Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050247238 A1
Publication typeApplication
Application numberUS 11/183,498
Publication date10 Nov 2005
Filing date18 Jul 2005
Priority date16 Apr 2003
Also published asCA2522500A1, EP1628934A2, US6957702, US20040206501, WO2004094337A2, WO2004094337A3
Publication number11183498, 183498, US 2005/0247238 A1, US 2005/247238 A1, US 20050247238 A1, US 20050247238A1, US 2005247238 A1, US 2005247238A1, US-A1-20050247238, US-A1-2005247238, US2005/0247238A1, US2005/247238A1, US20050247238 A1, US20050247238A1, US2005247238 A1, US2005247238A1
InventorsLance Brothers, Robert Sepulvado
Original AssigneeBrothers Lance E, Sepulvado Robert J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US 20050247238 A1
Abstract
Cement compositions having enhanced mechanical properties and comprising microspheres and carbon fibers are provided herein. The cement compositions comprise a cement material, carbon fibers, microspheres, sufficient water to form a slurry, and optionally other ingredients.
Images(5)
Previous page
Next page
Claims(20)
1. A cement composition comprising:
hydraulic cement;
water;
microspheres; and
carbon fibers present in the cement composition in an amount in the range of from about 1% to about 15% by weight of cement.
2. The cement composition of claim 1 wherein the hydraulic cement comprises at least one of the following: a Portland cement; a pozzolana cement; a gypsum cement; a high alumina content cements; a silica cements; a high alkalinity cements; and a calcium phosphate cement.
3. The cement composition of claim 1 wherein the carbon fibers have a mean length of about 150 microns.
4. The cement composition of claim 1 wherein the carbon fibers have a mean length of about 1 mm or less.
5. The cement composition of claim 1 wherein the carbon fibers have a mean length of about 50 to about 500 microns.
6. The cement composition of claim 1 wherein the carbon fibers have a mean length of about 100 to about 200 microns.
7. The cement composition of claim 1 wherein the carbon fibers are milled.
8. The cement composition of claim 1 wherein the carbon fibers have a tensile modulus greater than about 180 GPa.
9. The cement composition of claim 1 wherein the carbon fibers have a tensile strength greater than about 3000 MPa.
10. The cement composition of claim 1 wherein the cement composition has a tensile strength greater than about 183 psi.
11. The cement composition of claim 1 wherein the microspheres are present in the cement composition in an amount in the range of from about 10% to about 390% by weight of cement.
12. The cement composition of claim 1 wherein the microspheres are present in the cement composition in an amount in the range of from about 20% to about 100% by weight of the cement.
13. The cement composition of claim 1 wherein the water is present in the cement composition in an amount in the range of from about 50% to about 350% by weight of cement.
14. The cement composition of claim 1 wherein the density of the cement composition is in the range of from about 5 pounds per gallon to about 15 pounds per gallon.
15. The cement composition of claim 1 wherein the density of the cement composition is in the range of from about 6 pounds per gallon to about 14 pounds per gallon, wherein the carbon fibers have a mean length of about 100 to about 200 microns, and wherein the microspheres are present in an amount in the range of from about 20% to about 100% by weight of cement.
16. The cement composition of claim 1 wherein the microspheres are pre-suspended in water before being introduced into the composition.
17. The cement composition of claim 1 wherein the microspheres are dry blended with the cement before the addition of water.
18. The cement composition of claim 1 further comprising at least one of the following: a fluid loss control additive, a defoamer, a surfactant, vitrified shale, mica, fiber, fly ash, bentonite, fumed silica, a salt, a dispersing agent, a set accelerator, a formation conditioning agent, and a set retarder.
19. A cement composition comprising:
hydraulic cement;
water;
microspheres present in the cement composition in an amount in the range of from about 10% to about 390% by weight of cement; and
carbon fibers present in the cement composition in an amount in the range of from about 1% to about 15% by weight of cement.
20. A cement composition comprising:
hydraulic cement;
water;
microspheres present in the cement composition in an amount in the range of from about 10% to about 390% by weight of cement; and
carbon fibers having a mean length of about 1 mm or less present in the cement composition in an amount in the range of from about 1% to about 15% by weight of cement.
Description
    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This Application is a divisional application of U.S. application Ser. No. 10/414,641 entitled “Cement Compositions with Improved Mechanical Properties and Methods of Cementing in a Subterranean Formation,” filed on Jul. 16, 2003.
  • BACKGROUND
  • [0002]
    The present invention relates to subterranean cementing operations, and more particularly, to cement compositions comprising microspheres having improved mechanical properties, processes of preparing such compositions, and methods of using such compositions in subterranean cementing operations.
  • [0003]
    Hydraulic cement compositions are commonly utilized in subterranean operations, particularly subterranean well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby pipe strings such as casings and liners are cemented in well bores. In performing primary cementing, hydraulic cement compositions are pumped into the annular space between the walls of a well bore and the exterior surface of the pipe string disposed therein. The cement composition is permitted to set in the annular space, thereby forming an annular sheath of hardened substantially impermeable cement therein that substantially supports and positions the pipe string in the well bore and bonds the exterior surfaces of the pipe string to the walls of the well bore. Hydraulic cement compositions also are used in remedial cementing operations such as plugging highly permeable zones or fractures in well bores, plugging cracks in holes in pipe strings, and the like.
  • [0004]
    Subterranean formations transversed by well bores are often weak and extensively fractured, and may be vulnerable to the loss of circulation of cement compositions during placement. Such loss of circulation of cement compositions during placement is of great concern, and prevention of loss of circulation often calls for reducing the density of the cement as much as possible to accordingly reduce the hydrostatic pressure. A traditional means of reducing the density of the cement has been to increase the cement's water content, because, generally speaking, the higher the water content, the lighter the cement. However, this method may be problematic because the resultant cement often lacks the desired strength, especially in light of the stresses to which the cement will be subjected.
  • [0005]
    Cement compositions containing lightweight spherical or substantially spherical compounds have been developed as an alternative means of reducing the density of a given cement composition. Some compositions comprise microspheres, which typically comprise cenospheres, glass hollow microspheres, or ceramic hollow microspheres. Cenospheres are hollow spheres primarily comprising silica (SiO2) and alumina (Al2O3), and are filled with gas. These are a naturally occurring by-product of the burning process of a coal-fired power plant. The addition of conventional glass hollow microspheres and ceramic hollow microspheres reduces the density of the cement composition and produces a lightweight cement composition, e.g., a cement composition having a density less than about 13 pound per gallon.
  • [0006]
    Cement failures can be particularly problematic in lightweight cement compositions containing a high proportion of microspheres, as these compositions have demonstrably reduced strength. This problematic reduction in strength is believed to be attributable to the combination of reduced content of cementitious materials and increased void space, both of which are caused by the addition of the hollow microspheres to the cement composition. Failure of cement within the well bore can result in radial or circumferential cracking of the cement as well as a breakdown of the bonds between the cement and the pipe or between the cement sheath and the surrounding subterranean formations. Such failures can result in at least lost production, environmental pollution, hazardous rig operations, and/or hazardous production operations. Another undesirable result is the presence of pressure at the well head in the form of trapped gas between casing strings.
  • [0007]
    To successfully meet the subterranean challenges to which a cement composition may be exposed, a low-density cement composition should develop high bond strength after setting, and also have sufficient elasticity and ductility to resist loss of pipe or formation bonding, cracking and/or shattering as a result of all of the stressful conditions that may plague the well, including impacts and/or shocks generated by drilling and other well operations.
  • SUMMARY
  • [0008]
    The present invention provides cement compositions having enhanced mechanical properties and comprising microspheres and carbon fibers, and methods for cementing in a subterranean formation using such cement compositions.
  • [0009]
    One embodiment of the cement compositions of the present invention comprise a hydraulic cement, water, microspheres and carbon fibers, wherein the carbon fibers are present in the cement composition in an amount in the range of from about 1% to about 15% by weight of cement.
  • [0010]
    The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the embodiments that follows.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0011]
    The present invention provides cement compositions having enhanced mechanical properties and comprising microspheres and carbon fibers, and methods for cementing in a subterranean formation using such cement compositions. The present invention provides cement compositions having improved mechanical properties, including tensile strength, and methods of utilizing these cement compositions in subterranean cementing operations. While the compositions and methods are useful in a variety of subterranean applications, they are particularly useful in well completion and remedial operations, including primary cementing, e.g., cementing casings and liners in well bores, including those in multi-lateral subterranean wells.
  • [0012]
    The improved cement compositions of the present invention generally comprise a hydraulic cement, carbon fibers, microspheres, and water sufficient to form a pumpable slurry. The cement compositions of the present invention generally have a density in the range of from about 5 lb/gallon to about 15 lb/gallon, more preferably in the range of from about 6 lb/gallon to about 14 lb/gallon. Other additives suitable for use in subterranean cementing operations also may be added to those compositions if desired.
  • [0013]
    Any cement suitable for use in subterranean cementing operations may be used in accordance with the present invention. In one embodiment, the cement compositions comprise a hydraulic cement. A variety of hydraulic cements are suitable for use in the compositions and methods of the present invention including those comprised of calcium, aluminum, silicon, oxygen, and/or sulfur, which set and harden by reaction with water. Such hydraulic cements include but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, silica cements, and high alkalinity cements.
  • [0014]
    The water utilized in the cement compositions can be fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine, or seawater. Generally, the water can be from any source provided that it does not contain an excess of compounds that may adversely affect other components in the cement composition. The water may be present in an amount sufficient to form a pumpable slurry. Generally, the water is present in the cement compositions in an amount in the range of from about 50% to about 350% by weight of cement (“bwoc”) therein. In some embodiments, the water is present in the cement compositions in an amount in the range of from about 60% to about 200% bwoc therein.
  • [0015]
    The microspheres that may be used in the cement compositions of the present invention may be any microsphere suitable for use in subterranean applications to, inter alia, reduce the density of the cement composition. As referred to herein, the term “microspheres” will be understood to mean any body having a low specific gravity as compared with conventional filler, such that when used as a filler in a cement composition, they contribute to reducing the weight of the cement composition. In some embodiments of the cement compositions of the present invention, the microspheres utilized are synthetic, non-porous microspheres. The microspheres may be obtained from any suitable source. Particularly suitable microspheres are cenospheres, which are hollow microspheres that are formed as an industrial waste by-product, and which are commercially available from, for example, Halliburton Energy Services, Inc., of Duncan, Okla., under the tradename “SPHERELITE.” Generally speaking, the microspheres are present in the cement compositions in the amount of from about 10% to about 390% bwoc. In some embodiments, the microspheres are present in an amount in the range of from about 20% to about 100% bwoc. The microspheres may be added to a cement composition by any suitable method including by dry blending with the cement before the addition of a fluid such as water, by mixing with the fluid to be added to the cement, or by mixing with the cement slurry consecutively with or after the addition of the fluid. The microspheres may be pre-suspended in water and injected into the cement mix fluid or into the cement slurry as an aqueous slurry. Preferably, the microspheres are dry blended with the cement before the addition of water.
  • [0016]
    It has been found that adding microspheres to a cement composition affects the mechanical properties of the cement composition, inter alia, by lowering the cement composition's density. However, when microspheres are added in quantities sufficient to desirably affect the density of the cement, the mechanical properties of the cement are also affected, e.g., its tensile strength. The reduction in tensile strength can be particularly problematic because the risk of rupture of the cement sheath in response to a stressful condition is directly linked to the tensile strength of the cement. Moreover, the risk is attenuated when the ratio of the tensile strength of the cement to its Young's Modulus is increased. Thus, adding carbon fibers to a cement composition that comprises microspheres is desirable to enhance the mechanical properties including the tensile strength of such cement compositions. Also, adding carbon fibers as opposed to other additives, such as polypropylene, has the added benefit of providing increased temperature stability to the cement composition. This makes the cement compositions of the present invention especially suitable for use in or in conjunction with hostile well bore conditions, such as high temperatures and/or high pressures.
  • [0017]
    The carbon fibers that are present in the cement compositions of the present invention preferably have a relatively high tensile strength and/or a relatively high tensile modulus. In certain embodiments, to achieve certain specific/desired advantages associated with the present invention, the tensile modulus of the fibers may exceed 180 GPa, and the tensile strength of the fibers may exceed 3000 MPa. The fibers preferably have a mean length of about 1 mm or less. In certain embodiments, the mean length of the carbon fibers is from about 50 to about 500 microns. Most preferably, the fibers have a mean length in the range of about 100 to about 200 microns. Preferably, they are milled carbon fibers. An example of suitable carbon fibers includes “AGM-94” carbon fibers commercially available from Asbury Graphite Mills, Inc., of Asbury, N.J. AGM-94 fibers have a mean length of about 150 microns and a diameter of about 7.2 microns. Another example of suitable carbon fibers includes the “AGM-99” carbon fibers, also available from Asbury Graphite Mills, Inc., which have a mean length of about 150 microns and a diameter of about 7.4 microns. In some embodiments, the carbon fibers are present in the cement compositions in an amount in the range of from about 1% to about 15% bwoc.
  • [0018]
    Additional additives may be added to the cement composition as deemed appropriate by one skilled in the art for improving or changing the properties of the ensuing hardened cement. Examples of such additives include but are not limited to, inter alia, fluid loss control additives, defoamers, surfactants, vitrified shale, mica, fiber, fly ash, bentonite, fumed silica, salts, dispersing agents, set accelerators, formation conditioning agents, and set retarders. An example of a suitable dispersing agent is a water-soluble polymer prepared by the caustic catalyzed condensation of formaldehyde with acetone wherein the polymer contains sodium sulfate groups. Such dispersing agent is commercially available under the trade designation “CFR-3” from Halliburton Energy Services of Duncan, Okla. Another suitable dispersant is commercially available under the trade designation “CFR-2” from Halliburton Energy Services in Duncan, Okla.
  • [0019]
    An example of a preferred cement composition of the present invention comprises: Class G Portland cement; 98% sea water bwoc; 1% CFR-3 dispersant bwoc; 55% hollow microspheres bwoc; and 10% milled carbon fibers bwoc having a mean length of 150 microns.
  • [0020]
    To facilitate a better understanding of the present invention, the following examples of specific embodiments are given. In no way should the following examples be read to limit, or define, the entire scope of the invention.
  • EXAMPLE 1
  • [0021]
    Test samples of preferred exemplary embodiments of the cement compositions of the present invention were made and the tensile strength of each composition was determined. Comparative samples were also made and similarly tested. To prepare the samples of the cement compositions, Class G Portland cement was mixed with 98% sea water bwoc and 55% SPHERELITE bwoc, and cured for 72 hours at 150 F. To certain sample cement compositions, 1% CFR-3 dispersant bwoc and carbon fibers were added in chosen ratios as described in Table 1. The carbon fibers were milled fibers, specifically AGM-94 fibers from Asbury Graphite Mills Inc., with a mean length of 150 microns and a diameter of 7.2 microns. The tensile strength of each cement composition was then determined. All tests were performed in accordance with ASTM C496-96.
  • [0022]
    Table 1 below lists the percentage of carbon fibers that were added to each cement composition and the resultant tensile strength.
    TABLE 1
    Sample Dispersant Milled Carbon Fibers Tensile
    Description (bwoc) (bwoc) Strength (psi)
    Comparative None 0 183
    Sample No. 1
    Sample No. 2 1% CFR-3  10% 283
  • [0023]
    Comparative Sample No. 1 illustrates the tensile strength of a cement composition comprising microspheres when no carbon fibers have been added to the composition. The tensile strength was 183 psi.
  • [0024]
    Sample No. 2 illustrates the tensile strength of a cement composition of the present invention, comprising microspheres to which carbon fibers and a dispersant have been added. The tensile strength was 283 psi, a 55% increase from Comparative Sample No. 1.
  • [0025]
    Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3359225 *26 Aug 196319 Dec 1967Weisend Charles FCement additives containing polyvinylpyrrolidone and a condensate of sodium naphthalene sulfonate with formaldehyde
US4063603 *22 Feb 197720 Dec 1977Rayborn Jerry JDrilling fluid lubricant
US4111710 *23 Dec 19765 Sep 1978Union Carbide CorporationMethod of incorporating carbon fibers into cement to produce reinforced structures having improved flexural strengths
US4461644 *29 Apr 198324 Jul 1984Halliburton CompanyLight weight composition and a method of sealing a subterranean formation
US4557763 *30 May 198410 Dec 1985Halliburton CompanyDispersant and fluid loss additives for oil field cements
US4784223 *21 Nov 198615 Nov 1988Shell Oil CompanyForming an impermeable coating on a borehole wall
US4927462 *23 Dec 198822 May 1990Associated Universities, Inc.Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems
US5283125 *24 Apr 19911 Feb 1994Takenaka CorporationDew condensation preventing structure
US5352288 *7 Jun 19934 Oct 1994Dynastone LcLow-cost, high early strength, acid-resistant pozzolanic cement
US5820670 *3 Jun 199713 Oct 1998Halliburton Energy Services, Inc.Resilient well cement compositions and methods
US6059035 *20 Jul 19989 May 2000Halliburton Energy Services, Inc.Subterranean zone sealing methods and compositions
US6059036 *26 Nov 19979 May 2000Halliburton Energy Services, Inc.Methods and compositions for sealing subterranean zones
US6220354 *24 Oct 200024 Apr 2001Halliburton Energy Services, Inc.High strength foamed well cement compositions and methods
US6230804 *19 Dec 199715 May 2001Bj Services CompanyStress resistant cement compositions and methods for using same
US6245434 *11 Dec 199812 Jun 2001Takenaka CorporationRadio wave absorber composition, radio wave absorber member, radio wave absorber, and method for producing radio wave absorber member
US6279652 *23 Sep 199828 Aug 2001Halliburton Energy Services, Inc.Heat insulation compositions and methods
US6308777 *13 Oct 199930 Oct 2001Halliburton Energy Services, Inc.Cementing wells with crack and shatter resistant cement
US6386109 *21 Jul 200014 May 2002Schlumberger Technology Corp.Shock barriers for explosives
US6457524 *15 Sep 20001 Oct 2002Halliburton Energy Services, Inc.Well cementing compositions and methods
US6458198 *4 May 19991 Oct 2002Schlumberger Technology CorporationCementing compositions and use of such compositions for cementing oil wells or the like
US6500252 *31 Jan 200131 Dec 2002Halliburton Energy Services, Inc.High strength foamed well cement compositions and methods
US6508305 *14 Sep 200021 Jan 2003Bj Services CompanyCompositions and methods for cementing using elastic particles
US6516883 *25 Jul 200211 Feb 2003Halliburton Energy Services, Inc.Methods of cementing pipe in well bores and low density cement compositions therefor
US6645288 *10 Dec 199911 Nov 2003Schlumberger Technology CorporationCementing compositions and application of such compositions for cementing oil wells or the like
US6986859 *21 Jul 200417 Jan 2006Goodrich CorporationInorganic matrix compositions and composites incorporating the matrix composition
US20020157575 *6 Feb 200231 Oct 2002Dilullo Gino A.High temperature flexible cementing compositions and methods for using same
US20040045713 *24 Feb 200311 Mar 2004Bianchi Gustavo LuisSlurry for hydrocarbon production and water injection well cementing, and procedures to cement wells using such slurry
US20050003214 *21 Jul 20046 Jan 2005Goodrich CorporationInorganic matrix compositions, composites and process of making the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7297208 *17 Mar 200620 Nov 2007Halliburton Energy Services, Inc.Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US8105433 *13 Feb 200931 Jan 2012The University Of TokyoCement admixture, and cement composition and concrete containing the cement admixture
US20110132231 *13 Feb 20099 Jun 2011The University Of TokyoCement admixture, and cement composition and concrete containing the cement admixture
Classifications
U.S. Classification106/814
International ClassificationC04B28/02, C09K8/46
Cooperative ClassificationC04B28/02, C09K8/46, Y02W30/94
European ClassificationC09K8/46, C04B28/02