US20050262786A1 - Concrete foundation wall with a low density core and carbon fiber and steel reinforcement - Google Patents

Concrete foundation wall with a low density core and carbon fiber and steel reinforcement Download PDF

Info

Publication number
US20050262786A1
US20050262786A1 US11/122,792 US12279205A US2005262786A1 US 20050262786 A1 US20050262786 A1 US 20050262786A1 US 12279205 A US12279205 A US 12279205A US 2005262786 A1 US2005262786 A1 US 2005262786A1
Authority
US
United States
Prior art keywords
foundation
concrete
carbon fiber
wall
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/122,792
Inventor
Harold Messenger
Thomas Rotondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oldcastle Precast Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/093,292 external-priority patent/US6701683B2/en
Priority claimed from US10/150,465 external-priority patent/US6729090B2/en
Priority claimed from US10/423,286 external-priority patent/US6898908B2/en
Priority claimed from US10/772,148 external-priority patent/US7100336B2/en
Priority claimed from US11/096,705 external-priority patent/US7627997B2/en
Application filed by Individual filed Critical Individual
Priority to US11/122,792 priority Critical patent/US20050262786A1/en
Assigned to OLDCASTLE PRECAST, INC. reassignment OLDCASTLE PRECAST, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROTONDO, THOMAS, MESSENGER, HAROLD G.
Publication of US20050262786A1 publication Critical patent/US20050262786A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/02Flat foundations without substantial excavation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/049Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • E04C2/2885Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material with the insulating material being completely surrounded by, or embedded in, a stone-like material, e.g. the insulating material being discontinuous
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/382Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a frame of concrete or other stone-like substance
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • E04C2002/045Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete with two parallel leaves connected by tie anchors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • E04C2002/045Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete with two parallel leaves connected by tie anchors
    • E04C2002/046Flat anchors

Definitions

  • the present invention relates to building components, and more specifically lightweight concrete foundation walls that are manufactured in a controlled environment and can be selectively interconnected on-site to fabricate modular buildings.
  • panels or modules are situated in locations where it is desirable to have openings therethrough to accommodate doorways, windows, cables, pipes and the like.
  • panels were required to be specially designed and cast so as to include any necessary openings, requiring careful planning and design, thus increasing costs due to the special, non-standard configuration of such panels.
  • panels were cast without such openings and the openings were formed after casting, e.g. by sawing or similar procedures.
  • Such post-casting procedures such as cutting, particularly through the thick and/or steel-reinforced panels as described above, is a relatively labor-intensive and expensive process.
  • openings such as doors and windows may be integrated in desired locations with a reduced potential for cracking or splitting.
  • a building system that utilizes an insulative core with an interior and exterior sheet of concrete and which is held together with a metallic wire mesh positioned on both sides of an insulative core.
  • the wire mesh is embedded in concrete, and held together by a plurality of metallic wires extending through the insulative core at a right angle to the longitudinal plane of the insulative core and concrete panels.
  • the composite panel disclosed in the '375 patent does not provide the necessary strength and stiffness properties required during transportation and in high wind environments.
  • the metallic wire mesh materials are susceptible to corrosion when exposed to water during fabrication, and have poor insulative qualities due to the high heat transfer properties of metallic wire.
  • the panels disclosed in the '375 patent may be more susceptible to failure when exposed to stresses during transportation, assembly or subsequent use.
  • a precast concrete foundation wall system that can be directly positioned on a prepared soil gravel or sand surface and interconnected to one or more foundation walls. After interconnection, a concrete floor can be poured which is operatively interconnected to the foundation walls and provides additional support.
  • a substantially planar insulative core with interior and exterior surfaces is positioned between concrete panels that are reinforced with carbon fiber grids positioned substantially adjacent to the insulative core.
  • the interior layer of concrete is comprised of a low-density concrete.
  • insulative core may comprise any type of material that is thermally efficient and has a low heat transfer coefficient.
  • Styrofoam®-type materials such as expanded polystyrenes, extruded polystyrenes, extruded polypropylene, polyisocyanurate, combinations thereof and other materials, including wood materials, rubbers, and other materials well known in the construction industry.
  • a plurality of carbon fibers are oriented in a substantially diagonal orientation through the insulative core and which may be operably interconnected to carbon fiber mesh grids positioned proximate to the interior and exterior surfaces of the insulative core and which operably interconnect both the interior and exterior concrete panels to the insulative core.
  • the carbon fiber mesh grid is comprised of a plurality of first carbon fiber strands extending in a first direction that are operably interconnected to a plurality of second carbon fiber strands oriented in a second direction.
  • the carbon fiber mesh grids are embedded within the interior and exterior concrete panels.
  • attachment hardware is selectively positioned within the foundation wall panel during fabrication that is used to quickly and efficiently interconnect the panel to a structural frame.
  • a further aspect of the present invention to provide a composite foundation wall panel with at least a portion with insulative material that has superior compressive strength than typical composite materials comprised of Styrofoam® and other similar materials.
  • a plurality of structural metallic reinforcing members are placed throughout the insulative core and which extend substantially between an upper end and lower end of the insulative core.
  • these reinforcing members are comprised of steel carbon-fiber or other materials.
  • the present invention is capable of being finished with a stucco, siding, drywall other type of interior surface.
  • the present invention in one embodiment includes at least one utility line which is positioned at least partially within the composite wall panel and which accepts substantially any type of utility line which may be required in residential or commercial construction, and which can be quickly interconnected to exterior service lines.
  • This utility line may be oriented in one or more directions and is generally positioned near the interior surface of the foundation wall panel.
  • an insulated concrete foundation panel that is comprised of a exterior face wall with a plurality of reinforcing ribs emanating therefrom.
  • the space between the ribs receives foam insulation, thereby increasing the insulative properties of the foundation wall and reducing the overall density of the foundation wall.
  • the exterior face in one embodiment of the invention is additionally strengthened with at least one carbon fiber grid that generally extends horizontally therethrough.
  • the carbon fiber band is preferably tensioned between about 500-3000 lbs. so that once released the carbon fiber band will retract somewhat, thus placing the hardening concrete in a compressed state.
  • the foundation wall panel may also include a footer positioned adjacent to a top edge and a bearing pad positioned at a bottom edge. The footer provides a location for the placement of main building walls and the bearing pad is designed to increase the footprint of the wall panel on a soil or pea stone, and which subsequently becomes operably interconnected to the concrete floor surface.
  • one embodiment of the present invention is manufactured in an exterior face up configuration.
  • face up configuration refers to the exterior surface of the foundation wall panel being in an uppermost portion of the casting form during fabrication. This configuration allows for the efficient placement of the insulative foam panels, reinforcing strands and carbon fiber grid material.
  • the foundation wall is substantially comprised of a concrete base material, the finished product is fire resistant, substantially maintenance free, mold resistant, insect proof, wind resistant and projectile resistant.
  • a fire and smoke resistant surface may be affixed to the insulative foam.
  • the use of insulation in-between the ribs provides a foundation wall panel that is insulated, in one embodiment having an R factor of about 20 or more. Further, with proper treatment of the concrete, the foundation wall panel is substantially water resistant.
  • an insulative wall panel comprising:
  • a concrete exterior face wall having an upper edge, a lower edge, and lateral edges therebetween, said face wall having at least one carbon fiber strip extending between said lateral edges;
  • FIG. 1 is a top sectional plan view of an insulated founation panel of one embodiment of the present invention
  • FIG. 2 is a perspective view of interconnected insulated foundation panels positioned on a pea stone base
  • FIG. 3 are top plan views of various configurations of interconnected walls
  • FIG. 4 are front elevation and top plan views of foundation panels as contemplated by the present invention.
  • FIG. 5 is a top sectional plan view of an insulated foundation similar to that shown in FIG. 1 ;
  • FIG. 6 are top plan views of various embodiments of the present invention that includes reinforcing bars that span the entire height of the foundation wall panel;
  • FIG. 7 are views of one embodiment of the present invention that includes lifters and inserts for transporting
  • FIG. 8 are views similar to that shown in FIG. 7 ;
  • FIG. 9 are partial top plan views illustrating various interconnection methods in one embodiment of the present invention.
  • an insulated foundation wall panel 2 is shown. More specifically, an insulated foundation panel 2 is provided that includes an exterior face wall 4 with one or more embedded carbon fiber strips 6 . Interconnected to the exterior face wall 4 are a plurality of reinforcing ribs 8 running generally from an upper edge 10 to a lower edge 12 of the foundation panel 2 . Tying the ribs 8 to the foundation wall 2 are reinforcing bars 14 and carbon fiber or metallic stirrups 16 . Preferably, the space between each rib 8 is filled with foam insulation 18 , thus providing a foundation panel 2 that is strong, light, and that has superior insulative properties.
  • some embodiments of the present invention employ wood, foam or metal strips 20 running substantially the length of the ribs 8 to provide a location for nails, screws, etc. such that sheet rock or other wall finishings may be applied to the foundation panel 2 .
  • an insulative foundation panel 2 is provided that includes the face wall 4 having a plurality of ribs 8 emanating therefrom.
  • the space between each rib 8 is filled with foam insulation 18 , preferably 8′′ thick EPS regrind foam.
  • the foam insulation 18 may also include channels 22 running its length that provide locations for the placement of utility conduits for electrical wiring, water pipe, etc.
  • the ribs 8 of one embodiment of the present invention run substantially the height of the insulative foundation panel 2 and are approximately three inches thick.
  • the ribs 8 preferably are tied into the face wall 4 with metal or carbon fiber stirrups 16 that are located adjacent to the upper edge and the lower edge of the insulated face wall 2 and, which provide shear loading capability.
  • metal or carbon fiber stirrups 16 that are located adjacent to the upper edge and the lower edge of the insulated face wall 2 and, which provide shear loading capability.
  • the face wall and ribs may be placed in one continued operation.
  • steel reinforcing bars 14 vertically reside in each rib 8 adjacent to the front surface thereof to add additional strength and stiffness.
  • the face wall 4 of one embodiment of the present invention is two inches thick and may range in height from about 5 feet to about 9 feet, thus providing an insulative foundation panel for crawl spaces and/or full basements, respectively.
  • the insulative foundation panel 2 may include a plurality of eight inch wide carbon fiber strips 6 that lie horizontally within the face wall 4 about 36 inches above the lower edge.
  • the carbon fiber strip 6 may also be tensioned when the concrete of the insulated foundation panel 2 is placed, thus yielding a wall panel that is pre-stressed compressively after set.
  • a carbon fiber grid material which may be used in the present invention is the “Mec-GridTM” carbon fiber material manufactured by Hexcel Clark-Schwebel and as described in U.S. Pat. No.
  • each rib 8 is generally spaced the same distance as each rib, in one embodiment 24 inches apart, and provides a location for the introduction of nails or other fastening devices to interconnect finishing materials, such as sheet rock, onto the insulated foundation panel 2 .
  • finishing materials such as sheet rock
  • FIG. 2 a pair of interconnected foundation panels are shown.
  • the facewall 4 is shown with a footer 24 interconnected adjacent to the upper edge 10 and a bearing pad 26 located at its lower edge 12 .
  • the footer 24 is adapted to receive other walls, wall panels, bricks, stones, etc.
  • the bearing pad 26 is provided to increase the foot print of the foundation panel 3 upon the building foundation, such a bed of tamped material 28 .
  • the bearing pad 26 also may include a lip 30 that interfaces with a concrete floor 32 that will bear down on the lip 36 of the bearing pad 26 to help stabilize the finished assembly.
  • utility channels 22 are provided wherein portions of the insulation 18 have been removed to provide a location for conduits 34 and electrical outlets 36 .
  • the insulation 18 may be used to fill the channel 22 to increase the insulative properties of the wall.
  • Adjacent foundation panels 2 are generally interconnected in one embodiment with bolts 38 .
  • the insulation 18 In order to provide a location for the bolts 38 , the insulation 18 must be cut away to reveal apertures integrated into the wall panel 2 . Once the bolts 38 or other fasteners are in place, a foam plug 40 ay be added to the insulation panel 18 to increase the insulative properties of the foundation panel 2 .
  • FIG. 3 views are shown of adjacent foundation wall panels 2 in a variety of configurations.
  • adjacent foundation wall panels 2 are shown interconnected wherein the bolts are driven through the rib 8 of one wall panel 2 into an end column 42 of an adjacent wall panel 2 .
  • bolts may be used to interconnect the face wall 4 of the wall panel 2 into the end column 42 of an adjacent foundation panel 2 , as shown in FIG. 3B .
  • FIG. 3C bolts may be used to interconnect the rib 8 of one wall panel 2 into the face wall 4 of another wall panel 2 .
  • additional insulation such as two inch foam strips may be field installed to ensure that substantially all concrete faces of the finished wall are covered, thus increasing the insulative property of the system as a whole.
  • foundation wall panels 2 are shown in a variety of embodiments. More specifically, foundation wall panels may be formed in a variety of shapes and sizes depending on the application and design criteria. In addition, the foundation wall panels 2 may be arranged such that they are interconnectable, or have a bend integrated therein, such that a plurality of angled walls are provided by one panel. Further, it should be understood by one skilled in the art that a plurality of apertures 46 may be integrated into the wall panel(s) 2 so that conduits for electrical lines, sewage lines and/or water lines may be accommodated.
  • an insulated foundation wall panel 2 is shown, More specifically, an insulated foundation panel 2 is provided similar to that shown and described above with respect to FIG. 1 .
  • this embodiment of the present invention includes a cylindrical channel 22 as opposed to a prismatic rectangular channel for the receipt of the fluid or electrical conduit.
  • a fire and smoke resistant surface 44 is shown affixed to the foam insulation 18 .
  • the fire and smoke resistant surface 44 may be glued to the foam panel 18 or otherwise interconnected using methods well known by those skilled in the construction trades.
  • the wood strips 20 are also shown interconnected to the ribs 8 of the insulated foundation panel 2 , wherein a small piece of insulative material may be added between the wood strip 20 and the rib 8 to enhance the insulative properties of the system.
  • the reinforcing bars 14 preferably span substantially the entire height of the foundation wall panel 2 . More specifically, one embodiment of the present invention includes reinforcing bars 14 that are integrated into the ribs 8 of the panel from the plate 26 to the shoe 24 , thus tying them into the rib 8 to provide additional strength and rigidity.
  • the horizontal reinforcing bars and the longitudinal reinforcing bars 14 may be interconnected to increase strength and rigidity.
  • carbon fiber may be added to the ribs 8 , the shoe 24 , and/or the plate 26 , in conjunction with steel reinforcing bars 14 or alone, to increase wall panel strength 2 .
  • foundation wall panels as contemplated by the present invention may also include lifters and inserts 48 that receive a lifting device to facilitate transportation and erection of the foundation wall panels 2 .
  • the foundation wall panels 2 may be interconnected via a bolt 38 .
  • the foundation wall panels 2 include an angled outer edge that engages a matching angled edge of an adjacent foundation wall panel 2 . These edges are similar to that of miter joints as known in the art.
  • Bolt pockets 50 may also be provided that are located adjacent to the upper edge and the lower edge of the foundation wall panels 2 for interconnection. The bolt pockets 50 allow for the insertion of a fastener, such as a bolt 38 , through coincident apertures on each wall panel 2 .
  • the adjacent foundation wall panels 2 can then be securely interconnected by a nut or other attachment hardware known in the art.
  • steel plates 52 may be included, affixed to either an inner corner or an outer corner of the finished interconnected joint, to add increased strength thereto. These plates 52 are interconnected to the foundation wall panels 2 via fasteners, such as bolts, or alternatively welded.
  • Embodiments of the present invention are constructed “face up”, which is believed novel.
  • the insulation panels 18 are placed in the casting form, wherein the reinforcing ribs 8 defined by the spaces between the insulative panels 18 .
  • Reinforcing bars 14 and carbon fiber stirrups are then positioned within the space for the reinforcing ribs 8 .
  • Concrete is then poured into the space.
  • One or more carbon fiber strips 6 are placed at a predetermined location within the exterior face wall 4 .
  • additional steps, such as vibration may be employed to ensure that the consistency of the concrete is per specification, and to improve the density of the concrete.
  • wood, foam, or metal screw strips 20 may be applied along the edges of the ribs 8 .
  • lifting devices may also be formed into the wall panel 2 to aid in the transportation or lifting thereof.
  • the insulative foundation panel 2 will include a footer and a bearing pad that is placed when the ribs 8 are formed, and which may be tied into the face wall 4 with reinforcing bar 14 and stirrups as well. The footer is subsequently covered at least partially with concrete when the concrete floor is poured during installation at the building site, thus providing additional structural support.
  • the face wall and associated ribs may be comprised of a low density concrete such as Cret-o-LiteTM, which is manufactured by Advanced Materials Company of Hamburg, N.Y. This is an air dried cellular concrete that is nailable, drillable, screwable, sawable and very fire resistant.
  • the face wall is comprised of a dense concrete material to resist moisture penetration and in one embodiment is created using VISCO CRETETM or equal product, which is a chemical that enables the high slumped short pot life liquification of concrete to enable the concrete to be placed in narrow wall cavities with minimum vibration and thus create a high density substantially impermeable concrete layer.
  • VISCO-CRETETM is manufactured by the Sika Corporation, located in Lyndhurst, N.J.
  • the face wall is preferably about 2 inches thick. This concrete layer has a compression strength of approximately 5000 psi after 28 days of curing.
  • the reinforcing bar Positioned within the ribs is one or more reinforcing bars “rebar”, which are generally manufactured from carbon steel or other similar metallic materials.
  • the reinforcing bar has a diameter of at least about 0.25 inches, and more preferably about 0.75-1.50 inches.
  • the reinforcing bars 14 may be any variety of dimensions or lengths depending on the length and width of the wall panel 2 , and the strength requirements necessary for any given project.
  • the stirrups 16 that tie the ribs 8 into the face wall 4 are comprised of carbon fiber grid material, or alternatively metallic materials.

Abstract

A fabricated concrete foundation wall is provided with a plurality of insulation panels and reinforcing ribs to improve strength and reduce the density of the wall panel. The foundation wall panels are easily placed and interconnected together to quickly provide a foundation adapted to support the main walls of a home, for example. The foundation panels in one embodiment generally include a facewall that may have at least one carbon fiber band positioned horizontally therethrough to provide additional stiffness.

Description

  • This application is a continuation-in-part of pending U.S. patent application Ser. No. 11/096,705, which is a continuation-in-part of pending U.S. patent application Ser. No. 10/772,148, filed Feb. 3, 2004, which is a continuation-in-part of pending U.S. patent application Ser. No. 10/423,286, filed Apr. 24, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/150,465, now U.S. Pat. No. 6,729,090, filed May 17, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 10/093,292, now U.S. Pat. No. 6,701,683, filed Mar. 6, 2002, each of the pending applications or issued patents being incorporated by reference in their entirety herein.
  • FIELD OF THE INVENTION
  • The present invention relates to building components, and more specifically lightweight concrete foundation walls that are manufactured in a controlled environment and can be selectively interconnected on-site to fabricate modular buildings.
  • BACKGROUND OF THE INVENTION
  • Due to the high cost of traditional concrete components and the expensive transportation and labor costs associated therewith, there is a significant need in the construction industry to provide lightweight, precast, composite building panels that have superior strength and insulative properties. Previous attempts to provide these types of building panels have failed due to the expensive transportation costs and less than ideal insulative and thermal conductivity properties associated with prefabricated concrete wire-reinforced products. Further, due to the brittle nature of concrete, many of the previously used building panels are prone to cracks and other damage during transportation.
  • The relatively large weight per square foot of building panels of the prior art has resulted in high expenses arising not only from the amount of materials needed for fabrication, but also the cost of transporting and erecting the modules. Module weight also places effective limits on the height of structures, such as stacked modules e.g., due to load limitations of the building foundations, footings and/or lowermost modules. Furthermore, there is substantial fabrication labor expense that can arise from design, material, and labor costs associated with providing and placing reinforcement materials. Accordingly, it would be useful to provide a wall panel system for modular construction that is relatively light, can be readily stacked to increased heights and, preferably, inexpensive to design, manufacture, transport and erect.
  • In many situations panels or modules are situated in locations where it is desirable to have openings therethrough to accommodate doorways, windows, cables, pipes and the like. In some previous approaches, panels were required to be specially designed and cast so as to include any necessary openings, requiring careful planning and design, thus increasing costs due to the special, non-standard configuration of such panels. In other approaches, panels were cast without such openings and the openings were formed after casting, e.g. by sawing or similar procedures. Such post-casting procedures such as cutting, particularly through the thick and/or steel-reinforced panels as described above, is a relatively labor-intensive and expensive process. In many processes for creating openings, there is a relatively high potential for cracking or splitting of the panel or module. Accordingly, it would be useful to provide panels and modules wherein openings such as doors and windows may be integrated in desired locations with a reduced potential for cracking or splitting.
  • One other problem associated with metallic wire or bar materials used in conjunction with concrete is the varying rates of expansion and contraction. Thus, with extreme heating and cooling the embedded metallic materials tend to separate from the concrete, thus creating cracks which may lead to exposure to moisture and the eventual degradation of both the concrete and wire reinforcement due to corrosion.
  • One example of a composite building panel that attempts to resolve the aforementioned problems inherent in modular panel construction of the prior art is described in U.S. Pat. No. 6,202,375 to Kleinschmidt (the '375 patent), which is incorporated by reference in its entirety herein. In this invention, a building system is provided that utilizes an insulative core with an interior and exterior sheet of concrete and which is held together with a metallic wire mesh positioned on both sides of an insulative core. The wire mesh is embedded in concrete, and held together by a plurality of metallic wires extending through the insulative core at a right angle to the longitudinal plane of the insulative core and concrete panels. Although providing an advantage over homogenous concrete panels, the composite panel disclosed in the '375 patent does not provide the necessary strength and stiffness properties required during transportation and in high wind environments. Further, the metallic wire mesh materials are susceptible to corrosion when exposed to water during fabrication, and have poor insulative qualities due to the high heat transfer properties of metallic wire. Thus, the panels disclosed in the '375 patent may be more susceptible to failure when exposed to stresses during transportation, assembly or subsequent use.
  • In addition, attempts have been made to employ improved building materials that incorporate carbon fiber. For example, in U.S. Pat. No. 6,230,465 to Messenger, et al., which is incorporated herein in its entirety by reference, discloses concrete with a carbon fiber and steel reinforced precast frame. Unfortunately, the insulative properties of this invention are relatively poor due to the physical nature of the concrete and steel. Further, the excessive weight of the panels and inherent problems associated with transportation, stacking, etc. are present. Previously known prefabricated building panels have also not been found to have sufficient tensile and compressive strength when utilizing only concrete insulative foam materials or wire mesh. Thus, there is a significant need for a lightweight concrete building panel that has increased tensile and compressive strength, and which utilizes one or more commonly known building materials to achieve this purpose.
  • Furthermore, there is a need for a precast concrete foundation wall system that can be directly positioned on a prepared soil gravel or sand surface and interconnected to one or more foundation walls. After interconnection, a concrete floor can be poured which is operatively interconnected to the foundation walls and provides additional support.
  • Accordingly, there is a significant need in the construction and building industry to provide a composite building panel and foundation wall that may be used in modular construction and which is lightweight, provides superior strength and has high insulative values. Further, a method of making these types of building panels is needed that is inexpensive, utilizes commonly known manufacturing equipment, and which can be used to mass produce building panels for use in the modular construction of warehouses, low cost permanent housing, hotels, and other buildings. Finally there is a significant need for a precast foundation wall system that can be positioned on a prepared soil or gravel surface and operably interconnected to a poured concrete floor without utilizing onsite forms or other expensive building techniques.
  • SUMMARY OF THE INVENTION
  • It is one aspect of the present invention to provide a composite wall panel that has superior strength, high insulating properties, is lightweight for transportation and stacking purposes and is cost effective to manufacture. Thus, in one embodiment of the present invention, a substantially planar insulative core with interior and exterior surfaces is positioned between concrete panels that are reinforced with carbon fiber grids positioned substantially adjacent to the insulative core. In a preferred embodiment of the present invention, the interior layer of concrete is comprised of a low-density concrete. Furthermore, as used herein, insulative core may comprise any type of material that is thermally efficient and has a low heat transfer coefficient. These materials may include, but are not limited to, Styrofoam®-type materials such as expanded polystyrenes, extruded polystyrenes, extruded polypropylene, polyisocyanurate, combinations thereof and other materials, including wood materials, rubbers, and other materials well known in the construction industry.
  • It is yet another aspect of the present invention to provide a superior strength composite wall panel that utilizes carbon fiber materials that are oriented in a novel geometric configuration that interconnect the insulative core to both the interior and exterior concrete panels. In one embodiment of the present invention, a plurality of carbon fibers are oriented in a substantially diagonal orientation through the insulative core and which may be operably interconnected to carbon fiber mesh grids positioned proximate to the interior and exterior surfaces of the insulative core and which operably interconnect both the interior and exterior concrete panels to the insulative core. Preferably, the carbon fiber mesh grid is comprised of a plurality of first carbon fiber strands extending in a first direction that are operably interconnected to a plurality of second carbon fiber strands oriented in a second direction. Preferably, the carbon fiber mesh grids are embedded within the interior and exterior concrete panels.
  • It is a further aspect of the present invention to provide a lightweight, composite concrete foundation wall panel that is adapted to be selectively interconnected to a structural steel frame. Thus, in one embodiment of the present invention attachment hardware is selectively positioned within the foundation wall panel during fabrication that is used to quickly and efficiently interconnect the panel to a structural frame.
  • It is another aspect of the present invention to provide a low density concrete foundation wall panel that has sufficient compressive strength to allow a second building panel to be stacked in a vertical relationship, on which can support a vertical load in the form of a floor truss or other structural member. Alternately, it is another related aspect of the present invention to provide a composite lightweight foundation wall panel that can be utilized in a corner adjacent to a second foundation wall panel, or aligned horizontally with a plurality of foundation wall panels in a side by side relationship.
  • It is a further aspect of the present invention to provide a composite foundation wall panel with at least a portion with insulative material that has superior compressive strength than typical composite materials comprised of Styrofoam® and other similar materials. Thus, in another aspect of the present invention, a plurality of structural metallic reinforcing members are placed throughout the insulative core and which extend substantially between an upper end and lower end of the insulative core. Preferably, these reinforcing members are comprised of steel carbon-fiber or other materials.
  • It is still yet another aspect of the present invention to provide a composite foundation wall panel that can be easily modified to accept any number of interior textures, surfaces or cladding materials for use in a plurality of applications. Thus, the present invention is capable of being finished with a stucco, siding, drywall other type of interior surface.
  • It is yet another aspect of the present invention to provide a composite modular foundation wall panel that can be used to quickly and efficiently construct modular buildings and temporary shelters and is designed to be completely functional with regard to electrical wiring and other utilities such as telephone lines, etc. Thus, the present invention in one embodiment includes at least one utility line which is positioned at least partially within the composite wall panel and which accepts substantially any type of utility line which may be required in residential or commercial construction, and which can be quickly interconnected to exterior service lines. This utility line may be oriented in one or more directions and is generally positioned near the interior surface of the foundation wall panel.
  • It is yet another aspect of the present invention to provide a novel configuration of the insulative core that assures a preferred spacing between the insulative core and the reinforcing ribs. More specifically, the spacing is designed to provide a gap between the insulative core panels to assure that concrete carbon fiber stirrups and metallic reinforcing bars are properly positioned between the insulative core panels. This improved and consistent spacing enhances the strength and durability of the foundation panel
  • It is still yet another aspect of the present invention to provide an insulated concrete foundation panel that is comprised of a exterior face wall with a plurality of reinforcing ribs emanating therefrom. The space between the ribs receives foam insulation, thereby increasing the insulative properties of the foundation wall and reducing the overall density of the foundation wall. The exterior face in one embodiment of the invention is additionally strengthened with at least one carbon fiber grid that generally extends horizontally therethrough. During fabrication, the carbon fiber band is preferably tensioned between about 500-3000 lbs. so that once released the carbon fiber band will retract somewhat, thus placing the hardening concrete in a compressed state. The foundation wall panel may also include a footer positioned adjacent to a top edge and a bearing pad positioned at a bottom edge. The footer provides a location for the placement of main building walls and the bearing pad is designed to increase the footprint of the wall panel on a soil or pea stone, and which subsequently becomes operably interconnected to the concrete floor surface.
  • It is still yet another aspect of the present invention to provide an insulative foundation panel that is quickly manufactured and durable. More specifically, one embodiment of the present invention is manufactured in an exterior face up configuration. As used herein, “face up” configuration refers to the exterior surface of the foundation wall panel being in an uppermost portion of the casting form during fabrication. This configuration allows for the efficient placement of the insulative foam panels, reinforcing strands and carbon fiber grid material. Since the foundation wall is substantially comprised of a concrete base material, the finished product is fire resistant, substantially maintenance free, mold resistant, insect proof, wind resistant and projectile resistant. To increase the fire and smoke resistance of the panel, a fire and smoke resistant surface may be affixed to the insulative foam. In addition, the use of insulation in-between the ribs provides a foundation wall panel that is insulated, in one embodiment having an R factor of about 20 or more. Further, with proper treatment of the concrete, the foundation wall panel is substantially water resistant.
  • Thus, in one embodiment of the present invention, an insulative wall panel is provided, comprising:
  • a concrete exterior face wall having an upper edge, a lower edge, and lateral edges therebetween, said face wall having at least one carbon fiber strip extending between said lateral edges;
  • a plurality of ribs extending from said concrete exterior face wall between said upper edge and said lower edge, said plurality of ribs reinforced with a reinforcing rod and interconnected to said concrete exterior face wall with a carbon fiber material; and
  • a plurality of insulation panels placed adjacent to said plurality of ribs, thereby providing a lightweight, strong and highly insulative foundation wall panel.
  • The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention. Additional aspects of the present invention will become more readily apparent from the Detail Description, particularly when taken together with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.
  • FIG. 1 is a top sectional plan view of an insulated founation panel of one embodiment of the present invention;
  • FIG. 2 is a perspective view of interconnected insulated foundation panels positioned on a pea stone base;
  • FIG. 3 are top plan views of various configurations of interconnected walls;
  • FIG. 4 are front elevation and top plan views of foundation panels as contemplated by the present invention;
  • FIG. 5 is a top sectional plan view of an insulated foundation similar to that shown in FIG. 1;
  • FIG. 6 are top plan views of various embodiments of the present invention that includes reinforcing bars that span the entire height of the foundation wall panel;
  • FIG. 7 are views of one embodiment of the present invention that includes lifters and inserts for transporting;
  • FIG. 8 are views similar to that shown in FIG. 7; and
  • FIG. 9 are partial top plan views illustrating various interconnection methods in one embodiment of the present invention.
  • To assist in the understanding of the present invention the following list of components and associated numbering found in the drawings is provided herein:
    # Component
    2 Foundation panel
    4 Exterior face wall
    6 Carbon fiber strip
    8 Reinforcing rib
    10 Upper edge
    12 Lower edge
    14 Reinforcing bar
    16 Carbon fiber stirrups
    18 Foam insulation
    20 Wood strip
    22 Channel
    24 Shoe
    26 Plate
    28 Foundation material
    30 Lip
    32 Concrete floor
    34 Utility conduit
    36 Outlet
    38 Bolt
    40 Foam plug
    42 End column
    44 Fire and smoke resistant surface
    46 Aperture
    48 Lifters and inserts
    50 Bolt pockets
    52 Steel plate
  • It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
  • DETAILED DESCRIPTION
  • Referring now to FIGS. 1-9, one embodiment of an insulated foundation wall panel 2 is shown. More specifically, an insulated foundation panel 2 is provided that includes an exterior face wall 4 with one or more embedded carbon fiber strips 6. Interconnected to the exterior face wall 4 are a plurality of reinforcing ribs 8 running generally from an upper edge 10 to a lower edge 12 of the foundation panel 2. Tying the ribs 8 to the foundation wall 2 are reinforcing bars 14 and carbon fiber or metallic stirrups 16. Preferably, the space between each rib 8 is filled with foam insulation 18, thus providing a foundation panel 2 that is strong, light, and that has superior insulative properties. Optionally, some embodiments of the present invention employ wood, foam or metal strips 20 running substantially the length of the ribs 8 to provide a location for nails, screws, etc. such that sheet rock or other wall finishings may be applied to the foundation panel 2.
  • Referring again to FIG. 1, an insulative foundation panel 2 is provided that includes the face wall 4 having a plurality of ribs 8 emanating therefrom. The space between each rib 8 is filled with foam insulation 18, preferably 8″ thick EPS regrind foam. The foam insulation 18 may also include channels 22 running its length that provide locations for the placement of utility conduits for electrical wiring, water pipe, etc.
  • The ribs 8 of one embodiment of the present invention run substantially the height of the insulative foundation panel 2 and are approximately three inches thick. The ribs 8 preferably are tied into the face wall 4 with metal or carbon fiber stirrups 16 that are located adjacent to the upper edge and the lower edge of the insulated face wall 2 and, which provide shear loading capability. However, one skilled in the art will appreciate that the face wall and ribs may be placed in one continued operation. In addition, steel reinforcing bars 14 vertically reside in each rib 8 adjacent to the front surface thereof to add additional strength and stiffness.
  • The face wall 4 of one embodiment of the present invention is two inches thick and may range in height from about 5 feet to about 9 feet, thus providing an insulative foundation panel for crawl spaces and/or full basements, respectively. In addition, the insulative foundation panel 2 may include a plurality of eight inch wide carbon fiber strips 6 that lie horizontally within the face wall 4 about 36 inches above the lower edge. The carbon fiber strip 6 may also be tensioned when the concrete of the insulated foundation panel 2 is placed, thus yielding a wall panel that is pre-stressed compressively after set. One example of a carbon fiber grid material which may be used in the present invention is the “Mec-Grid™” carbon fiber material manufactured by Hexcel Clark-Schwebel and as described in U.S. Pat. No. 6,236,692, which is incorporated herein in its entirety by reference. Here, also shown is an optional wood screw strip 20 that runs substantially the length of each rib 8. The wood screw strip 8 is generally spaced the same distance as each rib, in one embodiment 24 inches apart, and provides a location for the introduction of nails or other fastening devices to interconnect finishing materials, such as sheet rock, onto the insulated foundation panel 2. One skilled in the art will appreciate that the robustness of the manufacturing process allows the spacing of the ribs 8 and the optional wood screw strips 20 to be varied depending on the desires of the manufacturer, and including alternative materials.
  • Referring now to FIG. 2, a pair of interconnected foundation panels are shown. Here, the facewall 4 is shown with a footer 24 interconnected adjacent to the upper edge 10 and a bearing pad 26 located at its lower edge 12. The footer 24 is adapted to receive other walls, wall panels, bricks, stones, etc. The bearing pad 26 is provided to increase the foot print of the foundation panel 3 upon the building foundation, such a bed of tamped material 28. Preferably, in one embodiment of the invention, six inches of ⅜″ pea stone is used that provides a foundation for the bearing pad 26. The bearing pad 26 also may include a lip 30 that interfaces with a concrete floor 32 that will bear down on the lip 36 of the bearing pad 26 to help stabilize the finished assembly. In addition, utility channels 22 are provided wherein portions of the insulation 18 have been removed to provide a location for conduits 34 and electrical outlets 36. One skilled in the art will appreciate that once the conduits 34 and other utilities installed, the insulation 18 may be used to fill the channel 22 to increase the insulative properties of the wall.
  • Adjacent foundation panels 2 are generally interconnected in one embodiment with bolts 38. In order to provide a location for the bolts 38, the insulation 18 must be cut away to reveal apertures integrated into the wall panel 2. Once the bolts 38 or other fasteners are in place, a foam plug 40 ay be added to the insulation panel 18 to increase the insulative properties of the foundation panel 2.
  • Referring now to FIG. 3, views are shown of adjacent foundation wall panels 2 in a variety of configurations. For example, with specific reference to FIG. 3A, adjacent foundation wall panels 2 are shown interconnected wherein the bolts are driven through the rib 8 of one wall panel 2 into an end column 42 of an adjacent wall panel 2. Alternatively, bolts may be used to interconnect the face wall 4 of the wall panel 2 into the end column 42 of an adjacent foundation panel 2, as shown in FIG. 3B. Further, as shown in FIG. 3C, bolts may be used to interconnect the rib 8 of one wall panel 2 into the face wall 4 of another wall panel 2. One skilled in the art will appreciate that many different wall panel arrangements and assemblies may be utilized without departing from the scope of the invention. In addition, after the adjacent wall panels 2 are in place, additional insulation, such as two inch foam strips may be field installed to ensure that substantially all concrete faces of the finished wall are covered, thus increasing the insulative property of the system as a whole.
  • Referring now to FIG. 4, foundation wall panels 2 are shown in a variety of embodiments. More specifically, foundation wall panels may be formed in a variety of shapes and sizes depending on the application and design criteria. In addition, the foundation wall panels 2 may be arranged such that they are interconnectable, or have a bend integrated therein, such that a plurality of angled walls are provided by one panel. Further, it should be understood by one skilled in the art that a plurality of apertures 46 may be integrated into the wall panel(s) 2 so that conduits for electrical lines, sewage lines and/or water lines may be accommodated.
  • Referring now to FIG. 5-8, another embodiment of an insulated foundation wall panel 2 is shown, More specifically, an insulated foundation panel 2 is provided similar to that shown and described above with respect to FIG. 1. However, this embodiment of the present invention includes a cylindrical channel 22 as opposed to a prismatic rectangular channel for the receipt of the fluid or electrical conduit. In addition, a fire and smoke resistant surface 44 is shown affixed to the foam insulation 18. The fire and smoke resistant surface 44 may be glued to the foam panel 18 or otherwise interconnected using methods well known by those skilled in the construction trades. The wood strips 20 are also shown interconnected to the ribs 8 of the insulated foundation panel 2, wherein a small piece of insulative material may be added between the wood strip 20 and the rib 8 to enhance the insulative properties of the system.
  • In addition, the reinforcing bars 14 preferably span substantially the entire height of the foundation wall panel 2. More specifically, one embodiment of the present invention includes reinforcing bars 14 that are integrated into the ribs 8 of the panel from the plate 26 to the shoe 24, thus tying them into the rib 8 to provide additional strength and rigidity.
  • Other embodiments of the present invention include reinforcing bars integrated horizontally within the plate 26 and/or the shoe 24. One skilled in the art will appreciate that the horizontal reinforcing bars and the longitudinal reinforcing bars 14 may be interconnected to increase strength and rigidity. In addition, carbon fiber may be added to the ribs 8, the shoe 24, and/or the plate 26, in conjunction with steel reinforcing bars 14 or alone, to increase wall panel strength 2. Further, foundation wall panels as contemplated by the present invention may also include lifters and inserts 48 that receive a lifting device to facilitate transportation and erection of the foundation wall panels 2.
  • Referring now to FIG. 9, an interconnection scheme employed by one embodiment of the present invention is shown. More specifically, one embodiment of the foundation wall panels 2 may be interconnected via a bolt 38. Preferably, the foundation wall panels 2 include an angled outer edge that engages a matching angled edge of an adjacent foundation wall panel 2. These edges are similar to that of miter joints as known in the art. Bolt pockets 50 may also be provided that are located adjacent to the upper edge and the lower edge of the foundation wall panels 2 for interconnection. The bolt pockets 50 allow for the insertion of a fastener, such as a bolt 38, through coincident apertures on each wall panel 2. The adjacent foundation wall panels 2 can then be securely interconnected by a nut or other attachment hardware known in the art. Alternatively, welding may be utilized to prevent movement of the two panels. In addition, steel plates 52 may be included, affixed to either an inner corner or an outer corner of the finished interconnected joint, to add increased strength thereto. These plates 52 are interconnected to the foundation wall panels 2 via fasteners, such as bolts, or alternatively welded.
  • Referring again to FIG. 1, one method of constructing the insulative foundation panel 2 is shown and described. Embodiments of the present invention are constructed “face up”, which is believed novel. Initially, the insulation panels 18 are placed in the casting form, wherein the reinforcing ribs 8 defined by the spaces between the insulative panels 18. Reinforcing bars 14 and carbon fiber stirrups are then positioned within the space for the reinforcing ribs 8. Concrete is then poured into the space. One or more carbon fiber strips 6 are placed at a predetermined location within the exterior face wall 4. One skilled in the art will appreciate that additional steps, such as vibration, may be employed to ensure that the consistency of the concrete is per specification, and to improve the density of the concrete. Finally, wood, foam, or metal screw strips 20 may be applied along the edges of the ribs 8. One skilled in the art will also appreciate that lifting devices may also be formed into the wall panel 2 to aid in the transportation or lifting thereof. Although not shown, the insulative foundation panel 2 will include a footer and a bearing pad that is placed when the ribs 8 are formed, and which may be tied into the face wall 4 with reinforcing bar 14 and stirrups as well. The footer is subsequently covered at least partially with concrete when the concrete floor is poured during installation at the building site, thus providing additional structural support.
  • With regard to the concrete utilized in various embodiments of the present application, the face wall and associated ribs may be comprised of a low density concrete such as Cret-o-Lite™, which is manufactured by Advanced Materials Company of Hamburg, N.Y. This is an air dried cellular concrete that is nailable, drillable, screwable, sawable and very fire resistant. In a preferred embodiment, the face wall is comprised of a dense concrete material to resist moisture penetration and in one embodiment is created using VISCO CRETE™ or equal product, which is a chemical that enables the high slumped short pot life liquification of concrete to enable the concrete to be placed in narrow wall cavities with minimum vibration and thus create a high density substantially impermeable concrete layer. VISCO-CRETE™ is manufactured by the Sika Corporation, located in Lyndhurst, N.J. The face wall is preferably about 2 inches thick. This concrete layer has a compression strength of approximately 5000 psi after 28 days of curing.
  • Positioned within the ribs is one or more reinforcing bars “rebar”, which are generally manufactured from carbon steel or other similar metallic materials. Preferably, the reinforcing bar has a diameter of at least about 0.25 inches, and more preferably about 0.75-1.50 inches. As appreciated by one skilled in the art, the reinforcing bars 14 may be any variety of dimensions or lengths depending on the length and width of the wall panel 2, and the strength requirements necessary for any given project. As additionally seen in FIG. 1, the stirrups 16 that tie the ribs 8 into the face wall 4 are comprised of carbon fiber grid material, or alternatively metallic materials.
  • The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commenced here with the above teachings and the skill or knowledge of the relevant art are within the scope in the present invention. The embodiments described herein above are further extended to explain best modes known for practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments or various modifications required by the particular applications or uses of present invention. It is intended that the dependent claims be construed to include all possible embodiments to the extent permitted by the prior art.

Claims (3)

1. An insulative wall panel comprising:
a concrete exterior face wall having an upper edge, a lower edge, and lateral edges therebetween, said face wall having at least one carbon fiber strip extending between said lateral edges;
a plurality of ribs extending from said concrete exterior face wall, wherein said plurality of ribs are reinforced with a reinforcing rod and are interconnected to said concrete exterior face wall with a carbon fiber stirrup; and
a plurality of insulation panels placed adjacent to a plurality of ribs, thereby providing a lightweight, strong and highly insulative foundation wall panel.
2. The insulative wall panel of claim 1, further comprising a footer on said lower edge; and
a bearing pad for engagement with a building foundation interconnected adjacent to said lower edge of said face wall.
3. The insulative wall panel of claim 1, wherein said carbon fiber strip is tensioned during concrete placement so that the exterior facewall is in compression after fabrication.
US11/122,792 2002-03-06 2005-05-04 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement Abandoned US20050262786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/122,792 US20050262786A1 (en) 2002-03-06 2005-05-04 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/093,292 US6701683B2 (en) 2002-03-06 2002-03-06 Method and apparatus for a composite concrete panel with transversely oriented carbon fiber reinforcement
US10/150,465 US6729090B2 (en) 2002-03-06 2002-05-17 Insulative building panel with transverse fiber reinforcement
US10/423,286 US6898908B2 (en) 2002-03-06 2003-04-24 Insulative concrete building panel with carbon fiber and steel reinforcement
US10/772,148 US7100336B2 (en) 2002-03-06 2004-02-03 Concrete building panel with a low density core and carbon fiber and steel reinforcement
US11/096,705 US7627997B2 (en) 2002-03-06 2005-04-01 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
US11/122,792 US20050262786A1 (en) 2002-03-06 2005-05-04 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/096,705 Continuation-In-Part US7627997B2 (en) 2002-03-06 2005-04-01 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement

Publications (1)

Publication Number Publication Date
US20050262786A1 true US20050262786A1 (en) 2005-12-01

Family

ID=46304490

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/122,792 Abandoned US20050262786A1 (en) 2002-03-06 2005-05-04 Concrete foundation wall with a low density core and carbon fiber and steel reinforcement

Country Status (1)

Country Link
US (1) US20050262786A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144093A1 (en) * 2005-07-06 2007-06-28 Messenger Harold G Method and apparatus for fabricating a low density wall panel with interior surface finished
US20070251184A1 (en) * 2006-04-17 2007-11-01 Steven Schumann Self-supporting modular wall
US20080104913A1 (en) * 2006-07-05 2008-05-08 Oldcastle Precast, Inc. Lightweight Concrete Wall Panel With Metallic Studs
US20100223867A1 (en) * 2009-03-05 2010-09-09 Robert Floyd Tuttle Slab based modular building system
US20110088333A1 (en) * 2007-12-21 2011-04-21 David Damichey Prefabricated element for a dwelling unit
US20130091794A1 (en) * 2008-05-14 2013-04-18 David H. Platt Precast composite structural floor system
WO2014182184A1 (en) * 2013-05-06 2014-11-13 Stachoń Cezary Method of constructing passive foundations that reduce heat loss of a building, as well as the costs and consumption of materials
US20170218627A1 (en) * 2011-03-18 2017-08-03 Peter Mervyn Neil Composite wall panel, wall system and components thereof, and a method of construction thereof
US9797136B2 (en) 2013-10-31 2017-10-24 University Of North Carolina At Charlotte High performance architectural precast concrete wall system
RU215406U1 (en) * 2022-08-11 2022-12-12 Руслан Олегович Ступин FACADE HEAT-INSULATION PANEL

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US890011A (en) * 1907-06-15 1908-06-09 Anton F Anderson Reinforced concrete slab.
US1229904A (en) * 1916-05-23 1917-06-12 Robert L Day Reinforced concrete or plastic slab.
US1313500A (en) * 1919-08-19 Floor construction or the like
US1420246A (en) * 1919-03-31 1922-06-20 Faber Otto Cement interlocking plate
US1484206A (en) * 1920-10-09 1924-02-19 Joseph A Birkholz Building unit
US1745880A (en) * 1927-09-24 1930-02-04 Tee Stone Corp Reenforcement for monolithic elements
US1897327A (en) * 1930-07-07 1933-02-14 Edward M Olson Roof structure
US2033751A (en) * 1934-05-14 1936-03-10 Roy V Yeager Building construction
US2080618A (en) * 1936-02-10 1937-05-18 Elwood C Madsen Structural unit
US2312293A (en) * 1939-05-09 1943-02-23 George C Weiss Structural element
US2435998A (en) * 1943-03-31 1948-02-17 Porete Mfg Company Composite prestressed concrete beam and slab structure
US2471500A (en) * 1944-07-25 1949-05-31 Douglas Aircraft Co Inc Coated metal structure
US2934934A (en) * 1957-06-06 1960-05-03 Henry A Berliner Construction panel
US3045293A (en) * 1956-10-15 1962-07-24 Evans Prod Co Support and sealing for lightweight panels
US3298152A (en) * 1964-07-01 1967-01-17 James J Lockshaw Interconnected spaced reticulated members
US3305991A (en) * 1964-12-14 1967-02-28 Victor P Weismann Reinforced modular foam panels
US3382637A (en) * 1965-04-15 1968-05-14 Longinotti Enrico Ribbed barrier with lapped, edgejoined facing panels
US3567816A (en) * 1969-04-10 1971-03-02 Earl P Embree Method of pretensioning and reinforcing a concrete casting
US3597890A (en) * 1969-09-15 1971-08-10 Alfred A Hala Construction assembly
US3646715A (en) * 1970-04-06 1972-03-07 Du Pont Canada Prefabricated building panel
US3879908A (en) * 1971-11-29 1975-04-29 Victor P Weismann Modular building panel
US3965635A (en) * 1975-04-14 1976-06-29 Metropolitan Industries, Inc. Prefabricated building panel and method of making
US4015387A (en) * 1973-08-30 1977-04-05 Tramex S.A. Prefabricated structural elements for partitions and walls of buildings and partitions and walls consisting of such elements
US4019297A (en) * 1974-07-29 1977-04-26 David V. Munnis Construction panel
US4073998A (en) * 1977-01-24 1978-02-14 Bay Mills Limited Scrim/foil laminate
US4093689A (en) * 1974-03-14 1978-06-06 Licencia Talalmanyokat Ertekesito Vallalat Process for producing reinforced concrete building units, especially floor panels having smooth surfaces and coffer-like inner holes, and formwork especially for carrying out the process
US4104842A (en) * 1977-02-25 1978-08-08 Rockstead Raymond H Building form and reinforcing matrix
US4151692A (en) * 1977-07-15 1979-05-01 Emerson H. Mizell T-Shaped insulation with vapor barrier
US4161087A (en) * 1978-05-11 1979-07-17 Levesque Clarence N Panels for use in constructing building wall and building walls including such panels
US4471591A (en) * 1983-08-08 1984-09-18 Jamison Walter E Air impervious split wall structure
US4505019A (en) * 1983-03-02 1985-03-19 Deinzer Dietrich F Method of forming construction panel
US4512126A (en) * 1981-12-28 1985-04-23 Beaver Products, Inc. Panel module means
US4567705A (en) * 1982-11-22 1986-02-04 Avco Corporation Fire protection arrangement and method of positioning same
US4570398A (en) * 1984-03-02 1986-02-18 Superior Walls Sprayed concrete basement structure
US4605529A (en) * 1985-08-05 1986-08-12 Superior Walls Of America, Ltd. Method of constructing a prefabricated concrete wall structure
US4725471A (en) * 1984-12-15 1988-02-16 Carry-Space Leichtbauelemente Gmbh Sheet-like composite element for construction purposes
US4751803A (en) * 1985-08-05 1988-06-21 Superior Walls Of America, Ltd. Prefabricated concrete wall structure
US4811770A (en) * 1986-03-25 1989-03-14 Rapp Albert B Structural element for a building
US4832308A (en) * 1986-01-31 1989-05-23 Ontario Inc. Panel for concrete formwork
US4841702A (en) * 1988-02-22 1989-06-27 Huettemann Erik W Insulated concrete building panels and method of making the same
US4856244A (en) * 1987-06-01 1989-08-15 Clapp Guy C Tilt-wall concrete panel and method of fabricating buildings therewith
US4912902A (en) * 1986-07-14 1990-04-03 Weaver Elvin W Simulated brick covering and wall construction
US4916004A (en) * 1986-02-20 1990-04-10 United States Gypsum Company Cement board having reinforced edges
US4930278A (en) * 1988-06-02 1990-06-05 In-Ve-Nit International Inc. Composite cementitious building panels
US4934121A (en) * 1989-01-12 1990-06-19 Superior Walls Of America, Ltd. Integrated reinforced concrete wall structure
US4990390A (en) * 1988-12-15 1991-02-05 Shimizu Construction Co., Ltd. Fiber grid reinforcement
US5025605A (en) * 1987-06-26 1991-06-25 Shimizu Construction Co., Ltd. Meshwork reinforced and pre-stressed concrete member, method and apparatus for making same
US5032340A (en) * 1987-06-16 1991-07-16 Kajima Corporation Curtain wall
US5095674A (en) * 1988-02-22 1992-03-17 Huettemann Erik W Concrete building panel with intermeshed interior insulating slab and method of preparing the same
US5129203A (en) * 1990-07-26 1992-07-14 Romero Arturo J Building panel core
US5317848A (en) * 1989-04-28 1994-06-07 Abbey Jay E Modular, precast corner panels
US5381635A (en) * 1991-08-27 1995-01-17 Royal Wall Systems, Inc. Construction wall panel and panel structure
US5398470A (en) * 1991-04-23 1995-03-21 Avi Alpenlandische Veredelungs-Industrie Gesellschaft M.B.H. Reinforcement body for a floor slab
US5440845A (en) * 1991-09-13 1995-08-15 The Board Of Regents Of The University Of Nebraska Precast concrete sandwich panels
US5493836A (en) * 1993-12-20 1996-02-27 Lopez-Munoz; Humberto Building system based upon preformed modules
US5493838A (en) * 1994-05-06 1996-02-27 Ross; David Method of constructing a concrete basement from prefabricated concrete panels
US5526629A (en) * 1993-06-09 1996-06-18 Cavaness Investment Corporation Composite building panel
US5596853A (en) * 1992-09-29 1997-01-28 Board Of Regents, University Of Texas Building block; system and method for construction using same
US5656194A (en) * 1995-06-14 1997-08-12 Superior Walls Of America, Ltd. Assembly jig for prefabricated concrete walls
US5758463A (en) * 1993-03-12 1998-06-02 P & M Manufacturing Co., Ltd. Composite modular building panel
USD406902S (en) * 1997-07-28 1999-03-16 Con/Span Bridge Systems, Inc. Concrete bridge section
US5894003A (en) * 1996-07-01 1999-04-13 Lockwood; William D. Method of strengthening an existing reinforced concrete member
USD426321S (en) * 1998-12-09 2000-06-06 Con/Span Bridge Systems, Inc. Composite bridge deck pultrusion
US6088985A (en) * 1998-12-24 2000-07-18 Delta-Tie, Inc. Structural tie shear connector for concrete and insulation sandwich walls
US6094881A (en) * 1998-04-30 2000-08-01 Con/Span Bridge Systems Inc. Box shaped structural member with pultruded flanges and connecting webs
US6101779A (en) * 1998-05-20 2000-08-15 Space Master Building Systems, Llc Construction unit for a modular building
US6167624B1 (en) * 1995-11-13 2001-01-02 Qb Technologies, L.C. Synthetic panel and method
US6170220B1 (en) * 1998-01-16 2001-01-09 James Daniel Moore, Jr. Insulated concrete form
US6185890B1 (en) * 1996-11-21 2001-02-13 Evg Entwicklungs- U. Verwertungs-Gesellschaft M.B.H. Building element
US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
US6230465B1 (en) * 1998-08-04 2001-05-15 Oldcastle Precast, Inc. Precast concrete structural modules
US6237297B1 (en) * 1997-12-30 2001-05-29 Ibi, Inc. Modular structural members for constructing buildings, and buildings constructed of such members
US20010008319A1 (en) * 1995-07-28 2001-07-19 Michael J. Kistner A method for making insulated pre-formed wall panels for attachment to like insulated pre-formed wall panels
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
US6272805B1 (en) * 1993-06-02 2001-08-14 Evg Entwicklungs- U. Verwertungs- Gesellschaft M.B.H. Building element
US6277316B2 (en) * 1993-02-10 2001-08-21 Kistner Concrete Products, Inc. Method of forming a prefabricated wall panel
US6345483B1 (en) * 1999-09-17 2002-02-12 Delta-Tie, Inc. Webbed reinforcing strip for concrete structures and method for using the same
US6363629B1 (en) * 2000-02-18 2002-04-02 Curtis International, Inc. Vehicle hitch mount assembly for a snow plow
US6385942B1 (en) * 1999-11-01 2002-05-14 Acsys Inc. Building panels
US6427406B1 (en) * 1998-12-11 2002-08-06 Swa Holding Company, Inc. Monolithic stud form for concrete wall production
US6438923B2 (en) * 1999-05-21 2002-08-27 John F Miller Method of assembling lightweight sandwich wall panel
US20030056456A1 (en) * 2001-09-24 2003-03-27 Heydon John J. Thermally insulating building wall structure
US20030097806A1 (en) * 1996-03-05 2003-05-29 Brown John G. Inner accessible commutering enterprise structure interfaced with one or more workplace, vehicle or home commutering stations
US20030115822A1 (en) * 2001-12-20 2003-06-26 Michael Lejeune Method for producing unique holow core concrete panels
US6609340B2 (en) * 1998-01-16 2003-08-26 Eco-Block, Llc Concrete structures and methods of forming the same using extenders
US6701683B2 (en) * 2002-03-06 2004-03-09 Oldcastle Precast, Inc. Method and apparatus for a composite concrete panel with transversely oriented carbon fiber reinforcement
US6718712B1 (en) * 1999-03-31 2004-04-13 Mark David Heath Structural panel and method of fabrication
US6729090B2 (en) * 2002-03-06 2004-05-04 Oldcastle Precast, Inc. Insulative building panel with transverse fiber reinforcement
US6735914B2 (en) * 2002-07-03 2004-05-18 Peter J. Konopka Load bearing wall
US6898908B2 (en) * 2002-03-06 2005-05-31 Oldcastle Precast, Inc. Insulative concrete building panel with carbon fiber and steel reinforcement
US20060185280A1 (en) * 2004-05-11 2006-08-24 Plastedil S.A. Load bearing construction element, in particular for manufacturing building floors, and floor structure incorporating such element
US20070062151A1 (en) * 2003-07-21 2007-03-22 Brian Smith Composite building panel and method of making composite building panel
US7216462B2 (en) * 2004-10-26 2007-05-15 Fabcon, Inc. Insulated concrete panel billets
US20070144093A1 (en) * 2005-07-06 2007-06-28 Messenger Harold G Method and apparatus for fabricating a low density wall panel with interior surface finished
US7237366B2 (en) * 2002-06-21 2007-07-03 Composite Technologies Corporation Post-tensioned insulated wall panels
US20080104913A1 (en) * 2006-07-05 2008-05-08 Oldcastle Precast, Inc. Lightweight Concrete Wall Panel With Metallic Studs

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1313500A (en) * 1919-08-19 Floor construction or the like
US890011A (en) * 1907-06-15 1908-06-09 Anton F Anderson Reinforced concrete slab.
US1229904A (en) * 1916-05-23 1917-06-12 Robert L Day Reinforced concrete or plastic slab.
US1420246A (en) * 1919-03-31 1922-06-20 Faber Otto Cement interlocking plate
US1484206A (en) * 1920-10-09 1924-02-19 Joseph A Birkholz Building unit
US1745880A (en) * 1927-09-24 1930-02-04 Tee Stone Corp Reenforcement for monolithic elements
US1897327A (en) * 1930-07-07 1933-02-14 Edward M Olson Roof structure
US2033751A (en) * 1934-05-14 1936-03-10 Roy V Yeager Building construction
US2080618A (en) * 1936-02-10 1937-05-18 Elwood C Madsen Structural unit
US2312293A (en) * 1939-05-09 1943-02-23 George C Weiss Structural element
US2435998A (en) * 1943-03-31 1948-02-17 Porete Mfg Company Composite prestressed concrete beam and slab structure
US2471500A (en) * 1944-07-25 1949-05-31 Douglas Aircraft Co Inc Coated metal structure
US3045293A (en) * 1956-10-15 1962-07-24 Evans Prod Co Support and sealing for lightweight panels
US2934934A (en) * 1957-06-06 1960-05-03 Henry A Berliner Construction panel
US3298152A (en) * 1964-07-01 1967-01-17 James J Lockshaw Interconnected spaced reticulated members
US3305991A (en) * 1964-12-14 1967-02-28 Victor P Weismann Reinforced modular foam panels
US3382637A (en) * 1965-04-15 1968-05-14 Longinotti Enrico Ribbed barrier with lapped, edgejoined facing panels
US3567816A (en) * 1969-04-10 1971-03-02 Earl P Embree Method of pretensioning and reinforcing a concrete casting
US3597890A (en) * 1969-09-15 1971-08-10 Alfred A Hala Construction assembly
US3646715A (en) * 1970-04-06 1972-03-07 Du Pont Canada Prefabricated building panel
US3879908A (en) * 1971-11-29 1975-04-29 Victor P Weismann Modular building panel
US4015387A (en) * 1973-08-30 1977-04-05 Tramex S.A. Prefabricated structural elements for partitions and walls of buildings and partitions and walls consisting of such elements
US4093689A (en) * 1974-03-14 1978-06-06 Licencia Talalmanyokat Ertekesito Vallalat Process for producing reinforced concrete building units, especially floor panels having smooth surfaces and coffer-like inner holes, and formwork especially for carrying out the process
US4019297A (en) * 1974-07-29 1977-04-26 David V. Munnis Construction panel
US3965635A (en) * 1975-04-14 1976-06-29 Metropolitan Industries, Inc. Prefabricated building panel and method of making
US4073998A (en) * 1977-01-24 1978-02-14 Bay Mills Limited Scrim/foil laminate
US4104842A (en) * 1977-02-25 1978-08-08 Rockstead Raymond H Building form and reinforcing matrix
US4151692A (en) * 1977-07-15 1979-05-01 Emerson H. Mizell T-Shaped insulation with vapor barrier
US4161087A (en) * 1978-05-11 1979-07-17 Levesque Clarence N Panels for use in constructing building wall and building walls including such panels
US4512126A (en) * 1981-12-28 1985-04-23 Beaver Products, Inc. Panel module means
US4567705A (en) * 1982-11-22 1986-02-04 Avco Corporation Fire protection arrangement and method of positioning same
US4505019A (en) * 1983-03-02 1985-03-19 Deinzer Dietrich F Method of forming construction panel
US4471591A (en) * 1983-08-08 1984-09-18 Jamison Walter E Air impervious split wall structure
US4570398A (en) * 1984-03-02 1986-02-18 Superior Walls Sprayed concrete basement structure
US4725471A (en) * 1984-12-15 1988-02-16 Carry-Space Leichtbauelemente Gmbh Sheet-like composite element for construction purposes
US4751803A (en) * 1985-08-05 1988-06-21 Superior Walls Of America, Ltd. Prefabricated concrete wall structure
US4605529A (en) * 1985-08-05 1986-08-12 Superior Walls Of America, Ltd. Method of constructing a prefabricated concrete wall structure
US4832308A (en) * 1986-01-31 1989-05-23 Ontario Inc. Panel for concrete formwork
US4916004A (en) * 1986-02-20 1990-04-10 United States Gypsum Company Cement board having reinforced edges
US4916004B1 (en) * 1986-02-20 1992-02-18 United States Gypsum Co
US4811770A (en) * 1986-03-25 1989-03-14 Rapp Albert B Structural element for a building
US4912902A (en) * 1986-07-14 1990-04-03 Weaver Elvin W Simulated brick covering and wall construction
US4856244A (en) * 1987-06-01 1989-08-15 Clapp Guy C Tilt-wall concrete panel and method of fabricating buildings therewith
US5032340A (en) * 1987-06-16 1991-07-16 Kajima Corporation Curtain wall
US5025605A (en) * 1987-06-26 1991-06-25 Shimizu Construction Co., Ltd. Meshwork reinforced and pre-stressed concrete member, method and apparatus for making same
US4841702A (en) * 1988-02-22 1989-06-27 Huettemann Erik W Insulated concrete building panels and method of making the same
US5095674A (en) * 1988-02-22 1992-03-17 Huettemann Erik W Concrete building panel with intermeshed interior insulating slab and method of preparing the same
US4930278A (en) * 1988-06-02 1990-06-05 In-Ve-Nit International Inc. Composite cementitious building panels
US4990390A (en) * 1988-12-15 1991-02-05 Shimizu Construction Co., Ltd. Fiber grid reinforcement
US4934121A (en) * 1989-01-12 1990-06-19 Superior Walls Of America, Ltd. Integrated reinforced concrete wall structure
US5317848A (en) * 1989-04-28 1994-06-07 Abbey Jay E Modular, precast corner panels
US5129203A (en) * 1990-07-26 1992-07-14 Romero Arturo J Building panel core
US5398470A (en) * 1991-04-23 1995-03-21 Avi Alpenlandische Veredelungs-Industrie Gesellschaft M.B.H. Reinforcement body for a floor slab
US5381635A (en) * 1991-08-27 1995-01-17 Royal Wall Systems, Inc. Construction wall panel and panel structure
US5440845A (en) * 1991-09-13 1995-08-15 The Board Of Regents Of The University Of Nebraska Precast concrete sandwich panels
US5596853A (en) * 1992-09-29 1997-01-28 Board Of Regents, University Of Texas Building block; system and method for construction using same
US6277316B2 (en) * 1993-02-10 2001-08-21 Kistner Concrete Products, Inc. Method of forming a prefabricated wall panel
US5758463A (en) * 1993-03-12 1998-06-02 P & M Manufacturing Co., Ltd. Composite modular building panel
US6705055B2 (en) * 1993-06-02 2004-03-16 Evg Entwicklungs-U. Verwertungs-Gesellschaft Mbh Building element
US6272805B1 (en) * 1993-06-02 2001-08-14 Evg Entwicklungs- U. Verwertungs- Gesellschaft M.B.H. Building element
US20030029107A1 (en) * 1993-06-02 2003-02-13 Evg Entwicklungs- U. Verwertungs-Gesellschaft M.B.H. Building element
US5526629A (en) * 1993-06-09 1996-06-18 Cavaness Investment Corporation Composite building panel
US5493836A (en) * 1993-12-20 1996-02-27 Lopez-Munoz; Humberto Building system based upon preformed modules
US5493838A (en) * 1994-05-06 1996-02-27 Ross; David Method of constructing a concrete basement from prefabricated concrete panels
US5656194A (en) * 1995-06-14 1997-08-12 Superior Walls Of America, Ltd. Assembly jig for prefabricated concrete walls
US20010008319A1 (en) * 1995-07-28 2001-07-19 Michael J. Kistner A method for making insulated pre-formed wall panels for attachment to like insulated pre-formed wall panels
US6167624B1 (en) * 1995-11-13 2001-01-02 Qb Technologies, L.C. Synthetic panel and method
US20030097806A1 (en) * 1996-03-05 2003-05-29 Brown John G. Inner accessible commutering enterprise structure interfaced with one or more workplace, vehicle or home commutering stations
US5894003A (en) * 1996-07-01 1999-04-13 Lockwood; William D. Method of strengthening an existing reinforced concrete member
US6185890B1 (en) * 1996-11-21 2001-02-13 Evg Entwicklungs- U. Verwertungs-Gesellschaft M.B.H. Building element
USD406902S (en) * 1997-07-28 1999-03-16 Con/Span Bridge Systems, Inc. Concrete bridge section
US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
US6237297B1 (en) * 1997-12-30 2001-05-29 Ibi, Inc. Modular structural members for constructing buildings, and buildings constructed of such members
US6609340B2 (en) * 1998-01-16 2003-08-26 Eco-Block, Llc Concrete structures and methods of forming the same using extenders
US6170220B1 (en) * 1998-01-16 2001-01-09 James Daniel Moore, Jr. Insulated concrete form
US6363683B1 (en) * 1998-01-16 2002-04-02 James Daniel Moore, Jr. Insulated concrete form
US6094881A (en) * 1998-04-30 2000-08-01 Con/Span Bridge Systems Inc. Box shaped structural member with pultruded flanges and connecting webs
US6101779A (en) * 1998-05-20 2000-08-15 Space Master Building Systems, Llc Construction unit for a modular building
US6230465B1 (en) * 1998-08-04 2001-05-15 Oldcastle Precast, Inc. Precast concrete structural modules
US6263629B1 (en) * 1998-08-04 2001-07-24 Clark Schwebel Tech-Fab Company Structural reinforcement member and method of utilizing the same to reinforce a product
USD426321S (en) * 1998-12-09 2000-06-06 Con/Span Bridge Systems, Inc. Composite bridge deck pultrusion
US6427406B1 (en) * 1998-12-11 2002-08-06 Swa Holding Company, Inc. Monolithic stud form for concrete wall production
US6088985A (en) * 1998-12-24 2000-07-18 Delta-Tie, Inc. Structural tie shear connector for concrete and insulation sandwich walls
US6718712B1 (en) * 1999-03-31 2004-04-13 Mark David Heath Structural panel and method of fabrication
US6438923B2 (en) * 1999-05-21 2002-08-27 John F Miller Method of assembling lightweight sandwich wall panel
US6345483B1 (en) * 1999-09-17 2002-02-12 Delta-Tie, Inc. Webbed reinforcing strip for concrete structures and method for using the same
US6385942B1 (en) * 1999-11-01 2002-05-14 Acsys Inc. Building panels
US6363629B1 (en) * 2000-02-18 2002-04-02 Curtis International, Inc. Vehicle hitch mount assembly for a snow plow
US20030056456A1 (en) * 2001-09-24 2003-03-27 Heydon John J. Thermally insulating building wall structure
US20030115822A1 (en) * 2001-12-20 2003-06-26 Michael Lejeune Method for producing unique holow core concrete panels
US6701683B2 (en) * 2002-03-06 2004-03-09 Oldcastle Precast, Inc. Method and apparatus for a composite concrete panel with transversely oriented carbon fiber reinforcement
US6729090B2 (en) * 2002-03-06 2004-05-04 Oldcastle Precast, Inc. Insulative building panel with transverse fiber reinforcement
US6898908B2 (en) * 2002-03-06 2005-05-31 Oldcastle Precast, Inc. Insulative concrete building panel with carbon fiber and steel reinforcement
US7237366B2 (en) * 2002-06-21 2007-07-03 Composite Technologies Corporation Post-tensioned insulated wall panels
US6735914B2 (en) * 2002-07-03 2004-05-18 Peter J. Konopka Load bearing wall
US20070062151A1 (en) * 2003-07-21 2007-03-22 Brian Smith Composite building panel and method of making composite building panel
US20060185280A1 (en) * 2004-05-11 2006-08-24 Plastedil S.A. Load bearing construction element, in particular for manufacturing building floors, and floor structure incorporating such element
US7216462B2 (en) * 2004-10-26 2007-05-15 Fabcon, Inc. Insulated concrete panel billets
US20070144093A1 (en) * 2005-07-06 2007-06-28 Messenger Harold G Method and apparatus for fabricating a low density wall panel with interior surface finished
US20080104913A1 (en) * 2006-07-05 2008-05-08 Oldcastle Precast, Inc. Lightweight Concrete Wall Panel With Metallic Studs

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144093A1 (en) * 2005-07-06 2007-06-28 Messenger Harold G Method and apparatus for fabricating a low density wall panel with interior surface finished
US20070251184A1 (en) * 2006-04-17 2007-11-01 Steven Schumann Self-supporting modular wall
US20080104913A1 (en) * 2006-07-05 2008-05-08 Oldcastle Precast, Inc. Lightweight Concrete Wall Panel With Metallic Studs
US20110088333A1 (en) * 2007-12-21 2011-04-21 David Damichey Prefabricated element for a dwelling unit
US8590215B2 (en) * 2007-12-21 2013-11-26 David Damichey Prefabricated element for a dwelling unit
US8745930B2 (en) * 2008-05-14 2014-06-10 Plattforms, Inc Precast composite structural floor system
US20130091794A1 (en) * 2008-05-14 2013-04-18 David H. Platt Precast composite structural floor system
US20100223867A1 (en) * 2009-03-05 2010-09-09 Robert Floyd Tuttle Slab based modular building system
US8763328B2 (en) * 2009-03-05 2014-07-01 Robert Floyd Tuttle Slab based modular building system
US20170218627A1 (en) * 2011-03-18 2017-08-03 Peter Mervyn Neil Composite wall panel, wall system and components thereof, and a method of construction thereof
US9951519B2 (en) * 2011-03-18 2018-04-24 Peter Mervyn Neil Composite wall panel, wall system and components thereof, and a method of construction thereof
WO2014182184A1 (en) * 2013-05-06 2014-11-13 Stachoń Cezary Method of constructing passive foundations that reduce heat loss of a building, as well as the costs and consumption of materials
US9797136B2 (en) 2013-10-31 2017-10-24 University Of North Carolina At Charlotte High performance architectural precast concrete wall system
RU215406U1 (en) * 2022-08-11 2022-12-12 Руслан Олегович Ступин FACADE HEAT-INSULATION PANEL

Similar Documents

Publication Publication Date Title
US7627997B2 (en) Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
US7100336B2 (en) Concrete building panel with a low density core and carbon fiber and steel reinforcement
US20070144093A1 (en) Method and apparatus for fabricating a low density wall panel with interior surface finished
US6898908B2 (en) Insulative concrete building panel with carbon fiber and steel reinforcement
US6729090B2 (en) Insulative building panel with transverse fiber reinforcement
US7810293B2 (en) Multiple layer polymer foam and concrete system for forming concrete walls, panels, floors, and decks
US7958687B2 (en) Concrete panel construction system
EP1192321B1 (en) Integral concrete wall forming panel and method
US20050262786A1 (en) Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
US5398472A (en) Fiber-bale composite structural system and method
US5799453A (en) Structure and method of fabrication
US20060096236A1 (en) Structural wall apparatuses, systems, and methods
US20020043045A1 (en) Modular panels for building construction
US20060218870A1 (en) Prestressed concrete building panel and method of fabricating the same
US20050279039A1 (en) Earth coupled geo-thermal energy free building
US8827235B1 (en) Concrete form for building foundation construction with form insert creating recessed sections
US6735914B2 (en) Load bearing wall
US6920729B2 (en) Composite wall tie
EP0584093A1 (en) Building elements
KR20210083316A (en) underground modular assembly
WO2012060863A2 (en) Wall panel construction and method for in situ assembly
EP1238172B1 (en) Concrete panel construction system
CN115949157B (en) Assembled shear wall system and construction method
CN210562584U (en) Assembly type building structure
EP1185748B1 (en) Concrete panel construction system

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLDCASTLE PRECAST, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MESSENGER, HAROLD G.;ROTONDO, THOMAS;REEL/FRAME:016837/0207;SIGNING DATES FROM 20050629 TO 20050707

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION