US20050240945A1 - System and method for dynamic generation of remote proxies - Google Patents

System and method for dynamic generation of remote proxies Download PDF

Info

Publication number
US20050240945A1
US20050240945A1 US11/158,734 US15873405A US2005240945A1 US 20050240945 A1 US20050240945 A1 US 20050240945A1 US 15873405 A US15873405 A US 15873405A US 2005240945 A1 US2005240945 A1 US 2005240945A1
Authority
US
United States
Prior art keywords
remote proxy
class
remote
subject
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/158,734
Inventor
Graham Glass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAINLINE DATA LLC
Hanger Solutions LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/451,507 external-priority patent/US6993774B1/en
Application filed by Individual filed Critical Individual
Priority to US11/158,734 priority Critical patent/US20050240945A1/en
Assigned to MAINLINE DATA LLC reassignment MAINLINE DATA LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RECURSION SOFTWARE, INC.
Publication of US20050240945A1 publication Critical patent/US20050240945A1/en
Assigned to OBJECTSPACE, INC. reassignment OBJECTSPACE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLASS, GRAHAM W., GUTHRIE, RHETT DAVIS
Assigned to RECURSION SOFTWARE, INC. reassignment RECURSION SOFTWARE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OBJECTSPACE, INC.
Assigned to HANGER SOLUTIONS, LLC reassignment HANGER SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTELLECTUAL VENTURES ASSETS 161 LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/547Remote procedure calls [RPC]; Web services
    • G06F9/548Object oriented; Remote method invocation [RMI]

Definitions

  • This invention relates in general to the field of software systems, and more particularly to an improved system and method for dynamic generation of remote proxy classes within a distributed object management system.
  • Object oriented programming is a method of programming which abstracts a computer program into manageable sections.
  • the key to object oriented programming is the concept of encapsulation.
  • Encapsulation is a method by which the subroutines, or methods, that manipulate data are combined with the declaration and storage of that data. This encapsulation prevents the data from arbitrarily being accessed by other program subroutines, or objects.
  • the associated data is available and can be manipulated by any of the methods which are defined within the object to act upon the data.
  • the basic component of encapsulation is a class.
  • a class is an abstraction for a set of objects that share the same structure and behavior.
  • An object is a single instance of a class that retains the structure and behavior of the class.
  • Objects also contain methods which are the processes by which an object is instructed to perform some procedure or manipulation of data which it controls. Classes may also be characterized by their interface which defines the elements necessary for proper communication between objects.
  • Distributed computing allows an object on one computer system to seamlessly communicate with and manipulate an object contained in a second computer system when these computers are connected with a computer network.
  • This second computer system may also be referred to as another address space.
  • Sophisticated distributed computing systems have removed the communications burden from the computer programs, or objects in an object oriented programming environment, and placed it in a mid-level operating system which purpose is to manage communications across a computer network to facilitate a client's access to and manipulation of data contained on a server system, for example, a computer remote to the user in a different address space.
  • Distributed computing and object oriented programming have led to the development of distributed object management systems.
  • the distributed object management system steps in to facilitate the communication between the two computer systems and, thus, between the two objects.
  • the distributed object management system removes the requirement of the object on the client system communicating directly with the object on the server system. Instead, current distributed object management systems create a remote proxy object on the client system which models the interface of the object which exists on the server system.
  • the client computer system which requested access to the remote object communicates with the remote proxy object which now exists on the client computer system. Therefore, the client computer system can operate as if it is communicating directly with a local object.
  • the remote proxy object contains the necessary communications information to allow the client computer system to access and manipulate an object which actually exists on the server computer system. Remote proxies allow the client system to disregard the location of the requested object and the communication details.
  • a proxy is an object which has an interface and method list identical to another object. However, it does not contain the same detail computer programming. Instead it contains communications requirements which allow the proxy to communicate directly with another object without the knowledge of the first object. Proxies can be used to control access to certain objects. They may also be used to remove the labor of distributed processing communications from local objects. For example, if object A which resides on a first computer system needs to communicate with object B which resides on a second computer system, object A must know the location of object B and have the necessary computer code to initiate communications with object B located on the second computer system.
  • a proxy for object B located on the first computer system allows object A to simply communicate with the proxy of object B as if object B resided on the same computer.
  • the proxy for Object B has all the necessary information and computer code to communicate with the real object B on the second computer system. This type of proxy is known as a remote proxy since it exists on a computer system remote from the computer system which contains the requested object.
  • a software system comprising a client system and server system that communicate via a distributed computer network utilizing a distributed object management system.
  • the distributed object management system also comprises a remote proxy generator to dynamically generate at run time remote proxy classes as needed for inter-object communications within the distributed computer network.
  • One important technical advantage of the present invention inheres in the fact that it decreases development time and increases developer productivity since the developer does not have to manually generate the remote proxy classes when the system is initially installed or when the subject class is modified in the future.
  • Other technical advantages include reduced initial system build time and reduced disk storage space required to store the application programs.
  • FIG. 1 is a block diagram illustrating a distributed object management system constructed according to the teachings of the present invention
  • FIG. 2 illustrates a flow chart of a method of determining when dynamic generation of remote proxy classes is needed according to the teachings of the present invention
  • FIG. 3 is a block diagram illustrating dynamic generation of remote proxy classes according to the teachings of the present invention.
  • FIG. 4 illustrates a flow chart of a method of dynamically generating remote proxy classes according to the teachings of the present invention.
  • a distributed processing computer system generally indicated at 10 that comprises one or more server systems 12 and one or more client systems 14 .
  • the client/server computer systems allow for decentralized computing which includes the ability to manipulate data which is resident on a remote system.
  • the server system 12 and client system 14 may comprise a personal computer, mini computer, main frame computer, or any other suitable computer type device.
  • each computer is assigned a unique address. Therefore, if data, code or objects exist on a different computer, it is said to exist in a different address space.
  • the client system 14 requests access to data or services which may be contained on server system 12 .
  • Server system 12 may then process the request and approve access as requested by client system 14 .
  • Client system 14 is connected to server system 12 via a distributed object management system 16 operating across a computer network.
  • the distributed object management system 16 handles the communications between client system 14 and server system 12 . Without distributed object management system 16 , distributed processing could not take place since client system 14 would not be able to determine the location of or obtain access to the requested data or services.
  • the distributed object management system 16 may comprise Voyager, a distributed network communications system developed by ObjectSpace, Inc., CORBA (Common Object Request Broker Architecture), a technology for inter-object communications developed by a consortium of companies, DCOM, an inter-application communications system for networked computers developed by Microsoft, or any other suitable distributed object management system.
  • the present invention teaches a system and method for generating proxies on local systems to facilitate access to objects on remote systems.
  • An object is an instance of a class within the programming methodology of object oriented programming.
  • the present invention may be implemented using the Java language, developed by Sun Micro Systems, Inc., or any other suitable computer language.
  • Server system 12 may contain one or more subject objects 18 for which client system 14 may issue a request for access.
  • subject object 18 is the subject of client system's 14 request.
  • Client system 14 may contain one or more local objects 20 . It is important to note that local object 20 can itself be a subject object, and subject object 18 can itself be a local object depending on what computer, or address space, is making the request for access.
  • local object 20 and subject object 18 exist in different address spaces. However, both local object 20 and subject object 18 could reside on the same computer and still invoke the system and method of the present invention.
  • the present invention is utilized in all inter-object communications regardless of their relative locations.
  • Local object 20 may request access to subject object 18 . This request invokes the distributed object management system 16 .
  • a remote proxy object 22 may be created on client system 14 .
  • Remote proxy object 22 has an interface and list of methods identical to subject object 18 .
  • Remote proxy object 22 is so named since it may be remote from subject object 18 , and it provides a local representative for an object which may reside in a different address space.
  • Remote proxies in general are responsible for encoding a request and its arguments and for sending the encoded request to the subject object which may exist in a different address space. Remote proxies also hide the location of the subject object from the requesting local object. Therefore, any local object can assume, from an access point of view, that any object it needs is local.
  • Local object 20 communicates with remote proxy object 22 which then communicates with subject object 18 via distributed object management system 16 . By doing this, local object 20 is unconcerned with the location of subject object 18 . As far as it is concerned, local object 20 is communicating directly with another local object, but in reality, it is communicating with subject object 18 which may reside in a different address space.
  • a system constructed using the present invention dynamically generates remote proxy classes as needed at run-time.
  • the primary advantage is reduced system development time since the system developer does not have to manually generate remote proxy classes when the system is initially compiled or manually regenerate remote proxy classes each time a subject object class is modified.
  • the system of the present invention also reduces computer program storage requirements since remote proxy classes are not a permanent part of the operating environment. It also minimizes compile and load time for the computer program since remote proxy classes do not have to be generated at compile and load time. In order to optimize system performance, generated remote proxy classes remain in memory until the distributed object management system is shut down.
  • the dynamic generation of remote proxies may be accomplished by parsing the .class or java file for subject object 18 and creating a .java file for remote proxy object 22 which contains the interfaces and methods of the subject object 18 .
  • the Java compiler may then be invoked to compile the .java file into a .class file for remote proxy object 22 .
  • the compiled .class file can then be loaded into the computer system via a class loader which is a standard element in a Java environment. A .class file must be loaded before it is available for use by distributed processing computer system 10 .
  • the process of parsing the subject object 18 class (subject class 19 ) or .java file, creating a source code file for remote proxy class 23 , compiling, loading, and creating a new instance may be excessively slow at run-time.
  • a reflection process may be used on subject object 18 to determine its name, interfaces and list of methods and then to directly generate the byte codes into a .class file, subject class 19 .
  • the byte codes are the executable code stored in a class file.
  • the class file can then be loaded into the computer system with the class loader.
  • This embodiment eliminates the need to parse the .class file, create a .java source code file, and shell out the .java file to a compiler since the code generation process occurs as part of the dynamic generation of remote proxies. This entire process of dynamic generation of remote proxies will be discussed in detail with reference to FIGS. 2, 3 and 4 .
  • the process of determining if a remote proxy is necessary is invoked via a request from local object 20 for access to subject object 18 .
  • the method begins at step 24 where local object 20 on client system 14 requests access to subject object 18 on server system 12 .
  • This request could be for any object whether it is local or remote and in a different address space.
  • the system of the present invention generates and utilizes remote proxy objects in all inter-object communication to provide additional processing support.
  • any communication between objects regardless of their location, utilizes remote proxy objects.
  • These remote proxy objects act as a middle man between the requested object and the requesting object to provide additional processing functionality which may include increased security.
  • the method then proceeds to step 26 where the requested object is located on either client system 14 or server system 12 .
  • the method proceeds to step 30 where a determination is made regarding the need for a remote proxy class. If remote proxy class 23 already exists on client system 14 , then the method terminates since remote proxy classes are not removed from client system 14 until the distributed object management system 16 is shut down. However, if remote proxy class 23 does not exist on client system 14 , the method then proceeds to step 32 where remote proxy class 23 is generated on client system 14 based on the name, interfaces and methods of subject object 18 which may reside on either server system 12 or client system 14 . The method for generating these remote proxies is described in detail with reference to FIGS. 3 and 4 .
  • FIG. 3 is a functional diagram of the portions of distributed object management system 16 that are used to create remote proxy classes as necessary.
  • Remote proxy generation control module 34 is invoked at step 32 in FIG. 2 .
  • the distributed object management system 16 invokes the remote proxy generation control module 34 , the method described previously has already determined that the remote proxy class 23 does not yet exist on client system 14 .
  • Remote proxy generation control module 34 generates remote proxy 22 on client system 14 so local object 20 can communicate with subject object 18 via distributed object management system 16 .
  • an object is an instance of a class.
  • Classes may be defined in a class hierarchy where each class inherits the attributes of all of its ancestors.
  • Inheritance is a concept which maps related classes onto each other in a hierarchical way. This allows a descendant of a class to inherit all of its variables and methods from its ancestors as well as create its own.
  • the immediate ancestor of a class is known as its superclass. Therefore, in order to determine all of a class's attributes, all of the class's ancestors, or superclasses, must be determined.
  • remote proxies must be generated for each of the subject object's superclasses. By generating these superclass remote proxies, the remote proxy for subject object will inherit all of the variables and methods of its ancestors, or superclasses.
  • An alternative to generating superclass remote proxies includes adding all of the superclass methods and interface requirements to the remote proxy class. By adding the superclass information to the remote proxy class, the need for generating superclass remote proxies is eliminated.
  • remote proxy generation control module 34 first invokes reflection engine 36 to determine information regarding subject class 19 .
  • the process of reflection operates on subject class 19 which is the Java .class file for subject object 18 .
  • subject object 18 and its Java .class file, subject class 19 exist on server system 12
  • subject class 19 could exist on either client system 14 or server system 12 . Therefore, the dynamic generation of remote proxy classes as described in the present invention could take place on either client system 14 or server system 12 .
  • Reflection is a process that determines what an object can do, how it is defined, and how it communicates with other objects. Reflection mirrors the public view of an object to collect information to facilitate the creation of proxies which resemble objects on the public view, but are very different internally, or privately.
  • the public view of an object represents the information external objects must know in order to communicate with the first object.
  • Proxies need to be reflections, or duplicates on the surface, of objects since proxies perform specific tasks such as controlling access to or communications with the objects they represent. Thus, proxies need to look like the object on the outside, but on the inside, proxies contain unique computer code to accomplish their assigned function.
  • the reflection process is only concerned with determining the public view of an object. Therefore, the information determined by the reflection process includes the following: name; list of implemented interfaces; list of methods; and superclass information.
  • reflection engine 36 issues queries against subject class 19 , which is the .class file for subject object 18 , to determine each of subject class 19 superclasses, its name, its interfaces, and each of its methods.
  • the results of these queries are temporarily stored within remote proxy generation control module 34 as JClass information 38 .
  • JClass information 38 is a temporary storage area which defines the name, superclasses, interfaces, and methods of subject class 19 .
  • JClass information 38 would also include the name, interfaces, and methods of each of subject class 19 superclasses.
  • a remote proxy may be first generated for each superclass using the system and method described with reference to the present invention. After the superclass remote proxies are generated, JClass information 38 contains the name, interface, and list of methods for subject class 19 .
  • An alternate methodology for providing superclass methods and interfaces for the remote proxy class is to add all superclass method and interface information to the remote proxy class. By doing this, the need for separate superclass remote proxies is eliminated.
  • a communication enabling module 40 adds to JClass information 38 the computer code necessary for remote proxy object 22 to communicate with subject object 18 via distributed object management system 16 .
  • the communication enabling module 40 inserts the computer code into JClass information 38 which is the definition of all the information that remote proxy object 22 needs to function within distributed object management system 16 .
  • the remote proxy Since a remote proxy's purpose is to communicate with a subject object which may exist either in a different address space or in the same address space, the remote proxy contains essentially only the following information: interfaces identical to the subject object; a list of methods identical to the subject object; and computer code necessary for the remote proxy to communicate with the subject object. In an alternate embodiment of the present invention, the remote proxy would contain all of the information mentioned above and the interfaces and methods of all of the subject object's superclasses.
  • JClass information 38 contains subject object's 18 name, interfaces, methods, and the computer code necessary for communications within distributed object management system 16 .
  • JClass information 38 could also contain the superclass information for subject object 18 .
  • the next function invoked by remote proxy generation control module 34 is byte code generator 42 .
  • the purpose of byte code generator 42 is to directly generate the executable code corresponding to JClass information 38 .
  • JClass information 38 is the definition of the Java class of which remote proxy object 22 is an instance. That is, JClass information 38 is the definition of remote proxy class 23 .
  • Byte code generator 42 reviews JClass information 38 and generates the corresponding byte codes, or executable code, into remote proxy class 23 which is a Java class file.
  • a Java class file is executable code which defines a Java class.
  • Byte code generator 42 is a collection of Java classes which are capable of taking the description of the needed proxy class in JClass information 38 and directly generating the executable Java code in memory.
  • the function of byte code generator 42 is similar to that of a Java compiler. Like a Java compiler, byte code generator 42 generates executable Java code. However, the inputs are very different.
  • a compiler requires a source code file which is a string of bytes which is the sequence of statements for a Java object definition. The string of bytes is parsed by the Java compiler and translated into executable Java code.
  • byte code generator 42 takes general information regarding the needed Java object and directly generates executable Java code without the need for the intermediate step of creating a Java source file. This technique yields considerable time savings since several steps are omitted.
  • byte code generator 42 generates a hexadecimal “CAFEBABE” to indicate to the Java virtual machine that a Java class file begins at that point in memory.
  • Byte code generator 42 is constructed in such a way that the byte codes are generated in the sequence required by the Java virtual machine.
  • byte code generator 42 For each Java construct, byte code generator 42 writes the appropriate header information and hexadecimal byte codes representing the Java construct into computer memory. Thus, there is a block of code, or hexadecimal bytes, for each Java construct. As described above, JClass information 38 contains the computer code necessary for communications within distributed object management system 16 . Byte code generator 42 translates this communications information into byte codes recognizable to the Java virtual machine. When byte code generator 42 terminates, the string of hexadecimal bytes necessary to define the proxy class has been stored in memory as remote proxy class 23 which is an executable Java class file. Remote proxy class 23 has a unique name which is derived from subject class 19 name. For example, if subject class 19 is named “Foo.class”, its remote proxy class 23 name would be “Foo_Proxy.class”.
  • remote proxy class 23 Before remote proxy class 23 can be used, it must be loaded onto client system 14 utilizing a class loader 46 .
  • Class loader 46 may comprise any number of suitable programs which exist in typical object oriented programming environments. The class loader 46 will then create remote proxy object 22 which is an instance of remote proxy class 23 generated by byte code generator 42 .
  • FIG. 4 is a flow diagram that illustrates the process of generating a remote proxy when invoked by step 32 in FIG. 2 and as represented in general by the block diagram in FIG. 3 .
  • the method begins at step 48 where the reflection engine 38 queries subject class 19 to determine its superclass. The method then proceeds to step 50 where a determination is made regarding the existence of a superclass for subject class 19 . If a superclass is found for subject class 19 , then the method proceeds to step 52 where a determination is made regarding the existence of the remote proxy class on client system 14 representing subject class' 19 superclass.
  • step 54 the remote proxy class is generated for subject class' 19 superclass by recursively invoking the remote proxy generation control module 34 .
  • step 54 recursively invokes the method illustrated in FIG. 4 .
  • step 52 if the remote proxy class does exist on client system 14 for subject class' 19 superclass, then the method proceeds to step 56 (described below) since remote proxy classes already exist for all of subject object's 18 superclasses.
  • the interfaces and methods of each of subject class 19 superclasses are stored in JClass information 38 and are later used in the generation of remote proxy class 23 .
  • steps 48 - 54 would not exist in their current form. Instead, these steps would consist of determining the names, interfaces, and methods of all of subject class 19 superclasses and storing the information in JClass information 38 .
  • step 50 if a superclass does not exist for subject object 18 , then the method proceeds to step 56 where reflection engine 36 queries subject class 19 to determine subject class' 19 name and interface. The method then proceeds to step 58 where reflection engine 38 queries subject class 19 regarding its methods. Reflection engine 36 issues queries for each of subject class' 19 methods until all methods are determined. For each of subject class' 19 methods, the software system determines the method name, return type, parameters, and exceptions and stores the information in JClass information 38 .
  • step 60 reflection engine 36 creates JClass information 38 from the name, interface, and methods information determined in steps 56 and 58 .
  • the method then proceeds to step 62 where communication enabling module 40 inserts in JClass information 38 the computer code, in the form of an expression tree, necessary for remote proxy object 22 to communicate with subject object 18 via distributed object management system 16 .
  • step 64 byte code generator 42 generates the executable code representing JClass information 38 into remote proxy class 23 .
  • step 66 class loader 46 loads remote proxy class 23 onto client system 14 where it is now available for use.
  • step 68 remote proxy object 22 is generated as a new instance of remote proxy class 23 which was loaded in step 66 .
  • a software system that allows for the dynamic generation of remote proxy classes.
  • the advantages of dynamic generation of remote proxy classes includes reduced system development time, reduced system compile and build time, reduced system modification time, and reduced system storage requirements.
  • Remote proxy classes are generated as needed at run time. Once a remote proxy class is generated, it continues to exist until the system is shut down. Therefore, the software system is only required to generate a particular remote proxy class once during a session of the software system.

Abstract

A software system is disclosed which provides for dynamic generation of remote proxy classes at run time through a distributed object management system 16. The software system provides for a client system 14 and server system 12 which communicate via distributed object management system 16 which operates over a distributed computer network to allow communications between client system 14 and server system 12. Any inter-object communication will invoke a remote proxy generation control module 34 if a remote proxy class 23 does not already exist for the requested subject object 18. A remote proxy generation control module 34 is provided which first invokes reflection engine 36 to determine the applicable information of subject class 19. Next, a communication enabling module 40 determines and inserts the appropriate computer code to allow local object 20 to communicate with subject object 18 utilizing remote proxy object 22. After the system determines what information is required by remote proxy class 23, byte code generator 42 automatically generates the executable code containing remote proxy class 23. Finally, class loader 46 loads remote proxy class 23 onto the system and creates a new instance which is remote proxy object 22.

Description

    RELATED APPLICATIONS
  • This application is a continuation of pending U.S. application Ser. No. 09/451,507, which is a continuation-in-part application of U.S. application Ser. No. 09/175,079 now U.S. Pat. No. 6,385,661.
  • TECHNICAL FIELD OF THE INVENTION
  • This invention relates in general to the field of software systems, and more particularly to an improved system and method for dynamic generation of remote proxy classes within a distributed object management system.
  • BACKGROUND OF THE INVENTION
  • Object oriented programming is a method of programming which abstracts a computer program into manageable sections. The key to object oriented programming is the concept of encapsulation. Encapsulation is a method by which the subroutines, or methods, that manipulate data are combined with the declaration and storage of that data. This encapsulation prevents the data from arbitrarily being accessed by other program subroutines, or objects. When an object is invoked, the associated data is available and can be manipulated by any of the methods which are defined within the object to act upon the data. The basic component of encapsulation is a class. A class is an abstraction for a set of objects that share the same structure and behavior. An object is a single instance of a class that retains the structure and behavior of the class. Objects also contain methods which are the processes by which an object is instructed to perform some procedure or manipulation of data which it controls. Classes may also be characterized by their interface which defines the elements necessary for proper communication between objects.
  • Distributed computing allows an object on one computer system to seamlessly communicate with and manipulate an object contained in a second computer system when these computers are connected with a computer network. This second computer system may also be referred to as another address space. Sophisticated distributed computing systems have removed the communications burden from the computer programs, or objects in an object oriented programming environment, and placed it in a mid-level operating system which purpose is to manage communications across a computer network to facilitate a client's access to and manipulation of data contained on a server system, for example, a computer remote to the user in a different address space.
  • Distributed computing and object oriented programming have led to the development of distributed object management systems. When an object on a client computer system requests access to an object which exists only on a server computer system, the distributed object management system steps in to facilitate the communication between the two computer systems and, thus, between the two objects. The distributed object management system removes the requirement of the object on the client system communicating directly with the object on the server system. Instead, current distributed object management systems create a remote proxy object on the client system which models the interface of the object which exists on the server system. The client computer system which requested access to the remote object communicates with the remote proxy object which now exists on the client computer system. Therefore, the client computer system can operate as if it is communicating directly with a local object. The remote proxy object contains the necessary communications information to allow the client computer system to access and manipulate an object which actually exists on the server computer system. Remote proxies allow the client system to disregard the location of the requested object and the communication details.
  • A proxy is an object which has an interface and method list identical to another object. However, it does not contain the same detail computer programming. Instead it contains communications requirements which allow the proxy to communicate directly with another object without the knowledge of the first object. Proxies can be used to control access to certain objects. They may also be used to remove the labor of distributed processing communications from local objects. For example, if object A which resides on a first computer system needs to communicate with object B which resides on a second computer system, object A must know the location of object B and have the necessary computer code to initiate communications with object B located on the second computer system. A proxy for object B located on the first computer system allows object A to simply communicate with the proxy of object B as if object B resided on the same computer. The proxy for Object B has all the necessary information and computer code to communicate with the real object B on the second computer system. This type of proxy is known as a remote proxy since it exists on a computer system remote from the computer system which contains the requested object.
  • Systems heretofore known have required all possible remote proxies to be built when the software system is initially compiled and loaded onto a computer. This process can be very time consuming and the resultant remote proxies can require large amounts of computer storage. In addition, software system designers must predict every possible remote proxy which may be needed in the future so that it can be built when the software system is loaded. This process does not allow a system to adapt to its usage and environment.
  • SUMMARY OF THE INVENTION
  • Accordingly, a need has arisen for a software system in the area of distributed processing which reduces the time and expense required to build, load and store a distributed object management system.
  • According to one embodiment of the present invention, a software system is provided that comprises a client system and server system that communicate via a distributed computer network utilizing a distributed object management system. The distributed object management system also comprises a remote proxy generator to dynamically generate at run time remote proxy classes as needed for inter-object communications within the distributed computer network.
  • One important technical advantage of the present invention inheres in the fact that it decreases development time and increases developer productivity since the developer does not have to manually generate the remote proxy classes when the system is initially installed or when the subject class is modified in the future. Other technical advantages include reduced initial system build time and reduced disk storage space required to store the application programs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:
  • FIG. 1 is a block diagram illustrating a distributed object management system constructed according to the teachings of the present invention;
  • FIG. 2 illustrates a flow chart of a method of determining when dynamic generation of remote proxy classes is needed according to the teachings of the present invention;
  • FIG. 3 is a block diagram illustrating dynamic generation of remote proxy classes according to the teachings of the present invention; and
  • FIG. 4 illustrates a flow chart of a method of dynamically generating remote proxy classes according to the teachings of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, a distributed processing computer system generally indicated at 10 is illustrated that comprises one or more server systems 12 and one or more client systems 14. The client/server computer systems allow for decentralized computing which includes the ability to manipulate data which is resident on a remote system. The server system 12 and client system 14 may comprise a personal computer, mini computer, main frame computer, or any other suitable computer type device. In a computer network environment, each computer is assigned a unique address. Therefore, if data, code or objects exist on a different computer, it is said to exist in a different address space.
  • The client system 14 requests access to data or services which may be contained on server system 12. Server system 12 may then process the request and approve access as requested by client system 14. Client system 14 is connected to server system 12 via a distributed object management system 16 operating across a computer network. The distributed object management system 16 handles the communications between client system 14 and server system 12. Without distributed object management system 16, distributed processing could not take place since client system 14 would not be able to determine the location of or obtain access to the requested data or services. The distributed object management system 16 may comprise Voyager, a distributed network communications system developed by ObjectSpace, Inc., CORBA (Common Object Request Broker Architecture), a technology for inter-object communications developed by a consortium of companies, DCOM, an inter-application communications system for networked computers developed by Microsoft, or any other suitable distributed object management system.
  • The present invention teaches a system and method for generating proxies on local systems to facilitate access to objects on remote systems. An object is an instance of a class within the programming methodology of object oriented programming. The present invention may be implemented using the Java language, developed by Sun Micro Systems, Inc., or any other suitable computer language.
  • When an object class source code description is created in the Java language, it is stored on a storage device as a java file. Upon compilation, the object class executable code is represented as a class file on the storage device. When an object is needed, a new instance, as prescribed by the class file is created, and it then is referred to as an object. Server system 12 may contain one or more subject objects 18 for which client system 14 may issue a request for access. In such a case, subject object 18 is the subject of client system's 14 request. Client system 14 may contain one or more local objects 20. It is important to note that local object 20 can itself be a subject object, and subject object 18 can itself be a local object depending on what computer, or address space, is making the request for access. For purposes of illustrating the present invention, local object 20 and subject object 18 exist in different address spaces. However, both local object 20 and subject object 18 could reside on the same computer and still invoke the system and method of the present invention. The present invention is utilized in all inter-object communications regardless of their relative locations.
  • Local object 20 may request access to subject object 18. This request invokes the distributed object management system 16. In order to isolate the distributed processing communication requirements from local object 20, a remote proxy object 22 may be created on client system 14. Remote proxy object 22 has an interface and list of methods identical to subject object 18. Remote proxy object 22 is so named since it may be remote from subject object 18, and it provides a local representative for an object which may reside in a different address space. Remote proxies in general are responsible for encoding a request and its arguments and for sending the encoded request to the subject object which may exist in a different address space. Remote proxies also hide the location of the subject object from the requesting local object. Therefore, any local object can assume, from an access point of view, that any object it needs is local. Local object 20 communicates with remote proxy object 22 which then communicates with subject object 18 via distributed object management system 16. By doing this, local object 20 is unconcerned with the location of subject object 18. As far as it is concerned, local object 20 is communicating directly with another local object, but in reality, it is communicating with subject object 18 which may reside in a different address space.
  • Currently, a system developer must anticipate all necessary remote proxies and create the remote proxy classes. Some distributed object management systems have a utility which augments the build process by allowing remote proxy classes to be built when the system is compiled. Although this process minimizes the system developer's effort, it still involves developer intervention, computer resources and time. Another disadvantage with current distributed object management systems is that these remote proxy classes must be kept in sync with the subject classes as the subject classes and interfaces are modified. Another disadvantage with current distributed object management systems is that all remote proxy classes must be stored on the computer and available for use when needed. This creates high overhead in developer effort, computer storage and processing requirements.
  • In contrast, a system constructed using the present invention dynamically generates remote proxy classes as needed at run-time. There are several advantages of this method. The primary advantage is reduced system development time since the system developer does not have to manually generate remote proxy classes when the system is initially compiled or manually regenerate remote proxy classes each time a subject object class is modified. The system of the present invention also reduces computer program storage requirements since remote proxy classes are not a permanent part of the operating environment. It also minimizes compile and load time for the computer program since remote proxy classes do not have to be generated at compile and load time. In order to optimize system performance, generated remote proxy classes remain in memory until the distributed object management system is shut down.
  • Referring again to FIG. 1, the dynamic generation of remote proxies may be accomplished by parsing the .class or java file for subject object 18 and creating a .java file for remote proxy object 22 which contains the interfaces and methods of the subject object 18. The Java compiler may then be invoked to compile the .java file into a .class file for remote proxy object 22. The compiled .class file can then be loaded into the computer system via a class loader which is a standard element in a Java environment. A .class file must be loaded before it is available for use by distributed processing computer system 10. Once the .class file is loaded, a new instance of the compiled .class file may be created which will be remote proxy object 22.
  • The process of parsing the subject object 18 class (subject class 19) or .java file, creating a source code file for remote proxy class 23, compiling, loading, and creating a new instance may be excessively slow at run-time. In order to address this issue, a reflection process may be used on subject object 18 to determine its name, interfaces and list of methods and then to directly generate the byte codes into a .class file, subject class 19. The byte codes are the executable code stored in a class file. The class file can then be loaded into the computer system with the class loader. This embodiment eliminates the need to parse the .class file, create a .java source code file, and shell out the .java file to a compiler since the code generation process occurs as part of the dynamic generation of remote proxies. This entire process of dynamic generation of remote proxies will be discussed in detail with reference to FIGS. 2, 3 and 4.
  • Referring to FIG. 2, the process of determining if a remote proxy is necessary is invoked via a request from local object 20 for access to subject object 18. The method begins at step 24 where local object 20 on client system 14 requests access to subject object 18 on server system 12. This request could be for any object whether it is local or remote and in a different address space. The system of the present invention generates and utilizes remote proxy objects in all inter-object communication to provide additional processing support. Thus, any communication between objects, regardless of their location, utilizes remote proxy objects. These remote proxy objects act as a middle man between the requested object and the requesting object to provide additional processing functionality which may include increased security.
  • Referring again to FIG. 2, the method then proceeds to step 26 where the requested object is located on either client system 14 or server system 12. The method proceeds to step 30 where a determination is made regarding the need for a remote proxy class. If remote proxy class 23 already exists on client system 14, then the method terminates since remote proxy classes are not removed from client system 14 until the distributed object management system 16 is shut down. However, if remote proxy class 23 does not exist on client system 14, the method then proceeds to step 32 where remote proxy class 23 is generated on client system 14 based on the name, interfaces and methods of subject object 18 which may reside on either server system 12 or client system 14. The method for generating these remote proxies is described in detail with reference to FIGS. 3 and 4.
  • FIG. 3 is a functional diagram of the portions of distributed object management system 16 that are used to create remote proxy classes as necessary. Remote proxy generation control module 34 is invoked at step 32 in FIG. 2. When the distributed object management system 16 invokes the remote proxy generation control module 34, the method described previously has already determined that the remote proxy class 23 does not yet exist on client system 14. Remote proxy generation control module 34 generates remote proxy 22 on client system 14 so local object 20 can communicate with subject object 18 via distributed object management system 16.
  • As previously discussed, in object oriented programming, an object is an instance of a class. Classes may be defined in a class hierarchy where each class inherits the attributes of all of its ancestors. Inheritance is a concept which maps related classes onto each other in a hierarchical way. This allows a descendant of a class to inherit all of its variables and methods from its ancestors as well as create its own. The immediate ancestor of a class is known as its superclass. Therefore, in order to determine all of a class's attributes, all of the class's ancestors, or superclasses, must be determined.
  • To fully define a remote proxy for a subject object, remote proxies must be generated for each of the subject object's superclasses. By generating these superclass remote proxies, the remote proxy for subject object will inherit all of the variables and methods of its ancestors, or superclasses. An alternative to generating superclass remote proxies includes adding all of the superclass methods and interface requirements to the remote proxy class. By adding the superclass information to the remote proxy class, the need for generating superclass remote proxies is eliminated.
  • Referring again to FIG. 3, remote proxy generation control module 34 first invokes reflection engine 36 to determine information regarding subject class 19. The process of reflection operates on subject class 19 which is the Java .class file for subject object 18. Although for illustrative purposes, subject object 18 and its Java .class file, subject class 19, exist on server system 12, subject class 19 could exist on either client system 14 or server system 12. Therefore, the dynamic generation of remote proxy classes as described in the present invention could take place on either client system 14 or server system 12.
  • Reflection is a process that determines what an object can do, how it is defined, and how it communicates with other objects. Reflection mirrors the public view of an object to collect information to facilitate the creation of proxies which resemble objects on the public view, but are very different internally, or privately. The public view of an object represents the information external objects must know in order to communicate with the first object. Proxies need to be reflections, or duplicates on the surface, of objects since proxies perform specific tasks such as controlling access to or communications with the objects they represent. Thus, proxies need to look like the object on the outside, but on the inside, proxies contain unique computer code to accomplish their assigned function. The reflection process is only concerned with determining the public view of an object. Therefore, the information determined by the reflection process includes the following: name; list of implemented interfaces; list of methods; and superclass information.
  • Continuing with FIG. 3, reflection engine 36 issues queries against subject class 19, which is the .class file for subject object 18, to determine each of subject class 19 superclasses, its name, its interfaces, and each of its methods. The results of these queries are temporarily stored within remote proxy generation control module 34 as JClass information 38. JClass information 38 is a temporary storage area which defines the name, superclasses, interfaces, and methods of subject class 19. JClass information 38 would also include the name, interfaces, and methods of each of subject class 19 superclasses.
  • If subject class 19 has superclasses, a remote proxy may be first generated for each superclass using the system and method described with reference to the present invention. After the superclass remote proxies are generated, JClass information 38 contains the name, interface, and list of methods for subject class 19. An alternate methodology for providing superclass methods and interfaces for the remote proxy class is to add all superclass method and interface information to the remote proxy class. By doing this, the need for separate superclass remote proxies is eliminated.
  • Once the name, interface, methods, and superclass information are determined for subject class 19, a communication enabling module 40 adds to JClass information 38 the computer code necessary for remote proxy object 22 to communicate with subject object 18 via distributed object management system 16. The communication enabling module 40 inserts the computer code into JClass information 38 which is the definition of all the information that remote proxy object 22 needs to function within distributed object management system 16.
  • Since a remote proxy's purpose is to communicate with a subject object which may exist either in a different address space or in the same address space, the remote proxy contains essentially only the following information: interfaces identical to the subject object; a list of methods identical to the subject object; and computer code necessary for the remote proxy to communicate with the subject object. In an alternate embodiment of the present invention, the remote proxy would contain all of the information mentioned above and the interfaces and methods of all of the subject object's superclasses.
  • At this point, JClass information 38 contains subject object's 18 name, interfaces, methods, and the computer code necessary for communications within distributed object management system 16. JClass information 38 could also contain the superclass information for subject object 18. The next function invoked by remote proxy generation control module 34 is byte code generator 42. The purpose of byte code generator 42 is to directly generate the executable code corresponding to JClass information 38. JClass information 38 is the definition of the Java class of which remote proxy object 22 is an instance. That is, JClass information 38 is the definition of remote proxy class 23. Byte code generator 42 reviews JClass information 38 and generates the corresponding byte codes, or executable code, into remote proxy class 23 which is a Java class file. As previously discussed, a Java class file is executable code which defines a Java class.
  • Byte code generator 42 is a collection of Java classes which are capable of taking the description of the needed proxy class in JClass information 38 and directly generating the executable Java code in memory. The function of byte code generator 42 is similar to that of a Java compiler. Like a Java compiler, byte code generator 42 generates executable Java code. However, the inputs are very different. A compiler requires a source code file which is a string of bytes which is the sequence of statements for a Java object definition. The string of bytes is parsed by the Java compiler and translated into executable Java code. In contrast, byte code generator 42 takes general information regarding the needed Java object and directly generates executable Java code without the need for the intermediate step of creating a Java source file. This technique yields considerable time savings since several steps are omitted. For example, like a Java compiler, byte code generator 42 generates a hexadecimal “CAFEBABE” to indicate to the Java virtual machine that a Java class file begins at that point in memory. Byte code generator 42 is constructed in such a way that the byte codes are generated in the sequence required by the Java virtual machine.
  • For each Java construct, byte code generator 42 writes the appropriate header information and hexadecimal byte codes representing the Java construct into computer memory. Thus, there is a block of code, or hexadecimal bytes, for each Java construct. As described above, JClass information 38 contains the computer code necessary for communications within distributed object management system 16. Byte code generator 42 translates this communications information into byte codes recognizable to the Java virtual machine. When byte code generator 42 terminates, the string of hexadecimal bytes necessary to define the proxy class has been stored in memory as remote proxy class 23 which is an executable Java class file. Remote proxy class 23 has a unique name which is derived from subject class 19 name. For example, if subject class 19 is named “Foo.class”, its remote proxy class 23 name would be “Foo_Proxy.class”.
  • Before remote proxy class 23 can be used, it must be loaded onto client system 14 utilizing a class loader 46. Class loader 46 may comprise any number of suitable programs which exist in typical object oriented programming environments. The class loader 46 will then create remote proxy object 22 which is an instance of remote proxy class 23 generated by byte code generator 42.
  • FIG. 4 is a flow diagram that illustrates the process of generating a remote proxy when invoked by step 32 in FIG. 2 and as represented in general by the block diagram in FIG. 3. The method begins at step 48 where the reflection engine 38 queries subject class 19 to determine its superclass. The method then proceeds to step 50 where a determination is made regarding the existence of a superclass for subject class 19. If a superclass is found for subject class 19, then the method proceeds to step 52 where a determination is made regarding the existence of the remote proxy class on client system 14 representing subject class' 19 superclass. If a remote proxy class does not exist for subject class' 19 superclass, the method proceeds to step 54 where the remote proxy class is generated for subject class' 19 superclass by recursively invoking the remote proxy generation control module 34. Thus, step 54 recursively invokes the method illustrated in FIG. 4.
  • Referring to step 52, if the remote proxy class does exist on client system 14 for subject class' 19 superclass, then the method proceeds to step 56 (described below) since remote proxy classes already exist for all of subject object's 18 superclasses.
  • In an alternate embodiment of the present invention, instead of recursively generating remote proxy classes for each of subject class 19 superclasses, the interfaces and methods of each of subject class 19 superclasses are stored in JClass information 38 and are later used in the generation of remote proxy class 23. In the alternate embodiment, steps 48-54 would not exist in their current form. Instead, these steps would consist of determining the names, interfaces, and methods of all of subject class 19 superclasses and storing the information in JClass information 38.
  • Referring to step 50 if a superclass does not exist for subject object 18, then the method proceeds to step 56 where reflection engine 36 queries subject class 19 to determine subject class' 19 name and interface. The method then proceeds to step 58 where reflection engine 38 queries subject class 19 regarding its methods. Reflection engine 36 issues queries for each of subject class' 19 methods until all methods are determined. For each of subject class' 19 methods, the software system determines the method name, return type, parameters, and exceptions and stores the information in JClass information 38.
  • The method then proceeds to step 60 where reflection engine 36 creates JClass information 38 from the name, interface, and methods information determined in steps 56 and 58. The method then proceeds to step 62 where communication enabling module 40 inserts in JClass information 38 the computer code, in the form of an expression tree, necessary for remote proxy object 22 to communicate with subject object 18 via distributed object management system 16.
  • The method then proceeds to step 64 where byte code generator 42 generates the executable code representing JClass information 38 into remote proxy class 23. The method then proceeds to step 66 where class loader 46 loads remote proxy class 23 onto client system 14 where it is now available for use. The method then proceeds to step 68 where remote proxy object 22 is generated as a new instance of remote proxy class 23 which was loaded in step 66.
  • According to the teachings of the present invention, a software system is provided that allows for the dynamic generation of remote proxy classes. The advantages of dynamic generation of remote proxy classes includes reduced system development time, reduced system compile and build time, reduced system modification time, and reduced system storage requirements. Remote proxy classes are generated as needed at run time. Once a remote proxy class is generated, it continues to exist until the system is shut down. Therefore, the software system is only required to generate a particular remote proxy class once during a session of the software system.
  • Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (1)

1. A remote proxy generator for dynamic generation of remote proxy classes within an object oriented distributed processing environment, comprising:
a reflection engine operable to determine the name, interfaces, methods and superclass information of a remote object within the object oriented distributed processing environment for use in creating the remote proxy class in response to a request for access to the remote object;
a communications enabling module operable to aid in creating the remote proxy class by inserting within the remote proxy class computer code required for communications between objects within the object oriented distributed processing environment; and
a byte code generator operable to generate the executable computer code representing the determined name, interfaces, methods, superclass information and communications computer code for the remote proxy class.
US11/158,734 1998-10-19 2005-06-22 System and method for dynamic generation of remote proxies Abandoned US20050240945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/158,734 US20050240945A1 (en) 1998-10-19 2005-06-22 System and method for dynamic generation of remote proxies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/175,079 US6385661B1 (en) 1998-10-19 1998-10-19 System and method for dynamic generation of remote proxies
US09/451,507 US6993774B1 (en) 1998-10-19 1999-11-30 System and method for remote enabling classes without interfaces
US11/158,734 US20050240945A1 (en) 1998-10-19 2005-06-22 System and method for dynamic generation of remote proxies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/451,507 Continuation US6993774B1 (en) 1998-10-19 1999-11-30 System and method for remote enabling classes without interfaces

Publications (1)

Publication Number Publication Date
US20050240945A1 true US20050240945A1 (en) 2005-10-27

Family

ID=22638790

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/175,079 Expired - Lifetime US6385661B1 (en) 1998-10-19 1998-10-19 System and method for dynamic generation of remote proxies
US10/121,424 Expired - Lifetime US6549955B2 (en) 1998-10-19 2002-04-12 System and method for dynamic generation of remote proxies
US11/158,734 Abandoned US20050240945A1 (en) 1998-10-19 2005-06-22 System and method for dynamic generation of remote proxies

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/175,079 Expired - Lifetime US6385661B1 (en) 1998-10-19 1998-10-19 System and method for dynamic generation of remote proxies
US10/121,424 Expired - Lifetime US6549955B2 (en) 1998-10-19 2002-04-12 System and method for dynamic generation of remote proxies

Country Status (3)

Country Link
US (3) US6385661B1 (en)
AU (1) AU1125900A (en)
WO (1) WO2000023877A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242305A1 (en) * 2005-04-25 2006-10-26 Telefonaktiebolaget L M Ericsson (Publ) VPN Proxy Management Object
US7533388B1 (en) * 2005-04-28 2009-05-12 Sun Microsystems, Inc. Method and apparatus for dynamic Stubs and Ties in RMI-IIOP
US20090157800A1 (en) * 2007-12-18 2009-06-18 Cheng-Chieh Cheng Dynamically Generating a Proxy Object in a Client for Dynamically Created Object on the Server Using Retrieved Class Metadata of the Object
CN105843654A (en) * 2016-04-14 2016-08-10 广州市久邦数码科技有限公司 Method and system for implementing dynamic loading of advertisement SDK (software development kit)
US10521200B2 (en) * 2017-01-09 2019-12-31 Oracle International Corporation Unambiguous proxying of interface methods

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567861B1 (en) * 1997-09-17 2003-05-20 International Business Machines Corporation Method and apparatus for remotely running objects using data streams and/or complex parameters
US6993774B1 (en) * 1998-10-19 2006-01-31 Recursion Software, Inc. System and method for remote enabling classes without interfaces
US6385661B1 (en) * 1998-10-19 2002-05-07 Recursion Software, Inc. System and method for dynamic generation of remote proxies
JP2000132473A (en) * 1998-10-23 2000-05-12 Oki Electric Ind Co Ltd Network system using fire wall dynamic control system
US6757747B1 (en) * 1998-12-17 2004-06-29 International Business Machines Corporation Proxy object for managing an application instance on a dataless client machine
US7117446B2 (en) * 1999-02-01 2006-10-03 Sonic Solutions, Inc. User interface method and system for application programs implemented with component architectures
US6735771B1 (en) * 1999-03-12 2004-05-11 Perot Systems Corporation System and method for delivering web services using common object request broker architecture
US6877163B1 (en) * 1999-06-14 2005-04-05 Sun Microsystems, Inc. Method and system for dynamic proxy classes
US6857015B1 (en) * 1999-06-14 2005-02-15 Wind River International, Ltd. Method and system for remotely observing and controlling objects
US6947965B2 (en) * 1999-11-30 2005-09-20 Recursion Software, Inc. System and method for communications in a distributed computing environment
US6622175B1 (en) * 1999-11-30 2003-09-16 Recursion Software, Inc. System and method for communications in a distributed processing environment
US6678743B1 (en) 1999-11-30 2004-01-13 Recursion Software, Inc. Method for moving objects in a distributed computing environment
US20020010781A1 (en) * 1999-12-30 2002-01-24 Tuatini Jeffrey Taihana Shared service messaging models
GB2367642B (en) * 2000-05-27 2004-05-05 Ibm Performance profiling tool
FR2810755B1 (en) * 2000-06-27 2003-01-17 Cit Alcatel JAVA INFORMATION MANAGEMENT PROCESS
JP2002132739A (en) 2000-10-23 2002-05-10 Nec Corp Stab retrieval loading system and method, server device, client device and computer readable recording medium
US7127492B1 (en) * 2000-10-31 2006-10-24 International Business Machines Corporation Method and apparatus for distributed application acceleration
US20020170046A1 (en) * 2001-02-23 2002-11-14 Goward Philip J. Encapsulating an interfact to a distributed programming component as a local component
WO2003007152A2 (en) * 2001-04-18 2003-01-23 Financialcad Corporation Remote object access
US6988273B2 (en) * 2001-05-01 2006-01-17 Sun Microsystems, Inc. Method for dynamic implementation of JAVA™ metadata interfaces
US20040015856A1 (en) * 2001-05-15 2004-01-22 Goward Philip J. Automatically propagating distributed components during application development
US7647597B2 (en) * 2001-06-28 2010-01-12 Microsoft Corporation Transparent and sub-classable proxies
US20030097486A1 (en) * 2001-11-16 2003-05-22 Eisenstein Jacob R. Method for automatically interfacing collaborative agents to interactive applications
US7165101B2 (en) 2001-12-03 2007-01-16 Sun Microsystems, Inc. Transparent optimization of network traffic in distributed systems
US7051341B2 (en) * 2001-12-14 2006-05-23 International Business Machines Corporation Method, system, and program for implementing a remote method call
US7516447B2 (en) * 2002-02-22 2009-04-07 Bea Systems, Inc. Methods and apparatus for building, customizing and using software abstractions of external entities
AUPS173802A0 (en) * 2002-04-16 2002-05-23 Camms Pty Ltd Data collection system using remotely configurable scripting
US7171672B2 (en) * 2002-04-24 2007-01-30 Telefonaktie Bolaget Lm Ericsson (Publ) Distributed application proxy generator
US20040006653A1 (en) * 2002-06-27 2004-01-08 Yury Kamen Method and system for wrapping existing web-based applications producing web services
GB0222420D0 (en) * 2002-09-27 2002-11-06 Ibm Optimized corba software method invocation
EP1420340A1 (en) * 2002-11-15 2004-05-19 Hewlett-Packard Company Remote object invocation system and method
US6906848B2 (en) * 2003-02-24 2005-06-14 Exajoule, Llc Micromirror systems with concealed multi-piece hinge structures
US20040172614A1 (en) * 2003-02-28 2004-09-02 Bea Systems, Inc. Dynamic code generation method
WO2004079572A2 (en) * 2003-02-28 2004-09-16 Bea Systems Inc. Dynamic generation of a wrapper
US7536675B2 (en) * 2003-02-28 2009-05-19 Bea Systems, Inc. Dynamic code generation system
US7472400B2 (en) 2003-02-28 2008-12-30 Bea Systems, Inc. Method for dynamically generating a wrapper class
US7472401B2 (en) * 2003-02-28 2008-12-30 Bea Systems, Inc. Computer product for a dynamically generated wrapper class
US7424722B2 (en) * 2003-08-29 2008-09-09 International Business Machines Corporation Method and system for creating a dynamic OGSI service proxy framework using runtime introspection of an OGSI service
US8713544B1 (en) * 2003-11-25 2014-04-29 Symantec Corporation Universal data-driven computer proxy
US7500223B2 (en) * 2004-01-02 2009-03-03 International Business Machines Corporation Automatically creating JavaScript objects to invoke methods on server-side Java beans
US7496932B2 (en) * 2004-01-12 2009-02-24 International Business Machines Corporation Communicating with remote objects in a data processing network
US8881099B2 (en) * 2004-09-10 2014-11-04 Oracle International Corporation Dynamic generation of wrapper classes to implement call-by-value semantics
US7539150B2 (en) * 2004-11-16 2009-05-26 International Business Machines Corporation Node discovery and communications in a network
US7543300B2 (en) * 2004-11-16 2009-06-02 International Business Machines Corporation Interface for application components
US7367032B2 (en) * 2005-01-07 2008-04-29 International Business Machines Corporation Partial dynamic implementation of JAVA interfaces
US7453865B2 (en) * 2005-02-16 2008-11-18 International Business Machines Corporation Communication channels in a storage network
CA2510647A1 (en) * 2005-06-23 2006-12-23 Cognos Incorporated Signing of web request
US20070027877A1 (en) * 2005-07-29 2007-02-01 Droshev Mladen I System and method for improving the efficiency of remote method invocations within a multi-tiered enterprise network
US9606846B2 (en) * 2005-07-29 2017-03-28 Sap Se System and method for dynamic proxy generation
US7984107B2 (en) * 2005-09-09 2011-07-19 Microsoft Corporation Proxy assembly for simulating real assembly features on a remote device
US8090818B2 (en) * 2005-09-19 2012-01-03 Sap Ag Generation of customized client proxies
SE529620C2 (en) * 2006-02-24 2007-10-09 Abb Ab Control of real objects in interconnected computerized control systems
US7865583B2 (en) 2006-03-31 2011-01-04 The Invention Science Fund I, Llc Aggregating network activity using software provenance data
GB0609843D0 (en) * 2006-05-18 2006-06-28 Ibm Launcher for software applications
US8656382B2 (en) * 2006-09-14 2014-02-18 International Business Machines Corporation Preventing an incompatible class exception caused by incompatible class loaders
US7945921B2 (en) * 2007-03-01 2011-05-17 Microsoft Corporation Cross application domain late binding to non-local types
US8020177B2 (en) * 2007-07-27 2011-09-13 Composite Ideas, Llc Contained command invocation middleware framework
US9201874B2 (en) * 2008-02-25 2015-12-01 Microsoft Technology Licensing, Llc Efficiently correlating nominally incompatible types
US20100146481A1 (en) * 2008-12-09 2010-06-10 Microsoft Corporation Developing applications at runtime
US20110131408A1 (en) * 2009-12-01 2011-06-02 International Business Machines Corporation Document link security
US8595284B2 (en) * 2009-12-14 2013-11-26 Samsung Electronics Co., Ltd Web application script migration
US9401904B1 (en) 2012-03-15 2016-07-26 Motio, Inc. Security migration in a business intelligence environment
US10853109B2 (en) 2018-12-18 2020-12-01 Red Hat, Inc. Application deployment using reduced overhead bytecode

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307490A (en) * 1992-08-28 1994-04-26 Tandem Computers, Inc. Method and system for implementing remote procedure calls in a distributed computer system
US5314478A (en) * 1991-03-29 1994-05-24 Kyocera Corporation Artificial bone connection prosthesis
US5325524A (en) * 1989-04-06 1994-06-28 Digital Equipment Corporation Locating mobile objects in a distributed computer system
US5396630A (en) * 1992-10-06 1995-03-07 International Business Machines Corporation Method and system for object management across process boundries in a data processing system
US5432924A (en) * 1993-12-15 1995-07-11 Microsoft Corporation Method and system for selectively applying an appropriate object ownership model
US5481721A (en) * 1991-07-17 1996-01-02 Next Computer, Inc. Method for providing automatic and dynamic translation of object oriented programming language-based message passing into operation system message passing using proxy objects
US5511197A (en) * 1992-11-13 1996-04-23 Microsoft Corporation Method and system for network marshalling of interface pointers for remote procedure calls
US5603031A (en) * 1993-07-08 1997-02-11 General Magic, Inc. System and method for distributed computation based upon the movement, execution, and interaction of processes in a network
US5619710A (en) * 1990-08-14 1997-04-08 Digital Equipment Corporation Method and apparatus for object-oriented invocation of a server application by a client application
US5634010A (en) * 1994-10-21 1997-05-27 Modulus Technologies, Inc. Managing and distributing data objects of different types between computers connected to a network
US5655101A (en) * 1993-06-01 1997-08-05 International Business Machines Corporation Accessing remote data objects in a distributed memory environment using parallel address locations at each local memory to reference a same data object
US5724503A (en) * 1995-03-31 1998-03-03 Sun Microsystems, Inc. Method and apparatus for interpreting exceptions in a distributed object system
US5737607A (en) * 1995-09-28 1998-04-07 Sun Microsystems, Inc. Method and apparatus for allowing generic stubs to marshal and unmarshal data in object reference specific data formats
US5745703A (en) * 1995-07-18 1998-04-28 Nec Research Institute, Inc. Transmission of higher-order objects across a network of heterogeneous machines
US5778227A (en) * 1995-08-01 1998-07-07 Intergraph Corporation System for adding attributes to an object at run time in an object oriented computer environment
US5781633A (en) * 1996-07-01 1998-07-14 Sun Microsystems, Inc. Capability security for transparent distributed object systems
US5787175A (en) * 1995-10-23 1998-07-28 Novell, Inc. Method and apparatus for collaborative document control
US5793965A (en) * 1995-03-22 1998-08-11 Sun Microsystems, Inc. Method and apparatus for determining the type of an object in a distributed object system
US5812781A (en) * 1994-09-05 1998-09-22 Telefonaktiebolaget Lm Ericsson System for routing incoming connection-less messages to processes which are already handling messages from same source node
US5812793A (en) * 1996-06-26 1998-09-22 Microsoft Corporation System and method for asynchronous store and forward data replication
US5822585A (en) * 1995-02-21 1998-10-13 Compuware Corporation System and method for cooperative processing using object-oriented framework
US5862325A (en) * 1996-02-29 1999-01-19 Intermind Corporation Computer-based communication system and method using metadata defining a control structure
US5867665A (en) * 1997-03-24 1999-02-02 Pfn, Inc Domain communications server
US5881230A (en) * 1996-06-24 1999-03-09 Microsoft Corporation Method and system for remote automation of object oriented applications
US5897634A (en) * 1997-05-09 1999-04-27 International Business Machines Corporation Optimized caching of SQL data in an object server system
US5903725A (en) * 1995-09-15 1999-05-11 International Business Machines Corporation Recoverable proxy object in an object oriented environment
US5923833A (en) * 1996-03-19 1999-07-13 International Business Machines Coporation Restart and recovery of OMG-compliant transaction systems
US5928335A (en) * 1996-10-30 1999-07-27 Ricoh Company, Ltd. Client/server system having middleware-based interface between client and server image processing objects
US5945737A (en) * 1994-09-30 1999-08-31 International Business Machines Corporation Thin film or solder ball including a metal and an oxide, nitride, or carbide precipitate of an expandable or contractible element
US6012067A (en) * 1998-03-02 2000-01-04 Sarkar; Shyam Sundar Method and apparatus for storing and manipulating objects in a plurality of relational data managers on the web
US6012081A (en) * 1996-07-03 2000-01-04 Siemens Aktiengesellschaft Service and event synchronous/asynchronous manager
US6026415A (en) * 1995-01-31 2000-02-15 Next Software, Inc. Transparent local and distributed memory management system
US6032190A (en) * 1997-10-03 2000-02-29 Ascend Communications, Inc. System and method for processing data packets
US6041166A (en) * 1995-07-14 2000-03-21 3Com Corp. Virtual network architecture for connectionless LAN backbone
US6044409A (en) * 1996-06-26 2000-03-28 Sun Microsystems, Inc. Framework for marshaling and unmarshaling argument object references
US6049821A (en) * 1997-01-24 2000-04-11 Motorola, Inc. Proxy host computer and method for accessing and retrieving information between a browser and a proxy
US6061740A (en) * 1996-12-09 2000-05-09 Novell, Inc. Method and apparatus for heterogeneous network management
US6070197A (en) * 1994-12-16 2000-05-30 International Business Machines Corporation Object oriented transaction monitor for distributed transaction processing environments
US6085086A (en) * 1995-08-22 2000-07-04 Lucent Technologies Inc. Network-based migrating user agent for personal communication services
US6085030A (en) * 1997-05-02 2000-07-04 Novell, Inc. Network component server
US6092196A (en) * 1997-11-25 2000-07-18 Nortel Networks Limited HTTP distributed remote user authentication system
US6134591A (en) * 1997-06-18 2000-10-17 Client/Server Technologies, Inc. Network security and integration method and system
US6178505B1 (en) * 1997-03-10 2001-01-23 Internet Dynamics, Inc. Secure delivery of information in a network
US6182153B1 (en) * 1995-02-17 2001-01-30 International Business Machines Corporation Object-oriented programming interface for developing and running network management applications on a network communication infrastructure
US6182155B1 (en) * 1997-05-09 2001-01-30 International Business Machines Corporation Uniform access to and interchange between objects employing a plurality of access methods
US6182154B1 (en) * 1994-11-21 2001-01-30 International Business Machines Corporation Universal object request broker encapsulater
US6195794B1 (en) * 1997-08-12 2001-02-27 International Business Machines Corporation Method and apparatus for distributing templates in a component system
US6205491B1 (en) * 1997-12-18 2001-03-20 Sun Microsystems, Inc. Method and apparatus for deferred throwing of exceptions in C++
US6212574B1 (en) * 1997-04-04 2001-04-03 Microsoft Corporation User mode proxy of kernel mode operations in a computer operating system
US6226690B1 (en) * 1993-06-14 2001-05-01 International Business Machines Corporation Method and apparatus for utilizing proxy objects to communicate with target objects
US6230160B1 (en) * 1997-07-17 2001-05-08 International Business Machines Corporation Creating proxies for distributed beans and event objects
US6237135B1 (en) * 1998-06-18 2001-05-22 Borland Software Corporation Development system with visual design tools for creating and maintaining Java Beans components
US6253256B1 (en) * 1997-10-15 2001-06-26 Sun Microsystems, Inc. Deferred reconstruction of objects and remote loading in a distributed system
US6253253B1 (en) * 1997-08-25 2001-06-26 International Business Machines Corporation Method and apparatus for optimizing references to objects in a data processing system
US6260021B1 (en) * 1998-06-12 2001-07-10 Philips Electronics North America Corporation Computer-based medical image distribution system and method
US6260078B1 (en) * 1996-07-03 2001-07-10 Sun Microsystems, Inc. Using a distributed object system to find and download java-based applications
US6269373B1 (en) * 1999-02-26 2001-07-31 International Business Machines Corporation Method and system for persisting beans as container-managed fields
US6272559B1 (en) * 1997-10-15 2001-08-07 Sun Microsystems, Inc. Deferred reconstruction of objects and remote loading for event notification in a distributed system
US6279030B1 (en) * 1998-11-12 2001-08-21 International Business Machines Corporation Dynamic JAVA™ class selection and download based on changeable attributes
US6282580B1 (en) * 1996-07-02 2001-08-28 Sun Microsystems, Inc. Bridge providing communication between different implementations of object request brokers
US6338089B1 (en) * 1998-10-06 2002-01-08 Bull Hn Information Systems Inc. Method and system for providing session pools for high performance web browser and server communications
US6343332B1 (en) * 1997-10-20 2002-01-29 Fujitsu Limited Communication link information generating device, a three-tier client/server system, and a medium storing a communication link information generator program
US6345382B1 (en) * 1998-02-12 2002-02-05 International Business Machines Corporation Run-time customization in object-oriented design
US6347342B1 (en) * 1996-07-15 2002-02-12 Next Software, Inc. Method and apparatus for dynamically brokering object messages among object models
US6347641B2 (en) * 1998-07-17 2002-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas pressure-regulating device for dispensing working fluid
US6356930B2 (en) * 1998-10-16 2002-03-12 Silverstream Software, Inc. Connection concentrator for distributed object systems
US6374308B1 (en) * 1996-04-23 2002-04-16 Sun Microsystems, Inc. Method and apparatus for interactively connecting distributed objects to a graphic user interface
US6385661B1 (en) * 1998-10-19 2002-05-07 Recursion Software, Inc. System and method for dynamic generation of remote proxies
US6401125B1 (en) * 1999-08-05 2002-06-04 Nextpage, Inc. System and method for maintaining state information between a web proxy server and its clients
US6405246B1 (en) * 1998-09-22 2002-06-11 International Business Machines Corporation Automatic and dynamic software code management
US6415315B1 (en) * 1997-12-01 2002-07-02 Recursion Software, Inc. Method of moving objects in a computer network
US6434595B1 (en) * 1997-11-26 2002-08-13 International Business Machines Corporation Method of executing mobile objects and recording medium storing mobile objects
US6438616B1 (en) * 1997-12-18 2002-08-20 Sun Microsystems, Inc. Method and apparatus for fast, local corba object references
US6442620B1 (en) * 1998-08-17 2002-08-27 Microsoft Corporation Environment extensibility and automatic services for component applications using contexts, policies and activators
US6442564B1 (en) * 1999-06-14 2002-08-27 International Business Machines Corporation Facilitating workload management by using a location forwarding capability
US6453362B1 (en) * 1998-08-12 2002-09-17 International Business Machines Corporation Systems, methods and computer program products for invoking server applications using tickets registered in client-side remote object registries
US6453333B1 (en) * 1997-06-11 2002-09-17 Lion Bioscience Ag Research system using multi-platform object oriented program language for providing objects at runtime for creating and manipulating biological or chemical data to facilitate research
US6505231B1 (en) * 1998-07-02 2003-01-07 Victor Company Of Japan, Limited Software agent system for acquiring information from server arranged on network
US6513315B1 (en) * 1996-10-09 2003-02-04 Verhaeghe Industries Method, device and installation for the continuous displacement processing of threads
US6553384B1 (en) * 1999-06-14 2003-04-22 International Business Machines Corporation Transactional name service
US6567818B1 (en) * 1999-06-14 2003-05-20 International Business Machines Corporation Employing management policies to manage instances of objects
US20030105735A1 (en) * 1999-02-01 2003-06-05 Iona Technologies, Plc Method and system for providing object references in a distributed object environment supporting object migration
US6594671B1 (en) * 1999-06-14 2003-07-15 International Business Machines Corporation Separating privileged functions from non-privileged functions in a server instance
US6615188B1 (en) * 1999-10-14 2003-09-02 Freedom Investments, Inc. Online trade aggregating system
US6629128B1 (en) * 1999-11-30 2003-09-30 Recursion Software, Inc. System and method for distributed processing in a computer network
US6629112B1 (en) * 1998-12-31 2003-09-30 Nortel Networks Limited Resource management for CORBA-based applications
US6629153B1 (en) * 1997-09-17 2003-09-30 Trilogy Development Group, Inc. Method and apparatus for providing peer ownership of shared objects
US6701382B1 (en) * 1998-12-23 2004-03-02 Nortel Networks Limited Name service for transparent container objects
US6708171B1 (en) * 1996-04-23 2004-03-16 Sun Microsystems, Inc. Network proxy
US6714976B1 (en) * 1997-03-20 2004-03-30 Concord Communications, Inc. Systems and methods for monitoring distributed applications using diagnostic information
US6851118B1 (en) * 1997-10-06 2005-02-01 Sun Microsystems, Inc. Remote object access
US6931455B1 (en) * 1999-11-30 2005-08-16 Recursion Software, Inc. System and method for communications between a CORBA object request broker and a non-CORBA object request broker
US6947965B2 (en) * 1999-11-30 2005-09-20 Recursion Software, Inc. System and method for communications in a distributed computing environment
US6951021B1 (en) * 1999-11-30 2005-09-27 Recursion Software, Inc. System and method for server-side communication support in a distributed computing environment
US6993774B1 (en) * 1998-10-19 2006-01-31 Recursion Software, Inc. System and method for remote enabling classes without interfaces
US7347342B2 (en) * 2003-10-30 2008-03-25 Elmar Grandy Container for holding sterile goods and sterile goods dispenser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604010B1 (en) 1992-12-21 1999-12-29 Sun Microsystems, Inc. Method and apparatus for subcontracts in distributed processing systems
US6157960A (en) 1997-05-07 2000-12-05 International Business Machines Corporation Technique for programmatically creating distributed object programs

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325524A (en) * 1989-04-06 1994-06-28 Digital Equipment Corporation Locating mobile objects in a distributed computer system
US5619710A (en) * 1990-08-14 1997-04-08 Digital Equipment Corporation Method and apparatus for object-oriented invocation of a server application by a client application
US5314478A (en) * 1991-03-29 1994-05-24 Kyocera Corporation Artificial bone connection prosthesis
US5481721A (en) * 1991-07-17 1996-01-02 Next Computer, Inc. Method for providing automatic and dynamic translation of object oriented programming language-based message passing into operation system message passing using proxy objects
US5307490A (en) * 1992-08-28 1994-04-26 Tandem Computers, Inc. Method and system for implementing remote procedure calls in a distributed computer system
US5396630A (en) * 1992-10-06 1995-03-07 International Business Machines Corporation Method and system for object management across process boundries in a data processing system
US5511197A (en) * 1992-11-13 1996-04-23 Microsoft Corporation Method and system for network marshalling of interface pointers for remote procedure calls
US5655101A (en) * 1993-06-01 1997-08-05 International Business Machines Corporation Accessing remote data objects in a distributed memory environment using parallel address locations at each local memory to reference a same data object
US6226690B1 (en) * 1993-06-14 2001-05-01 International Business Machines Corporation Method and apparatus for utilizing proxy objects to communicate with target objects
US5603031A (en) * 1993-07-08 1997-02-11 General Magic, Inc. System and method for distributed computation based upon the movement, execution, and interaction of processes in a network
US6016393A (en) * 1993-07-08 2000-01-18 General Magic, Inc. System and method for distributed computation based upon the movement, execution, and interaction of processes in a network
US5432924A (en) * 1993-12-15 1995-07-11 Microsoft Corporation Method and system for selectively applying an appropriate object ownership model
US5812781A (en) * 1994-09-05 1998-09-22 Telefonaktiebolaget Lm Ericsson System for routing incoming connection-less messages to processes which are already handling messages from same source node
US5945737A (en) * 1994-09-30 1999-08-31 International Business Machines Corporation Thin film or solder ball including a metal and an oxide, nitride, or carbide precipitate of an expandable or contractible element
US5634010A (en) * 1994-10-21 1997-05-27 Modulus Technologies, Inc. Managing and distributing data objects of different types between computers connected to a network
US6182154B1 (en) * 1994-11-21 2001-01-30 International Business Machines Corporation Universal object request broker encapsulater
US6070197A (en) * 1994-12-16 2000-05-30 International Business Machines Corporation Object oriented transaction monitor for distributed transaction processing environments
US6026415A (en) * 1995-01-31 2000-02-15 Next Software, Inc. Transparent local and distributed memory management system
US6182153B1 (en) * 1995-02-17 2001-01-30 International Business Machines Corporation Object-oriented programming interface for developing and running network management applications on a network communication infrastructure
US5822585A (en) * 1995-02-21 1998-10-13 Compuware Corporation System and method for cooperative processing using object-oriented framework
US5793965A (en) * 1995-03-22 1998-08-11 Sun Microsystems, Inc. Method and apparatus for determining the type of an object in a distributed object system
US5724503A (en) * 1995-03-31 1998-03-03 Sun Microsystems, Inc. Method and apparatus for interpreting exceptions in a distributed object system
US6041166A (en) * 1995-07-14 2000-03-21 3Com Corp. Virtual network architecture for connectionless LAN backbone
US5745703A (en) * 1995-07-18 1998-04-28 Nec Research Institute, Inc. Transmission of higher-order objects across a network of heterogeneous machines
US5778227A (en) * 1995-08-01 1998-07-07 Intergraph Corporation System for adding attributes to an object at run time in an object oriented computer environment
US6085086A (en) * 1995-08-22 2000-07-04 Lucent Technologies Inc. Network-based migrating user agent for personal communication services
US5903725A (en) * 1995-09-15 1999-05-11 International Business Machines Corporation Recoverable proxy object in an object oriented environment
US5737607A (en) * 1995-09-28 1998-04-07 Sun Microsystems, Inc. Method and apparatus for allowing generic stubs to marshal and unmarshal data in object reference specific data formats
US5787175A (en) * 1995-10-23 1998-07-28 Novell, Inc. Method and apparatus for collaborative document control
US5862325A (en) * 1996-02-29 1999-01-19 Intermind Corporation Computer-based communication system and method using metadata defining a control structure
US5923833A (en) * 1996-03-19 1999-07-13 International Business Machines Coporation Restart and recovery of OMG-compliant transaction systems
US6374308B1 (en) * 1996-04-23 2002-04-16 Sun Microsystems, Inc. Method and apparatus for interactively connecting distributed objects to a graphic user interface
US6708171B1 (en) * 1996-04-23 2004-03-16 Sun Microsystems, Inc. Network proxy
US5881230A (en) * 1996-06-24 1999-03-09 Microsoft Corporation Method and system for remote automation of object oriented applications
US6044409A (en) * 1996-06-26 2000-03-28 Sun Microsystems, Inc. Framework for marshaling and unmarshaling argument object references
US5812793A (en) * 1996-06-26 1998-09-22 Microsoft Corporation System and method for asynchronous store and forward data replication
US5781633A (en) * 1996-07-01 1998-07-14 Sun Microsystems, Inc. Capability security for transparent distributed object systems
US6282580B1 (en) * 1996-07-02 2001-08-28 Sun Microsystems, Inc. Bridge providing communication between different implementations of object request brokers
US6012081A (en) * 1996-07-03 2000-01-04 Siemens Aktiengesellschaft Service and event synchronous/asynchronous manager
US6260078B1 (en) * 1996-07-03 2001-07-10 Sun Microsystems, Inc. Using a distributed object system to find and download java-based applications
US20020032803A1 (en) * 1996-07-15 2002-03-14 Paul Marcos Method and apparatus for dynamically brokering object messages among object models
US6347342B1 (en) * 1996-07-15 2002-02-12 Next Software, Inc. Method and apparatus for dynamically brokering object messages among object models
US6513315B1 (en) * 1996-10-09 2003-02-04 Verhaeghe Industries Method, device and installation for the continuous displacement processing of threads
US5928335A (en) * 1996-10-30 1999-07-27 Ricoh Company, Ltd. Client/server system having middleware-based interface between client and server image processing objects
US6061740A (en) * 1996-12-09 2000-05-09 Novell, Inc. Method and apparatus for heterogeneous network management
US6049821A (en) * 1997-01-24 2000-04-11 Motorola, Inc. Proxy host computer and method for accessing and retrieving information between a browser and a proxy
US6178505B1 (en) * 1997-03-10 2001-01-23 Internet Dynamics, Inc. Secure delivery of information in a network
US6714976B1 (en) * 1997-03-20 2004-03-30 Concord Communications, Inc. Systems and methods for monitoring distributed applications using diagnostic information
US5867665A (en) * 1997-03-24 1999-02-02 Pfn, Inc Domain communications server
US6212574B1 (en) * 1997-04-04 2001-04-03 Microsoft Corporation User mode proxy of kernel mode operations in a computer operating system
US6085030A (en) * 1997-05-02 2000-07-04 Novell, Inc. Network component server
US6182155B1 (en) * 1997-05-09 2001-01-30 International Business Machines Corporation Uniform access to and interchange between objects employing a plurality of access methods
US5897634A (en) * 1997-05-09 1999-04-27 International Business Machines Corporation Optimized caching of SQL data in an object server system
US6453333B1 (en) * 1997-06-11 2002-09-17 Lion Bioscience Ag Research system using multi-platform object oriented program language for providing objects at runtime for creating and manipulating biological or chemical data to facilitate research
US6134591A (en) * 1997-06-18 2000-10-17 Client/Server Technologies, Inc. Network security and integration method and system
US6230160B1 (en) * 1997-07-17 2001-05-08 International Business Machines Corporation Creating proxies for distributed beans and event objects
US6195794B1 (en) * 1997-08-12 2001-02-27 International Business Machines Corporation Method and apparatus for distributing templates in a component system
US6253253B1 (en) * 1997-08-25 2001-06-26 International Business Machines Corporation Method and apparatus for optimizing references to objects in a data processing system
US6629153B1 (en) * 1997-09-17 2003-09-30 Trilogy Development Group, Inc. Method and apparatus for providing peer ownership of shared objects
US6032190A (en) * 1997-10-03 2000-02-29 Ascend Communications, Inc. System and method for processing data packets
US6851118B1 (en) * 1997-10-06 2005-02-01 Sun Microsystems, Inc. Remote object access
US6253256B1 (en) * 1997-10-15 2001-06-26 Sun Microsystems, Inc. Deferred reconstruction of objects and remote loading in a distributed system
US6272559B1 (en) * 1997-10-15 2001-08-07 Sun Microsystems, Inc. Deferred reconstruction of objects and remote loading for event notification in a distributed system
US6343332B1 (en) * 1997-10-20 2002-01-29 Fujitsu Limited Communication link information generating device, a three-tier client/server system, and a medium storing a communication link information generator program
US6092196A (en) * 1997-11-25 2000-07-18 Nortel Networks Limited HTTP distributed remote user authentication system
US6434595B1 (en) * 1997-11-26 2002-08-13 International Business Machines Corporation Method of executing mobile objects and recording medium storing mobile objects
US6415315B1 (en) * 1997-12-01 2002-07-02 Recursion Software, Inc. Method of moving objects in a computer network
US6438616B1 (en) * 1997-12-18 2002-08-20 Sun Microsystems, Inc. Method and apparatus for fast, local corba object references
US6205491B1 (en) * 1997-12-18 2001-03-20 Sun Microsystems, Inc. Method and apparatus for deferred throwing of exceptions in C++
US6345382B1 (en) * 1998-02-12 2002-02-05 International Business Machines Corporation Run-time customization in object-oriented design
US6012067A (en) * 1998-03-02 2000-01-04 Sarkar; Shyam Sundar Method and apparatus for storing and manipulating objects in a plurality of relational data managers on the web
US6260021B1 (en) * 1998-06-12 2001-07-10 Philips Electronics North America Corporation Computer-based medical image distribution system and method
US6237135B1 (en) * 1998-06-18 2001-05-22 Borland Software Corporation Development system with visual design tools for creating and maintaining Java Beans components
US6505231B1 (en) * 1998-07-02 2003-01-07 Victor Company Of Japan, Limited Software agent system for acquiring information from server arranged on network
US6347641B2 (en) * 1998-07-17 2002-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas pressure-regulating device for dispensing working fluid
US6453362B1 (en) * 1998-08-12 2002-09-17 International Business Machines Corporation Systems, methods and computer program products for invoking server applications using tickets registered in client-side remote object registries
US6442620B1 (en) * 1998-08-17 2002-08-27 Microsoft Corporation Environment extensibility and automatic services for component applications using contexts, policies and activators
US6405246B1 (en) * 1998-09-22 2002-06-11 International Business Machines Corporation Automatic and dynamic software code management
US6338089B1 (en) * 1998-10-06 2002-01-08 Bull Hn Information Systems Inc. Method and system for providing session pools for high performance web browser and server communications
US6356930B2 (en) * 1998-10-16 2002-03-12 Silverstream Software, Inc. Connection concentrator for distributed object systems
US6549955B2 (en) * 1998-10-19 2003-04-15 Recursion Software, Inc. System and method for dynamic generation of remote proxies
US6385661B1 (en) * 1998-10-19 2002-05-07 Recursion Software, Inc. System and method for dynamic generation of remote proxies
US6993774B1 (en) * 1998-10-19 2006-01-31 Recursion Software, Inc. System and method for remote enabling classes without interfaces
US6279030B1 (en) * 1998-11-12 2001-08-21 International Business Machines Corporation Dynamic JAVA™ class selection and download based on changeable attributes
US6701382B1 (en) * 1998-12-23 2004-03-02 Nortel Networks Limited Name service for transparent container objects
US6629112B1 (en) * 1998-12-31 2003-09-30 Nortel Networks Limited Resource management for CORBA-based applications
US20030105735A1 (en) * 1999-02-01 2003-06-05 Iona Technologies, Plc Method and system for providing object references in a distributed object environment supporting object migration
US6269373B1 (en) * 1999-02-26 2001-07-31 International Business Machines Corporation Method and system for persisting beans as container-managed fields
US6442564B1 (en) * 1999-06-14 2002-08-27 International Business Machines Corporation Facilitating workload management by using a location forwarding capability
US6567818B1 (en) * 1999-06-14 2003-05-20 International Business Machines Corporation Employing management policies to manage instances of objects
US6594671B1 (en) * 1999-06-14 2003-07-15 International Business Machines Corporation Separating privileged functions from non-privileged functions in a server instance
US6553384B1 (en) * 1999-06-14 2003-04-22 International Business Machines Corporation Transactional name service
US6401125B1 (en) * 1999-08-05 2002-06-04 Nextpage, Inc. System and method for maintaining state information between a web proxy server and its clients
US6615188B1 (en) * 1999-10-14 2003-09-02 Freedom Investments, Inc. Online trade aggregating system
US6629128B1 (en) * 1999-11-30 2003-09-30 Recursion Software, Inc. System and method for distributed processing in a computer network
US6931455B1 (en) * 1999-11-30 2005-08-16 Recursion Software, Inc. System and method for communications between a CORBA object request broker and a non-CORBA object request broker
US6947965B2 (en) * 1999-11-30 2005-09-20 Recursion Software, Inc. System and method for communications in a distributed computing environment
US6951021B1 (en) * 1999-11-30 2005-09-27 Recursion Software, Inc. System and method for server-side communication support in a distributed computing environment
US7347342B2 (en) * 2003-10-30 2008-03-25 Elmar Grandy Container for holding sterile goods and sterile goods dispenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242305A1 (en) * 2005-04-25 2006-10-26 Telefonaktiebolaget L M Ericsson (Publ) VPN Proxy Management Object
US7533388B1 (en) * 2005-04-28 2009-05-12 Sun Microsystems, Inc. Method and apparatus for dynamic Stubs and Ties in RMI-IIOP
US20090157800A1 (en) * 2007-12-18 2009-06-18 Cheng-Chieh Cheng Dynamically Generating a Proxy Object in a Client for Dynamically Created Object on the Server Using Retrieved Class Metadata of the Object
CN105843654A (en) * 2016-04-14 2016-08-10 广州市久邦数码科技有限公司 Method and system for implementing dynamic loading of advertisement SDK (software development kit)
US10521200B2 (en) * 2017-01-09 2019-12-31 Oracle International Corporation Unambiguous proxying of interface methods

Also Published As

Publication number Publication date
WO2000023877A2 (en) 2000-04-27
US6385661B1 (en) 2002-05-07
AU1125900A (en) 2000-05-08
US6549955B2 (en) 2003-04-15
WO2000023877A3 (en) 2000-07-06
US20020120793A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US6385661B1 (en) System and method for dynamic generation of remote proxies
US6622175B1 (en) System and method for communications in a distributed processing environment
US6993774B1 (en) System and method for remote enabling classes without interfaces
USRE43375E1 (en) System and method for communications in a distributed computing environment
US6951021B1 (en) System and method for server-side communication support in a distributed computing environment
US6629128B1 (en) System and method for distributed processing in a computer network
US6931455B1 (en) System and method for communications between a CORBA object request broker and a non-CORBA object request broker
US5860004A (en) Code generator for applications in distributed object systems
US5428792A (en) System for producing language neutral objects and generating an interface between the objects and multiple computer languages
Vinoski Distributed object computing with CORBA
US5339438A (en) Version independence for object oriented programs
US5493680A (en) Method for creating an object subclass with selective inheritance
US6836889B1 (en) Code wrapping to simplify access to and use of enterprise JAVA beans
US5692195A (en) Parent class shadowing
US5848419A (en) Methods and apparatus for providing transparent persistence in a distributed object operating environment
US5421016A (en) System and method for dynamically invoking object methods from an application designed for static method invocation
JP2978807B2 (en) Remote procedure call system and method
US6877163B1 (en) Method and system for dynamic proxy classes
US6473768B1 (en) System and method for modifying an executing application
US20020078255A1 (en) Pluggable instantiable distributed objects
US20030182457A1 (en) Method and apparatus for generating a code bridge
EP1393160A2 (en) Method and apparatus for creating and deploying applications from a server application
US6219835B1 (en) Multi-language DCE remote procedure call
Kim et al. Migrating Legacy Software Systems to Corba based Distributed Environments through an Automatic Wrapper Generation Technique [versión electrónica]
Pautet et al. GLADE users guide

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAINLINE DATA LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RECURSION SOFTWARE, INC.;REEL/FRAME:016500/0181

Effective date: 20050621

AS Assignment

Owner name: OBJECTSPACE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUTHRIE, RHETT DAVIS;GLASS, GRAHAM W.;REEL/FRAME:020111/0714

Effective date: 19981011

AS Assignment

Owner name: RECURSION SOFTWARE, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OBJECTSPACE, INC.;REEL/FRAME:020121/0875

Effective date: 20020214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HANGER SOLUTIONS, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 161 LLC;REEL/FRAME:052159/0509

Effective date: 20191206