US20050238084A1 - Method and system for operating multiple dependent networks - Google Patents

Method and system for operating multiple dependent networks Download PDF

Info

Publication number
US20050238084A1
US20050238084A1 US11/043,457 US4345705A US2005238084A1 US 20050238084 A1 US20050238084 A1 US 20050238084A1 US 4345705 A US4345705 A US 4345705A US 2005238084 A1 US2005238084 A1 US 2005238084A1
Authority
US
United States
Prior art keywords
frequency hopping
group
hopping sequence
information
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/043,457
Inventor
Yefim Kuperschmidt
Shor Gadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisair Ltd
Original Assignee
Wisair Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisair Ltd filed Critical Wisair Ltd
Priority to US11/043,457 priority Critical patent/US20050238084A1/en
Assigned to WISAIR LTD. reassignment WISAIR LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GADI, SHOR, KUPERSCHMIDT, YEFIM
Publication of US20050238084A1 publication Critical patent/US20050238084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the invention relates to methods and device for operating multiple dependent networks and especially multiple adjacent ultra wide band networks.
  • wireless connectivity in a local environment should provide high reliability, low cost, low interference caused by physical barriers such as walls or by co-existing wireless signals, security, and high speed data transfer for multiple digital devices.
  • Existing narrowband wireless connectivity techniques do not provide such a solution, having problems such as high cost, unsatisfactory data transfer rates, unsatisfactory freedom from signal and obstacle related interference, unsatisfactory security, and other shortcomings.
  • the state of the art does not provide a sufficiently satisfactory solution for providing high speed wireless connectivity for multiple digital devices in a local environment.
  • the state of the art in wireless connectivity generally includes utilization of spread spectrum systems for various applications.
  • Spread spectrum techniques which spread a signal over a broad range of frequencies, are known to provide high resistance against signal blocking, or “jamming,” high security or resistance against “eavesdropping, ” and high interference resistance.
  • Spread Spectrum techniques have been used in systems in which high security and freedom from tampering is required.
  • Code Division Multiple Access (CDMA) a spread spectrum, packet-based technique, is used in some cellular phone systems, providing increased capacity in part by allowing multiple simultaneous conversation signals to share the same frequencies at the same time.
  • Known spread spectrum and modulation techniques including CDMA techniques, direct sequence spread spectrum (DSSS) techniques, time hopping spread spectrum (THSS) techniques, and pulse position modulation (PPM) techniques, do not satisfactorily provide wireless connectivity in a local environment, including high reliability, low cost, low interference, security, and high speed data transfer for multiple digital devices.
  • DSSS direct sequence spread spectrum
  • THSS time hopping spread spectrum
  • PPM pulse position modulation
  • known UWB transmission and communication methods and systems lack satisfactory quality in areas that can include flexibility, adaptivity and adaptive trade-off capabilities in areas such as power usage, range, and transfer rates, and low cost implementation.
  • Japanese patent application JP 11284599 filed on Mar. 31, 1998 and published on Oct. 15, 1999, discusses spread spectrum CDMA mobile communications.
  • Japanese patent application JP 11313005 filed on Apr. 27, 1998 and published on Nov. 9, 1999, discusses a system for rapid carrier synchronization in spread spectrum communication using an intermittently operative signal demodulation circuit.
  • Japanese patent application JP 11027180 filed on Jul. 2, 1997 and published on Jan. 29, 1999, and counterpart European application EP 0889600 discuss a receiving apparatus for use in a mobile communications system, and particularly for use in spread spectrum Code Division Multiple Access communications between a base station and a mobile station.
  • Japanese patent application JP 21378533 filed on Nov. 18, 1988 and published on May 25, 1990, discusses a transmitter for spread spectrum communication.
  • U.S. Pat. No. 6,026,125 issued Feb. 15, 2000 to Larrick, Jr. et al.
  • U.S. Pat. No. 6,351,652 issued Feb. 6, 2002 to Finn et al.
  • U.S. Pat. No. 6,031,862 issued Feb. 29, 2000 to Fullerton et al., and related patents including U.S. Pat. Nos.
  • PCT international applications also discuss spread spectrum or UWB in various contexts.
  • PCT international application publication number WO 01/39451 published on May 31, 2001, discusses a waveform adaptive transmitter for use in radar or communications applications.
  • PCT international application publication number WO 01/93441, published on Dec. 6, 2001, discusses a UWB high-speed digital communication system using wavelets or impulses.
  • PCT international application publication number WO 01/99300, published on Dec. 27, 2001, discusses wireless communications using UWB signaling.
  • PCT international application, publication number WO 01/11814, published on Feb. 15, 2001 discusses a transmission method for broadband wired or wireless transmission of information using spread spectrum technology.
  • Short-range ultra wide band wireless networks are being developed in order to allow wireless transmission of vast amounts of information between various devices.
  • U.S. patent application 2003/0063597 of Suzuki titled “Wireless transmission system, wireless transmission method, wireless reception method, transmitting apparatus and receiving apparatus”, which is incorporated herein by reference, described wireless networks that each includes a base station.
  • U.S. patent application 2004/0170217 of Ho titled “Wireless personal area networks with rotation of frequency hopping sequences” describes a multiple piconets (personal network) environment in which each piconets is controlled by a piconets coordinator. Non-related and non-synchronized piconets use rotating frequency hopping sequences in order to avoid interferences.
  • Some of short-range ultra wide band wireless networks are characterized by a distributed architecture in which devices exchange information without being controlled by a central host or a base station.
  • FIG. 1 is a schematic illustration of two ultra wide band wireless networks (also referred to as personal access networks) 10 and 20 , each including multiple devices that wirelessly communicate with each other.
  • First network 10 includes first till third devices A-C 11 - 13 and the second network 20 includes forth till sixth devices D-F 24 - 26 .
  • FIG. 2 illustrates a typical TDMA frame 30 .
  • TDMA frame 30 includes multiple time-slots, such as beacon slots 14 and media access slots.
  • the media access slots include distributed reservation protocol (DRP) slots 36 and prioritized contention access (PCA) slots 38 .
  • DRP distributed reservation protocol
  • PCA prioritized contention access
  • PCA slots are also referred to as PCA periods.
  • DRP slots are also referred to as DRP periods.
  • the beacon slots are used to synchronize devices to the TDMA frame 30 .
  • a typical beacon frame includes information that identifies the transmitting device. It also may include timing information representative of the start time of the TDMA frame 30 .
  • the DRP slots 36 are coordinated between devices that belong to the same network and allow devices to reserve these slots in advance.
  • the PCA slots 38 devices that belong to the network compete for access based upon their transmission priority. It is noted that the allocation of media access time slots is dynamic and can change from one TDMA frame to another.
  • transmissions from devices during PCA slots are assigned by applying a carrier sense multiple access with collision avoidance (CSMA/CA) scheme If a device requests to transmit over a wireless medium it has to check if the wireless medium is idle. If the wireless medium is idle, the device has to wait a random backoff period. This random backoff time is selected from a contention window that has a length that is related to the priority of the device. For higher-priority devices the contention window is shorter.
  • CSMA/CA carrier sense multiple access with collision avoidance
  • the transmission process is usually quite complex and includes many operations such as but not limited to forward correction encoding, interleaving, modulating and the like.
  • a receiver must reverse the procedures applied by the transmitter.
  • FIG. 3 illustrates a parent network 5100 and a child network 5200 .
  • Each of these networks is also referred to as a piconet.
  • the parent network 5100 includes a first group of ultra wide band devices 5102 - 5120 .
  • the parent network 5100 includes a management device 5110 that controls the exchange of information between the devices of the parent network, by applying a time division multiplex access scheme.
  • the child network includes a second group of devices 5120 and 5202 - 5206 .
  • Device 5120 belongs to both the parent and child networks 5100 and 5200 respectively. It controls the exchange of information between the devices of the second network 5200 .
  • Transmission between devices that belong to the parent network 5100 can be subjected to interferences from devices of the child network 5200 and vice versa. There is a need to provide an efficient manner for solving this interference issue.
  • An ultra wide band device that includes: a receiver adapted to receive information from at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence; and a transmitter, adapted to transmit information to at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and further adapted to transmit information to at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
  • a method for ultra wide band transmission includes: (a) allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence; and (b) allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
  • FIG. 1 is a schematic illustration of two networks (also referred to as personal access networks), each including multiple devices that wirelessly communicate with each other;
  • FIG. 2 illustrates a typical TDMA frame
  • FIGS. 4-5 illustrate a device capable of wireless transmission, and some of its components, according to an embodiment of the invention
  • FIG. 6 illustrates a parent network TDMA frame and a neighbor TDMA frame
  • FIG. 7 illustrates a parent network TDMA frame and a child TDMA frame
  • FIG. 8 illustrates the multiple band groups allocated for ultra wide band transmission
  • FIG. 9 illustrates a first frequency hopping sequence
  • FIG. 10 illustrates a parent network TDMA frame and an affected network TDMA frame according to an embodiment of the invention
  • FIG. 11 illustrates a first frequency hopping sequence and a second frequency hopping sequence, according to an embodiment of the invention
  • FIG. 12 illustrates a first frequency hopping sequence and a second frequency hopping sequence, according to another embodiment of the invention.
  • FIG. 13 is a flow chart of a method for ultra wide band transmission, according to an embodiment of the invention.
  • FIG. 14 illustrates a ultra wide band (UWB) device according to an embodiment of the invention.
  • UWB ultra wide band
  • Some portions of the following description relates to wireless ultra wide band networks that utilize a distributed media access control scheme.
  • these networks there is no central media access controller, but rather various devices of the network participate in determining how to share a common wireless medium.
  • the disclosed methods and devices can be applied in networks that utilize a distributed media access control scheme but differ from ultra wide band wireless networks.
  • networks other than ultra wide band network can apply some of the suggested methods.
  • Various operations such as transmissions utilize the distributed media access control scheme in the sense that the access to a shared medium is governed by a distributed media access control scheme.
  • Some embodiments of the invention provide an ultra wide band wireless medium access control method and a device capable of performing ultra wide band wireless medium access control schemes.
  • the device is a part of a ultra wideband wireless network and has a communication protocol stack that includes at least a PHY layer and a MAC layer.
  • the MAC layer of such devices controls the access to ultra wide band wireless medium and is referred to ultra wide band wireless medium access control.
  • the receiver can include various components that are arranged in multiple layers.
  • a first configuration includes a frame convergence sub-layer, a MAC layer, a PHY layer as well as MAC SAP, PHY SAP, frame convergence sub-layer SAP and a device management entity can also be utilized. Another configuration is described at FIGS. 4 and 5 .
  • Wisair Inc. of Tel Aviv Israel manufactures a chip set that includes a Radio Frequency PHY layer chip and a Base-Band PHY layer chip. These chips can be connected in one end to a RF antenna and on the other hand be connected or may include a MAC layer circuitry.
  • FIG. 4 illustrates a device 60 that is capable of wireless transmission, according to an embodiment of the invention.
  • Device 60 includes antenna 61 that is connected to a RF chip 62 .
  • RF chip 62 is connected to a MAC/PHY layers chip 63 that includes a PHY layer block 63 and a MAC layer block 64 .
  • the MAC/PHY layers chip 63 is connected to an application entity 66 that provides it with information to be eventually transmitted (TX) and also provides the application 66 with information received (RX) by antenna 61 and processed by PHY and MAC layers blocks 68 and 69 of FIG. 5 .
  • the MAC layer block 64 controls the PHY layer block using a PHY status and control interface.
  • the MAC and PHY layers exchange information (denoted TX and RX) using PHY-MAC interface 90 .
  • the RF chip 62 provides to the PHY layer block 63 received information that is conveniently down-converted to base band frequency.
  • the RF chip 62 receives from the PHY layer block 63 information to be transmitted as well as RF control signals.
  • the application 66 is connected to the MAC/PHY layers chip 63 by a high speed I/O interface.
  • FIG. 5 illustrates various hardware and software components of the MAC/PHY layers chip 63 , according to an embodiment of the invention.
  • the Upper Layer IF block 64 of the MAC/PHY layers chip 63 includes hardware components (collectively denoted 69 ) and software components (collectively denoted 68 ). These components include interfaces to the PHY layer (MAC-PHY interface 90 ) and to the application (or higher layer components).
  • the hardware components 69 include configuration and status registers 81 , Direct Memory Access controller 82 , First In First Out (FIFO) stacks 83 and frame validation and filtering components 84 , DRP and PCA slots schedulers 85 , ACK processors 86 , and MAC-PHY internal interface 87 .
  • configuration and status registers 81 Direct Memory Access controller 82 , First In First Out (FIFO) stacks 83 and frame validation and filtering components 84 , DRP and PCA slots schedulers 85 , ACK processors 86 , and MAC-PHY internal interface 87 .
  • FIFO First In First Out
  • the software components 68 include a management module 72 , transmit module 73 , receive module 74 m hardware adaptation layer 75 , DMA drivers 76 , MAC layer management entity (MLME) service access point (SAP) 71 , MACS API 70 and the like.
  • MLME MAC layer management entity
  • These software and hardware components are capable of performing various operations and provide various services such as: providing an interface to various layers, filtering and routing of specific application packets sent to MAC data queues or provided by these queues, performing information and/or frame processing, and the like.
  • the routing can be responsive to various parameters such as the destinations of the packets, the Quality of Service characteristics associated with the packets, and the like.
  • the processing of information along a transmission path may include: forming the MAC packet itself, including MAC header formation, aggregation of packets into a bigger PHY PDU for better efficiency, fragmentation of packets for better error rate performance, PHY rate adaptation, implementation of Acknowledgements policies, and the like.
  • the processing of information along a reception path may include de-aggregation and/or de-fragmentation of incoming packets, implementation of acknowledgment and the like.
  • the hardware components are capable of transferring data between MAC software queues and MAC hardware (both TX and RX), scheduling of beacons slots, scheduling of DRP and PCA access slots, validation and filtering (according to destination address) of incoming frames, encryption/decryption operations, low-level acknowledgement processing (both in the TX path and in the RX path),
  • Device 60 can be a simple device or even a complex device such as but not limited to a multimedia server that is adapted to transmit information frames of different types to multiple devices. It can, for example transmit Streaming data, like voice, Video, Game applications, etc.) data files during DRP slots, and while PCA slots transmits video over IP frames, download MP3 files, download MPEG-2 files, and stream or download MPEG-4 streams.
  • Streaming data like voice, Video, Game applications, etc.
  • PCA slots transmits video over IP frames, download MP3 files, download MPEG-2 files, and stream or download MPEG-4 streams.
  • voice frames are associated with higher quality of service requirements and accordingly are given higher transmission priorities.
  • the voice frames QoS requirements are followed by video frames that in turn are followed by lower quality of service requirements (lower priority transmission) frames such as best effort frames and background frames.
  • the devices of the child network are allowed to exchange information during one time period, while the devices of the parent network are allowed to exchange information during another time period.
  • Device 5120 that belongs to both networks is able of exchanging information with devices of the parent group during the one time period or a portion of that one time period.
  • device 5120 is capable of receiving a beacon frame transmitted by the management device 5110 and accordingly to define the transmission window of the child network.
  • a neighbor network does not include a device that also belongs to the parent network, but the transmissions of devices of the neighbor network may interfere with the transmission of devices of the parent network.
  • FIG. 6 illustrates a parent network TDMA frame 5300 and a neighbor TDMA frame 5400 .
  • the parent network TDMA frame 5300 starts by a beacon frame 5310 transmitted by the management device 5110 .
  • the beacon frame 5310 may include information that determines which device can transmit during various time slots of the TDMA frame 5300 .
  • the beacon frame 5310 is followed by a contention time slot 5312 , that is followed by multiple slots CTA_ 1 -CTA_n 5314 - 5330 that are allocated for a transmission of devices from the parent or neighbor networks.
  • the second slot CTA_ 2 is allocated for transmissions of devices of the neighbor network. During this time slot the devices of the parent network (except device 5120 ) are not allowed to transmit.
  • the neighbor TDMA frame 5400 includes a neighbor beacon frame 5406 and multiple time slots (collectively denoted 5402 ) during which device of the neighbor network 5200 are allowed to transmit information. These time slots 5402 are followed by a silence period 5404 that starts when CTA_ 2 of certain parent network TDMA frame 5300 ends and ends when the CTA_ 2 of the next parent network TDMA frame 5300 starts.
  • TDMA frames are exemplary and that their content can vary from TDMA frame to TDMA frame.
  • FIG. 7 illustrates a parent network TDMA frame 5300 and a child TDMA frame 5500 .
  • the child network TDMA frame 5500 starts by a child network beacon frame 5510 transmitted by device 5210 that acts like a child network management device.
  • the child network beacon frame 5510 may include information that determines which device of the child network can transmit during various time slots of the child network TDMA frame 5500 .
  • the child network beacon frame 5510 is followed by a contention time slot 5512 , that is followed by multiple slots CCTA_ 1 -CCTA_k 5514 - 5530 that are allocated for a transmission of devices from the child networks.
  • the last slot CCTA_k 5530 is followed by a silence period.
  • the second slot CTA_ 2 is allocated for transmissions of devices of the child network. During this time slot the devices of the parent network (except device 5120 ) are not allowed to transmit.
  • the child TDMA frame 5500 includes multiple time slots (collectively denoted 5502 ) during which device of the child network 5200 are allowed to transmit information. These time slots 5502 are followed by a silence period 5504 that starts when CTA_ 2 of certain parent network TDMA frame 5300 ends and ends when the CTA_ 2 of the next parent network TDMA frame 5300 starts.
  • Both child network and neighbor network, as well as other types of networks can be regarded as networks that are affected from the transmissions of the parent network. These transmissions result in a sub-optimal usage of the shared ultra wide band media.
  • FIG. 8 illustrates the multiple band groups 5615 - 5735 allocated for ultra wide band transmission.
  • the first band group 5615 includes the first till third bands 5610 - 5630 .
  • the second band group 5645 includes the fourth till sixth bands 5640 - 5660 .
  • the third band group 5675 includes the seventh till ninth bands 5670 - 5690 .
  • the fourth band group 5695 includes the tenth till twelfth bands 5700 - 5720 .
  • the fifth band group 5725 includes the thirteenth and the fourteenth bands 5730 and 5740 . Each band is 528 Mhz wide.
  • center frequencies of these bands are: 3432 Mhz, 3960 Mhz, 4488 Mhz, 5016 Mhz, 5544 Mhz, 6072 Mhz, 6600 Mhz, 7128 Mhz, 7656 Mhz, 8184 Mhz, 8712 Mhz, 9420 Mhz, 9768 Mhz and 10296 Mhz.
  • An ultra wide band device such any of devices 5202 - 5206 or 5102 - 5120 , can perform one out of several pre-defined frequency hopping sequences.
  • Each frequency hopping sequence is limited to frequencies within a single band group.
  • Each sequence is associated with a unique Time frequency code. Some codes are allocated for frequency hopping sequences which include a frequency from each band. Other codes are allocated for fixed frequency sequences that include a single frequency.
  • a transmitter includes information representative of the selected sequence within each information frame he sends.
  • each time frequency code is associated with a unique base time domain sequence and a cover sequence that belong to a packet/frame synchronization sequence that in turn is a part of an information frame PLCP preamble.
  • FIG. 9 illustrates a first frequency hopping sequence 6000 .
  • This frequency hopping sequence 6000 starts by transmitting a first symbol (represented by box 6002 ) using a carrier frequency from a first band of a certain band group (denoted by “band # 1 ”). This transmission is followed by a guard period denoted 6004 .
  • Guard period 6004 is followed by a transmission of a second symbol (represented by box 6006 ) using a carrier frequency from a second band of a certain band group (denoted by “band # 2 ”). This transmission is followed by a guard period denoted 6008 .
  • Guard period 6008 is followed by a transmission of a third symbol (represented by box 6010 ) using a carrier frequency from a third band of a certain band group (denoted by “band # 3 ”). This transmission is followed by a guard period denoted 6012 .
  • Guard period 6012 is followed by a transmission of a fourth symbol (represented by box 6014 ) using a carrier frequency from the first band. This transmission is followed by a guard period denoted 6016 .
  • Guard period 6016 is followed by a transmission of a fifth symbol (represented by box 6018 ) using a carrier frequency from the second band. This transmission is followed by a guard period denoted 6020 .
  • Guard period 6020 is followed by a transmission of a third symbol (represented by box 6022 ) using a carrier frequency from the third band. This transmission is followed by a guard period denoted 6024 .
  • An inter-symbol period is defined by the transmission period of that symbol plus the guard time that follows this transmission. Each symbol is usually transmitted during a short time period that is conveniently three hundred nanoseconds long. The guard period is typically about sixty nanoseconds long. Thus an inter-symbol period is conveniently three hundred and sixty nanoseconds.
  • the silence periods are replaced by periods in which the devices of both networks can operate in parallel, but using different frequency hopping sequences, such as not to interfere with each other.
  • the frequency hopping sequences can be substantially the same but be time shifted in relation to each other.
  • the first and second frequency hopping sequences differ from each other and are not just a time shifter version of each other.
  • FIG. 10 illustrates a parent network TDMA frame 5300 ′ and a affected network TDMA frame 6100 according to an embodiment of the invention.
  • the parent network TDMA frame 5300 ′ does not include a silence period, as the transmission of parent network devices do not interfere the transmissions of the affected network devices.
  • the affected network, or at least one device of the affected network is adapted to use the first frequency hopping sequence during a first period 6102 and use a second frequency hopping sequence during a second period 6104 .
  • the first period is used to exchange information with the parent network while the second period 6104 is used for exchanging information between devices of the affected network without interfering to the devices of the first network.
  • FIG. 11 illustrates a first frequency hopping sequence 6000 and a second frequency hopping sequence 6100 , according to an embodiment of the invention.
  • the second frequency hopping sequence 6100 equals the first frequency sequence but is delayed by an inter-symbol period.
  • the second frequency hopping sequence 6100 includes the transmissions of multiple symbols (denoted 6102 - 6122 ) and multiple guard periods (denoted 6104 - 6124 ).
  • FIG. 12 illustrates a first frequency hopping sequence 6000 and a second frequency hopping sequence 6200 , according to another embodiment of the invention.
  • the second frequency hopping sequence 6200 equals the first frequency sequence but is delayed by an half of an inter-symbol period.
  • the second frequency hopping sequence 6200 includes the transmissions of multiple symbols (denoted 6202 - 6222 ) and multiple guard periods (denoted 6204 - 6224 ).
  • the second frequency hopping sequence can differ from the first frequency, and not just be being a delayed version.
  • At least one device is capable of monitoring or controlling the second frequency hopping sequence to make sure that the transmissions of the second network devices do not interfere with the transmissions of the first network devices. For example if the frequency hopping sequences differ by a certain delay, that certain device can synchronize to the transmissions of the first network and then introduce a delay between the frequency hopping sequences.
  • FIG. 13 is a flow chart of a method 6500 for ultra wide band transmission.
  • Method 6500 starts by stage 6510 of allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence.
  • Said allowing may include adjusting at least one device of the first group to perform such an exchange of information, informing one or more device that such a frequency hopping scheme should be implemented, and even when it should be implemented.
  • Stage 6510 is followed by stage 6520 of allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
  • the at least one certain device belongs to the first and second groups of devices. Conveniently, the at least one certain device only belongs to the second group of devices.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence.
  • the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group.
  • method 6500 involves controlling the exchange of information between members of the second group by the certain device.
  • method 6500 involves controlling the exchange of information between device of the second group by utilizing a distributed media access control scheme.
  • method 6500 includes transmitting information representative of the first and second frequency hopping sequences prior to utilizing the first and second frequency hopping sequences.
  • the first frequency hopping sequence comprises performing a frequency hopping between a transmission of each symbol.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is a multiple integer of a inter-symbol period.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
  • stages 6510 and 6520 are repeated for allowing a repetition of multiple transmission sessions between members of the first network and multiple transmission sessions between members of the second network.
  • method 6500 includes synchronizing between the first and second frequency hopping sequences.
  • the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods. Conveniently, each time period of the first set is followed by a time period of the second set.
  • FIGS. 3 and 6 - 14 refer to a network that includes a management entity that applies a media access control scheme. It is noted that according to an embodiment of the invention at least one of the networks can apply a distributed media access control scheme.
  • FIG. 14 illustrates a device 5555 according to an embodiment of the invention.
  • Device 5555 can be substantially similar to device 60 of FIGS. 4-5 , or one of the devices of the first and second networks 10 and 20 of either FIG. 1 or 26 , or be similar to device 5555 of FIG. 39 . And can also be substantially similar to any combination of a receiver and a transmitter illustrated in either one of PCT applications, publication number WO 2004/017547A2 and publication number WO 2004/077684A2 of Wisair Ltd.
  • Device 5555 can include various components that are shared between its receiver and transmitter, but this is not necessarily so. It can utilize various UWB frequency hopping techniques known in the art.
  • Device 5555 is capable of exchanging information with ultra wide band devices that belong to a first group or to a second group of ultra wide band (UWB) devices.
  • the first group of UWB devices can be equivalent to first network 10 or to parent network 5100 .
  • the second group of UWB devices can be equivalent to second network 20 , to child network 5200 or to an neighbor network (not shown).
  • the receiver 5559 is adapted receive information from at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence. Conveniently, the receiver 5559 is also adapted to receive information from at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and to receive information from at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
  • the transmitter 5551 is adapted to transmit information to at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and further adapted to transmit information to at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
  • the transmitted is also adapted to transmit information to at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence.
  • the device 5555 can manage the access of device of the first and/or second group of UWB devices. Additionally or alternatively, device 5555 can also participate in a distributed media access control scheme in order to control the transmission of devices that belong to the first and/or second group of devices.
  • device 5555 belongs to the first and second groups of devices. Conveniently, device 5555 only belongs to the second group of devices.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence.
  • the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group.
  • device 5555 is further adapted to transmit information representative of the first and second frequency hopping sequences prior to a utilization of the first and second frequency hopping sequences.
  • device 5555 is adapted to perform a frequency hopping between a transmission of each symbol.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and the delay is a multiple integer of a inter-symbol period.
  • the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
  • device 5555 is further adapted to synchronize between the first and second frequency hopping sequences.
  • the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods.
  • each time period of the first set is followed by a time period of the second set.
  • any of the mentioned above schemes can be applied by two networks that include at least one relaying device for relaying information between at least one device of the first network and at least one device of the second network.
  • both networks can operate substantially seamlessly while the relaying device can exchange information, during at least one time period, with devices of the first network and exchange information, with device of the second network, during at least one other time period. Whereas at least some of the information exchange includes relaying information.

Abstract

A device and method for ultra wide band transmission, the method includes: (a) allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence; and (b) allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.

Description

    RELATED APPLICATIONS
  • The present patent application is a continuation application of International Application No. PCT/IL05/000021 filed Jan. 96, 2005, which claims priority benefit from U.S. Provisional Application No. 60/535,436 filed Jan. 8, 2004 and U.S. Provisional Application No. 60/535,621 filed Jan. 8, 2004, the contents of which are incorporated herein by reference.
  • This application is related to the following applications:
    • 1. METHOD AND DEVICES FOR MULTICASTING INFORMATION OVER A NETWORK THAT APPLIED A DISTRIBUTED MEDIA ACCESS CONTROL SCHEME, application Ser. No. ______, filed Jan. 25, 2005.
    • 2. METHODS AND DEVICES FOR EXPANDING THE RANGE OF A NETWORK, application Ser. No. ______, filed Jan. 25, 2005.
    • 3. A DEVICE AND METHOD FOR MAPPING INFORMATION STREAMS TO MAC LAYER QUEUES, application Ser. No. ______, filed Jan. 25, 2005.
    • 4. ULTRA WIDE BAND WIRELESS MEDIUM ACCESS CONTROL METHOD AND A DEVICE FOR APPLYING AN ULTRA WIDE BAND WIRELESS MEDIUM ACCESS CONTROL SCHEME, application Ser. No. ______, filed Jan. 25, 2005.
    • 5. METHOD AND DEVICE FOR TRANSMISSION AND RECEPTION OVER A DISTRIBUTED MEDIA ACCESS CONTROL NETWORK, application Ser. No., filed Jan. 25, 2005.
    FIELD OF THE INVENTION
  • The invention relates to methods and device for operating multiple dependent networks and especially multiple adjacent ultra wide band networks.
  • BACKGROUND OF THE INVENTION
  • Recent developments in telecommunication and semiconductor technologies facilitate the transfer of growing amounts of information over wireless networks.
  • The demand for short to medium range, high speed connectivity for multiple digital devices in a local environment continues to rise sharply. For example, many workplaces and households today have many digital computing or entertainment devices such as desktop and laptop computers, television sets and other audio and video devices, DVD players, cameras, camcorders, projectors, handhelds, and others. Multiple computers and television sets, for instance, have become common in American households. In addition, the need for high speed connectivity with respect to such devices is becoming more and more important. These trends will inevitably increase even in the near future.
  • As the demand for high speed connectivity increases along with the number of digital devices in typical households and workplaces, the demand for wireless connectivity naturally grows commensurately. High-speed wiring running to many devices can be expensive, awkward, impractical and inconvenient. High speed wireless connectivity, on the other hand, offers many practical and aesthetic advantages, which accounts the great and increasing demand for it. Ideally, wireless connectivity in a local environment should provide high reliability, low cost, low interference caused by physical barriers such as walls or by co-existing wireless signals, security, and high speed data transfer for multiple digital devices. Existing narrowband wireless connectivity techniques do not provide such a solution, having problems such as high cost, unsatisfactory data transfer rates, unsatisfactory freedom from signal and obstacle related interference, unsatisfactory security, and other shortcomings. In fact, the state of the art does not provide a sufficiently satisfactory solution for providing high speed wireless connectivity for multiple digital devices in a local environment.
  • The state of the art in wireless connectivity generally includes utilization of spread spectrum systems for various applications. Spread spectrum techniques, which spread a signal over a broad range of frequencies, are known to provide high resistance against signal blocking, or “jamming,” high security or resistance against “eavesdropping, ” and high interference resistance. Spread Spectrum techniques have been used in systems in which high security and freedom from tampering is required. Additionally, Code Division Multiple Access (CDMA), a spread spectrum, packet-based technique, is used in some cellular phone systems, providing increased capacity in part by allowing multiple simultaneous conversation signals to share the same frequencies at the same time.
  • Known spread spectrum and modulation techniques, including CDMA techniques, direct sequence spread spectrum (DSSS) techniques, time hopping spread spectrum (THSS) techniques, and pulse position modulation (PPM) techniques, do not satisfactorily provide wireless connectivity in a local environment, including high reliability, low cost, low interference, security, and high speed data transfer for multiple digital devices. In addition, known UWB transmission and communication methods and systems lack satisfactory quality in areas that can include flexibility, adaptivity and adaptive trade-off capabilities in areas such as power usage, range, and transfer rates, and low cost implementation.
  • A number of U.S. and non-U.S. patents and patent applications discuss spread spectrum or UWB related systems for various uses, but are nonetheless in accordance with the above described state of the art. The U.S. and non-U.S. patents and patent applications discussed below are hereby incorporated herein by reference in their entirety.
  • There are several Japanese patents and applications in some of these areas. Japanese patent application JP 11284599, filed on Mar. 31, 1998 and published on Oct. 15, 1999, discusses spread spectrum CDMA mobile communications. Japanese patent application JP 11313005, filed on Apr. 27, 1998 and published on Nov. 9, 1999, discusses a system for rapid carrier synchronization in spread spectrum communication using an intermittently operative signal demodulation circuit. Japanese patent application JP 11027180, filed on Jul. 2, 1997 and published on Jan. 29, 1999, and counterpart European application EP 0889600 discuss a receiving apparatus for use in a mobile communications system, and particularly for use in spread spectrum Code Division Multiple Access communications between a base station and a mobile station. Japanese patent application JP 21378533, filed on Nov. 18, 1988 and published on May 25, 1990, discusses a transmitter for spread spectrum communication.
  • A number of U.S. patents and published applications discuss spread spectrum or UWB in various contexts. U.S. Pat. No. 6,026,125, issued Feb. 15, 2000 to Larrick, Jr. et al., relates to utilization of a carrier-controlled pulsed UWB signal having a controlled center frequency and an adjustable bandwidth. U.S. Pat. No. 6,351,652, issued Feb. 6, 2002 to Finn et al., discusses impulse UWB communication. U.S. Pat. No. 6,031,862, issued Feb. 29, 2000 to Fullerton et al., and related patents including U.S. Pat. Nos. 5,677,927, 5,960,031, 5,963,581, and 5,995,534, discuss a UWB communications system in which impulse derived signals are multiplied by a template signal, integrated, and then demodulated, to increase the usability if signals which would otherwise be obscured by noise. U.S. Pat. No. 6,075,807, issued Jun. 13, 2000 to Warren et al., relates to a spread spectrum digital matched filter. U.S. Pat. No. 5,177,767, issued Jan. 5, 1993 to Kato, discusses a “structurally simple” wireless spread spectrum transmitting or receiving apparatus which is described as eliminating the need for code synchronization. U.S. Pat. No. 6,002,707, issued Dec. 14, 1999 to Thue, relates to radar system using a wide frequency spectrum signal for radar transmission to eliminate the need for very high energy narrow pulse transmitter and receiver systems. U.S. Pat. No. 5,347,537, issued Jun. 21, 1994 to Mori, et al., and related patents including U.S. Pat. Nos. 5,323,419 and 5,218,620, discuss a direct sequence spread spectrum transmitter and receiver system. U.S. Pat. No. 5,206,881, issued Apr. 27, 1993, discusses a spread spectrum communication system attempting to use rapid synchronization of pseudo-noise code signals with data packet signals.
  • A number of published PCT international applications also discuss spread spectrum or UWB in various contexts. PCT international application, publication number WO 01/39451 published on May 31, 2001, discusses a waveform adaptive transmitter for use in radar or communications applications. PCT international application, publication number WO 01/93441, published on Dec. 6, 2001, discusses a UWB high-speed digital communication system using wavelets or impulses. PCT international application, publication number WO 01/99300, published on Dec. 27, 2001, discusses wireless communications using UWB signaling. PCT international application, publication number WO 01/11814, published on Feb. 15, 2001, discusses a transmission method for broadband wired or wireless transmission of information using spread spectrum technology.
  • Short-range ultra wide band wireless networks are being developed in order to allow wireless transmission of vast amounts of information between various devices. U.S. patent application 2003/0063597 of Suzuki, titled “Wireless transmission system, wireless transmission method, wireless reception method, transmitting apparatus and receiving apparatus”, which is incorporated herein by reference, described wireless networks that each includes a base station. U.S. patent application 2004/0170217 of Ho titled “Wireless personal area networks with rotation of frequency hopping sequences” describes a multiple piconets (personal network) environment in which each piconets is controlled by a piconets coordinator. Non-related and non-synchronized piconets use rotating frequency hopping sequences in order to avoid interferences.
  • Some of short-range ultra wide band wireless networks are characterized by a distributed architecture in which devices exchange information without being controlled by a central host or a base station.
  • FIG. 1 is a schematic illustration of two ultra wide band wireless networks (also referred to as personal access networks) 10 and 20, each including multiple devices that wirelessly communicate with each other. First network 10 includes first till third devices A-C 11-13 and the second network 20 includes forth till sixth devices D-F 24-26.
  • FIG. 2 illustrates a typical TDMA frame 30. TDMA frame 30 includes multiple time-slots, such as beacon slots 14 and media access slots. The media access slots include distributed reservation protocol (DRP) slots 36 and prioritized contention access (PCA) slots 38. PCA slots are also referred to as PCA periods. DRP slots are also referred to as DRP periods.
  • The beacon slots are used to synchronize devices to the TDMA frame 30. A typical beacon frame includes information that identifies the transmitting device. It also may include timing information representative of the start time of the TDMA frame 30.
  • The DRP slots 36 are coordinated between devices that belong to the same network and allow devices to reserve these slots in advance. During the PCA slots 38 devices that belong to the network compete for access based upon their transmission priority. It is noted that the allocation of media access time slots is dynamic and can change from one TDMA frame to another.
  • Typically, transmissions from devices during PCA slots are assigned by applying a carrier sense multiple access with collision avoidance (CSMA/CA) scheme If a device requests to transmit over a wireless medium it has to check if the wireless medium is idle. If the wireless medium is idle, the device has to wait a random backoff period. This random backoff time is selected from a contention window that has a length that is related to the priority of the device. For higher-priority devices the contention window is shorter.
  • The transmission process is usually quite complex and includes many operations such as but not limited to forward correction encoding, interleaving, modulating and the like. A receiver must reverse the procedures applied by the transmitter.
  • FIG. 3 illustrates a parent network 5100 and a child network 5200. Each of these networks is also referred to as a piconet. The parent network 5100 includes a first group of ultra wide band devices 5102-5120. The parent network 5100 includes a management device 5110 that controls the exchange of information between the devices of the parent network, by applying a time division multiplex access scheme. The child network includes a second group of devices 5120 and 5202-5206. Device 5120 belongs to both the parent and child networks 5100 and 5200 respectively. It controls the exchange of information between the devices of the second network 5200.
  • Transmission between devices that belong to the parent network 5100 can be subjected to interferences from devices of the child network 5200 and vice versa. There is a need to provide an efficient manner for solving this interference issue.
  • SUMMARY OF THE INVENTION
  • An ultra wide band device that includes: a receiver adapted to receive information from at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence; and a transmitter, adapted to transmit information to at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and further adapted to transmit information to at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
  • A method for ultra wide band transmission, the method includes: (a) allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence; and (b) allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
  • FIG. 1 is a schematic illustration of two networks (also referred to as personal access networks), each including multiple devices that wirelessly communicate with each other;
  • FIG. 2 illustrates a typical TDMA frame;
  • FIGS. 4-5 illustrate a device capable of wireless transmission, and some of its components, according to an embodiment of the invention;
  • FIG. 6 illustrates a parent network TDMA frame and a neighbor TDMA frame;
  • FIG. 7 illustrates a parent network TDMA frame and a child TDMA frame;
  • FIG. 8 illustrates the multiple band groups allocated for ultra wide band transmission;
  • FIG. 9 illustrates a first frequency hopping sequence;
  • FIG. 10 illustrates a parent network TDMA frame and an affected network TDMA frame according to an embodiment of the invention;
  • FIG. 11 illustrates a first frequency hopping sequence and a second frequency hopping sequence, according to an embodiment of the invention;
  • FIG. 12 illustrates a first frequency hopping sequence and a second frequency hopping sequence, according to another embodiment of the invention;
  • FIG. 13 is a flow chart of a method for ultra wide band transmission, according to an embodiment of the invention; and
  • FIG. 14 illustrates a ultra wide band (UWB) device according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Some portions of the following description relates to wireless ultra wide band networks that utilize a distributed media access control scheme. In these networks there is no central media access controller, but rather various devices of the network participate in determining how to share a common wireless medium. It is noted that according to various embodiments of the invention the disclosed methods and devices can be applied in networks that utilize a distributed media access control scheme but differ from ultra wide band wireless networks. It is further noted that according to some embodiments of the invention networks other than ultra wide band network can apply some of the suggested methods.
  • Various operations such as transmissions utilize the distributed media access control scheme in the sense that the access to a shared medium is governed by a distributed media access control scheme.
  • Some embodiments of the invention provide an ultra wide band wireless medium access control method and a device capable of performing ultra wide band wireless medium access control schemes.
  • Conveniently, the device is a part of a ultra wideband wireless network and has a communication protocol stack that includes at least a PHY layer and a MAC layer. The MAC layer of such devices controls the access to ultra wide band wireless medium and is referred to ultra wide band wireless medium access control.
  • Examples of devices that have a PHY layer are illustrated in the following U.S. patent applications, all being incorporated herein by reference: U.S. patent application Ser. No. 10/389789 filed on Mar. 10 2003 and U.S. patent application Ser. No. 10/603,372 filed on Jun. 25 2003.
  • The receiver can include various components that are arranged in multiple layers. A first configuration includes a frame convergence sub-layer, a MAC layer, a PHY layer as well as MAC SAP, PHY SAP, frame convergence sub-layer SAP and a device management entity can also be utilized. Another configuration is described at FIGS. 4 and 5.
  • Wisair Inc. of Tel Aviv Israel manufactures a chip set that includes a Radio Frequency PHY layer chip and a Base-Band PHY layer chip. These chips can be connected in one end to a RF antenna and on the other hand be connected or may include a MAC layer circuitry.
  • FIG. 4 illustrates a device 60 that is capable of wireless transmission, according to an embodiment of the invention.
  • Device 60 includes antenna 61 that is connected to a RF chip 62. RF chip 62 is connected to a MAC/PHY layers chip 63 that includes a PHY layer block 63 and a MAC layer block 64. The MAC/PHY layers chip 63 is connected to an application entity 66 that provides it with information to be eventually transmitted (TX) and also provides the application 66 with information received (RX) by antenna 61 and processed by PHY and MAC layers blocks 68 and 69 of FIG. 5.
  • Typically, the MAC layer block 64 controls the PHY layer block using a PHY status and control interface. The MAC and PHY layers exchange information (denoted TX and RX) using PHY-MAC interface 90. The RF chip 62 provides to the PHY layer block 63 received information that is conveniently down-converted to base band frequency. The RF chip 62 receives from the PHY layer block 63 information to be transmitted as well as RF control signals. The application 66 is connected to the MAC/PHY layers chip 63 by a high speed I/O interface.
  • FIG. 5 illustrates various hardware and software components of the MAC/PHY layers chip 63, according to an embodiment of the invention.
  • The Upper Layer IF block 64 of the MAC/PHY layers chip 63 includes hardware components (collectively denoted 69) and software components (collectively denoted 68). These components include interfaces to the PHY layer (MAC-PHY interface 90) and to the application (or higher layer components).
  • The hardware components 69 include configuration and status registers 81, Direct Memory Access controller 82, First In First Out (FIFO) stacks 83 and frame validation and filtering components 84, DRP and PCA slots schedulers 85, ACK processors 86, and MAC-PHY internal interface 87.
  • The software components 68 include a management module 72, transmit module 73, receive module 74 m hardware adaptation layer 75, DMA drivers 76, MAC layer management entity (MLME) service access point (SAP) 71, MACS API 70 and the like.
  • These software and hardware components are capable of performing various operations and provide various services such as: providing an interface to various layers, filtering and routing of specific application packets sent to MAC data queues or provided by these queues, performing information and/or frame processing, and the like.
  • The routing can be responsive to various parameters such as the destinations of the packets, the Quality of Service characteristics associated with the packets, and the like.
  • The processing of information along a transmission path may include: forming the MAC packet itself, including MAC header formation, aggregation of packets into a bigger PHY PDU for better efficiency, fragmentation of packets for better error rate performance, PHY rate adaptation, implementation of Acknowledgements policies, and the like.
  • The processing of information along a reception path may include de-aggregation and/or de-fragmentation of incoming packets, implementation of acknowledgment and the like.
  • The hardware components are capable of transferring data between MAC software queues and MAC hardware (both TX and RX), scheduling of beacons slots, scheduling of DRP and PCA access slots, validation and filtering (according to destination address) of incoming frames, encryption/decryption operations, low-level acknowledgement processing (both in the TX path and in the RX path),
  • Device 60 can be a simple device or even a complex device such as but not limited to a multimedia server that is adapted to transmit information frames of different types to multiple devices. It can, for example transmit Streaming data, like voice, Video, Game applications, etc.) data files during DRP slots, and while PCA slots transmits video over IP frames, download MP3 files, download MPEG-2 files, and stream or download MPEG-4 streams.
  • Usually, voice frames are associated with higher quality of service requirements and accordingly are given higher transmission priorities. The voice frames QoS requirements are followed by video frames that in turn are followed by lower quality of service requirements (lower priority transmission) frames such as best effort frames and background frames.
  • Referring to FIG. 3, in order to prevent such interference the devices of the child network are allowed to exchange information during one time period, while the devices of the parent network are allowed to exchange information during another time period. Device 5120 that belongs to both networks is able of exchanging information with devices of the parent group during the one time period or a portion of that one time period. Typically device 5120 is capable of receiving a beacon frame transmitted by the management device 5110 and accordingly to define the transmission window of the child network.
  • It is noted that the same inefficient use of the wireless medium can occur if the child device is replaced by a neighbor network. A neighbor network does not include a device that also belongs to the parent network, but the transmissions of devices of the neighbor network may interfere with the transmission of devices of the parent network.
  • FIG. 6 illustrates a parent network TDMA frame 5300 and a neighbor TDMA frame 5400. The parent network TDMA frame 5300 starts by a beacon frame 5310 transmitted by the management device 5110. The beacon frame 5310 may include information that determines which device can transmit during various time slots of the TDMA frame 5300. The beacon frame 5310 is followed by a contention time slot 5312, that is followed by multiple slots CTA_1-CTA_n 5314-5330 that are allocated for a transmission of devices from the parent or neighbor networks.
  • The second slot CTA_2 is allocated for transmissions of devices of the neighbor network. During this time slot the devices of the parent network (except device 5120) are not allowed to transmit. The neighbor TDMA frame 5400 includes a neighbor beacon frame 5406 and multiple time slots (collectively denoted 5402) during which device of the neighbor network 5200 are allowed to transmit information. These time slots 5402 are followed by a silence period 5404 that starts when CTA_2 of certain parent network TDMA frame 5300 ends and ends when the CTA_2 of the next parent network TDMA frame 5300 starts.
  • It is noted that the mentioned above as well as the mentioned below TDMA frames are exemplary and that their content can vary from TDMA frame to TDMA frame.
  • FIG. 7 illustrates a parent network TDMA frame 5300 and a child TDMA frame 5500. The child network TDMA frame 5500 starts by a child network beacon frame 5510 transmitted by device 5210 that acts like a child network management device. The child network beacon frame 5510 may include information that determines which device of the child network can transmit during various time slots of the child network TDMA frame 5500. The child network beacon frame 5510 is followed by a contention time slot 5512, that is followed by multiple slots CCTA_1-CCTA_k 5514-5530 that are allocated for a transmission of devices from the child networks. The last slot CCTA_k 5530 is followed by a silence period.
  • The second slot CTA_2 is allocated for transmissions of devices of the child network. During this time slot the devices of the parent network (except device 5120) are not allowed to transmit. The child TDMA frame 5500 includes multiple time slots (collectively denoted 5502) during which device of the child network 5200 are allowed to transmit information. These time slots 5502 are followed by a silence period 5504 that starts when CTA_2 of certain parent network TDMA frame 5300 ends and ends when the CTA_2 of the next parent network TDMA frame 5300 starts.
  • Both child network and neighbor network, as well as other types of networks can be regarded as networks that are affected from the transmissions of the parent network. These transmissions result in a sub-optimal usage of the shared ultra wide band media.
  • There is a need to provide an efficient method for utilizing the shared ultra wide band media.
  • FIG. 8 illustrates the multiple band groups 5615-5735 allocated for ultra wide band transmission. The first band group 5615 includes the first till third bands 5610-5630. The second band group 5645 includes the fourth till sixth bands 5640-5660. The third band group 5675 includes the seventh till ninth bands 5670-5690. The fourth band group 5695 includes the tenth till twelfth bands 5700-5720. The fifth band group 5725 includes the thirteenth and the fourteenth bands 5730 and 5740. Each band is 528 Mhz wide. The center frequencies of these bands are: 3432 Mhz, 3960 Mhz, 4488 Mhz, 5016 Mhz, 5544 Mhz, 6072 Mhz, 6600 Mhz, 7128 Mhz, 7656 Mhz, 8184 Mhz, 8712 Mhz, 9420 Mhz, 9768 Mhz and 10296 Mhz.
  • An ultra wide band device, such any of devices 5202-5206 or 5102-5120, can perform one out of several pre-defined frequency hopping sequences. Each frequency hopping sequence is limited to frequencies within a single band group. Each sequence is associated with a unique Time frequency code. Some codes are allocated for frequency hopping sequences which include a frequency from each band. Other codes are allocated for fixed frequency sequences that include a single frequency.
  • Before initiating either one of the first or second frequency hopping sequences the receivers and transmitter that are going to use either of these hopping sequence is notified about it. There are various ways to perform such a notification, including sending dedicated messages, synchronization and the like. Conveniently, a transmitter includes information representative of the selected sequence within each information frame he sends. Conveniently, each time frequency code is associated with a unique base time domain sequence and a cover sequence that belong to a packet/frame synchronization sequence that in turn is a part of an information frame PLCP preamble.
  • FIG. 9 illustrates a first frequency hopping sequence 6000. This frequency hopping sequence 6000 starts by transmitting a first symbol (represented by box 6002) using a carrier frequency from a first band of a certain band group (denoted by “band # 1”). This transmission is followed by a guard period denoted 6004. Guard period 6004 is followed by a transmission of a second symbol (represented by box 6006) using a carrier frequency from a second band of a certain band group (denoted by “band # 2”). This transmission is followed by a guard period denoted 6008. Guard period 6008 is followed by a transmission of a third symbol (represented by box 6010) using a carrier frequency from a third band of a certain band group (denoted by “band # 3”). This transmission is followed by a guard period denoted 6012.
  • Guard period 6012 is followed by a transmission of a fourth symbol (represented by box 6014) using a carrier frequency from the first band. This transmission is followed by a guard period denoted 6016. Guard period 6016 is followed by a transmission of a fifth symbol (represented by box 6018) using a carrier frequency from the second band. This transmission is followed by a guard period denoted 6020. Guard period 6020 is followed by a transmission of a third symbol (represented by box 6022) using a carrier frequency from the third band. This transmission is followed by a guard period denoted 6024.
  • An inter-symbol period is defined by the transmission period of that symbol plus the guard time that follows this transmission. Each symbol is usually transmitted during a short time period that is conveniently three hundred nanoseconds long. The guard period is typically about sixty nanoseconds long. Thus an inter-symbol period is conveniently three hundred and sixty nanoseconds.
  • According to an embodiment of the invention the silence periods are replaced by periods in which the devices of both networks can operate in parallel, but using different frequency hopping sequences, such as not to interfere with each other.
  • According to an embodiment of the invention the frequency hopping sequences can be substantially the same but be time shifted in relation to each other. According to another embodiment of the invention the first and second frequency hopping sequences differ from each other and are not just a time shifter version of each other.
  • FIG. 10 illustrates a parent network TDMA frame 5300′ and a affected network TDMA frame 6100 according to an embodiment of the invention.
  • The parent network TDMA frame 5300′ does not include a silence period, as the transmission of parent network devices do not interfere the transmissions of the affected network devices. The affected network, or at least one device of the affected network is adapted to use the first frequency hopping sequence during a first period 6102 and use a second frequency hopping sequence during a second period 6104. The first period is used to exchange information with the parent network while the second period 6104 is used for exchanging information between devices of the affected network without interfering to the devices of the first network.
  • FIG. 11 illustrates a first frequency hopping sequence 6000 and a second frequency hopping sequence 6100, according to an embodiment of the invention. The second frequency hopping sequence 6100 equals the first frequency sequence but is delayed by an inter-symbol period. The second frequency hopping sequence 6100 includes the transmissions of multiple symbols (denoted 6102-6122) and multiple guard periods (denoted 6104-6124).
  • FIG. 12 illustrates a first frequency hopping sequence 6000 and a second frequency hopping sequence 6200, according to another embodiment of the invention. The second frequency hopping sequence 6200 equals the first frequency sequence but is delayed by an half of an inter-symbol period. The second frequency hopping sequence 6200 includes the transmissions of multiple symbols (denoted 6202-6222) and multiple guard periods (denoted 6204-6224).
  • It is noted that the previous figures illustrate frequency hopping sequences that were limited to a single band group that includes three bands. It is noted that the amount of bands per band group, can be larger than three and that the frequency sequence does not necessarily be limited to frequencies within a single band group.
  • Those of skill in the art will appreciate that the second frequency hopping sequence can differ from the first frequency, and not just be being a delayed version.
  • It is noted that at least one device, such as certain device 5120, is capable of monitoring or controlling the second frequency hopping sequence to make sure that the transmissions of the second network devices do not interfere with the transmissions of the first network devices. For example if the frequency hopping sequences differ by a certain delay, that certain device can synchronize to the transmissions of the first network and then introduce a delay between the frequency hopping sequences.
  • FIG. 13 is a flow chart of a method 6500 for ultra wide band transmission.
  • Method 6500 starts by stage 6510 of allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence. Said allowing may include adjusting at least one device of the first group to perform such an exchange of information, informing one or more device that such a frequency hopping scheme should be implemented, and even when it should be implemented.
  • Stage 6510 is followed by stage 6520 of allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
  • Conveniently, the at least one certain device belongs to the first and second groups of devices. Conveniently, the at least one certain device only belongs to the second group of devices.
  • Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence. Conveniently, the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group. Conveniently, method 6500 involves controlling the exchange of information between members of the second group by the certain device. Conveniently, method 6500 involves controlling the exchange of information between device of the second group by utilizing a distributed media access control scheme.
  • Conveniently, method 6500 includes transmitting information representative of the first and second frequency hopping sequences prior to utilizing the first and second frequency hopping sequences.
  • Conveniently, the first frequency hopping sequence comprises performing a frequency hopping between a transmission of each symbol. Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is a multiple integer of a inter-symbol period. Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
  • Conveniently, stages 6510 and 6520 are repeated for allowing a repetition of multiple transmission sessions between members of the first network and multiple transmission sessions between members of the second network.
  • Conveniently, method 6500 includes synchronizing between the first and second frequency hopping sequences.
  • Conveniently, the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods. Conveniently, each time period of the first set is followed by a time period of the second set.
  • It is further noted that FIGS. 3 and 6-14 refer to a network that includes a management entity that applies a media access control scheme. It is noted that according to an embodiment of the invention at least one of the networks can apply a distributed media access control scheme.
  • FIG. 14 illustrates a device 5555 according to an embodiment of the invention.
  • Device 5555 can be substantially similar to device 60 of FIGS. 4-5, or one of the devices of the first and second networks 10 and 20 of either FIG. 1 or 26, or be similar to device 5555 of FIG. 39. And can also be substantially similar to any combination of a receiver and a transmitter illustrated in either one of PCT applications, publication number WO 2004/017547A2 and publication number WO 2004/077684A2 of Wisair Ltd.
  • Device 5555 can include various components that are shared between its receiver and transmitter, but this is not necessarily so. It can utilize various UWB frequency hopping techniques known in the art.
  • Device 5555 is capable of exchanging information with ultra wide band devices that belong to a first group or to a second group of ultra wide band (UWB) devices. The first group of UWB devices can be equivalent to first network 10 or to parent network 5100. The second group of UWB devices can be equivalent to second network 20, to child network 5200 or to an neighbor network (not shown).
  • In order to exchange information device 5555 includes an UWB transmitter 5551 and an UWB receiver 5559. The receiver 5559 is adapted receive information from at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence. Conveniently, the receiver 5559 is also adapted to receive information from at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and to receive information from at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
  • The transmitter 5551 is adapted to transmit information to at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and further adapted to transmit information to at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period. Conveniently, the transmitted is also adapted to transmit information to at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence.
  • The device 5555 can manage the access of device of the first and/or second group of UWB devices. Additionally or alternatively, device 5555 can also participate in a distributed media access control scheme in order to control the transmission of devices that belong to the first and/or second group of devices.
  • Conveniently, device 5555 belongs to the first and second groups of devices. Conveniently, device 5555 only belongs to the second group of devices.
  • Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence. Conveniently, the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group.
  • Conveniently, device 5555 is further adapted to transmit information representative of the first and second frequency hopping sequences prior to a utilization of the first and second frequency hopping sequences.
  • Conveniently, device 5555 is adapted to perform a frequency hopping between a transmission of each symbol. Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and the delay is a multiple integer of a inter-symbol period. Conveniently, the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
  • Conveniently, device 5555 is further adapted to synchronize between the first and second frequency hopping sequences. Conveniently, the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods. Conveniently, each time period of the first set is followed by a time period of the second set.
  • According to an embodiment of any of the mentioned above schemes can be applied by two networks that include at least one relaying device for relaying information between at least one device of the first network and at least one device of the second network. By applying the frequency hopping scheme both networks can operate substantially seamlessly while the relaying device can exchange information, during at least one time period, with devices of the first network and exchange information, with device of the second network, during at least one other time period. Whereas at least some of the information exchange includes relaying information.
  • It will be apparent to those skilled in the art that the disclosed subject matter may be modified in numerous ways and may assume many embodiments other then the preferred form specifically set out and described above. It is noted that each of the mentioned above circuitries can be applied by hardware, software, middleware or a combination of the above. The mentioned above methods can be stored in a computer readable medium, such as but not limited to tapes, disks, diskettes, compact discs, and other optical and/or magnetic medium.
  • Accordingly, the above disclosed subject matter is to be considered illustrative and not restrictive, and to the maximum extent allowed by law, it is intended by the appended claims to cover all such modifications and other embodiments, which fall within the true spirit and scope of the present invention.
  • The scope of the invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents rather then the foregoing detailed description.

Claims (32)

1. A method for ultra wide band transmission, the method comprises: (a) allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence; and (b) allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
2. The method of claim 1 wherein the at least one certain device belongs to the first and second groups of devices.
3. The method of claim 1 wherein the at least one certain device only belongs to the second group of devices.
4. The method of claim 1 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence.
5. The method of claim 1 wherein the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group.
6. The method of claim 1 further comprising controlling the exchange of information between members of the second group by the certain device.
7. The method of claim 1 further comprising controlling the exchange of information between members of the second group by utilizing a distributed media access control scheme.
8. The method of claim 1 further comprising transmitting information representative of the first and second frequency hopping sequences prior to utilizing the first and second frequency hopping sequences.
9. The method of claim 1 wherein the first frequency hopping sequence comprises performing a frequency hopping between a transmission of each symbol.
10. The method of claim 9 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is a multiple integer of a inter-symbol period.
11. The method of claim 9 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
12. The method of claim 9 further comprising repeating stage (b).
13. The method of claim 9 further comprising synchronizing between the first and second frequency hopping sequences.
14. The method of claim 9 wherein the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods.
15. The method of claim 14 wherein each time period of the first set is followed by a time period of the second set.
16. An ultra wide band device that comprises: a receiver adapted to receive information from at least one device of a first group of ultra wide band devices, using a first frequency hopping sequence; and a transmitter, adapted to transmit information to at least one device of the first group of ultra wide band devices, using the first frequency hopping sequence during at least one time period and further adapted to transmit information to at least one device of a second group of ultra wide band devices, using a second frequency hopping sequence, during at least one other time period.
17. The device of claim 16 wherein the device belongs to the first and second groups of devices.
18. The device of claim 16 wherein the device only belongs to the second group of devices.
19. The device of claim 16 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence.
20. The device of claim 16 wherein the first and second frequency sequences include hopping between frequencies that belong to the same frequency band group.
21. The device of claim 16 further adapted to control an exchange of information between devices of the second group.
22. The device of claim 16 further adapted to participate in a distributed media access control scheme for controlling an exchange of information between members of the second group.
23. The device of claim 16 further adapted to transmit information representative of the first and second frequency hopping sequences prior to a utilization of the first and second frequency hopping sequences.
24. The device of claim 16 adapted to perform a frequency hopping between a transmission of each symbol.
25. The device of claim 24 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is a multiple integer of a inter-symbol period.
26. The device of claim 24 wherein the second frequency hopping sequence is substantially a delayed first frequency hopping sequence and wherein the delay is fraction of an inter-symbol period.
27. The device of claim 16 further adapted to synchronize between the first and second frequency hopping sequences.
28. The device of claim 16 wherein the at least one time period comprises a first set of time periods and the at least one other time period comprises a second set of time periods.
29. The device of claim 16 wherein each time period of the first set is followed by a time period of the second set.
30. The method of claim 1 further comprising relaying information, by a certain device, between a device of the first group and a device of the second group.
31. The device of claim 16 further adapted to relay information between a device of the first group and a device of the second group.
32. A computer readable medium having code embodied therein for causing an electronic device to perform the stages of: (a) allowing a first group of ultra wide band devices to exchange information using a first frequency hopping sequence; and (b) allowing at least one certain device that is responsive to at least one transmission of information from a device of the first group to exchange information using the first frequency hopping sequence during at least one time period and allowing devices that belong to the second group to exchange information using a second frequency hopping sequence during at least one other time period.
US11/043,457 2004-01-08 2005-01-25 Method and system for operating multiple dependent networks Abandoned US20050238084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/043,457 US20050238084A1 (en) 2004-01-08 2005-01-25 Method and system for operating multiple dependent networks

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US53562104P 2004-01-08 2004-01-08
US53543604P 2004-01-08 2004-01-08
PCT/IL2005/000021 WO2005065035A2 (en) 2004-01-08 2005-01-06 Distributed and centralized media access control device and method
US11/043,457 US20050238084A1 (en) 2004-01-08 2005-01-25 Method and system for operating multiple dependent networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2005/000021 Continuation WO2005065035A2 (en) 2004-01-08 2005-01-06 Distributed and centralized media access control device and method

Publications (1)

Publication Number Publication Date
US20050238084A1 true US20050238084A1 (en) 2005-10-27

Family

ID=34753024

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/043,476 Abandoned US20050238025A1 (en) 2004-01-08 2005-01-25 Device and method for mapping information streams to MAC layer queues
US11/043,646 Abandoned US20050237956A1 (en) 2004-01-08 2005-01-25 Methods and devices for expanding the range of a network
US11/043,456 Expired - Fee Related US7936774B2 (en) 2004-01-08 2005-01-25 Method and devices for multicasting information over a network that applied a distributed media access control scheme
US11/043,253 Expired - Fee Related US7496064B2 (en) 2004-01-08 2005-01-25 Ultra wide band wireless medium access control method and a device for applying an ultra wide band wireless medium access control scheme
US11/043,457 Abandoned US20050238084A1 (en) 2004-01-08 2005-01-25 Method and system for operating multiple dependent networks
US11/043,279 Abandoned US20050249183A1 (en) 2004-01-08 2005-01-25 Method and device for transmission and reception over a distributed media access control network

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/043,476 Abandoned US20050238025A1 (en) 2004-01-08 2005-01-25 Device and method for mapping information streams to MAC layer queues
US11/043,646 Abandoned US20050237956A1 (en) 2004-01-08 2005-01-25 Methods and devices for expanding the range of a network
US11/043,456 Expired - Fee Related US7936774B2 (en) 2004-01-08 2005-01-25 Method and devices for multicasting information over a network that applied a distributed media access control scheme
US11/043,253 Expired - Fee Related US7496064B2 (en) 2004-01-08 2005-01-25 Ultra wide band wireless medium access control method and a device for applying an ultra wide band wireless medium access control scheme

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/043,279 Abandoned US20050249183A1 (en) 2004-01-08 2005-01-25 Method and device for transmission and reception over a distributed media access control network

Country Status (2)

Country Link
US (6) US20050238025A1 (en)
WO (1) WO2005065035A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054680A1 (en) * 2005-08-19 2007-03-08 Matsushita Electric Industrial Co., Ltd. Method of band multiplexing to improve system capacity for a multi-band communication system
US20070195863A1 (en) * 2004-05-03 2007-08-23 Texas Instruments Incorporated (Updated) Preamble for FDMA
US20080165746A1 (en) * 2005-03-28 2008-07-10 Pantech Co., Ltd. Multiple Access Digital Communicating Method In Ultra-Wideband Radio Access Networks
US20090040984A1 (en) * 2007-08-08 2009-02-12 Qualcomm Incorporated Apparatus and method for channel reservation in wireless communication systems
US20090106810A1 (en) * 2007-10-22 2009-04-23 Artimi, Inc. Ultra wideband communications protocols
GB2453936A (en) * 2007-10-22 2009-04-29 Artimi Inc Ultra Wideband Communications Protocols
US20110064117A1 (en) * 2007-09-19 2011-03-17 Agency For Science, Technology And Research Methods for network throughput enhancement
JP2016066891A (en) * 2014-09-24 2016-04-28 東芝ライテック株式会社 Communication device, communication method, and communication program
US20170134106A1 (en) * 2015-01-13 2017-05-11 Enforcement Video, Llc Systems and methods for adaptive frequency synchronization

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005974B2 (en) 2004-01-09 2007-11-14 株式会社東芝 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
ATE486480T1 (en) * 2004-02-06 2010-11-15 Koninkl Philips Electronics Nv SYSTEM AND METHOD FOR A HIBERNATION MODE FOR BARK FACILITIES
CA2556062C (en) * 2004-02-06 2014-04-08 Koninklijke Philips Electronics, N.V. A system and method for an ultra wide-band medium access control distributed reservation protocol
TWI497945B (en) * 2004-03-24 2015-08-21 皇家飛利浦電子股份有限公司 Distributed beaconing periods for ad-hoc networks
KR100604885B1 (en) * 2004-07-13 2006-07-31 삼성전자주식회사 Wireless network device and method aggregating MAC service data units
US7433414B2 (en) * 2004-07-26 2008-10-07 Sigma Designs, Inc. Intelligent array radio architecture
WO2006023834A2 (en) * 2004-08-18 2006-03-02 Staccato Communications, Inc. Bacon group merging
US7359361B2 (en) * 2004-11-02 2008-04-15 Nokia Corporation Techniques for stream handling in wireless communications networks
FR2882599B1 (en) * 2005-02-25 2007-05-04 Somfy Soc Par Actions Simplifi COMMUNICATION SYSTEM WITH CROSS ACCOUNTING AND ASSOCIATED COMMUNICATION FRAME
US20060198335A1 (en) * 2005-03-04 2006-09-07 Jukka Reunamaki Embedding secondary transmissions in an existing wireless communications network
US20100185717A9 (en) * 2005-03-10 2010-07-22 Dhinakar Radhakrishnan Method of improving control information acquisition latency by transmitting control information in individually decode-able packets
US8111698B2 (en) * 2005-03-31 2012-02-07 Alcatel Lucent Method of performing a layer operation in a communications network
US20060268931A1 (en) * 2005-05-31 2006-11-30 Assaf Sella Method, device and computer readable medium for exchanging information in a hybrid environment
US7912033B2 (en) * 2005-05-31 2011-03-22 Olympus Corporation Device synchronization on a communication network
TW200718142A (en) * 2005-08-16 2007-05-01 Wionics Research Frame synchronization
KR100647906B1 (en) * 2005-09-15 2006-11-23 한국전자통신연구원 Wireless usb host apparatus of uwb
JP4715433B2 (en) * 2005-10-03 2011-07-06 ソニー株式会社 Wireless communication system, wireless communication device, and computer program
WO2007054763A1 (en) * 2005-11-09 2007-05-18 Nokia Corporation Apparatus, method and computer program product providing data serializing by direct memory access controller
US7729236B2 (en) * 2005-11-10 2010-06-01 Nokia Corporation Use of timing information for handling aggregated frames in a wireless network
KR100711094B1 (en) * 2005-11-29 2007-04-27 삼성전자주식회사 Resource allocating method among mobile-stations in distribution communication network
US7653087B2 (en) * 2006-01-06 2010-01-26 Fujitsu Limited Methods of synchronizing subscriber stations to communications networks
US20070259629A1 (en) 2006-04-26 2007-11-08 Qualcomm Incorporated Duty cycling power scheme
TWI429219B (en) * 2006-05-01 2014-03-01 Koninkl Philips Electronics Nv Method of reserving resources with a maximum delay guarantee for multi-hop transmission in a distributed access wireless communications network
US20070263584A1 (en) * 2006-05-09 2007-11-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uncompressed audio/video data
US8576882B2 (en) * 2006-05-11 2013-11-05 Blackberry Limited Media access control protocol for multi-hop network systems and method therefore
US20070270103A1 (en) * 2006-05-16 2007-11-22 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uncompressed audio/video data
US20070288980A1 (en) * 2006-06-08 2007-12-13 Huaning Niu System and method for digital communication having a frame format and parsing scheme with parallel convolutional encoders
US20070286103A1 (en) * 2006-06-08 2007-12-13 Huaning Niu System and method for digital communication having puncture cycle based multiplexing scheme with unequal error protection (UEP)
US20070286221A1 (en) * 2006-06-13 2007-12-13 Mau-Lin Wu Memory management method and memory architecture for transmitting UWB PCA frames
US8107552B2 (en) 2006-06-28 2012-01-31 Samsung Electronics Co., Ltd. System and method of wireless communication of uncompressed video having a fast fourier transform-based channel interleaver
DE102006043667B4 (en) * 2006-09-18 2009-01-15 Infineon Technologies Ag Communication terminals, methods of requesting communication terminal information, methods of providing communication terminal information
US8095078B2 (en) * 2006-09-18 2012-01-10 Infineon Technologies Ag Communication terminal device
US8194750B2 (en) 2006-10-16 2012-06-05 Samsung Electronics Co., Ltd. System and method for digital communication having a circulant bit interleaver for equal error protection (EEP) and unequal error protection (UEP)
KR100763551B1 (en) * 2006-11-15 2007-10-04 삼성전자주식회사 Apparatus for reducing contention in prioritized contention access of wireless local network and method using the same
US8169995B2 (en) * 2006-12-04 2012-05-01 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having delay-insensitive data transfer
US20080130592A1 (en) * 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Apparatus and method for managing medium access slot in wireless personal area network
JP2008160182A (en) * 2006-12-20 2008-07-10 Toshiba Corp Radio communication equipment system, and its radio communication sequence
US8879448B2 (en) * 2006-12-22 2014-11-04 Samsung Electronics Co., Ltd. Apparatus for controlling power of WiMedia media access control device and method using the same
BRPI0721002A2 (en) * 2006-12-22 2014-07-29 Qualcomm Inc ENHANCED WIRELESS USB PROTOCOL AND HUB
US20080253368A1 (en) * 2007-04-11 2008-10-16 Nokia Siemens Networks Oy Policy control of multiplexed real time protocol and real time control protocol
KR101212613B1 (en) * 2007-06-20 2012-12-14 노키아 지멘스 네트웍스 오와이 Avoiding collisions between semi-persistent allocation and dynamic allocation in radio access networks
US7937045B2 (en) * 2007-10-11 2011-05-03 Sony Ericsson Mobile Communications Ab Softmultiband radio for ultra wide band
US20090103435A1 (en) * 2007-10-17 2009-04-23 Nokia Corporation Dynamic rate adaptation for distributed wireless network
KR100931313B1 (en) * 2007-12-17 2009-12-11 한국전자통신연구원 Short-range wireless communication device and method
WO2009083917A2 (en) * 2007-12-27 2009-07-09 Koninklijke Philips Electronics, N.V. Simplified beaconing and channel reservation techniques for short range wireless networks
US20090185534A1 (en) * 2008-01-18 2009-07-23 Futurewei Technologies, Inc. Method and Apparatus for Transmitting a Packet Header
CN102027797A (en) * 2008-03-14 2011-04-20 诺基亚西门子通信公司 Method, devices and system for local collision avoidance for random access in relay networks
JP5106230B2 (en) * 2008-04-25 2012-12-26 キヤノン株式会社 Communication system and method, terminal station and program
WO2009136724A2 (en) * 2008-05-09 2009-11-12 Lg Electronics Inc. Device and method for multicast in wireless local access network
JP5316208B2 (en) 2009-05-08 2013-10-16 ソニー株式会社 COMMUNICATION DEVICE AND COMMUNICATION METHOD, COMPUTER PROGRAM, AND COMMUNICATION SYSTEM
US9350495B2 (en) * 2009-12-08 2016-05-24 Qualcomm Incorporated Method and apparatus for multicast block acknowledgment
US10225047B2 (en) * 2009-12-08 2019-03-05 Qualcomm Incorporated Method and apparatus for multicast block acknowledgement
KR101755013B1 (en) 2010-03-11 2017-07-07 한국전자통신연구원 Frame structure and communication method of coordinator, source station and relay station in a wireless network system
US9485114B2 (en) * 2011-03-25 2016-11-01 Mediatek Inc. MAC abstraction sub-layer and MAC table for a communication system and related communication device
US9172597B2 (en) * 2011-04-28 2015-10-27 Invensys Systems, Inc. Data combiner and splitter
US9185191B2 (en) * 2011-06-16 2015-11-10 Mediatek Inc. Unified network architecture based on medium access control abstraction sub-layer
US9301266B2 (en) 2011-08-19 2016-03-29 Qualcomm Incorporated Beacons for wireless communication
US9871732B2 (en) * 2012-01-10 2018-01-16 International Business Machines Corporation Dynamic flow control in multicast systems
US20130176851A1 (en) * 2012-01-10 2013-07-11 International Business Machines Corporation Dynamic flow control in multicast systems
JP2013197909A (en) * 2012-03-21 2013-09-30 Ricoh Co Ltd Radio communication method and radio communication system
JP6069858B2 (en) * 2012-03-21 2017-02-01 株式会社リコー Wireless communication method and wireless communication system
US9042550B2 (en) 2012-03-30 2015-05-26 Qualcomm Incorporated Methods and apparatus for base station assisted peer discovery through aggregation of expressions
US9258692B2 (en) 2012-03-30 2016-02-09 Qualcomm Incorporated Relay assisted peer discovery
WO2013149383A1 (en) * 2012-04-05 2013-10-10 Nokia Corporation Method, apparatus, and computer program product for adaptive relaying data distribution in wireless networks
US9271269B2 (en) 2012-09-28 2016-02-23 Motorola Solutions, Inc. Method and system for assigning slot reservations to subscriber radios in a telecommunications system
TWI506995B (en) * 2012-11-22 2015-11-01 Univ Nat Kaohsiung 1St Univ Sc Cross-layer control system and method for multi-wireless communication protocols
US9191097B2 (en) * 2012-12-20 2015-11-17 Intel Corporation Techniques for transmitting data via relay communication links
US9369258B2 (en) * 2013-05-03 2016-06-14 Qualcomm Incorporated Systems and methods for peer-to-peer and AP traffic multiplexing
US9398123B2 (en) * 2013-05-03 2016-07-19 Qualcomm Incorporated Systems and methods for aggregation of physical protocol data units on a wireless network
US9124337B2 (en) 2013-08-30 2015-09-01 Empire Technology Development Llc Repeater emulation to increase network range
EP3243314A4 (en) 2015-01-06 2018-09-05 Umbra Technologies Ltd. System and method for neutral application programming interface
JP2018507639A (en) 2015-01-28 2018-03-15 アンブラ テクノロジーズ リミテッドUmbra Technologies Ltd. System and method for global virtual network
EP3281368B1 (en) 2015-04-07 2020-05-06 Umbra Technologies Ltd. Network system having virtual interfaces and a routing module for a virtual network
US9948561B2 (en) * 2015-04-14 2018-04-17 Cisco Technology, Inc. Setting delay precedence on queues before a bottleneck link based on flow characteristics
US10554368B2 (en) * 2015-10-07 2020-02-04 Microsoft Technology Licensing, Llc Wireless data-acknowledgement communication using frame aggregation
CN108293063B (en) 2015-12-11 2022-05-24 安博科技有限公司 System and method for information slingshot on network tapestry and instant granularity
ES2903130T3 (en) 2016-04-26 2022-03-31 Umbra Tech Ltd Network Slinghop Implemented Using Tapestry Slingshot
JP6436144B2 (en) * 2016-10-17 2018-12-12 株式会社リコー Wireless communication method, wireless communication system, and program
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002912A1 (en) * 1999-12-06 2001-06-07 Larsson Tony Methods and arrangements in a telecommunications system
US20020075941A1 (en) * 2000-12-14 2002-06-20 Motorola, Inc. Multiple access frequency hopping network with interference anticipation
US20030060222A1 (en) * 2001-09-25 2003-03-27 Johan Rune Network access point with auxiliary transceiver
US6741856B2 (en) * 2000-08-14 2004-05-25 Vesuvius Inc. Communique system for virtual private narrowcasts in cellular communication networks
US20040131025A1 (en) * 2001-06-28 2004-07-08 Mischa Dohler Electronic data communication systems
US20040233858A1 (en) * 2003-05-21 2004-11-25 Broadcom Corporation, A California Corporation Position based WPAN (Wireless Personal Area Network) management
US6882677B2 (en) * 2001-02-28 2005-04-19 Motorola, Inc. Method and apparatus for facilitating handoff in a wireless local area network
US20050188103A1 (en) * 2003-12-30 2005-08-25 Nokia Corporation Method or device for delivering a packet in a scatternet

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365551A (en) * 1992-12-15 1994-11-15 Micron Technology, Inc. Data communication transceiver using identification protocol
ID24678A (en) * 1997-06-06 2000-07-27 Salbu Res & Dev Pty Ltd OPERATION METHOD OF A MULTI STATION NETWORK
US6256317B1 (en) * 1998-02-19 2001-07-03 Broadcom Homenetworking, Inc. Packet-switched multiple-access network system with distributed fair priority queuing
US6131012A (en) * 1998-05-26 2000-10-10 Nera Wireless Broadband Access As Method and system for a micro-channel bank for providing voice, data, and multimedia services in a wireless local loop system
JP3493141B2 (en) * 1998-06-12 2004-02-03 富士通株式会社 Gateway system and recording medium
SE516084C2 (en) * 1998-12-01 2001-11-19 Ericsson Telefon Ab L M A technology for access control in communication networks with packet switching
US7346120B2 (en) * 1998-12-11 2008-03-18 Freescale Semiconductor Inc. Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions
DE19921716A1 (en) * 1999-05-12 2000-11-16 Philips Corp Intellectual Pty Wireless network with concealed network node transfer node connected to concealed node for exchanging certain data of central node with concealed node
US6497656B1 (en) * 2000-02-08 2002-12-24 General Electric Company Integrated wireless broadband communications network
US6952456B1 (en) * 2000-06-21 2005-10-04 Pulse-Link, Inc. Ultra wide band transmitter
US6765870B2 (en) * 2000-12-21 2004-07-20 At&T Wireless Services, Inc. Medium access dynamic congestion control mechanism for wireless data
US20020118421A1 (en) * 2000-12-22 2002-08-29 Yijun Xiong Channel scheduling in optical routers
US20020089959A1 (en) * 2001-01-11 2002-07-11 Fischer Michael A. System and method for providing a selectable retry strategy for frame-based communications
US7583623B2 (en) * 2001-03-02 2009-09-01 Ofer Zimmerman Method and system for packing management messages in a communication system
JP3858746B2 (en) * 2001-05-08 2006-12-20 ソニー株式会社 Wireless communication system, wireless communication control device, wireless communication control method, and computer program
US7287649B2 (en) * 2001-05-18 2007-10-30 Broadcom Corporation System on a chip for packet processing
US6717992B2 (en) * 2001-06-13 2004-04-06 Time Domain Corporation Method and apparatus for receiving a plurality of time spaced signals
US7586914B2 (en) * 2001-09-27 2009-09-08 Broadcom Corporation Apparatus and method for hardware creation of a DOCSIS header
US7535929B2 (en) * 2001-10-25 2009-05-19 Sandeep Singhai System and method for token-based PPP fragment scheduling
ES2201024T3 (en) * 2001-11-30 2004-03-16 Alcatel IP PLATFORM FOR ADVANCED MULTIPOINT ACCESS SYSTEMS.
US7016948B1 (en) * 2001-12-21 2006-03-21 Mcafee, Inc. Method and apparatus for detailed protocol analysis of frames captured in an IEEE 802.11 (b) wireless LAN
US6980541B2 (en) * 2002-01-03 2005-12-27 Freescale Semiconductor, Inc. Media access controller having pseudo-static guaranteed time slots
US7184705B2 (en) * 2002-03-08 2007-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Distributed MAC in an uncoordinated radio environment
US7630403B2 (en) * 2002-03-08 2009-12-08 Texas Instruments Incorporated MAC aggregation frame with MSDU and fragment of MSDU
US7447228B1 (en) * 2002-03-15 2008-11-04 Nortel Networks Limited Technique for delivering bursted native media data flows over an ethernet physical layer
US7941149B2 (en) * 2002-05-13 2011-05-10 Misonimo Chi Acquistion L.L.C. Multi-hop ultra wide band wireless network communication
WO2003105353A2 (en) * 2002-06-11 2003-12-18 Meshnetworks, Inc. System and method for multicast media access using broadcast transmissions with multiple acknowledgments in an ad-hoc communications network
ATE383022T1 (en) * 2002-06-13 2008-01-15 Alcatel Lucent ALLOCATION OF TRANSMISSION CAPACITY OF A COMMON MEDIUM IN A MULTIPOINT-TO-POINT NETWORK
ES2427434T3 (en) * 2002-08-02 2013-10-30 Nms Communications Procedures and apparatus for grouping network signals and reducing bandwidth
US7574492B2 (en) * 2002-09-12 2009-08-11 Broadcom Corporation Optimizing network configuration from established usage patterns of access points
US7263105B2 (en) * 2002-12-18 2007-08-28 Intel Corporation WLAN device and method for interfacing between a MAC sublayer and a physical layer
US20040225725A1 (en) * 2003-02-19 2004-11-11 Nec Corporation Network system, learning bridge node, learning method and its program
US20040181811A1 (en) * 2003-03-13 2004-09-16 Rakib Selim Shlomo Thin DOCSIS in-band management for interactive HFC service delivery
KR100524069B1 (en) * 2003-04-04 2005-10-26 삼성전자주식회사 Home agent management apparatus and method
US7676194B2 (en) * 2003-08-22 2010-03-09 Rappaport Theodore S Broadband repeater with security for ultrawideband technologies
US7702284B2 (en) * 2003-09-12 2010-04-20 Arto Palin Method and system for processing acknowledgments in a wireless communications network
US7339883B2 (en) * 2003-09-15 2008-03-04 Pulse-Link, Inc. Ultra-wideband communication protocol
ES2321855T3 (en) * 2004-07-27 2009-06-12 Koninklijke Philips Electronics N.V. SYSTEM AND PROCEDURE TO RELEASE UNUSED TIME SLOTS IN A DISTRIBUTED MAC PROTOCOL.
US20060268931A1 (en) * 2005-05-31 2006-11-30 Assaf Sella Method, device and computer readable medium for exchanging information in a hybrid environment
US20070286221A1 (en) * 2006-06-13 2007-12-13 Mau-Lin Wu Memory management method and memory architecture for transmitting UWB PCA frames
US20080063000A1 (en) * 2006-09-12 2008-03-13 Gadi Shor Device and a Method for Exchanging Information Between a Bridge and a Device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002912A1 (en) * 1999-12-06 2001-06-07 Larsson Tony Methods and arrangements in a telecommunications system
US6741856B2 (en) * 2000-08-14 2004-05-25 Vesuvius Inc. Communique system for virtual private narrowcasts in cellular communication networks
US20020075941A1 (en) * 2000-12-14 2002-06-20 Motorola, Inc. Multiple access frequency hopping network with interference anticipation
US6882677B2 (en) * 2001-02-28 2005-04-19 Motorola, Inc. Method and apparatus for facilitating handoff in a wireless local area network
US20040131025A1 (en) * 2001-06-28 2004-07-08 Mischa Dohler Electronic data communication systems
US20030060222A1 (en) * 2001-09-25 2003-03-27 Johan Rune Network access point with auxiliary transceiver
US20040233858A1 (en) * 2003-05-21 2004-11-25 Broadcom Corporation, A California Corporation Position based WPAN (Wireless Personal Area Network) management
US20050188103A1 (en) * 2003-12-30 2005-08-25 Nokia Corporation Method or device for delivering a packet in a scatternet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195863A1 (en) * 2004-05-03 2007-08-23 Texas Instruments Incorporated (Updated) Preamble for FDMA
US20080165746A1 (en) * 2005-03-28 2008-07-10 Pantech Co., Ltd. Multiple Access Digital Communicating Method In Ultra-Wideband Radio Access Networks
US8588190B2 (en) * 2005-03-28 2013-11-19 Pantech Co., Ltd. Multiple access digital communicating method in ultra-wideband radio access networks
US20070054680A1 (en) * 2005-08-19 2007-03-08 Matsushita Electric Industrial Co., Ltd. Method of band multiplexing to improve system capacity for a multi-band communication system
US7454218B2 (en) * 2005-08-19 2008-11-18 Panasonic Corporation Method of band multiplexing to improve system capacity for a multi-band communication system
US20090040984A1 (en) * 2007-08-08 2009-02-12 Qualcomm Incorporated Apparatus and method for channel reservation in wireless communication systems
TWI413381B (en) * 2007-08-08 2013-10-21 Qualcomm Inc Apparatus and method for channel reservation in wireless communication systems
US8406205B2 (en) * 2007-08-08 2013-03-26 Qualcomm Incorporated Apparatus and method for channel reservation in wireless communication systems
US20110064117A1 (en) * 2007-09-19 2011-03-17 Agency For Science, Technology And Research Methods for network throughput enhancement
GB2453936B (en) * 2007-10-22 2010-04-28 Artimi Inc Ultra wideband communications protocols
GB2453936A (en) * 2007-10-22 2009-04-29 Artimi Inc Ultra Wideband Communications Protocols
US20090106810A1 (en) * 2007-10-22 2009-04-23 Artimi, Inc. Ultra wideband communications protocols
JP2016066891A (en) * 2014-09-24 2016-04-28 東芝ライテック株式会社 Communication device, communication method, and communication program
US20170134106A1 (en) * 2015-01-13 2017-05-11 Enforcement Video, Llc Systems and methods for adaptive frequency synchronization
US9660744B1 (en) * 2015-01-13 2017-05-23 Enforcement Video, Llc Systems and methods for adaptive frequency synchronization
US9923651B2 (en) * 2015-01-13 2018-03-20 WatchGuard, Inc. Systems and methods for adaptive frequency synchronization

Also Published As

Publication number Publication date
US20050237965A1 (en) 2005-10-27
WO2005065035A3 (en) 2006-02-09
US20050238025A1 (en) 2005-10-27
WO2005065035A2 (en) 2005-07-21
US20050237964A1 (en) 2005-10-27
US7496064B2 (en) 2009-02-24
US7936774B2 (en) 2011-05-03
US20050249183A1 (en) 2005-11-10
US20050237956A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US20050238084A1 (en) Method and system for operating multiple dependent networks
US7221911B2 (en) Multi-band ultra-wide band communication method and system
US7885174B2 (en) Common signalling mode for use with multiple wireless formats
US7061877B1 (en) System and method for providing high speed wireless media access
AU2002211436B2 (en) Systems and methods for interference mitigation among multiple WLAN protocols
US6928085B2 (en) System and method for providing quality of service and contention resolution in ad-hoc communication systems
US7773663B2 (en) Communication apparatus, communication method, and program
KR101213850B1 (en) Separating control and data in wireless networks
US7515606B2 (en) UWB-based wireless bridge
US20040242159A1 (en) Interoperability and coexistence between two disparate communication systems
WO2004045092A1 (en) Interoperability and co-existence between two disparate communication systems
US7916703B2 (en) Wireless local area network (WLAN) and method of transmitting frame in the WLAN
US7474705B2 (en) Scalable ultra-wide band communication system
US20070014273A1 (en) Method, device and computer readable medium for dynamically updating transmission charactaristics
KR20030017987A (en) Radio communication system, control station, communication apparatus, communication control method, radio communication method, and communication control program
KR20060014366A (en) System and method for passing data frames in a wireless network
US20040032918A1 (en) Communication method, system and apparatus utilizing burst symbol cycles
WO2008015512A2 (en) Scalable wlan wireless communications device and radio for wpan and wran operation
US20080063000A1 (en) Device and a Method for Exchanging Information Between a Bridge and a Device
Chung et al. Signaling and multiple access techniques for ultra wideband 4G wireless communication systems
US20080225790A1 (en) Method and System for Operating Ultra Wideband Network in the Presence of Another Network
US8830929B2 (en) Intentional idle gaps in coexisting wireless networks
FI116496B (en) Broadband communication method
WO2023030663A1 (en) Transmitting data to a wireless communication device
Aripin et al. CROSS LAYER DESIG OF MULTIMEDIA TRA SMISSIO OVER COG ITIVE RADIO UWB MULTIBA D OFDM SYSTEM

Legal Events

Date Code Title Description
AS Assignment

Owner name: WISAIR LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUPERSCHMIDT, YEFIM;GADI, SHOR;REEL/FRAME:016754/0563

Effective date: 20050706

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION