite Prism™ Primer 770, Item #18397, Newington, Conn.) and then cyanoacrylate glue (Loctite 4014 Instant Adhesive, Part #18014, Rocky Hill, Conn.) was applied to that segment. The balloon 10 was moved proximally such that the proximal end of the balloon abutted against the end of the landing 91 and the glue was allowed to set. The distal end of the balloon 10 was attached in the same manner, while ensuring against wrinkling of the balloon during the attachment. At this point, a radiopaque marker could have been fitted at each end of the balloon. The last step in the mounting process involved securing the ends of the balloon with shrink tubing 93 (Advanced Polymers, Inc., Salem, N.H., polyester shrink tubing—clear, item #085100CST). Approximately 0.25 cm of the proximal end of the balloon and approximately 0.75 cm of the shaft adjacent to the end of the balloon were treated with the same primer and glue as described above. Approximately 1 cm length of shrink tubing 93 was placed over the treated regions of the shaft 24 and balloon 10. The same process was followed to both prepare the distal end the balloon and the adjacent modified shaft portion and to attach another approximately 1 cm length of shrink tubing 93. The entire assembly was then placed into a convection oven set at 150° C. for at least about 2 minutes in order to shrink the shrink tubing.
  • The pre-inflation balloon possessed 2.03 mm and 2.06 mm minimum and maximum dimensions, respectively. the balloon catheter was tested under pressure as described in Example 1. The inflated balloon possessed 5.29 mm and 5.36 mm minimum and maximum dimensions, respectively. The deflated balloon possessed 2.19 mm and 3.21 mm minimum and maximum dimensions, respectively. The resulting compaction efficiency and the compaction ratio were 0.68 and 0.64, respectively.
  • The pitch angles of the film were also measured pre-inflation, at inflation (8 atm), and at deflation, yielding values of about 20°, 50°, and 25°, respectively. The balloon was reinflated with 10 atm and the pitch angles of the film were measured for the inflation and deflation conditions. The angles were the same for both inflation pressures.
  • The balloon was subjected to even higher pressures to determine the pressure at failure. The balloon withstood 19.5 atm pressure prior to failure due to breakage of the shrink tubing at the distal end of the balloon. Another balloon catheter was made using a piece of the same balloon material, following the same procedures described in this example. This balloon catheter was used to distend a 3 mm GORE-TEX Vascular Graft (item no. V03050L, W. L. Gore and Associates, Inc., Flagstaff Ariz.) from which the outer reinforcing film had been removed. The graft was placed over the balloon such that the distal end of the graft was positioned approximately 1 cm from the distal end of the balloon. The balloon was inflated to 8 atm, the graft distended uniformly without moving in the longitudinal direction with respect to the balloon. Another piece of the same graft was tested in the same manner using a 6 mm diameter, 4 cm long Schneider Match 35 PTA Catheter (model no. B506-412). In this case, the graft slid along the length of the balloon proximally during the balloon inflation; the distal end of the graft was not distended.
  • EXAMPLE 6
  • A balloon catheter was made following all of the steps of Example 5 with one exception in order to provide a balloon that bends during inflation.
  • All of the same steps were followed as in Example 5 with the exception of eliminating the manual elongation step that immediately followed the longitudinal compression step. That is, at the point of being impregnated with silicone dispersion, the film-covered porous PTFE tube was 0.6 of its initial length (instead of 0.8 as in Example 5).
  • A balloon catheter was constructed using this balloon. The length of the balloon was 4.0 cm. The bend of the balloon was tested by inflating the balloon to 8 atm and measuring the bend angle created by inflation. Measurements were made via the balloon aligned coincident with the 0° scribe line of a protractor, with the middle of the balloon positioned at the origin. The bend angle was 50°. The balloon was then bent an additional 90° and allowed to relax. No kinking occurred even at 140°. The angle of the still inflated, relaxed balloon stabilized at 90°.
  • The balloon of an intact 6 mm diameter, 4 cm long Schneider Match 35 PTA Catheter (model no. B506-412) was tested in the same manner. The bend angle under 8 atm pressure was 0°. The inflated balloon was then bent to 90°, which created a kink. The inflated balloon was allowed to relax. The balloon bend angle stabilized at 25°. The bending characteristics of an article of the present invention should enable the dilatation of a vessel and a side branch of the same vessel simultaneously. The inventive balloon is easily bendable without kinking. Kinking is defined as wrinkling of the balloon material.
  • EXAMPLE 7
  • This example illustrates an alternative construction for a balloon catheter assembly of the present invention. The described construction relates to a balloon made from tubular substrates of helically-wrapped porous PTFE film and elastomeric tubing in laminar relationship wherein ends of the balloon are secured to a catheter shaft using wraps of porous PTFE film. The balloon does not require an additional layer of porous PTFE having fibrils oriented longitudinally with respect to the lengths of the balloon and catheter shaft.
  • As shown by the longitudinal cross section of FIG. 9, the proximal end of the balloon catheter assembly 100 was created using three segments of catheter tubing joined together at an injection molded Y-fitting. As described in this and subsequent examples, the distal end of the balloon catheter is considered to be the end to which is affixed the balloon and the end which is first inserted into the body of a patient; the proximal end is considered to be the end of the balloon catheter opposite the distal end. All tubing segments were Pebax 7233 tubing unless noted otherwise; all of the described tubing is available from Infinity Extrusions and Engineering, Santa Clara, Calif. unless noted otherwise. The primary component of catheter shaft 101 was a dual lumen segment of tubing 103 having an outside diameter of about 2.3 mm, a guidewire lumen 105 of about 1.07 mm inside diameter and a crescent-shaped inflation lumen 107 of about 0.5 mm height. A transverse cross section of this tubing is described by FIG. 9A. The guidewire lumen 105 of this main shaft 101 was joined at the Y-fitting 109 to one end of a 12 cm length of single lumen tubing 111 having an outside diameter of about 2.34 mm and an inside diameter of about 1.07 mm; the inflation lumen 107 of the main shaft 101 was joined to a 12 cm length of Pebax 4033 single lumen tubing 115. Joining was accomplished by placing a length of 1.0 mm outside diameter steel wire (not shown) into one end of the guidewire lumen 105 of the dual lumen tubing 103 and sliding one end of single lumen tube 111 onto the opposite end of the steel wire until the ends of dual lumen tube 103 and single lumen tube 111 abutted. A length of 0.48 mm diameter wire (also not shown) having a 30 degree bend at the midpoint of its length was inserted into the crescent-shaped inflation lumen 107 of the dual lumen tubing 103 up to the point of the bend in the wire; the lumen 117 of the second length of single lumen tubing 115 was fitted over the opposite end of this wire until it also reached the bend point of the wire, abutting the end of the dual lumen tubing 103 at that point. The presence of the wires in the region of the abutted tube ends thus maintained the continuity of both lumens at the point of abutment. The region of the abutted tubing ends was placed into the cavity of a mold designed to encapsulate the junction. Using a model IMP 6000 Injection Molding Press (Novel Biomedical Inc., Plymouth Minn.), heated Pebax 7033 was injected into the mold to form Y-fitting 109. After cooling, the resulting assembly was removed from the mold and the lengths of steel wire were withdrawn from the lumens of the tubing. Finally, a female Luer fitting (part no. 65250, Qosina Corp., Edgewood, N.Y.) was affixed to the remaining ends of each of the single lumen tubes 111 and 115 using Loctite 4014 Instant Adhesive (Loctite Corp., Newington Conn.).
  • The distal or balloon end of the catheter assembly 100 was then fabricated as follows, beginning according to the longitudinal cross section shown by FIG. 10A. A 1.00 mm diameter stainless steel wire (not shown) approximately 30 cm long was inserted approximately 15 cm into the distal end of the guidewire lumen 105 of the dual lumen tubing 103. A 13 cm length of single lumen tubing 119 having an inner diameter of 1.02 mm and an outer diameter of 1.58 mm was placed over the exposed wire protruding from the guidewire lumen 105 such that it abutted the end of the dual lumen tubing 103. A 0.49 mm stainless steel wire approximately 30 cm long was placed inside the distal end of the crescent-shaped inflation lumen 107 of the dual lumen tubing 103. The abutted ends of the two tubes 103 and 119 and the resident wires were placed into a PIRF® Thermoplastic Forming and Welding System (part numbers 3220, 3226, 3262 and 3263, Sebra® Engineering and Research Associates, Inc., Tucson Ariz.) and a butt connection between the single lumen tubing 119 and the dual lumen catheter shaft 103 was completed. The 0.49 mm stainless steel wire resident within the distal portion of the crescent-shaped inflation lumen 107 of the dual lumen catheter tubing 103 ensured that the distal end of lumen 107 would remain open during this operation. The heated die used in this step was specifically fabricated to accommodate the dimensions of the dual lumen catheter tubing 103 and the single lumen tubing 119. The heating and other parameters used in the operation were derived by trial and error to result in adequate reflow and butt welding of the abutted ends of the two tubes.
  • Next, with the 1.00 mm stainless steel wire still in place within the guidewire lumens 105 and 121 of abutted tubes 103 and 119, the 0.49 mm stainless steel wire resident within the distal portion of the inflation lumen 107 of the dual lumen catheter tubing 103 was replaced by a 0.39 mm stainless steel wire approximately 30 cm long (also not shown). Again the wire was placed about 15 cm into the inflation lumen 107. The assembly consisting of butt welded single lumen tube 119 and dual lumen tube 103, and the resident wire, was placed into the PIRF® Thermoplastic Forming and Welding System which was refitted with a different die. Upon heating, the assembly was advanced approximately 2.0 cm into the heated die of the system, causing a 2 cm length of the distal end of the outer diameter of the dual lumen catheter tubing 103 to decrease to the same dimension as the 1.83 mm inner diameter of the heated die. The longitudinal cross section of FIG. 10B describes the appearance of the assembly after heating wherein region “a” has the 1.58 mm outside diameter of single lumen tube 119, region “b” has been modified to the outside diameter of 1.83 mm and region “c” retains the original 2.3 mm outside diameter of dual lumen tubing 103. The 0.39 mm stainless steel wire resident within the inflation lumen 107 of the dual lumen catheter tubing 103 ensured that the lumen 107 would remain open during this operation. The heating and other parameters used in the operation were derived by trial and error to result in adequate reflow of the dual lumen tubing. Once this operation was completed, the entire outer surface of the full length of the single lumen tubing 119 (region “a,” distal from the butt-weld) was abraded with 220 abrasive paper to facilitate bonding of the ends of a silicone tube 123 as will be described.
  • With construction of the catheter shaft 101 completed, a segment of silicone tubing 123 approximately 9 cm in length, having an approximate inner diameter of 1.40 mm, an approximate outer diameter of 1.71 mm, and a durometer of Shore 60A (Beere Precision Silicone, Racine, Wis.) was placed over the distal end of the catheter shaft 101 as shown by the longitudinal cross section of FIG. 10C such that the proximal edge of the silicone tubing 123 was approximately 7.5 mm distal from the point at which the outer diameter of catheter shaft 101 changed from 1.83 mm to 2.3 mm. This was done very carefully to ensure that no section of the silicone tubing 123 was longitudinally stretched (i.e., under tension) when at its final position on the catheter shaft 101. Isopropyl alcohol was used as a lubricant between the catheter shaft 101 and the silicone tubing 123.
  • While the elastomeric tubing used for this example was silicone tubing, it is believed that tubings made from other elastomeric materials such as polyurethane or fluoroelastomer tubings may also be suitably employed.
  • With the silicone tubing 123 placed correctly on the catheter shaft 101, any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the shaft 101 was completely dry. Once free of residual alcohol, a small amount of Medical Implant Grade Dimethyl Silicone Elastomer Dispersion In Xylene (Part 40000, Applied Silicone, Ventura, Calif.) was applied between the ends of the silicone tubing 123 and the underlying exterior surface of the catheter shaft 101. At each end of the silicone tubing 123, a small blunt needle was inserted between the ends of the silicone tubing 123 and the underlying catheter shaft 101 for a distance of approximately 7.5 mm as measured in a direction parallel to the length of the catheter shaft 101. The silicone elastomer dispersion was carefully applied, using a 3 cc syringe connected to the blunt needle, around the entire circumference of the catheter shaft 101 such that the dispersion remained within and fully coated the 7.5 mm length of the area to be bonded under the ends of silicone tubing 123. The silicone elastomer dispersion was then allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C. Next, a length of porous PTFE film as described above, approximately 1.0 cm wide, was manually wrapped over the end regions of the silicone tubing 123 under which the silicone elastomer dispersion was present, and onto the adjacent portions of the catheter shaft 101 not covered by silicone tubing 123, for a length of approximately 7.5 mm measured from the ends of the silicone tubing 123. During wrapping, the entire length of the porous PTFE film was coated with a small amount of the silicone elastomer dispersion, the dispersion impregnating the porous PTFE film such that the void spaces in the porous PTFE film were substantially filled by the dispersion. The dispersion was thus used as an adhesive material to affix the porous PTFE film to the underlying components. It is believed that other adhesive material may also be used such as other elastomers (e.g., polyurethane or fluoroelastomers, also optionally in dispersion form), cyanoacrylates or thermoplastic adhesives such as fluorinated ethylene propylene which may be activated by the subsequent application of heat. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIG. 10C) covered each of the regions; the very thin porous PTFE film did not add significantly to the outside diameter of the catheter assembly 100. At this point the silicone elastomer dispersion used to coat the porous PTFE film was allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C.
  • Next, a film tube was constructed in a fashion similar to that described in example 1. A length of porous PTFE film, cut to a width of 2.5 cm, made as described above, was wrapped onto the bare surface of an 8 mm stainless steel mandrel at an angle of approximately 70° with respect to the longitudinal axis of the mandrel so that about 5 overlapping layers of film covered the mandrel (i.e., any transverse cross section of the film tube transects about five layers of film). Following this another, another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction. The second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers. In the same manner, additional layers of film were applied five layers at a time with each successive group of five layers applied in an opposing direction to the previous group until a total of about 30 layers of helically wrapped film covered the mandrel. This film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 11.5 minutes to heat bond the layers of film, then removed and allowed to cool.
  • The film tube may also be constructed using more film or less film than described above; the use of increasing or decreasing amounts of film will result in a catheter balloon that is respectively stronger (in terms of hoop strength) and less compliant, or weaker and more compliant. The use of slightly different porous PTFE materials (e.g., porosity, thickness and width), the amount of porous PTFE material used and its orientation with respect to the longitudinal axis and adjacent material layers can all be expected to affect the performance properties of the resulting balloon; these variables may be optimized for specific performance requirements by ordinary experimentation.
  • The resulting 8 mm inside diameter film tube was then removed from the 8 mm mandrel, fitted coaxially over a 1.76 mm diameter stainless steel mandrel, and manually tensioned longitudinally to cause it to reduce in diameter. The ends of the film tube (extending beyond the mandrel ends) were then placed into a model 4201 Tensile Testing Machine manufactured by Instron (Canton, Mass.) equipped with flat faced jaws and pulled at a constant rate of 200 mm/min until a force between 4.8 and 4.9 kg was achieved. The film tube was then secured to the mandrel ends by tying with wire.
  • The 1.76 mm mandrel with the film tube secured onto it was then placed into an air convection oven set at 380° C. for 30 seconds. The mandrel and film tube were then removed, allowed to cool, and then helically wrapped manually (using a pitch angle of about 70 degrees with respect to the longitudinal axis) with a length of 1.9 cm wide porous PTFE film made as described above, so that about 2 overlapping layers of film covered the mandrel and film tube. Following this, another 2 layers of the same film were helically wrapped over the first 2 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction. These layers of film (not shown) were applied temporarily as a clamping means to secure the film tube to the outer surface of the mandrel during the subsequent heating and curing process. The 1.76 mm mandrel, with the film tube secured onto it and the layers of porous PTFE film wrapped over the film tube, was then placed into an air convection oven set at 380° C. for 45 seconds, after which it was removed and allowed to cool. Using an indelible pen, marks were then placed along the length of wrapped film tube in 1 cm increments, and the wrapped film tube was compressed longitudinally until these marks were uniformly spaced approximately 5 mm apart. These pen marks were placed on the external, helically-wrapped film such that the ink penetrated the outer film layers and also marked the underlying film tube. The 1.76 mm mandrel, with the longitudinally compressed film tube secured onto it and the layers of porous PTFE film wrapped over the film tube, was then placed into an air convection oven set at 380° C. for 45 seconds, after which it was removed and allowed to cool. Once cool, the layers of porous PTFE film wrapped over the film tube were completely removed, and the resulting 1.76 mm inside diameter film tube was removed from the mandrel. The film tube, having visible pen marks at 5 mm increments, was manually tensioned longitudinally until the pen marks were spaced at approximately 1 cm increments, and then allowed to retract. The resulting 1.76 mm inside diameter film tube then had visible pen marks spaced between 7 mm and 8 mm apart. The film tube was then placed in a jar containing a mixture of 1 part MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 6 parts n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight, wetting the film tube with the mixture. Void spaces within the porous PTFE film tube 127 were thus impregnated with and substantially filled by the silicone adhesive mixture. It is believed that this step may also be accomplished by other types of elastomeric adhesives including fluoroelastomers and polyurethanes.
  • The catheter shaft 101 with the silicone tubing 123 affixed to it via porous PTFE film 125 and silicone elastomer dispersion was then carefully coated with a thin layer of a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. The 1.76 mm inside diameter film tube was removed from the silicone-Heptane mixture, and the coated catheter shaft 101 was carefully fitted coaxially within the film tube 127 as shown by the longitudinal cross section of FIG. 10D such that the entire silicone tube 123 affixed to the shaft 101 was covered by film tube 127, as well as an adjacent portion of the catheter shaft 101 proximal to the point at which the shaft outer dimension changed from 1.83 mm to 2.3 mm. with the catheter shaft 101 and the affixed silicone tube 123 covered by the film tube 127, the ends of film tube 127 were trimmed so that the proximal end was coincident to the point at which the catheter shaft 101 outer dimension changed from 1.83 mm to 2.3 mm, and the other end was approximately 7.5 mm distal from the distal end of the silicone tubing 123 affixed to the catheter shaft 101. The exterior surface of film tube 127 was then helically wrapped by hand with a length of 1.9 cm wide porous PTFE film, made as described above, so that about 2 overlapping layers of film covered its length. This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step. This distal portion of the catheter assembly 100 was then placed into a steam bath for a period of time between 15 and 30 minutes to cure the previously applied silicone adhesive mixture.
  • The catheter assembly 100 was then removed from the steam bath, and the outer helically-wrapped film layers were removed. Next, lengths of porous PTFE film as described above, approximately 1.0 cm wide, were manually wrapped over the ends of the film tube 127 approximately 15 mm distal from the point at which the shaft outer dimension changed from 1.83 mm to 2.3 mm, and approximately 15 mm distal from the most proximal edge of the porous PTFE film wrapped around the distal end of the silicone tubing. During wrapping, the entire length of the porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (shown schematically as layers 129 in FIG. 10D) covered the region without adding significantly to the diameter of the catheter. Because of the reduced diameter at region “b” and the thin character of the porous PTFE film used for layers 129 and 125, the diameter of the catheter assembly 100 at the location of film layers 129 and 125 was very close to the diameter of catheter tubing 101 proximal to these layers of film. The distal portion of the catheter was then placed into a steam bath for a minimum of 8 hours to achieve final curing. After final curing the distal-most portion of the catheter shaft was cut off transversely at the distal-most edge 131 of the porous PTFE film on the exterior of the film tube. The construction of the distal region of the catheter assembly 100 incorporating the balloon portion was now complete. The resulting balloon portion of this construction is represented as region 133. The ends of the balloon and the length of the balloon (taken as the distance measured between the ends of the balloon) are defined by the bracketed region 133, shown as beginning at the edges of porous PTFE film layer 129 (the termination or securing means) closest to the balloon portion 133.
  • The balloon portion 133 thus was secured to the outer surface of the catheter shaft by two separate terminations (or securing means) at each end of the balloon; these take the form of film layers 125 used to secure the silicone tube 123 and film layers 129 used to secure the porous PTFE film tube 127. The presence of two separate terminations (i.e., separate layers 125 and 129) at one end of the balloon can be demonstrated by taking a transverse cross section through the termination region and examining it with suitable microscopy methods such as scanning electron microscopy.
  • The inflatable balloon portion 133 was the result of two substrates, porous PTFE film tube 127 and elastomeric slilcone tube 123 being joined in laminated relationship. The void spaces of the porous PTFE film tube 127 were thus substantially sealed by the silicone tube 123 and the previously applied silicone adhesive mixture which impregnated the void spaces of the porous PTFE film tube 127 and adhered the film tube to the silicone tube 123.
  • At this point, the diameter of the balloon portion 133 was measured in a pre-inflated state. The minimum diameter was found to be 2.14 mm and the maximum diameter 2.31 mm. As before, these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis. The balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 10E) for a period of 1 minute or less, had a minimum diameter of 6.89 mm and a maximum diameter of 6.93 mm at the center of its length. It was noted during the 8 atmosphere pressurization that the balloon portion 133 was substantially straight with respect to the longitudinal axis of the catheter shaft 101, and that the distance from the point at which the balloon portion 133 was attached to the catheter shaft 101 to the point on the balloon portion 133 at which the balloon was at its full diameter was relatively short. This is to say that the balloon when inflated possessed blunt ends of substantially the same diameter as the midpoint of the length of the balloon portion 133, as opposed to having a tapered appearance along the length with a smaller diameter adjacent the balloon ends. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length had a minimum diameter of 2.22 mm and a maximum diameter of 2.46 mm. This silicone-PTFE composite balloon, when tested using a hand-held inflation device, had a burst pressure of approximately 22 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.95 mm prior to failure by rupture.
  • This example illustrates that the balloon, constructed as described above using silicone and PTFE, exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component prior to failure. The compaction ratio as previously defined was 2.31 divided by 2.46, or 0.94, and the compaction efficiency ratio as previously defined was 2.22 divided by 2.46, or 0.90. The ability of the balloon to inflate to the described pressures without water leakage demonstrated effectively that the void spaces of the porous PTFE had been substantially sealed by the elastomeric material.
  • A flow chart describing the process used to create the balloon catheter described by this example is presented as FIG. 10F; it will be apparent that variations on this process may be used to create the same or similar balloon catheters.
  • EXAMPLE 8
  • This example teaches a method of balloon catheter construction using a catheter shaft made of elastomeric material. While this example was made using only a single lumen silicone catheter shaft with the lumen for intended for inflation, it will be apparent that a dual or multiple lumen shaft may also be used.
  • A silicone model 4 EMB 40 Arterial Embolectomy Catheter manufactured by the Cathlab Division of American Biomed Inc. (Irvine, Calif.) having a 4 fr shaft outside diameter (about 1.35 mm) and a length of 40 cm was acquired. The embolectomy catheter included a Luer fitting at the proximal end of the shaft and a balloon made of a silicone elastomer at the distal end of the shaft. The most distal 20 cm portion of the catheter (including the balloon) was cut off, and a 0.38 mm diameter wire was inserted completely through the open lumen of the shaft. A cut, approximately 5 mm in length, was made through the shaft wall approximately 6.5 cm proximal from the distal end, exposing the 0.38 mm wire but not damaging the remainder of the shaft. As shown by the longitudinal cross section of FIG. 11A, the resulting opening 201 was intended to serve as the inflation port for the new balloon which was to be constructed over this region of the catheter shaft 219.
  • A segment of silicone tubing 123 approximately 8 cm in length, having an approximate inner diameter of 1.40 mm, an approximate outer diameter of 1.71 mm, and a durometer of Shore 60A (Beere Precision Silicone, Racine, Wis.), was placed over the distal end of the catheter shaft 219 such that the proximal edge of the silicone tubing 123 was approximately 9.8 cm proximal from the distal end of the catheter shaft 219. This was done very carefully to ensure that no section of the silicone tubing 123 was longitudinally stretched (i.e., under tension) when at its final position on catheter shaft 219. Isopropyl alcohol was used as a lubricant between the catheter shaft 219 and the silicone tubing 123.
  • While the elastomeric tubing used for this example was silicone tubing, it is believed that other elastomeric tubing materials such as polyurethane tubings may also be suitably employed.
  • With the silicone tubing 123 placed correctly on the catheter shaft 219, any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the shaft 219 was completely dry. Once free of residual alcohol, a small amount of Medical Implant Grade Dimethyl Silicone Elastomer Dispersion In Xylene (Part 40000, Applied Silicone, Ventura, Calif.) was applied between the ends of the silicone tubing 123 and the underlying exterior surface of the silicone catheter shaft 219. At each end of the silicone tubing 123, a small blunt needle was inserted between the ends of the silicone tubing 123 and the underlying silicone catheter shaft 219 for a distance of approximately 7.5 mm as measured in a direction parallel to the length of the catheter shaft 219. The silicone elastomer dispersion was carefully applied, using a 3 cc syringe connected to the blunt needle, around the entire circumference of the shaft 219 such that the dispersion remained within, and fully coated the 7.5 mm length of the area to be bonded under the ends of the silicone tubing 123. The silicone elastomer dispersion was then allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C. Next, a length of porous PTFE film as described above, approximately 1.0 cm wide, was manually wrapped over the end regions of the silicone tubing 123 under which the silicone elastomer dispersion was present, and onto the adjacent portions of the silicone catheter shaft 219 not covered by the silicone tubing 123, for a length of approximately 7.5 mm measured from the ends of the silicone tubing 123. During wrapping, the entire length of the porous PTFE film was coated with a small amount of the silicone elastomer dispersion. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIGS. 11A and 11B) covered each of the regions; the very thin porous PTFE film did not add significantly to the outside diameter of the catheter assembly 100. At this point the silicone elastomer dispersion was allowed to cure for approximately 30 minutes at ambient temperature, and then an additional 30 minutes in an air convection oven set at 150° C.
  • Next, a film tube was constructed in the same manner as described in Example 7. The silicone catheter shaft 219 with the silicone tubing 123 affixed to it via porous PTFE film 125 and silicone elastomer dispersion was then carefully coated with a thin layer of a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. The 1.76 mm inside diameter film tube was removed from the silicone-Heptane mixture, and the coated silicone catheter shaft 219 was carefully fitted coaxially within the film tube 127 such that the entire silicone tube 123 affixed to the catheter shaft 219, as well as an adjacent portion of the catheter shaft 219 proximal to both ends of the silicone tube 123, were covered by the film tube 127. With the catheter shaft 219 and the affixed silicone tube 123 covered by the film tube 127, the ends of the film tube 127 were trimmed so that the distal end of the film tube 127 was located 7.5 mm distal from the distal end of the underlying silicone tubing 123, and the proximal end was located 7.5 mm proximal from the proximal end of the underlying silicone tubing 123. The exterior surface of film tube 127 was then helically wrapped by hand with a length of 1.9 cm wide porous PTFE film, made as described above, so that about 2 overlapping layers of film covered its length. This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step. This distal portion of the catheter assembly 200 was then placed into a steam bath for a period of time between 15 and 30 minutes.
  • The catheter assembly 200 was then removed from the steam bath, and the outer helically-wrapped film layers were removed. Next, lengths of porous PTFE film as described above, approximately 1.0 cm wide were manually wrapped over the ends of the film tube 127 approximately 15 mm proximal from the distal edge of the film tube 127, and approximately 15 mm distal from the proximal edge of the film tube 127. These regions were covered by approximately 3 overlapping film layers, shown schematically as layers 129. Additionally a length of porous PTFE film (shown schematically as layer 221) was wrapped helically along the length of the catheter shaft 219 from the proximal edge of the silicone tube 123 to the Luer fitting at the proximal end of the catheter shaft 219 so that about 2 overlapping layers of film covered the catheter shaft 219, and then another 2 layers of the same film were helically wrapped over the first 2 layers at the same pitch angle (about 70 degrees) with respect to the longitudinal axis, but in the opposite direction. During wrapping, each length of porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A, manufactured by NuSil Silicone Technology (Carpinteria, Calif.), and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. Great care was taken to ensure that the porous PTFE film was applied without adding significantly to the catheter diameter. This was possible as a result of the thin character of the porous PTFE film. The catheter assembly 200 was then placed into a steam bath for a minimum of 8 hours to achieve curing. After curing the distal-most portion of the catheter shaft 219 was cut off transversely at the distal-most edge 131 of the porous PTFE film 129 on the exterior of the film tube 127, and the open inflation lumen 107 was sealed by insertion of a 1 cm long section of 0.38 mm wire 225 which was dipped into a mixture of equal parts of MED1137 Adhesive Silicone Type A, manufactured by NuSil Silicone Technology (Carpinteria, Calif.), and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. The catheter assembly 200 was then placed into a steam bath for a minimum of 8 hours to achieve final curing.
  • At this point, the diameter of balloon portion 133 was measured in a pre-inflated state. The minimum diameter was found to be 2.13 mm and the maximum diameter 2.28 mm. As before, these measurements were taken from approximately the midpoint of the balloon, and a Lasermike model 183, manufactured by Lasermike, (Dayton, Ohio) was used to make the measurements while the balloon was rotated about its longitudinal axis. The balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 11B) for a period of 1 minute or less, had a minimum diameter of 6.00 mm and a maximum diameter of 6.11 mm at the center of its length. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length had a minimum diameter of 2.16 mm and a maximum diameter of 2.64 mm. This silicone-PTFE composite balloon, when tested using a hand-held inflation device had a burst pressure of approximately 21 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.54 mm prior to failure. The balloon failed by developing a leak in the silicone tubing component 123 of the balloon portion 133. The leak caused separation between the film tube 127 and the silicone tubing 123, allowing fluid to pass through the film tube 127.
  • This illustrates that the balloon, constructed as described above using silicone and PTFE, exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component prior to failure. The compaction ratio as previously defined was 2.28 divided by 2.64, or 0.86, and the compaction efficiency ratio as previously defined was 2.16 divided by 2.64, or 0.82. Additionally, the presence of the porous PTFE film helically wrapped around the silicone catheter shaft 219 provided sufficient strength to enable the silicone catheter shaft 219 to withstand the relatively high pressures associated with angioplasty.
  • Another balloon was constructed in an identical manner as described above, except that the length of the silicone catheter shaft 219 from the proximal edge of the silicone tube 123 to the Luer fitting at the proximal end of the shaft 219 was not covered by porous PTFE film 221. When the balloon portion 133 was measured in a pre-inflated state the minimum diameter was found to be 2.14 mm and the maximum diameter 2.21 mm. These measurements were made as described above. The balloon when inflated to 8 atmospheres internal water pressure for a period of 1 minute or less, had a minimum diameter of 5.98 mm and a maximum diameter of 6.03 mm at the center of its length. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length had a minimum diameter of 2.10 mm and a maximum diameter of 2.45 mm. This silicone-PTFE composite balloon, when tested using a hand-held inflation device had a burst pressure of approximately 15 atmospheres, reaching a maximum dimension of about 6.72 mm prior to failure. The failure mode of the balloon was shaft rupture.
  • This illustrates that the balloon, constructed as described above using silicone and PTFE exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component prior to failure. The compaction ratio as previously defined was 2.21 divided by 2.45, or 0.90, and the compaction efficiency ratio as previously defined was 2.10 divided by 2.45, or 0.86. The absence of the porous PTFE film helically wrapped around shaft allowed the balloon to fail at the shaft. The ability of the balloon to inflate to the described pressures without water leakage demonstrated effectively that the void spaces of the porous PTFE had been substantially sealed by the elastomeric material. A flow chart describing the process used to create the balloon catheter described by this example is presented as FIG. 11C; it will be apparent that variations on this process may be used to create the same or similar balloon catheters.
  • EXAMPLE 9
  • This example describes an alternative method of creating a silicone-PTFE laminated balloon portion, and the use of the balloon portion as an angioplasty balloon.
  • First, a catheter shaft was constructed in the same manner as described in Example 7.
  • After completion of the catheter shaft, a film tube was created as follows. A length of porous PTFE film, cut to a width of 2.5 cm, made as described above, was wrapped onto the bare surface of an 8 mm stainless steel mandrel at an angle of approximately 70° with respect to the longitudinal axis of the mandrel so that about 5 overlapping layers of film covered the mandrel (i.e., any transverse cross section of the film tube transects about five layers of film). Following this, another 5 layers of the same film were helically wrapped over the first 5 layers at the same pitch angle with respect to the longitudinal axis, but in the opposite direction. The second 5 layers were therefore also oriented at an approximate angle of 70°, but measured from the opposite end of the axis in comparison to the first 5 layers. In the same manner, additional layers of film were applied five layers at a time with each successive group of five layers applied in an opposing direction to the previous group until a total of about 30 layers of helically wrapped film covered the mandrel. This film-wrapped mandrel was then placed into an air convection oven set at 380° C. for 11.5 minutes to heat bond the layers of film, then removed from the oven and allowed to cool. Once cool, the resulting film tube was removed from the 8 mm mandrel.
  • Next a 24 cm length of silicone tubing having an approximate inner diameter of 1.40 mm, an approximate outer diameter of 1.71 mm, and a durometer of Shore 60A (Beere Precision Silicone, Racine, Wis.) was fitted coaxially over a 1.14 mm diameter stainless steel mandrel. After one end of the silicone tubing was secured onto the mandrel by tying with thin thread, tension was applied to the other end, stretching the tubing until its overall length was 31 cm. With the tubing stretched to 31 cm the free end was also secured to the mandrel using thin thread.
  • The 8 mm inside diameter film tube was then manually tensioned longitudinally, causing it to reduce in diameter. The film tube was then knotted at one end, and a blunt needle was inserted into the other. Using a 20 cc syringe connected to the blunt needle, a mixture of 1 part MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 4 parts n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight was injected into the film tube. The mixture while in the lumen of the film tube was pressurized manually via the syringe, causing it to flow through the porous PTFE, completely wetting and saturating the film tube.
  • Next, the 1.14 mm mandrel and the overlying silicone tubing were coated with a mixture of 2 parts MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) to 1 part n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. The blunt needle was removed from the PTFE film tube. The 1.14 mm mandrel and overlying silicone tubing were then fitted coaxially within the film tube with the ends of the film tube extending beyond the mandrel ends. The ends of the film tube were then placed into a model 4201 Tensile Testing Machine manufactured by Instron (Canton, Mass.) equipped with flat faced jaws and pulled at a constant rate of 200 mm/min until a force between 4.8 and 4.9 kg was achieved. During pulling, the film tube was massaged, ensuring contact between the PTFE and the silicone tubing. Small needle holes were made into the film tube so that the resident silicone-heptane mixture could escape. Once a force between 4.8 and 4.9 kg was achieved, the film tube was left within the jaws of the machine for a minimum of 24 hours, allowing the silicone to cure completely. Once the silicone was completely cured, the resulting silicone-PTFE composite tubing was carefully removed from the 1.14 mm mandrel.
  • Although this example used the silicone tubing and the porous PTFE film tube as separate substrates joined together in laminated relationship, the balloon has also been constructed using only the porous PTFE film tube made as described for example 7 and impregnated with the elastomeric material (i.e., the balloon was constructed without the silicone tubing substrate). For such a construction, the use of a silicone elastomer dispersion in Xylene is preferred as the elastomeric material intended to substantially seal the void spaces in the porous PTFE tube (i.e., wherein a substantial portion of the elastomeric material is located within the void spaces within the porous PTFE tube). The balloon so constructed was joined to the catheter shaft in the same manner described as follows. The resulting balloon had a particularly thin wall having excellent compaction efficiency ratio and compaction ratio; a balloon catheter incorporating this balloon is anticipated to be particularly useful as a neural balloon dilatation catheter.
  • As shown by the longitudinal cross section of FIG. 12A, a segment of the silicone-PTFE composite tubing 223 (comprising the inner substrate of the elastomeric material (silicone tubing) joined to the outer substrate of the porous PTFE film tube in laminated relationship) approximately 9 cm in length was placed over the distal end of the catheter shaft 101 such that such that the proximal edge of the composite tubing 223 was approximately 7 mm distal from the point at which the catheter shaft 101 outer diameter changed from 1.83 mm to 2.3 mm. This was done very carefully to ensure that no section of the composite tubing 223 was longitudinally stretched (i.e., under tension) when at its final position on the catheter shaft 101. Isopropyl alcohol was used as a lubricant between the catheter shaft 101 and the composite tubing 223.
  • With the composite tubing 223 placed correctly on the catheter shaft 101, any residual alcohol was allowed to evaporate for a generous amount of time, ensuring that the catheter shaft 101 was completely dry. Once free of residual alcohol, a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight was applied between the ends of the tubing 223 and the underlying exterior surface of the catheter shaft 101 At each end of the silicone tubing 223, a small blunt needle was inserted between the ends of the tubing 223 and the underlying catheter shaft 101 for a distance of approximately 7.5 mm as measured in a direction parallel to the length of the catheter shaft 101. The mixture was carefully applied using a 3 cc syringe connected to the blunt needle, around the entire circumference of the catheter shaft 101 such that the mixture remained within, and fully coated the 7.5 mm length of the area to be bonded under the ends of the composite tubing 223. To ensure that the adhesive did not migrate into the inflatable length of balloon portion 133, prior to the application of the adhesive a thin thread was temporarily wrapped around composite tubing adjacent to the edge of porous PTFE film layer 125 closest to balloon portion 133. Also, to ensure contact between the composite tubing 223 and the catheter shaft 101, lengths of porous PTFE film as described above, approximately 1.0 cm wide were helically wrapped by hand over the composite tube over the areas in which the silicone mixture was applied. This film (not shown) was applied temporarily as a securing means desired during the subsequent heating and curing step. The silicone mixture was then allowed to cure within a steam bath for approximately 30 minutes. The catheter was then removed from the steam bath, and the 1.0 cm wide PTFE film was removed along with the temporary thread.
  • Next, a length of porous PTFE film as described above, approximately 1.0 cm wide was manually wrapped over the end regions of the composite tubing 223 under which the silicone mixture was present, and onto the adjacent portions of the catheter shaft 101 not covered by the composite tube 223, for a length of approximately 7.5 mm measured from the ends of the composite tubing 223. During wrapping, the entire length of the porous PTFE film was coated with a small amount of a mixture of equal parts of MED1137 Adhesive Silicone Type A manufactured by NuSil Silicone Technology (Carpinteria, Calif.) and n-Heptane (J. T. Baker, Phillipsburg, N.J.) by weight. Great care was taken to ensure that the porous PTFE film was applied so that approximately 3 overlapping layers (depicted schematically as layers 125 in FIG. 12) covered each of the regions without adding significantly to the diameter of the catheter. Because of the reduced diameter region at the distal end of dual lumen tubing 103 and the very thin character of the porous PTFE film used for layers 125, the diameter of the catheter assembly 100 at the location of film layers 125 was very close to the diameter of catheter shaft 101 proximal to film layers 125. Finally, the silicone mixture used to coat the porous PTFE film was allowed to cure for a minimum of 8 hours within a steam bath.
  • At this point, the diameters of the balloon portion 133 were measured in a pre-inflated state using the same methods described above. The minimum diameter was found to be 2.21 mm and the maximum diameter 2.47 mm. The balloon when inflated to 8 atmospheres internal water pressure (as described by the longitudinal cross section of FIG. 12B) for a period of 1 minute or less, had a minimum diameter of 6.51 mm and a maximum diameter of 6.65 mm at the center. It was noted during the 8 atmosphere pressurization that the balloon portion was substantially straight with respect to the longitudinal axis of the catheter shaft, and that the distance from the point at which the balloon portion was attached to the catheter shaft to the point on the balloon portion at which the balloon was at its full diameter was relatively short. When deflated by removing the entire volume of water introduced during the 8 atmosphere pressurization, the balloon at its mid-length, had a minimum diameter of 2.28 mm and a maximum diameter of 2.58 mm. This silicone-PTFE composite balloon, when tested using a hand-held inflation device, had a burst pressure of approximately 15 atmospheres (achieved beginning from zero pressure in about 30 seconds), reaching a maximum diameter of about 7.06 mm prior to failure.
  • This example illustrates that the balloon, constructed as described above using a silicone-PTFE composite balloon portion, exhibited a predictable limit to its diametrical growth as demonstrated by the destructive burst test wherein the balloon did not exceed the 8 mm diameter of the porous PTFE film tube component. The compaction ratio as previously defined was 2.47 divided by 2.58, or 0.96, and the compaction efficiency ratio as previously defined was 2.28 divided by 2.58, or 0.88. The ability of the balloon to inflate to the described pressures without water leakage demonstrated effectively that the void spaces of the porous PTFE had been substantially sealed by the elastomeric material.
  • A flow chart describing the process used to create the balloon catheter described by this example is presented as FIG. 12C; it will be apparent that variations on this process may be used to create the same or similar balloon catheters.
  • While particular embodiments of the present invention have been illustrated and described herein, the present invention should not be limited to such illustrations and descriptions. It should be apparent that changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.

Claims (47)

1-69. (canceled)
70. A balloon catheter comprising:
a) a catheter shaft having a longitudinal axis with a proximal end and a distal end, said catheter shaft having an inflation lumen extending within at least a portion of a distal shaft section; and
b) a balloon comprising a material having a microstructure of interconnected fibrils, said balloon having a longitudinal axis, said material oriented helically with respect to said longitudinal axis, wherein the balloon is mounted on the distal section of the catheter shaft with an interior chamber in fluid communication with the inflation lumen;
c) said balloon further comprising an elastomeric material.
71. The balloon catheter according to claim 70 wherein the balloon has substantially uniform radial expansion.
72. The balloon catheter according to claim 71 wherein the balloon has an initial deflated diameter and a maximum inflated diameter, and wherein the balloon is capable of being inflated to its maximum diameter and then deflated to substantially its initial deflated diameter.
73. The balloon catheter according to claim 70 wherein the material having a microstructure of interconnected fibrils comprises polytetrafluoroethylene.
74. The balloon catheter according to claim 70 wherein the material having a microstructure of interconnected fibrils comprises expanded polytetrafluoroethylene.
75. The balloon catheter according to claim 70 wherein the elastomeric material comprises latex.
76. The balloon catheter according to claim 70 wherein the elastomeric material comprises silicone.
77. The balloon catheter according to claim 70 wherein the elastomeric material comprises polyurethane.
78. The balloon catheter according to claim 73 wherein the elastomeric material comprises latex.
79. The balloon catheter according to claim 73 wherein the elastomeric material comprises silicone.
80. The balloon catheter according to claim 73 wherein the elastomeric material comprises polyurethane.
81. The balloon catheter according to claim 74 wherein the elastomeric material comprises latex.
82. The balloon catheter according to claim 74 wherein the elastomeric material comprises silicone.
83. The balloon catheter according to claim 74 wherein the elastomeric material comprises polyurethane.
84. The balloon catheter according to claim 70 wherein the balloon has a radial compliance of at least about 0.06 millimeters/atmospheres at inflation pressures of about 8 to about 15 atmospheres.
85. The balloon catheter according to claim 73 wherein the balloon has a radial compliance of at least about 0.06 millimeters/atmospheres at inflation pressures of about 8 to about 15 atmospheres.
86. The balloon catheter according to claim 74 wherein the balloon has a radial compliance of at least about 0.06 millimeters/atmospheres at inflation pressures of about 8 to about 15 atmospheres.
87. The balloon catheter according to claim 70 wherein the material having a microstructure of interconnected fibrils is porous and contains void spaces, said void spaces being substantially sealed by the elastomeric material.
88. The balloon catheter according to claim 73 wherein the material having a microstructure of interconnected fibrils is porous and contains void spaces, said void spaces being substantially sealed by the elastomeric material.
89. The balloon catheter according to claim 74 wherein the material having a microstructure of interconnected fibrils is porous and contains void spaces, said void spaces being substantially sealed by the elastomeric material.
90. The balloon catheter according to claim 70 wherein the material having a microstructure of interconnected fibrils is porous, wherein at least a portion of the elastomeric material is impregnated into said material having a microstructure of interconnected fibrils.
91. The balloon catheter according to claim 73 wherein the material having a microstructure of interconnected fibrils is porous, wherein at least a portion of the elastomeric material is impregnated into said material having a microstructure of interconnected fibrils.
92. The balloon catheter according to claim 74 wherein the material having a microstructure of interconnected fibrils is porous, wherein at least a portion of the elastomeric material is impregnated into said material having a microstructure of interconnected fibrils.
93. The balloon catheter according to claim 70 further comprising an expandable stent disposed about and mounted onto the balloon.
94. The balloon catheter according to claim 71 further comprising an expandable stent disposed about and mounted onto the balloon.
95. The balloon catheter according to claim 72 further comprising an expandable stent disposed about and mounted onto the balloon.
96. The balloon catheter according to claim 73 further comprising an expandable stent disposed about and mounted onto the balloon.
97. The balloon catheter according to claim 74 further comprising an expandable stent disposed about and mounted onto the balloon.
98. The balloon catheter according to claim 75 further comprising an expandable stent disposed about and mounted onto the balloon.
99. The balloon catheter according to claim 76 further comprising an expandable stent disposed about and mounted onto the balloon.
100. The balloon catheter according to claim 77 further comprising an expandable stent disposed about and mounted onto the balloon.
101. The balloon catheter according to claim 78 further comprising an expandable stent disposed about and mounted onto the balloon.
102. The balloon catheter according to claim 79 further comprising an expandable stent disposed about and mounted onto the balloon.
103. The balloon catheter according to claim 80 further comprising an expandable stent disposed about and mounted onto the balloon.
104. The balloon catheter according to claim 81 further comprising an expandable stent disposed about and mounted onto the balloon.
105. The balloon catheter according to claim 82 further comprising an expandable stent disposed about and mounted onto the balloon.
106. The balloon catheter according to claim 83 further comprising an expandable stent disposed about and mounted onto the balloon.
107. The balloon catheter according to claim 84 further comprising an expandable stent disposed about and mounted onto the balloon.
108. The balloon catheter according to claim 85 further comprising an expandable stent disposed about and mounted onto the balloon.
109. The balloon catheter according to claim 86 further comprising an expandable stent disposed about and mounted onto the balloon.
110. The balloon catheter according to claim 87 further comprising an expandable stent disposed about and mounted onto the balloon.
111. The balloon catheter according to claim 88 further comprising an expandable stent disposed about and mounted onto the balloon.
112. The balloon catheter according to claim 89 further comprising an expandable stent disposed about and mounted onto the balloon.
113. The balloon catheter according to claim 90 further comprising an expandable stent disposed about and mounted onto the balloon.
114. The balloon catheter according to claim 91 further comprising an expandable stent disposed about and mounted onto the balloon.
115. The balloon catheter according to claim 92 further comprising an expandable stent disposed about and mounted onto the balloon.
US11/182,874 1995-09-18 2005-07-15 Balloon catheter device Abandoned US20050273152A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/182,874 US20050273152A1 (en) 1995-09-18 2005-07-15 Balloon catheter device
US11/556,258 US20070061000A1 (en) 1995-09-18 2006-11-03 Balloon catheter device
US12/146,194 US20080312730A1 (en) 1995-09-18 2008-06-25 Balloon catheter device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US08/532,905 US5752934A (en) 1995-09-18 1995-09-18 Balloon catheter device
US08/673,635 US5868704A (en) 1995-09-18 1996-06-26 Balloon catheter device
US08/858,309 US6120477A (en) 1995-09-18 1997-05-19 Balloon catheter device
US25232299A 1999-02-18 1999-02-18
US10/300,056 US6923827B2 (en) 1995-09-18 2002-11-20 Balloon catheter device
US11/182,874 US20050273152A1 (en) 1995-09-18 2005-07-15 Balloon catheter device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/300,056 Continuation US6923827B2 (en) 1995-09-18 2002-11-20 Balloon catheter device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/556,258 Continuation US20070061000A1 (en) 1995-09-18 2006-11-03 Balloon catheter device

Publications (1)

Publication Number Publication Date
US20050273152A1 true US20050273152A1 (en) 2005-12-08

Family

ID=27063990

Family Applications (6)

Application Number Title Priority Date Filing Date
US08/673,635 Expired - Lifetime US5868704A (en) 1995-09-18 1996-06-26 Balloon catheter device
US08/858,309 Expired - Lifetime US6120477A (en) 1995-09-18 1997-05-19 Balloon catheter device
US10/300,056 Expired - Fee Related US6923827B2 (en) 1995-09-18 2002-11-20 Balloon catheter device
US11/182,874 Abandoned US20050273152A1 (en) 1995-09-18 2005-07-15 Balloon catheter device
US11/556,258 Abandoned US20070061000A1 (en) 1995-09-18 2006-11-03 Balloon catheter device
US12/146,194 Abandoned US20080312730A1 (en) 1995-09-18 2008-06-25 Balloon catheter device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/673,635 Expired - Lifetime US5868704A (en) 1995-09-18 1996-06-26 Balloon catheter device
US08/858,309 Expired - Lifetime US6120477A (en) 1995-09-18 1997-05-19 Balloon catheter device
US10/300,056 Expired - Fee Related US6923827B2 (en) 1995-09-18 2002-11-20 Balloon catheter device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/556,258 Abandoned US20070061000A1 (en) 1995-09-18 2006-11-03 Balloon catheter device
US12/146,194 Abandoned US20080312730A1 (en) 1995-09-18 2008-06-25 Balloon catheter device

Country Status (7)

Country Link
US (6) US5868704A (en)
EP (1) EP0851777B1 (en)
JP (1) JPH11512329A (en)
AU (1) AU6862696A (en)
CA (1) CA2230973C (en)
DE (1) DE69625216T2 (en)
WO (1) WO1997010871A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070055301A1 (en) * 1995-09-18 2007-03-08 Campbell Carey V Balloon catheter device
WO2008021020A2 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Inflatable imbibed polymer devices
WO2008021006A2 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Non-shortening wrapped balloon
WO2008021003A1 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Catheter balloons with integrated non-distensible seals
US20080312730A1 (en) * 1995-09-18 2008-12-18 Campbell Carey V Balloon catheter device
US20100030192A1 (en) * 2008-08-01 2010-02-04 Boston Scientific Scimed, Inc. Catheter shaft bond arrangements and methods
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US8460240B2 (en) 2006-08-07 2013-06-11 W. L. Gore & Associates, Inc. Inflatable toroidal-shaped balloons
US20130338643A1 (en) * 2012-06-19 2013-12-19 Tyco Healthcare Group Lp Detachable coupling for catheter
US9468739B2 (en) 2008-08-19 2016-10-18 Covidien Lp Detachable tip microcatheter
CN110430842A (en) * 2016-03-25 2019-11-08 开口公司 Foley's tube and application method

Families Citing this family (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK63894A (en) * 1994-06-06 1996-01-08 Meadox Medicals Inc Stent catheter and method for making such a stent catheter
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
EP0835673A3 (en) * 1996-10-10 1998-09-23 Schneider (Usa) Inc. Catheter for tissue dilatation and drug delivery
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6554795B2 (en) 1997-03-06 2003-04-29 Medtronic Ave, Inc. Balloon catheter and method of manufacture
US6261260B1 (en) * 1997-04-15 2001-07-17 Terumo Kabushiki Kaisha Balloon for medical tube and medical tube equipped with the same
GB2324729B (en) 1997-04-30 2002-01-02 Bradford Hospitals Nhs Trust Lung treatment device
US6500174B1 (en) * 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6451396B1 (en) * 1998-02-13 2002-09-17 Gore Enterprise Holdings, Inc. Flexure endurant composite elastomer compositions
US6099497A (en) * 1998-03-05 2000-08-08 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US20050131453A1 (en) * 1998-03-13 2005-06-16 Parodi Juan C. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6685732B2 (en) * 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20010001113A1 (en) 1998-04-21 2001-05-10 Florencia Lim Balloon catheter
US6287314B1 (en) 1998-04-21 2001-09-11 Advanced Cardiovascular Systems, Inc. Stent deploying catheter system
US6267747B1 (en) 1998-05-11 2001-07-31 Cardeon Corporation Aortic catheter with porous aortic root balloon and methods for inducing cardioplegic arrest
US6645222B1 (en) * 1998-05-13 2003-11-11 Arteria Medical Science, Inc. Puncture resistant branch artery occlusion device and methods of use
US6908474B2 (en) * 1998-05-13 2005-06-21 Gore Enterprise Holdings, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6955661B1 (en) 1999-01-25 2005-10-18 Atrium Medical Corporation Expandable fluoropolymer device for delivery of therapeutic agents and method of making
US6395208B1 (en) 1999-01-25 2002-05-28 Atrium Medical Corporation Method of making an expandable fluoropolymer device
US7637886B2 (en) * 1999-01-25 2009-12-29 Atrium Medical Corporation Expandable fluoropolymer device and method of making
US7572245B2 (en) * 2003-09-15 2009-08-11 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
US7947015B2 (en) * 1999-01-25 2011-05-24 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
US7527622B2 (en) * 1999-08-23 2009-05-05 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6575966B2 (en) * 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
JP3804351B2 (en) 1999-08-25 2006-08-02 ニプロ株式会社 Balloon catheter
US7892201B1 (en) 1999-08-27 2011-02-22 Gore Enterprise Holdings, Inc. Balloon catheter and method of mounting same
US6602224B1 (en) * 1999-12-22 2003-08-05 Advanced Cardiovascular Systems, Inc. Medical device formed of ultrahigh molecular weight polyolefin
US6652568B1 (en) 1999-12-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque balloon
US6428506B1 (en) * 1999-12-22 2002-08-06 Advanced Cardiovascular Systems, Inc. Medical device formed of ultrahigh molecular weight polyethylene
US6756094B1 (en) * 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
US6544222B1 (en) 2000-11-14 2003-04-08 Advanced Cardiovascular Systems, Inc. Visualization through an opaque medical device component
US6444324B1 (en) 2000-12-01 2002-09-03 Scimed Life Systems, Inc. Lubricated catheter balloon
US6544223B1 (en) * 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US8277868B2 (en) * 2001-01-05 2012-10-02 Abbott Cardiovascular Systems Inc. Balloon catheter for delivering therapeutic agents
US20020161388A1 (en) 2001-02-27 2002-10-31 Samuels Sam L. Elastomeric balloon support fabric
US7396582B2 (en) 2001-04-06 2008-07-08 Advanced Cardiovascular Systems, Inc. Medical device chemically modified by plasma polymerization
US6636758B2 (en) 2001-05-01 2003-10-21 Concentric Medical, Inc. Marker wire and process for using it
NL1018018C2 (en) * 2001-05-08 2002-11-19 Blue Medical Devices B V Balloon catheter and method for manufacturing thereof.
NL1018881C2 (en) * 2001-05-08 2002-11-25 Blue Medical Devices B V Balloon catheter for dilating vessels and lumina comprise inflatable balloon with ends attached to it's catheter tube
US6702782B2 (en) 2001-06-26 2004-03-09 Concentric Medical, Inc. Large lumen balloon catheter
US6638245B2 (en) 2001-06-26 2003-10-28 Concentric Medical, Inc. Balloon catheter
US20030032941A1 (en) * 2001-08-13 2003-02-13 Boyle William J. Convertible delivery systems for medical devices
US6884234B2 (en) 2001-11-01 2005-04-26 Cardio Exodus Partners Foldable and remotely imageable balloon
US6656152B2 (en) 2001-11-16 2003-12-02 Ad-Tech Medical Instrument Corp. Drug delivery catheter assembly with inflatable balloon
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US20030118761A1 (en) * 2001-12-21 2003-06-26 Kimberly-Clark Worldwide, Inc. Elastomeric articles having improved chemical resistance
JP2003198765A (en) * 2001-12-25 2003-07-11 Murata Mach Ltd Facsimile machine
US6743388B2 (en) * 2001-12-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Process of making polymer articles
US7037562B2 (en) 2002-01-14 2006-05-02 Vascon Llc Angioplasty super balloon fabrication with composite materials
US9539121B2 (en) * 2002-02-07 2017-01-10 Dsm Ip Assets B.V. Apparatus and methods for conduits and materials
US6949121B1 (en) 2002-02-07 2005-09-27 Sentient Engineering & Technology, Llc Apparatus and methods for conduits and materials
US20030176516A1 (en) * 2002-03-15 2003-09-18 Greene, Tweed Of Delaware, Inc. Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
US6946173B2 (en) * 2002-03-21 2005-09-20 Advanced Cardiovascular Systems, Inc. Catheter balloon formed of ePTFE and a diene polymer
EP2067499B1 (en) * 2002-04-25 2012-05-16 The Board of Trustees of The Leland Stanford Junior University Expandable guide sheath and apparatus and methods using such sheaths
US6929768B2 (en) * 2002-05-13 2005-08-16 Advanced Cardiovascular Systems, Inc. Method of making a catheter balloon by laser fusing wrapped material
US8956280B2 (en) 2002-05-30 2015-02-17 Intuitive Surgical Operations, Inc. Apparatus and methods for placing leads using direct visualization
US7549974B2 (en) 2002-06-01 2009-06-23 The Board Of Trustees Of The Leland Stanford Junior University Device and method for medical interventions of body lumens
US6773447B2 (en) 2002-07-02 2004-08-10 Sentient Engineering & Technology, Llc Balloon catheter and treatment apparatus
US7335184B2 (en) * 2002-07-02 2008-02-26 Sentient Engineering And Technology Balloon catheter and treatment apparatus
US7147619B2 (en) * 2002-07-22 2006-12-12 Advanced Cardiovascular Systems, Inc. Catheter balloon having impregnated balloon skirt sections
US6878329B2 (en) * 2002-07-30 2005-04-12 Advanced Cardiovascular Systems, Inc. Method of making a catheter balloon using a polyimide covered mandrel
JP4351832B2 (en) * 2002-08-05 2009-10-28 テルモ株式会社 Balloon catheter
US20040039437A1 (en) * 2002-08-13 2004-02-26 Medtronic, Inc. Medical device exhibiting improved adhesion between polymeric coating and substrate
CA2494188A1 (en) * 2002-08-13 2004-02-19 Medtronic, Inc. Active agent delivery system including a hydrophobic cellulose derivative
CA2494187A1 (en) * 2002-08-13 2004-02-19 Medtronic, Inc. Active agent delivery system including a polyurethane, medical device, and method
JP2006502136A (en) * 2002-08-13 2006-01-19 メドトロニック・インコーポレーテッド Active agent delivery system comprising a hydrophilic polymer, a medical device, and a method
WO2004014447A1 (en) * 2002-08-13 2004-02-19 Medtronic, Inc. Active agent delivery system including a poly(ethylene-co-(meth)acrylate), medical device, and method
AU2003258209A1 (en) * 2002-08-13 2004-02-25 Medtronic, Inc. Active agent delivery systems, medical devices, and methods
US6902571B2 (en) 2002-08-29 2005-06-07 Advanced Cardiovascular Systems, Inc. Compacted catheter balloon and method of incremental compaction
US6939321B2 (en) 2002-09-26 2005-09-06 Advanced Cardiovascular Systems, Inc. Catheter balloon having improved balloon bonding
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US20040061261A1 (en) * 2002-09-30 2004-04-01 Fernando Gonzalez Method of making a catheter balloon using a heated mandrel
US7025745B2 (en) * 2002-10-07 2006-04-11 Advanced Cardiovascular Systems, Inc. Method of making a catheter balloon using a tapered mandrel
US20040122464A1 (en) * 2002-12-18 2004-06-24 Edwin Wang Balloon catheter having a microporous distal tip
US6863757B1 (en) 2002-12-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Method of making an expandable medical device formed of a compacted porous polymeric material
US7195638B1 (en) * 2002-12-30 2007-03-27 Advanced Cardiovascular Systems, Inc. Catheter balloon
US7331933B2 (en) * 2002-12-31 2008-02-19 Advanced Cardiovascular Systems, Inc. Balloon catheter with a compression member for balloon bonding
US7147817B1 (en) 2002-12-31 2006-12-12 Advanced Cardiovascular Systems, Inc. Method of making a low profile balloon
US20040143286A1 (en) 2003-01-17 2004-07-22 Johnson Eric G. Catheter with disruptable guidewire channel
US8016752B2 (en) * 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter
CA2516986C (en) * 2003-02-26 2013-02-12 Boston Scientific Limited Balloon catheter having enhanced deliverability
US7172575B2 (en) * 2003-03-05 2007-02-06 Advanced Cardiovascular Systems, Inc. Catheter balloon having a lubricious coating
US7175607B2 (en) * 2003-03-06 2007-02-13 Advanced Cardiovascular Systems, Inc. Catheter balloon liner with variable thickness and method for making same
US20040197501A1 (en) * 2003-04-01 2004-10-07 Srinivasan Sridharan Catheter balloon formed of a polyurethane of p-phenylene diisocyanate and polycaprolactone
US8388628B2 (en) * 2003-04-24 2013-03-05 Medtronic, Inc. Expandable sheath for delivering instruments and agents into a body lumen and methods for use
US7241283B2 (en) * 2003-04-25 2007-07-10 Ad-Tech Medical Instrument Corp. Method for intracranial catheter treatment of brain tissue
WO2004100772A2 (en) * 2003-05-12 2004-11-25 University Of Florida Devices and methods for disruption and removal of luninal occlusions
US20040236278A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Therapeutic agent delivery
US20040236308A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Kinetic isolation pressurization
US20040236279A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Gaseous therapeutic agent delivery
US20040236410A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Polymeric body formation
US20040267195A1 (en) * 2003-06-24 2004-12-30 Arnoldo Currlin Catheter balloon having visible marker
US7011646B2 (en) * 2003-06-24 2006-03-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with a thickened wall portion
JP4617070B2 (en) * 2003-07-29 2011-01-19 テルモ株式会社 Catheter with expansion body
US20050064005A1 (en) * 2003-08-13 2005-03-24 Dinh Thomas Q. Active agent delivery systems including a miscible polymer blend, medical devices, and methods
US7166099B2 (en) 2003-08-21 2007-01-23 Boston Scientific Scimed, Inc. Multilayer medical devices
US20050113687A1 (en) * 2003-09-15 2005-05-26 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using a porous medical device
US8021331B2 (en) * 2003-09-15 2011-09-20 Atrium Medical Corporation Method of coating a folded medical device
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
WO2005032642A2 (en) * 2003-10-03 2005-04-14 Acumen Medical, Inc. Expandable guide sheath and apparatus and methods for making them
US7448122B1 (en) 2003-10-31 2008-11-11 Advanced Cardiovascular Systems, Inc. Method of compressing a polymeric layer of an expandable medical device
EP1543856B1 (en) * 2003-12-17 2006-08-16 Fujinon Corporation Method for fixing a balloon to a tubular member, and medical equipment
US7273471B1 (en) 2003-12-23 2007-09-25 Advanced Cardiovascular Systems, Inc. Catheter balloon having a porous layer with ridges
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20050226991A1 (en) * 2004-04-07 2005-10-13 Hossainy Syed F Methods for modifying balloon of a catheter assembly
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US9000040B2 (en) 2004-09-28 2015-04-07 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US9012506B2 (en) 2004-09-28 2015-04-21 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US8858978B2 (en) 2004-09-28 2014-10-14 Atrium Medical Corporation Heat cured gel and method of making
US7993350B2 (en) * 2004-10-04 2011-08-09 Medtronic, Inc. Shapeable or steerable guide sheaths and methods for making and using them
US7875049B2 (en) * 2004-10-04 2011-01-25 Medtronic, Inc. Expandable guide sheath with steerable backbone and methods for making and using them
US7354419B2 (en) * 2004-10-15 2008-04-08 Futuremed Interventional, Inc. Medical balloon having strengthening rods
US7632242B2 (en) 2004-12-09 2009-12-15 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US20060136032A1 (en) * 2004-12-16 2006-06-22 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with hybrid porosity sublayers
US7654979B2 (en) * 2004-12-21 2010-02-02 Advanced Cardiovascular System, Inc. Balloon catheter having improved balloon seal
US20060161102A1 (en) * 2005-01-18 2006-07-20 Newcomb Kenneth R Controlled failure balloon catheter assemblies
DE102005007596A1 (en) * 2005-02-18 2006-08-24 Breeze Medical, Inc., Boca Raton Coating, manufacturing method and method for applying a coating to a medical instrument and medical instrument
US7807774B2 (en) 2005-06-17 2010-10-05 Eastman Chemical Company Vending machines comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3,-cyclobutanediol and 1,4-cyclohexanedimethanol
WO2007053548A2 (en) * 2005-10-28 2007-05-10 Eastman Chemical Company Polyester compositions comprising minimal amounts of cyclobutanediol
US20100184940A1 (en) * 2005-03-02 2010-07-22 Eastman Chemical Company Polyester Compositions Which Comprise Cyclobutanediol and Certain Thermal Stabilizers, and/or Reaction Products Thereof
US8021386B2 (en) 2005-03-16 2011-09-20 Gore Enterprise Holdings, Inc. Controlled release mechanism for balloon catheters
US20060233991A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060233990A1 (en) 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060235525A1 (en) * 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Composite structure for biomedical implants
US7862601B2 (en) * 2005-05-23 2011-01-04 Incept Llc Apparatus and methods for delivering a stent into an ostium
US8672990B2 (en) * 2005-05-27 2014-03-18 Boston Scientific Scimed, Inc. Fiber mesh controlled expansion balloon catheter
GB0511431D0 (en) * 2005-06-04 2005-07-13 Vascutek Ltd Graft
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7575569B2 (en) * 2005-08-16 2009-08-18 Medtronic, Inc. Apparatus and methods for delivering stem cells and other agents into cardiac tissue
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US9427423B2 (en) 2009-03-10 2016-08-30 Atrium Medical Corporation Fatty-acid based particles
US9278161B2 (en) 2005-09-28 2016-03-08 Atrium Medical Corporation Tissue-separating fatty acid adhesion barrier
US8586701B2 (en) * 2005-10-28 2013-11-19 Eastman Chemical Company Process for the preparation of copolyesters based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US20070106054A1 (en) * 2005-10-28 2007-05-10 Crawford Emmett D Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7637902B2 (en) * 2005-11-23 2009-12-29 Medtronic, Inc. Slittable and peelable sheaths and methods for making and using them
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
JP2009519770A (en) 2005-12-16 2009-05-21 インターフェイス・アソシエイツ・インコーポレーテッド Medical multilayer balloon and method for producing the same
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US8147453B2 (en) 2006-03-13 2012-04-03 Applied Medical Resources Corporation Balloon trocar
US8287503B2 (en) 2006-03-13 2012-10-16 Applied Medical Resources Corporation Balloon trocar
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US8721704B2 (en) * 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US20070265565A1 (en) * 2006-05-15 2007-11-15 Medtronic Vascular, Inc. Mesh-Reinforced Catheter Balloons and Methods for Making the Same
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US20080097374A1 (en) * 2006-08-07 2008-04-24 Korleski Joseph E Inflatable shaped balloons
US8979886B2 (en) * 2006-08-07 2015-03-17 W. L. Gore & Associates, Inc. Medical balloon and method of making the same
US20080097300A1 (en) * 2006-08-07 2008-04-24 Sherif Eskaros Catheter balloon with multiple micropleats
US20080033476A1 (en) * 2006-08-07 2008-02-07 Greene Joel M Catheter balloon with controlled failure sheath
US8926620B2 (en) 2006-08-25 2015-01-06 Kyphon Sarl Apparatus and methods for use of expandable members in surgical applications
US8043362B2 (en) * 2006-08-25 2011-10-25 Kyphon Sarl Apparatus and methods for use of expandable members in surgical applications
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US8795346B2 (en) * 2006-11-20 2014-08-05 Boston Scientific Scimed, Inc. Semi rigid edge protection design for stent delivery system
US20080140099A1 (en) * 2006-12-12 2008-06-12 Ethicon Endo-Surgery, Inc. Pyloric plug
WO2008095046A2 (en) 2007-01-30 2008-08-07 Loma Vista Medical, Inc., Biological navigation device
US8333783B2 (en) * 2007-02-16 2012-12-18 Reverse Medical Corporation Occlusion device and method of use
US20080199510A1 (en) * 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8747353B2 (en) 2007-04-10 2014-06-10 Medtronic Vascular, Inc. Catheter balloon having improved flexibility and methods for making same
WO2008130467A1 (en) * 2007-04-17 2008-10-30 Boston Scientific Scimed, Inc. Ambulatory urodynamics
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US20090069748A1 (en) * 2007-09-12 2009-03-12 Cook Incorporated Pushable balloon catheter assembly
US20090076439A1 (en) * 2007-09-14 2009-03-19 Dollar Michael L Inflation System for Balloon Catheter
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
WO2009046372A2 (en) 2007-10-04 2009-04-09 Trivascular2, Inc. Modular vascular graft for low profile percutaneous delivery
US20090112158A1 (en) * 2007-10-29 2009-04-30 Velasco Regina Medical device including a thin metallic film component attached to a polymeric component and associated methods
US20090149835A1 (en) * 2007-10-29 2009-06-11 Velasco Regina Medical device including a metallic substrate component attached to a polymeric component and associated methods
AU2008324561A1 (en) * 2007-11-06 2009-05-14 Coloplast A/S Balloon catheter
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
KR20100087171A (en) 2007-11-21 2010-08-03 이스트만 케미칼 컴파니 Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US20100241152A1 (en) 2008-06-02 2010-09-23 Loma Vista Medical, Inc. Inflatable medical devices
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US20100099828A1 (en) * 2008-10-21 2010-04-22 Eastman Chemical Company Clear Binary Blends of Aliphatic Polyesters and Aliphatic-Aromatic Polyesters
US8895654B2 (en) * 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US8728110B2 (en) * 2009-01-16 2014-05-20 Bard Peripheral Vascular, Inc. Balloon dilation catheter shaft having end transition
EP2405814B1 (en) * 2009-03-09 2016-11-16 Flip Technologies Limited A device for protecting a catheter
US20100286593A1 (en) * 2009-05-11 2010-11-11 Hotspur Technologies, Inc. Balloon catheter with cutting features and methods for use
US20110038910A1 (en) 2009-08-11 2011-02-17 Atrium Medical Corporation Anti-infective antimicrobial-containing biomaterials
US10471212B2 (en) 2009-10-29 2019-11-12 W. L. Gore & Associates, Inc. Silicone free drug delivery devices
EP3725348A1 (en) * 2009-10-29 2020-10-21 W.L. Gore & Associates Inc. Syringe cap coated with expanded ptfe
US9597458B2 (en) 2009-10-29 2017-03-21 W. L. Gore & Associates, Inc. Fluoropolymer barrier materials for containers
EP2593171B1 (en) 2010-07-13 2019-08-28 Loma Vista Medical, Inc. Inflatable medical devices
EP2593141B1 (en) 2010-07-16 2018-07-04 Atrium Medical Corporation Composition and methods for altering the rate of hydrolysis of cured oil-based materials
US10780251B2 (en) 2010-09-17 2020-09-22 W. L. Gore & Associates, Inc. Expandable medical devices
US11612697B2 (en) 2010-10-29 2023-03-28 W. L. Gore & Associates, Inc. Non-fluoropolymer tie layer and fluoropolymer barrier layer
US10188436B2 (en) 2010-11-09 2019-01-29 Loma Vista Medical, Inc. Inflatable medical devices
EP2637572A1 (en) 2010-11-12 2013-09-18 Smith & Nephew, Inc. Inflatable, steerable balloon for elevation of tissue within a body
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
BR112013018416B1 (en) 2011-01-18 2020-11-17 Loma Vista Medical, Inc. inflatable medical devices
US20120310210A1 (en) 2011-03-04 2012-12-06 Campbell Carey V Eluting medical devices
US9415193B2 (en) 2011-03-04 2016-08-16 W. L. Gore & Associates, Inc. Eluting medical devices
CA2828608C (en) * 2011-03-07 2021-11-23 Smart Medical Systems Ltd Balloon-equipped endoscopic devices and methods thereof
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9554840B2 (en) * 2011-04-08 2017-01-31 Kyphon SÀRL Low cost low profile inflatable bone tamp
US9028444B2 (en) 2011-04-15 2015-05-12 W. L. Gore & Associates, Inc. Pivoting ring seal
US9370643B2 (en) * 2011-06-23 2016-06-21 W.L. Gore & Associates, Inc. High strength balloon cover
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
US8998936B2 (en) 2011-06-30 2015-04-07 The Spectranetics Corporation Reentry catheter and method thereof
US9814862B2 (en) 2011-06-30 2017-11-14 The Spectranetics Corporation Reentry catheter and method thereof
US8956376B2 (en) 2011-06-30 2015-02-17 The Spectranetics Corporation Reentry catheter and method thereof
US9370647B2 (en) 2011-07-14 2016-06-21 W. L. Gore & Associates, Inc. Expandable medical devices
US8888692B1 (en) 2011-08-26 2014-11-18 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US9554806B2 (en) 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US9808605B2 (en) * 2011-10-06 2017-11-07 W. L. Gore & Associates, Inc. Controlled porosity devices for tissue treatments, methods of use, and methods of manufacture
US9730726B2 (en) 2011-10-07 2017-08-15 W. L. Gore & Associates, Inc. Balloon assemblies having controllably variable topographies
KR101626234B1 (en) * 2012-01-16 2016-05-31 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US20130217830A1 (en) 2012-02-16 2013-08-22 Eastman Chemical Company Clear Semi-Crystalline Articles with Improved Heat Resistance
US9775933B2 (en) 2012-03-02 2017-10-03 W. L. Gore & Associates, Inc. Biocompatible surfaces and devices incorporating such surfaces
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9867880B2 (en) 2012-06-13 2018-01-16 Atrium Medical Corporation Cured oil-hydrogel biomaterial compositions for controlled drug delivery
US10173038B2 (en) 2012-09-05 2019-01-08 W. L. Gore & Associates, Inc. Retractable sheath devices, systems, and methods
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10279084B2 (en) * 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US9486346B2 (en) * 2013-03-01 2016-11-08 Medtronic Vascular, Inc. Balloon expandable stent graft and apparatus and method for expanding a balloon expandable stent graft
US9669194B2 (en) 2013-03-14 2017-06-06 W. L. Gore & Associates, Inc. Conformable balloon devices and methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
EP3620203A1 (en) 2013-03-15 2020-03-11 Insera Therapeutics, Inc. Vascular treatment devices
US11116947B2 (en) * 2013-03-15 2021-09-14 W. L. Gore & Associates, Inc. Balloon seal stress reduction and related systems and methods
JP6294455B2 (en) 2013-03-15 2018-03-14 アプライド メディカル リソーシーズ コーポレイション Trocar cannula assembly having low profile insertion configuration and manufacturing method
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
AU2014257079B2 (en) 2013-04-24 2018-12-20 Loma Vista Medical, Inc. Inflatable medical balloons with continuous fiber wind
US9844383B2 (en) * 2013-05-08 2017-12-19 Embolx, Inc. Devices and methods for low pressure tumor embolization
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US10729570B2 (en) 2013-09-17 2020-08-04 West Coast Catheter, Inc. Medical balloon with varied compliance
WO2015051380A2 (en) * 2013-10-04 2015-04-09 President And Fellows Of Harvard College Biomimetic actuation device and system, and methods for controlling a biomimetic actuation device and system
US9782571B2 (en) 2014-01-30 2017-10-10 Chuter A. M. Timothy Flexible high-pressure angioplasty balloons
US9149612B2 (en) 2013-11-13 2015-10-06 West Coast Catheter, Inc. Flexible high-pressure balloons
US10201685B2 (en) 2013-11-13 2019-02-12 West Coast Catheter, Inc. High-pressure balloons
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US10076644B2 (en) 2014-05-16 2018-09-18 Terumo Kabushiki Kaisha Method and apparatus for treating urethral stricture
US20160045300A1 (en) * 2014-05-16 2016-02-18 Terumo Kabushiki Kaisha Method and apparatus for treating urethral stricture
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10569063B2 (en) 2014-10-03 2020-02-25 W. L. Gore & Associates, Inc. Removable covers for drug eluting medical devices
US10668257B2 (en) * 2014-10-16 2020-06-02 W. L. Gore & Associates, Inc. Blow molded composite devices and methods
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
EP3294150B1 (en) 2015-05-14 2021-12-15 W. L. Gore & Associates, Inc. Devices for occlusion of an atrial appendage
JP6862642B2 (en) * 2015-10-15 2021-04-21 住友電工ファインポリマー株式会社 Semipermeable membrane and method for manufacturing semipermeable membrane
CN108697423A (en) 2016-02-16 2018-10-23 伊瑟拉医疗公司 The part flow arrangement of suction unit and anchoring
EP4233806A3 (en) 2016-04-21 2023-09-06 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion
US11524095B2 (en) * 2016-06-30 2022-12-13 St. Jude Medical, Cardiology Division, Inc. Medical delivery devices and methods of making and using same
EP3687451B1 (en) 2017-09-27 2023-12-13 Edwards Lifesciences Corporation Prosthetic valve with expandable frame
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
JP7120615B2 (en) * 2017-11-17 2022-08-17 Nke株式会社 Movement aid and fixing method
JP7262581B2 (en) * 2018-11-14 2023-04-21 ルトニックス,インコーポレーテッド Medical device with drug eluting coating on modified device surface
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
WO2022075272A1 (en) * 2020-10-05 2022-04-14 株式会社 潤工社 Tube
JP2024506536A (en) * 2021-02-05 2024-02-14 カーディオフォーカス,インコーポレーテッド Endoscopic guided ablation catheter with heat resistant balloon

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4003382A (en) * 1975-07-25 1977-01-18 Ethicon, Inc. Retention catheter and method of manufacture
US4106509A (en) * 1976-08-05 1978-08-15 The Kendall Company Catheters
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4279245A (en) * 1978-12-19 1981-07-21 Olympus Optical Co., Ltd. Flexible tube
US4304010A (en) * 1978-10-12 1981-12-08 Sumitomo Electric Industries, Ltd. Tubular polytetrafluoroethylene prosthesis with porous elastomer coating
US4403612A (en) * 1980-10-20 1983-09-13 Fogarty Thomas J Dilatation method
US4443511A (en) * 1982-11-19 1984-04-17 W. L. Gore & Associates, Inc. Elastomeric waterproof laminate
US4573966A (en) * 1981-11-24 1986-03-04 Schneider Medintag Ag Method and apparatus for removing and/or enlarging constricted areas in vessels conducting body fluids
US4613544A (en) * 1984-12-04 1986-09-23 Minnesota Mining And Manufacturing Co. Waterproof, moisture-vapor permeable sheet material and method of making the same
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4637396A (en) * 1984-10-26 1987-01-20 Cook, Incorporated Balloon catheter
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4702252A (en) * 1983-10-13 1987-10-27 Smiths Industries Public Limited Company Catheters
US4706670A (en) * 1985-11-26 1987-11-17 Meadox Surgimed A/S Dilatation catheter
US4713070A (en) * 1978-11-30 1987-12-15 Sumitom Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
US4737219A (en) * 1985-02-12 1988-04-12 Becton, Dickinson And Company Method for bonding polyurethane balloons to multilumen catheters
US4739762A (en) * 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4743480A (en) * 1986-11-13 1988-05-10 W. L. Gore & Associates, Inc. Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby
US4764560A (en) * 1985-11-13 1988-08-16 General Electric Company Interpenetrating polymeric network comprising polytetrafluoroethylene and polysiloxane
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4832688A (en) * 1986-04-09 1989-05-23 Terumo Kabushiki Kaisha Catheter for repair of blood vessel
US4896669A (en) * 1988-08-31 1990-01-30 Meadox Medicals, Inc. Dilatation catheter
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5066298A (en) * 1989-11-30 1991-11-19 Progressive Angioplasty Systems, Inc. Article and method of sheathing angioplasty balloons
US5071609A (en) * 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US5087244A (en) * 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5112304A (en) * 1989-03-17 1992-05-12 Angeion Corporation Balloon catheter
US5116318A (en) * 1989-06-06 1992-05-26 Cordis Corporation Dilatation balloon within an elastic sleeve
US5147302A (en) * 1989-04-21 1992-09-15 Scimed Life Systems, Inc. Method of shaping a balloon of a balloon catheter
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5192296A (en) * 1988-08-31 1993-03-09 Meadox Medicals, Inc. Dilatation catheter
US5195970A (en) * 1991-04-26 1993-03-23 Gahara William J Collapsible balloon catheters
US5197978A (en) * 1991-04-26 1993-03-30 Advanced Coronary Technology, Inc. Removable heat-recoverable tissue supporting device
US5201706A (en) * 1989-05-09 1993-04-13 Toray Industries, Inc. Catheter with a balloon reinforced with composite yarn
US5213576A (en) * 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5226880A (en) * 1989-01-31 1993-07-13 Vas-Cath Incorporated Angioplasty catheter with balloon retainer
US5236659A (en) * 1988-10-04 1993-08-17 Cordis Corporation Tailoring expansion properties of balloons for medical devices
US5254090A (en) * 1991-01-14 1993-10-19 Kontron Instruments, Inc. Balloon catheter having a dual layer inner member
US5256143A (en) * 1987-01-06 1993-10-26 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter
US5286254A (en) * 1990-06-15 1994-02-15 Cortrak Medical, Inc. Drug delivery apparatus and method
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5342348A (en) * 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5348538A (en) * 1992-09-29 1994-09-20 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear or hybrid compliance curve
US5358486A (en) * 1987-01-09 1994-10-25 C. R. Bard, Inc. Multiple layer high strength balloon for dilatation catheter
US5358516A (en) * 1992-12-11 1994-10-25 W. L. Gore & Associates, Inc. Implantable electrophysiology lead and method of making
US5366442A (en) * 1991-04-26 1994-11-22 Boston Scientific Corp. Sleeve for attaching a medical balloon to a catheter
US5409495A (en) * 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
US5415636A (en) * 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5425710A (en) * 1993-10-26 1995-06-20 Medtronic, Inc. Coated sleeve for wrapping dilatation catheter balloons
US5429605A (en) * 1994-01-26 1995-07-04 Target Therapeutics, Inc. Microballoon catheter
US5456661A (en) * 1994-03-31 1995-10-10 Pdt Cardiovascular Catheter with thermally stable balloon
US5458568A (en) * 1991-05-24 1995-10-17 Cortrak Medical, Inc. Porous balloon for selective dilatation and drug delivery
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5466252A (en) * 1992-10-02 1995-11-14 W. L. Gore & Associates, Inc. Implantable lead
US5470313A (en) * 1994-02-24 1995-11-28 Cardiovascular Dynamics, Inc. Variable diameter balloon dilatation catheter
US5478320A (en) * 1989-11-29 1995-12-26 Cordis Corporation Puncture resistant balloon catheter and method of manufacturing
US5478349A (en) * 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
US5490839A (en) * 1993-09-20 1996-02-13 Scimed Life Systems, Inc. Catheter balloon with retraction coating
US5496276A (en) * 1993-09-20 1996-03-05 Scimed Life Systems, Inc. Catheter balloon with retraction coating
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5499980A (en) * 1988-08-08 1996-03-19 Scimed Life Systems, Inc. Polyimide balloon catheter and method of making same
US5499995A (en) * 1994-05-25 1996-03-19 Teirstein; Paul S. Body passageway closure apparatus and method of use
US5500180A (en) * 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5512051A (en) * 1993-02-16 1996-04-30 Boston Scientific Corporation Slip-layered catheter balloon
US5519172A (en) * 1994-09-13 1996-05-21 W. L. Gore & Associates, Inc. Jacket material for protection of electrical conductors
US5527282A (en) * 1994-12-09 1996-06-18 Segal; Jerome Vascular dilatation device and method
US5529820A (en) * 1993-03-17 1996-06-25 Japan Gore-Tex, Inc. Flexible, non-porous tube and a method of making
US5571089A (en) * 1993-06-30 1996-11-05 Cardiovascular Dynamics, Inc. Low profile perfusion catheter
US5609605A (en) * 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5647848A (en) * 1995-06-07 1997-07-15 Meadox Medicals, Inc. High strength low compliance composite balloon for balloon catheters
US5716396A (en) * 1993-09-16 1998-02-10 Cordis Corporation Endoprosthesis having multiple laser welded junctions method and procedure
US5752934A (en) * 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US5766201A (en) * 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5797877A (en) * 1993-10-01 1998-08-25 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US5807327A (en) * 1995-12-08 1998-09-15 Ethicon, Inc. Catheter assembly
US5868704A (en) * 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5951941A (en) * 1994-03-02 1999-09-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6287314B1 (en) * 1998-04-21 2001-09-11 Advanced Cardiovascular Systems, Inc. Stent deploying catheter system
US6319529B1 (en) * 1999-08-12 2001-11-20 Thompson Animal Systems, Inc. Selenium diet supplement and method of making
US6428506B1 (en) * 1999-12-22 2002-08-06 Advanced Cardiovascular Systems, Inc. Medical device formed of ultrahigh molecular weight polyethylene
US6939593B2 (en) * 2001-08-27 2005-09-06 Scimed Life Systems, Inc. Medical devices utilizing melt-processible poly(tetrafluoroethylene)

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634924A (en) * 1970-04-20 1972-01-18 American Hospital Supply Corp Method of making multilumen balloon catheter
US4280500A (en) * 1978-03-31 1981-07-28 Kazuaki Ono Tubular flexible medical instrument
US4327736A (en) * 1979-11-20 1982-05-04 Kanji Inoue Balloon catheter
US4608984A (en) * 1980-10-17 1986-09-02 Fogarty Thomas J Self-retracting dilatation catheter
US4338942A (en) * 1980-10-20 1982-07-13 Fogarty Thomas J Dilatation catherter apparatus
US4596839A (en) * 1981-09-16 1986-06-24 Peters William E Elastomer PTFE composition
JP2683750B2 (en) * 1988-06-06 1997-12-03 住友電気工業株式会社 Catheter balloon
US5137512A (en) * 1989-03-17 1992-08-11 Scimed Life Systems, Inc. Multisegment balloon protector for dilatation catheter
US5171297A (en) * 1989-03-17 1992-12-15 Angeion Corporation Balloon catheter
US5071909A (en) * 1989-07-26 1991-12-10 Millipore Corporation Immobilization of proteins and peptides on insoluble supports
ATE91638T1 (en) * 1989-09-25 1993-08-15 Schneider Usa Inc MULTI-LAYER EXTRUSION AS A PROCESS FOR MANUFACTURING BALLOONS FOR VESSEL PLASTIC.
US5199973A (en) * 1990-08-06 1993-04-06 Funk Sr Charles F Method of disposing of medical sharps
US5301310A (en) * 1991-02-07 1994-04-05 Thinking Machines Corporation Parallel disk storage array system with independent drive operation mode
JPH05192408A (en) * 1991-09-06 1993-08-03 C R Bard Inc Production of expansion balloon
JPH05196787A (en) * 1991-10-24 1993-08-06 Mitsubishi Nuclear Fuel Co Ltd Assembling device for fuel assembly
US5304214A (en) * 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5304120A (en) * 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
WO1994002185A1 (en) 1992-07-20 1994-02-03 Advanced Cardiovascular Systems, Inc. Inflatable member formed of fluoropolymeric material
US5342305A (en) * 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
US5370618A (en) * 1992-11-20 1994-12-06 World Medical Manufacturing Corporation Pulmonary artery polyurethane balloon catheter
US5308356A (en) * 1993-02-25 1994-05-03 Blackshear Jr Perry L Passive perfusion angioplasty catheter
US6025044A (en) * 1993-08-18 2000-02-15 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5484411A (en) * 1994-01-14 1996-01-16 Cordis Corporation Spiral shaped perfusion balloon and method of use and manufacture
US5499973A (en) * 1994-09-08 1996-03-19 Saab; Mark A. Variable stiffness balloon dilatation catheters
US5476589A (en) * 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
AU6396496A (en) * 1995-07-07 1997-02-10 W.L. Gore & Associates, Inc. Interior liner for tubes, pipes and blood conduits
EP0877636B1 (en) * 1996-01-31 2002-10-02 E.I. Du Pont De Nemours And Company Dilatation catheter balloons with improved puncture resistance
US6746425B1 (en) * 1996-06-14 2004-06-08 Futuremed Interventional Medical balloon
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US20040199202A1 (en) * 1997-11-12 2004-10-07 Genesis Technologies Llc Biological passageway occlusion removal
US6234995B1 (en) * 1998-11-12 2001-05-22 Advanced Interventional Technologies, Inc. Apparatus and method for selectively isolating a proximal anastomosis site from blood in an aorta
DE19817553A1 (en) 1998-04-15 1999-10-21 Biotronik Mess & Therapieg Ablation arrangement
US6013092A (en) * 1998-08-18 2000-01-11 Baxter International Inc. Folding of catheter-mounted balloons to facilitate non-rotational radial expansion of intraluminal devices
US6336937B1 (en) * 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6287290B1 (en) * 1999-07-02 2001-09-11 Pulmonx Methods, systems, and kits for lung volume reduction
US6375637B1 (en) * 1999-08-27 2002-04-23 Gore Enterprise Holdings, Inc. Catheter balloon having a controlled failure mechanism
US6977103B2 (en) * 1999-10-25 2005-12-20 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6602224B1 (en) * 1999-12-22 2003-08-05 Advanced Cardiovascular Systems, Inc. Medical device formed of ultrahigh molecular weight polyolefin
CN1204937C (en) * 1999-12-24 2005-06-08 东丽株式会社 Catheter with balloon
US6723113B1 (en) * 2000-01-19 2004-04-20 Cordis Neurovascular, Inc. Inflatable balloon catheter seal and method
US6540734B1 (en) * 2000-02-16 2003-04-01 Advanced Cardiovascular Systems, Inc. Multi-lumen extrusion tubing
US6663646B1 (en) * 2000-10-24 2003-12-16 Tilak M. Shah Isotropically expansible balloon articles useful in in vivo lumenal procedures, and method of making such balloon articles
US6887227B1 (en) * 2001-02-23 2005-05-03 Coaxia, Inc. Devices and methods for preventing distal embolization from the vertebrobasilar artery using flow reversal
WO2002076700A1 (en) * 2001-03-26 2002-10-03 Machine Solutions, Inc. Balloon folding technology
US7070613B2 (en) * 2002-01-04 2006-07-04 Boston Scientific Scimed, Inc. Non-compliant balloon with compliant top-layer to protect coated stents during expansion
US6929768B2 (en) * 2002-05-13 2005-08-16 Advanced Cardiovascular Systems, Inc. Method of making a catheter balloon by laser fusing wrapped material
US7147619B2 (en) * 2002-07-22 2006-12-12 Advanced Cardiovascular Systems, Inc. Catheter balloon having impregnated balloon skirt sections
US7195638B1 (en) * 2002-12-30 2007-03-27 Advanced Cardiovascular Systems, Inc. Catheter balloon
US20050015048A1 (en) * 2003-03-12 2005-01-20 Chiu Jessica G. Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US7632291B2 (en) * 2003-06-13 2009-12-15 Trivascular2, Inc. Inflatable implant
US7682335B2 (en) * 2004-10-15 2010-03-23 Futurematrix Interventional, Inc. Non-compliant medical balloon having an integral non-woven fabric layer
US20060136032A1 (en) * 2004-12-16 2006-06-22 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with hybrid porosity sublayers
US20060161102A1 (en) * 2005-01-18 2006-07-20 Newcomb Kenneth R Controlled failure balloon catheter assemblies
US20070219585A1 (en) * 2006-03-14 2007-09-20 Cornet Douglas A System for administering reduced pressure treatment having a manifold with a primary flow passage and a blockage prevention member
US20080255507A1 (en) * 2006-06-15 2008-10-16 Medtronic Vascular, Inc. Catheter Assembly Having a Grooved Distal Tip

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187390A (en) * 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4003382A (en) * 1975-07-25 1977-01-18 Ethicon, Inc. Retention catheter and method of manufacture
US4106509A (en) * 1976-08-05 1978-08-15 The Kendall Company Catheters
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4304010A (en) * 1978-10-12 1981-12-08 Sumitomo Electric Industries, Ltd. Tubular polytetrafluoroethylene prosthesis with porous elastomer coating
US4713070A (en) * 1978-11-30 1987-12-15 Sumitom Electric Industries, Ltd. Porous structure of polytetrafluoroethylene and process for production thereof
US4279245A (en) * 1978-12-19 1981-07-21 Olympus Optical Co., Ltd. Flexible tube
US4403612A (en) * 1980-10-20 1983-09-13 Fogarty Thomas J Dilatation method
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4573966A (en) * 1981-11-24 1986-03-04 Schneider Medintag Ag Method and apparatus for removing and/or enlarging constricted areas in vessels conducting body fluids
US4443511A (en) * 1982-11-19 1984-04-17 W. L. Gore & Associates, Inc. Elastomeric waterproof laminate
US4702252A (en) * 1983-10-13 1987-10-27 Smiths Industries Public Limited Company Catheters
US4637396A (en) * 1984-10-26 1987-01-20 Cook, Incorporated Balloon catheter
US4619641A (en) * 1984-11-13 1986-10-28 Mount Sinai School Of Medicine Of The City University Of New York Coaxial double lumen anteriovenous grafts
US4613544A (en) * 1984-12-04 1986-09-23 Minnesota Mining And Manufacturing Co. Waterproof, moisture-vapor permeable sheet material and method of making the same
US4737219A (en) * 1985-02-12 1988-04-12 Becton, Dickinson And Company Method for bonding polyurethane balloons to multilumen catheters
US4650466A (en) * 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4739762A (en) * 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762B1 (en) * 1985-11-07 1998-10-27 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4764560A (en) * 1985-11-13 1988-08-16 General Electric Company Interpenetrating polymeric network comprising polytetrafluoroethylene and polysiloxane
US4706670A (en) * 1985-11-26 1987-11-17 Meadox Surgimed A/S Dilatation catheter
US4832688A (en) * 1986-04-09 1989-05-23 Terumo Kabushiki Kaisha Catheter for repair of blood vessel
US4743480A (en) * 1986-11-13 1988-05-10 W. L. Gore & Associates, Inc. Apparatus and method for extruding and expanding polytetrafluoroethylene tubing and the products produced thereby
US5071609A (en) * 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US5256143A (en) * 1987-01-06 1993-10-26 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter
US5358486A (en) * 1987-01-09 1994-10-25 C. R. Bard, Inc. Multiple layer high strength balloon for dilatation catheter
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5499980A (en) * 1988-08-08 1996-03-19 Scimed Life Systems, Inc. Polyimide balloon catheter and method of making same
US4896669A (en) * 1988-08-31 1990-01-30 Meadox Medicals, Inc. Dilatation catheter
US5192296A (en) * 1988-08-31 1993-03-09 Meadox Medicals, Inc. Dilatation catheter
US5236659A (en) * 1988-10-04 1993-08-17 Cordis Corporation Tailoring expansion properties of balloons for medical devices
US5087244A (en) * 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5226880A (en) * 1989-01-31 1993-07-13 Vas-Cath Incorporated Angioplasty catheter with balloon retainer
US5112304A (en) * 1989-03-17 1992-05-12 Angeion Corporation Balloon catheter
US5147302A (en) * 1989-04-21 1992-09-15 Scimed Life Systems, Inc. Method of shaping a balloon of a balloon catheter
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5201706A (en) * 1989-05-09 1993-04-13 Toray Industries, Inc. Catheter with a balloon reinforced with composite yarn
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5116318A (en) * 1989-06-06 1992-05-26 Cordis Corporation Dilatation balloon within an elastic sleeve
US5613979A (en) * 1989-11-29 1997-03-25 Cordis Corporation Puncture resistant balloon catheter
US5620649A (en) * 1989-11-29 1997-04-15 Cordis Corporation Puncture resistant balloon catheter
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5478320A (en) * 1989-11-29 1995-12-26 Cordis Corporation Puncture resistant balloon catheter and method of manufacturing
US5066298A (en) * 1989-11-30 1991-11-19 Progressive Angioplasty Systems, Inc. Article and method of sheathing angioplasty balloons
US5286254A (en) * 1990-06-15 1994-02-15 Cortrak Medical, Inc. Drug delivery apparatus and method
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5254090A (en) * 1991-01-14 1993-10-19 Kontron Instruments, Inc. Balloon catheter having a dual layer inner member
US5366442A (en) * 1991-04-26 1994-11-22 Boston Scientific Corp. Sleeve for attaching a medical balloon to a catheter
US5197978B1 (en) * 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5197978A (en) * 1991-04-26 1993-03-30 Advanced Coronary Technology, Inc. Removable heat-recoverable tissue supporting device
US5195970A (en) * 1991-04-26 1993-03-23 Gahara William J Collapsible balloon catheters
US5458568A (en) * 1991-05-24 1995-10-17 Cortrak Medical, Inc. Porous balloon for selective dilatation and drug delivery
US5213576A (en) * 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5348538A (en) * 1992-09-29 1994-09-20 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear or hybrid compliance curve
US5403340A (en) * 1992-09-29 1995-04-04 Scimed Lifesystems Inc. Shrinking balloon catheter having nonlinear compliance curve
US5500181A (en) * 1992-09-29 1996-03-19 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear compliance curve
US5500180A (en) * 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5466252A (en) * 1992-10-02 1995-11-14 W. L. Gore & Associates, Inc. Implantable lead
US5342348A (en) * 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5358516A (en) * 1992-12-11 1994-10-25 W. L. Gore & Associates, Inc. Implantable electrophysiology lead and method of making
US5512051A (en) * 1993-02-16 1996-04-30 Boston Scientific Corporation Slip-layered catheter balloon
US5529820A (en) * 1993-03-17 1996-06-25 Japan Gore-Tex, Inc. Flexible, non-porous tube and a method of making
US5571089A (en) * 1993-06-30 1996-11-05 Cardiovascular Dynamics, Inc. Low profile perfusion catheter
US5409495A (en) * 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
US5716396A (en) * 1993-09-16 1998-02-10 Cordis Corporation Endoprosthesis having multiple laser welded junctions method and procedure
US5490839A (en) * 1993-09-20 1996-02-13 Scimed Life Systems, Inc. Catheter balloon with retraction coating
US5496276A (en) * 1993-09-20 1996-03-05 Scimed Life Systems, Inc. Catheter balloon with retraction coating
US5797877A (en) * 1993-10-01 1998-08-25 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US5425710A (en) * 1993-10-26 1995-06-20 Medtronic, Inc. Coated sleeve for wrapping dilatation catheter balloons
US5429605A (en) * 1994-01-26 1995-07-04 Target Therapeutics, Inc. Microballoon catheter
US5470313A (en) * 1994-02-24 1995-11-28 Cardiovascular Dynamics, Inc. Variable diameter balloon dilatation catheter
US5951941A (en) * 1994-03-02 1999-09-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US5456661A (en) * 1994-03-31 1995-10-10 Pdt Cardiovascular Catheter with thermally stable balloon
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5415636A (en) * 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5478349A (en) * 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
US5499995A (en) * 1994-05-25 1996-03-19 Teirstein; Paul S. Body passageway closure apparatus and method of use
US5499995C1 (en) * 1994-05-25 2002-03-12 Paul S Teirstein Body passageway closure apparatus and method of use
US5609605A (en) * 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5519172A (en) * 1994-09-13 1996-05-21 W. L. Gore & Associates, Inc. Jacket material for protection of electrical conductors
US5527282A (en) * 1994-12-09 1996-06-18 Segal; Jerome Vascular dilatation device and method
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5647848A (en) * 1995-06-07 1997-07-15 Meadox Medicals, Inc. High strength low compliance composite balloon for balloon catheters
US5766201A (en) * 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5868704A (en) * 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US6120477A (en) * 1995-09-18 2000-09-19 Gore Enterprise Holdings, Inc. Balloon catheter device
US5752934A (en) * 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US5807327A (en) * 1995-12-08 1998-09-15 Ethicon, Inc. Catheter assembly
US6319259B1 (en) * 1998-04-21 2001-11-20 Advanced Cardiovascular Systems Stent deploying catheter system
US6287314B1 (en) * 1998-04-21 2001-09-11 Advanced Cardiovascular Systems, Inc. Stent deploying catheter system
US20020087165A1 (en) * 1998-04-21 2002-07-04 Jeong S. Lee Stent deploying catheter system and balloon catheter
US6488688B2 (en) * 1998-04-21 2002-12-03 Advanced Cardiovascular Systems, Inc. Stent deploying catheter system and balloon catheter
US6319529B1 (en) * 1999-08-12 2001-11-20 Thompson Animal Systems, Inc. Selenium diet supplement and method of making
US6428506B1 (en) * 1999-12-22 2002-08-06 Advanced Cardiovascular Systems, Inc. Medical device formed of ultrahigh molecular weight polyethylene
US6939593B2 (en) * 2001-08-27 2005-09-06 Scimed Life Systems, Inc. Medical devices utilizing melt-processible poly(tetrafluoroethylene)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080312730A1 (en) * 1995-09-18 2008-12-18 Campbell Carey V Balloon catheter device
US20070055301A1 (en) * 1995-09-18 2007-03-08 Campbell Carey V Balloon catheter device
US8585640B2 (en) 2006-08-07 2013-11-19 W.L. Gore & Associates, Inc. Non-shortening high angle wrapped balloons
WO2008021020A3 (en) * 2006-08-07 2009-02-12 Gore Enterprise Holdings Inc Inflatable imbibed polymer devices
US10881840B2 (en) 2006-08-07 2021-01-05 W. L. Gore & Associates, Inc. Inflatable imbibed polymer devices
WO2008021006A2 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Non-shortening wrapped balloon
US8636690B2 (en) 2006-08-07 2014-01-28 W. L. Gore & Associates, Inc. Catheter balloons with integrated non-distensible seals
US9878133B2 (en) 2006-08-07 2018-01-30 W. L. Gore & Associates, Inc. Inflatable imbibed polymer devices
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US9126007B2 (en) 2006-08-07 2015-09-08 W. L. Gore & Associates, Inc. Catheter balloons with integrated non-distensible seals
EP2412399A1 (en) * 2006-08-07 2012-02-01 Gore Enterprise Holdings, Inc. Methods of forming catheter balloons with integrated non-distensible seals
US8460240B2 (en) 2006-08-07 2013-06-11 W. L. Gore & Associates, Inc. Inflatable toroidal-shaped balloons
WO2008021020A2 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Inflatable imbibed polymer devices
US8597566B2 (en) 2006-08-07 2013-12-03 W. L. Gore & Associates, Inc. Non-shortening wrapped balloon
WO2008021006A3 (en) * 2006-08-07 2008-08-21 Gore Enterprise Holdings Inc Non-shortening wrapped balloon
WO2008021003A1 (en) * 2006-08-07 2008-02-21 Gore Enterprise Holdings, Inc. Catheter balloons with integrated non-distensible seals
AU2007284901B2 (en) * 2006-08-07 2011-11-03 W. L. Gore & Associates, Inc. Catheter balloons with integrated non-distensible seals
US9180279B2 (en) * 2006-08-07 2015-11-10 W. L. Gore & Associates, Inc. Inflatable imbibed polymer devices
EP2995340A1 (en) * 2006-08-07 2016-03-16 W. L. Gore & Associates, Inc. Non-shortening wrapped balloon
US20100030192A1 (en) * 2008-08-01 2010-02-04 Boston Scientific Scimed, Inc. Catheter shaft bond arrangements and methods
US9468739B2 (en) 2008-08-19 2016-10-18 Covidien Lp Detachable tip microcatheter
US9486608B2 (en) 2008-08-19 2016-11-08 Covidien Lp Detachable tip microcatheter
US10512469B2 (en) 2008-08-19 2019-12-24 Covidien Lp Detachable tip microcatheter
US11457927B2 (en) 2008-08-19 2022-10-04 Covidien Lp Detachable tip microcatheter
US10124087B2 (en) * 2012-06-19 2018-11-13 Covidien Lp Detachable coupling for catheter
US20130338643A1 (en) * 2012-06-19 2013-12-19 Tyco Healthcare Group Lp Detachable coupling for catheter
CN110430842A (en) * 2016-03-25 2019-11-08 开口公司 Foley's tube and application method

Also Published As

Publication number Publication date
JPH11512329A (en) 1999-10-26
EP0851777A1 (en) 1998-07-08
US5868704A (en) 1999-02-09
DE69625216T2 (en) 2003-08-14
US20080312730A1 (en) 2008-12-18
AU6862696A (en) 1997-04-09
US6120477A (en) 2000-09-19
US20070061000A1 (en) 2007-03-15
WO1997010871A1 (en) 1997-03-27
CA2230973C (en) 2003-12-09
US20030074016A1 (en) 2003-04-17
CA2230973A1 (en) 1997-03-27
EP0851777B1 (en) 2002-12-04
DE69625216D1 (en) 2003-01-16
US6923827B2 (en) 2005-08-02

Similar Documents

Publication Publication Date Title
US6923827B2 (en) Balloon catheter device
US20060271091A1 (en) Balloon catheter device
US5752934A (en) Balloon catheter device
US7892201B1 (en) Balloon catheter and method of mounting same
US6773447B2 (en) Balloon catheter and treatment apparatus
US8979886B2 (en) Medical balloon and method of making the same
EP2755715B1 (en) Controllable inflation profile balloon cover
US8460240B2 (en) Inflatable toroidal-shaped balloons
CN103702709B (en) Extendible armarium
WO2005025648A2 (en) Improved balloon catheter and treatment apparatus
JP2010500114A (en) Catheter balloon with breakage control sheath
CA3108318A1 (en) Inflatable medical balloon with s-shaped fiber

Legal Events

Date Code Title Description
AS Assignment

Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAMPBELL, CAREY V.;LAGUNA, ALVARO J.;SPENCER, MARK S.;REEL/FRAME:020930/0780;SIGNING DATES FROM 19970522 TO 19970604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130