US20050236161A1 - Optical fiber equipped tubing and methods of making and using - Google Patents

Optical fiber equipped tubing and methods of making and using Download PDF

Info

Publication number
US20050236161A1
US20050236161A1 US11/111,230 US11123005A US2005236161A1 US 20050236161 A1 US20050236161 A1 US 20050236161A1 US 11123005 A US11123005 A US 11123005A US 2005236161 A1 US2005236161 A1 US 2005236161A1
Authority
US
United States
Prior art keywords
tubing
fiber optic
wellbore
optical fiber
coiled tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/111,230
Inventor
Michael Gay
Sarmad Adnan
John Lovell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US11/111,230 priority Critical patent/US20050236161A1/en
Priority to CA2562019A priority patent/CA2562019C/en
Priority to DE602005021874T priority patent/DE602005021874D1/en
Priority to BRPI0509995A priority patent/BRPI0509995B1/en
Priority to JP2007509053A priority patent/JP4712797B2/en
Priority to AT05732292T priority patent/ATE471434T1/en
Priority to EP05732292A priority patent/EP1743081B1/en
Priority to PCT/IB2005/051329 priority patent/WO2005103437A1/en
Priority to EA200601962A priority patent/EA010141B1/en
Priority to DK05732292.7T priority patent/DK1743081T3/en
Priority to MXPA06011981A priority patent/MXPA06011981A/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOVELL, JOHN R., ADNAN, SARMAD, GAY, MICHAEL G.
Publication of US20050236161A1 publication Critical patent/US20050236161A1/en
Priority to NO20065263A priority patent/NO335257B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/206Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with conductors, e.g. electrical, optical
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves

Definitions

  • the present invention relates generally to oilfield operations and more particularly methods and apparatus using fiber optics in coiled tubing operations in a wellbore.
  • Coiled tubing operations are used commonly in the oilfield industry, for example to pump fluids to a desired location in the wellbore or to manipulate oilfield assemblies.
  • One advantage of coiled tubing is that it is provided on reels such that coiled tubing is unreeled as it is inserted into a wellbore for a particular use and then reeled or spooled back on the reel as it is extracted from the wellbore.
  • Coiled tubing reels may be conveniently stored or moved, and spooled coiled tubing may be transported on a trailer, flat, or truck.
  • the use of coiled tubing as a different type of wellbore conveyance in wellbore applications is increasing, resulting in an increasing need for downhole apparatus and methods adapted for use with coiled tubing. Difficulties inherent with using conventional downhole electromechanical apparatus with coiled tubing include lack of power to the downhole apparatus and the lack of telemetry from the downhole apparatus to the surface.
  • wireline cable in coiled tubing presents logistical challenges, however, such as installation of the wireline cable in the coiled tubing and the reduced fluid capacity of the coiled tubing owing to the space taken by the wireline cable.
  • wireline to a coiled tubing string significantly increases the weight of a coiled tubing string.
  • Installation of the wireline into the coiled tubing string is difficult and the wireline is prone to bunch into a “bird nest” within the coiled tubing.
  • This, and the relatively large outer diameter of wireline compared to the internal diameter of coiled tubing can undesirably obstruct the flow of fluids through the coiled tubing, such flow through the coiled tubing frequently being an integral part of the wellbore operation.
  • some fluids routinely pumped through coiled tubing such as acid, cement and proppant-bearing fracturing fluids, may have an adverse affect on the integrity or performance of wireline cable.
  • pumping fluid down the coiled tubing can create a drag force on the wireline cable owing to the frictional force between the fluid and the surface of the cable.
  • optical fiber provides many advantages over wireline when used as a transmission medium such as small size, lightweight, large bandwidth capacity, and high speed of transmission.
  • a significant challenge to using optical fibers in subterranean oilfield operations is that the free hydrogen ions will cause darkening of the fiber at the elevated temperatures that are commonly found in subterranean wells.
  • the use of optical fiber in wireline cable is known such as that described in U.S. Pat. No 6,690,866 incorporated herein in its entirety by reference. This patent teaches adding a hydrogen absorbing material or scavenging gel to surround the optical fibers inside a first metal tube.
  • multiple optic fibers may provide advantages in many situations over the use of a single optical fiber.
  • Using multiple fibers provides operational redundancy in the event that any particular fiber becomes damaged or broken.
  • Multiple fibers provide increased transmission capacity over a single fiber and permit flexibility to segregate different types of transmissions to different fibers. These advantages may be particularly important in downhole applications where access is limited, environmental conditions may be extreme, and dual-direction (uphole and downhole) transmission is required.
  • Using multiple optical fibers also allows an individual optical fiber to be used for a specific apparatus or sensor. This configuration is useful as some sensors, such as Fabry-Perot devices, require a dedicated optical fiber. The configuration also is useful for sensors with digital telemetry for which a separate fiber may be required. Sensors using Fiber-Bragg grating for example require a separate fiber from the fiber used for carrying digital optical telemetry.
  • duct is used herein to identify a small tube or hollow carrier that encompasses an optical fiber or fibers.
  • optical fiber refers to a fiber or a waveguide capable of transmitting optical energy.
  • fiber optic tube or “fiber optic tether” is used to identify the combination of an optical fiber or multiple optical fibers disposed in a duct.
  • fiber optic cable refers to a cable, wire, wireline or slickline that comprises one or more optical fibers.
  • Tubing refers to a conduit to any kind of a round hollow apparatus in general, and in the area of oilfield applications to casing, drill pipe, metal tube, or coiled tubing or other such apparatus.
  • the present invention comprises optical fiber equipped tubing and methods of making and using the same.
  • the present invention comprises an optical fiber equipped tubing comprising a fiber optic tube deployed within a tubular.
  • the fiber optic tube comprises a metallic material, and in some embodiments, the fiber optic tube comprises more than one optical fiber.
  • the fiber optic tube will be constructed in an inert nitrogen environment so that the optical fiber or fibers therein are not exposed to hydrogen or water during manufacturing.
  • the tubular may be, in particular, coiled tubing.
  • the present invention relates to a method of making an optical fiber equipped tubing comprising pumping a fluid into a tubular, deploying a fiber optic tube into the fluid as pumped in the tubular, such that the flow of the pumped fluid propels the tube along the tubular.
  • the fiber optic tube may be deployed in the coiled tubing while the tubing is spooled on a reel or while the tubing is deployed in a wellbore.
  • the present invention provides a method of communicating in a wellbore comprising deploying an optical fiber equipped tubing having at least one optical fiber disposed therein, the fiber optic tubing being disposed in the tubing by fluid flow; determining a property in the wellbore; and transmitting the determined property via at least one of the optical fibers disposed in the fiber optic tubing.
  • the least one optical fiber senses the information for transmitting.
  • the method may also comprise disposing at least one sensor in the wellbore, with the sensor determining the property, and the sensed information transmitted to the surface via the optical fiber in the fiber optic tube.
  • more than one sensor may be disposed in the wellbore, each sensor transmitting its sensed property over a different optical fiber in the coiled tubing.
  • the optical fiber or fibers will be attached to a wireless communication device via a pressure bulkhead so that the optical signal can readily transmitted to a surface computer while the coiled tubing is being spooled into and out of the wellbore.
  • the present invention provides an apparatus that is deployed into the wellbore and in communication with the surface for receiving signals or transmitting sensed information over the fiber optic tubing.
  • FIG. 1 shows an embodiment of the apparatus of the present invention.
  • FIG. 2A is a cross-sectional view of an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of another embodiment of the present invention.
  • FIG. 3 shows a typical configuration for coiled tubing operations.
  • the present invention provides an optical fiber equipped tubing and methods of making and using.
  • the optical fiber equipped tubing of the present invention comprises one or more fiber optic tubes disposed in a tubular.
  • An embodiment comprises a method for installing one or more fiber optic tubes in reeled or spooled tubing such as coiled tubing.
  • Another embodiment provides a method for installing one or more fiber optic tubes in coiled tubing deployed in a wellbore.
  • a fiber optic tube may be deployed a tubular by pumping the fiber optic tube in a fluid without additional structure or protection.
  • Methods of pumping cables into a tubular are generally considered infeasible owning to the inherent lack of compressional stiffness of cables.
  • teachings of fiber optic cables suggest that a fiber optic tube needs additional protection or structure for use in a wellbore environment.
  • An advantage of the optical fiber equipped tubing of the present invention is that the fiber optic tube possesses a certain level of stiffness in compression, leading it to behave more similar mechanically to coiled tubing than does cable or optical fiber alone.
  • use of a fiber optic tube inside coiled tubing avoids many of the slack management challenges presented by other transmission mechanism.
  • the cross-section of a fiber optic tube is relatively small compared to the inner area within coiled tubing, thus limiting the possible physical influence that the fiber optic tube could have on the mechanical behavior of coiled tubing during deployment and retrieval.
  • optical fiber equipped coiled tubing may be deploying into and retrieved from a wellbore at a quicker rate than coiled tubing with wireline.
  • optical fiber equipped tubing 200 is shown having tubular 105 within which is disposed fiber optic tube 211 .
  • fiber optic tube 211 is shown comprising duct 203 in which a single optical fiber 201 is disposed.
  • more than one optical fiber 201 may be provided within fiber optic duct 203 .
  • Surface termination 301 or downhole termination 207 may be provided for both physical and optical connections between optical fiber 201 and one or more borehole apparatus or sensor 209 .
  • the optical fibers may be multi-mode or single-mode.
  • Types of borehole apparatus or sensor 209 may include, for example, gauges, valves, sampling devices, temperature sensors, pressure sensors, distributed temperature sensors, distributed pressure sensors, flow-control devices, flow rate measurement devices, oil/water/gas ratio measurement devices, scale detectors, actuators, locks, release mechanisms, equipment sensors (e.g., vibration sensors), sand detection sensors, water detection sensors, data recorders, viscosity sensors, density sensors, bubble point sensors, composition sensors, resistivity array devices and sensors, acoustic devices and sensors, other telemetry devices, near infrared sensors, gamma ray detectors, H 2 S detectors, CO 2 detectors, downhole memory units, downhole controllers, perforating devices, shape -charges, firing heads, locators, and other devices.
  • equipment sensors e.g., vibration sensors
  • sand detection sensors water detection sensors, data recorders, viscosity sensors, density sensors, bubble point sensors, composition sensors, resistivity array devices and sensors, acoustic devices and sensors, other telemetry
  • FIG. 2A a cross-sectional view of the fiber optic equipped tubing 200 of FIG. 1 is shown.
  • tubing 105 Within tubing 105 is shown a fiber optic tube 211 comprising optical fiber 201 located inside duct 203 .
  • FIG. 2B another embodiment of the present invention is shown in cross-sectional view in which fiber optic equipped tubing 200 has more than one fiber optic tube 211 is disposed in tubular 105 and in which more than one optical fiber 201 is disposed within duct 203 in at least one of the fiber optic tube 211 .
  • an inert gas such as nitrogen may be used to fill the space between the optical fiber or fibers 201 and the interior of the duct 203 .
  • the fluid may be pressurized in some embodiments to decrease the susceptibility of the fiber optic tube to localized buckling.
  • this laser-welding technique is performed in an enclosed environment filled with an inert gas such as nitrogen to avoid exposure to water or hydrogen during manufacturing, thereby minimizing any hydrogen-induced darkening of the optical fibers during oilfield operations.
  • nitrogen to fill the space offers advantages of lower cost and greater convenience over other techniques that may require a buffer material, gel, or sealer in the space.
  • the duct 203 is constructed by bending a metal strip around the optical fiber or fibers 201 and then welding that strip to form an encompassing duct using laser-welding techniques such as described in U.S. Pat. No. 4,852,790. This gives a significant reduction in the cost and weight of the resulting fiber optic tube 211 compared to other optical cables previously known in the art.
  • a small amount of gel containing palladium or tantalum can optionally be inserted into either end of the fiber optic tube to keep hydrogen ions away from the optical fiber or fibers 201 during transportation of the optically enabled tubing 200 .
  • duct 203 in fiber optic tube 211 of the present invention provide stiffness to the tube, are resistant to fluids encountered in oilfield applications, and are rated to withstand the high temperature and high pressure conditions found in some wellbore environments.
  • duct 203 in a fiber optic tube 211 is a metallic material, and in some embodiments, duct 203 comprises metal materials such as InconelTM, stainless steel, or HasetloyTM.
  • fiber optic tubes manufactured by any method may be used in the present invention, laser welded fiber optic tubes are preferred as the heat affected zone generated by laser welding is normally less than that generated by other methods such as TIG, thus reducing the possibility of damage to the optical fiber during welding.
  • fiber optic tubes While the dimensions of such fiber optic tubes are small (for example the diameter of such products commercially available from K-Tube, Inc of California, U.S.A. range from 0.5 mm to 3.5 mm), they have sufficient inner void space to accommodate multiple optical fibers.
  • the small size of such fiber optic tubes is particularly useful in the present invention as they do not significantly deduct from the capacity of a tubular to accommodate fluids or create obstacles to other devices or equipment to be deployed in or through the tubular.
  • fiber optic tube 211 comprises a duct 203 with an outer diameter of 0.071 inches to 0.125 inches (3.175 mm) formed around one or more optical fibers 201 .
  • standard optical fibers are used, and duct 203 is no more than 0.020 inches (0.508 mm) thick. While the diameter of the optical fibers, the protective tube, and the thickness of the protective tube given here are exemplary, it is noteworthy that the inner diameter of the protective tube can be larger than needed for a close packing of the optical fibers.
  • fiber optic tube 211 may comprise multiple optical fibers may be disposed in a duct.
  • a particular downhole apparatus may have its own designated optical fiber, or each of a group of apparatuses may have their own designated optical fiber within the fiber optic tube.
  • a series of apparatus may use a single optical fiber.
  • coiled tubing 15 is suitable for use as tubular 105 in the present invention.
  • Surface handling equipment includes an injector system 20 on supports 29 and coiled tubing reel assembly 10 on reel stand 12 , flat, trailer, truck or other such device.
  • the tubing is deployed into or pulled out of the well using an injector head 19 .
  • the equipment further includes a levelwind mechanism 13 for guiding coiled tubing 15 on and off the reel 10 .
  • the coiled tubing 15 passes over tubing guide arch 18 which provides a bending radius for moving the tubing into a vertical orientation for injection through wellhead devices into the wellbore.
  • the tubing passes from tubing guide arch 18 into the injector head 19 that grippingly engages the tubing and pushes it into the well.
  • a stripper assembly 21 under the injector maintains a dynamic and static seal around the tubing to hold well pressure within the well as the tubing passes into the wellhead devices under well pressure.
  • the coiled tubing then moves through a blowout preventor (BOP) stack 23 , a flow tee 25 and wellhead master valve or tree valve 27 .
  • BOP blowout preventor
  • Fiber optic tube 211 may be inserted into the coiled tubing 15 through any variety of means.
  • One embodiment comprises attaching a hose to the reel 10 to the other end of which hose is attached a Y-joint.
  • fiber optic tube 211 may be introduced into one leg of the Y and fluid pumped into the other leg. The drag force of the fluid on fiber optic tube 211 then propels the tube down the hose and into the reel 10 .
  • a pump rate as low as 1-5 barrels per minute (2.65-13.25 liters per second) is sufficient to propel the tether the full length of the coiled tubing even while it is spooled on the reel.
  • a fluid such as gas or water
  • a fluid may be used to propel a fiber optic tube 211 in a tubular 105 .
  • fiber optic tube 211 is disposed in an unrestrained manner in the pumped fluid.
  • the fiber optic tube is permitted to self-locate in the tubular without the use of external apparatus such as pigs for conveyance or placement or restricting anchors.
  • the fluid is pumped and the fiber optic tube or tubes are deployed into coiled tubing while it said coiled tubing is configured in a spooled state on a reel.
  • optical fiber equipped tubing of the present invention may be transported and field-deployed as a single apparatus, thereby reducing costs and simplifying operations.
  • the optical fiber equipped tubing 200 of the present invention may be used in conventional wellbore operations such as providing a stimulation fluid to a subterranean formation through coiled tubing.
  • One advantage of the present invention is that fiber optic tube 211 tolerates exposure to various well treatment fluids that may be pumped into the coiled tubing; in particular, the fiber optic tube or tubes of the present invention can withstand abrasion by proppant or sand and exposure to corrosive fluids such as acids.
  • the fiber optic tube is configured as a round tube having a smooth outer diameter, this configuration providing less opportunity for degradation and thus a longer useful life for the fiber optic tube.
  • the optical fiber equipped tubing of the present invention is useful to perform a variety of wellbore operation including determining a wellbore property and transmitting information from the wellbore. Determining includes, by way of example and not limitation, sensing using the optical fiber, sensing using a separate sensor, locating by a downhole apparatus, and confirming a configuration by a downhole apparatus.
  • the optical fiber equipped tubing of the present invention may further comprise sensors such as fiber optic temperature and pressure sensors or electrical sensors coupled with electro-optical converters, disposed in a wellbore and linked to the surface via a fiber optic tube 211 . Wellbore conditions that are sensed may be transmitted via fiber optic tube 211 .
  • Data sensed by electrical sensors may be converted to analog or digital optical signals using pure digital or wavelength, intensity or polarization modulation and then provided to the optical fiber or fibers in fiber optic tube 211 .
  • optical fiber 201 may sense some properties directly, for example when optical fiber 201 serves as a distributed temperature sensor or when optical fiber 201 comprises Fiber-Bragg grating and directly senses strain, stress, stretch, or pressure.
  • the information from the sensors or the property information sensed by optical fiber 201 may be communicated to the surface via fiber optic tube 211 .
  • signals or commands may be transmitted from the surface to a downhole sensor or apparatus via fiber optic tube 201 .
  • the surface communication includes a wireless telemetry link such as described in U.S. patent application Ser. No. 10/926,522, which is incorporated herein in its entirety by reference.
  • the wireless telemetry apparatus may be mounted to the reel so that the optical signals can be transmitted while the reel is rotating without the need of a complicated optical collector apparatus.
  • the wireless apparatus mounted to the reel may include additional optical connectors so that surface optical cables can be attached when the reel is not rotating.

Abstract

The present invention relates to an optical fiber equipped tubing and methods of making and using the same. The optical fiber equipped tubing comprises a fiber optic tube deployed within a tubular, the fiber optic tube having at least one optical fiber disposed within a duct, the duct typically being a metallic metal compatible with wellbore environments. The present invention also relates to a method of making an optical fiber equipped tubing comprising pumping a fluid into a tubular and deploying a fiber optic tube into the tubular by propelling it in the flow of the pumped fluid. The present invention also provides a method of communicating in wellbore using a fiber optic tube disposed within a wellbore tubular. In certain embodiments, this communication may be combined with a wireless communication system at the surface. In certain embodiments, the tubular may be coiled tubing and the fiber optic tube may be deployed in the coiled tubing while the tubing is spooled on a reel or while the tubing is deployed in a wellbore.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Patent Application 60/564,934 filed Apr. 23, 2004.
  • FIELD OF THE INVENTION
  • The present invention relates generally to oilfield operations and more particularly methods and apparatus using fiber optics in coiled tubing operations in a wellbore.
  • BACKGROUND OF THE INVENTION
  • Coiled tubing operations are used commonly in the oilfield industry, for example to pump fluids to a desired location in the wellbore or to manipulate oilfield assemblies. One advantage of coiled tubing is that it is provided on reels such that coiled tubing is unreeled as it is inserted into a wellbore for a particular use and then reeled or spooled back on the reel as it is extracted from the wellbore. Coiled tubing reels may be conveniently stored or moved, and spooled coiled tubing may be transported on a trailer, flat, or truck. The use of coiled tubing as a different type of wellbore conveyance in wellbore applications is increasing, resulting in an increasing need for downhole apparatus and methods adapted for use with coiled tubing. Difficulties inherent with using conventional downhole electromechanical apparatus with coiled tubing include lack of power to the downhole apparatus and the lack of telemetry from the downhole apparatus to the surface.
  • It is known to use conventional wireline in coiled tubing to provide communications between downhole operations and the surface, including transmitting uphole data measured by a variety of wellbore tools and transmitting commands downhole to effect a variety of operations. Use of wireline cable in coiled tubing presents logistical challenges, however, such as installation of the wireline cable in the coiled tubing and the reduced fluid capacity of the coiled tubing owing to the space taken by the wireline cable.
  • The addition of wireline to a coiled tubing string significantly increases the weight of a coiled tubing string. Installation of the wireline into the coiled tubing string is difficult and the wireline is prone to bunch into a “bird nest” within the coiled tubing. This, and the relatively large outer diameter of wireline compared to the internal diameter of coiled tubing, can undesirably obstruct the flow of fluids through the coiled tubing, such flow through the coiled tubing frequently being an integral part of the wellbore operation. Furthermore, some fluids routinely pumped through coiled tubing, such as acid, cement and proppant-bearing fracturing fluids, may have an adverse affect on the integrity or performance of wireline cable. In addition, pumping fluid down the coiled tubing can create a drag force on the wireline cable owing to the frictional force between the fluid and the surface of the cable.
  • Installation of wireline or other electrical cable into coiled tubing is difficult and cumbersome as its weight and bending stiffness can contribute to a high friction force between the cable and the interior of the coiled tubing. Methods for installing wireline in coiled tubing are discussed in U.S. Pat. No. 5,573,225 and U.S. Pat. No. 5,699,996, each of which is incorporated herein by reference. The methods described in each of these patents require a significant installation apparatus at the surface to overcome the high frictional force between the cable and the coiled tubing and to convey the cable into the coiled tubing. The size of such an apparatus makes it unfeasible for use in some operations, particularly in offshore operations.
  • Use of optical fiber in various applications and operations is increasing. Optical fiber provides many advantages over wireline when used as a transmission medium such as small size, lightweight, large bandwidth capacity, and high speed of transmission. A significant challenge to using optical fibers in subterranean oilfield operations is that the free hydrogen ions will cause darkening of the fiber at the elevated temperatures that are commonly found in subterranean wells. The use of optical fiber in wireline cable is known such as that described in U.S. Pat. No 6,690,866 incorporated herein in its entirety by reference. This patent teaches adding a hydrogen absorbing material or scavenging gel to surround the optical fibers inside a first metal tube. This patent also teaches that wireline cable disclosed therein requires significant tensile strength and teaches that this strength can be obtained by rigidly attaching the first metal tube to the interior of a second metal tube. Both teachings can significantly add to the cost and weight of the cable. In U.S. Pat. No. 6,557,630, incorporated herein in its entirety by reference, a method of deploying a remote measurement apparatus in a wellbore, the apparatus comprising a conduit in which a fiber optic sensor and a fiber optic cable is disposed, the cable being propelled along the conduit by fluid flow in a conduit. In GB Patent 2362909, incorporated herein in its entirety by reference, a method is proposed for placing sensors that relies upon first installing first a hollow conduit into the coiled tubing and then subsequently pumping a single fiber into that conduit. None of these patents teach or suggest propelling an optically enabled conduit or cable into a tubular using fluid flow.
  • Methods of installing optical fibers in tubulars often are directed towards installing the optical fiber by pumping or dragging the fiber into the tubular. In U.S. patent application Publication 2003/0172752, incorporated herein by in its entirety by reference, methods for installing an optical fiber through a conduit in a wellbore application using a fluid, wherein a seal is provided between the optical fiber and the conduit are described. To install an optical fiber in coiled tubing using these methods would require 1) unreeling the coiled tubing, 2) extending the coiled tubing (either in a wellbore or on the surface) and 3) deploying the optical fiber. Such a process is directed toward the installation of a single optical fiber in a tubular; it is time consuming and thus costly from an operational perspective. Furthermore, these methods are directed toward installing a single optical fiber in a tubular and are not conducive to installation of multiple fibers in a tubular. In addition, these methods do not contemplate recovery or reuse of the optical fiber.
  • Use of multiple optic fibers however may provide advantages in many situations over the use of a single optical fiber. Using multiple fibers provides operational redundancy in the event that any particular fiber becomes damaged or broken. Multiple fibers provide increased transmission capacity over a single fiber and permit flexibility to segregate different types of transmissions to different fibers. These advantages may be particularly important in downhole applications where access is limited, environmental conditions may be extreme, and dual-direction (uphole and downhole) transmission is required. Using multiple optical fibers also allows an individual optical fiber to be used for a specific apparatus or sensor. This configuration is useful as some sensors, such as Fabry-Perot devices, require a dedicated optical fiber. The configuration also is useful for sensors with digital telemetry for which a separate fiber may be required. Sensors using Fiber-Bragg grating for example require a separate fiber from the fiber used for carrying digital optical telemetry.
  • For clarity, the term “duct” is used herein to identify a small tube or hollow carrier that encompasses an optical fiber or fibers. The term “optical fiber” refers to a fiber or a waveguide capable of transmitting optical energy. The term “fiber optic tube” or “fiber optic tether” is used to identify the combination of an optical fiber or multiple optical fibers disposed in a duct. The term “fiber optic cable” refers to a cable, wire, wireline or slickline that comprises one or more optical fibers. “Tubular” and “tubing” refers to a conduit to any kind of a round hollow apparatus in general, and in the area of oilfield applications to casing, drill pipe, metal tube, or coiled tubing or other such apparatus.
  • Various methods of manufacturing fiber optic tubes are known. Two examples are laser welding, such as described in U.S. Pat. No. 4,852,790, incorporated herein in its entirety, and tungsten inert gas welding (TIG) such as described in U.S. Pat. No. 4,366,362, incorporated herein in its entirety. Neither patent teaches or suggests the insertion of such tubes into a spooled tubular by fluid flow.
  • Therefore it may be seen that there exists a need for an apparatus, methods of making, and methods of using fiber optic tubing disposed in a tubular, and in particular, a need for such an apparatus and methods of using in wellbore applications.
  • SUMMARY OF THE INVENTION
  • The present invention comprises optical fiber equipped tubing and methods of making and using the same. In a broad sense, the present invention comprises an optical fiber equipped tubing comprising a fiber optic tube deployed within a tubular. In many embodiments, the fiber optic tube comprises a metallic material, and in some embodiments, the fiber optic tube comprises more than one optical fiber. In many embodiments, the fiber optic tube will be constructed in an inert nitrogen environment so that the optical fiber or fibers therein are not exposed to hydrogen or water during manufacturing. The tubular may be, in particular, coiled tubing. In another embodiment, the present invention relates to a method of making an optical fiber equipped tubing comprising pumping a fluid into a tubular, deploying a fiber optic tube into the fluid as pumped in the tubular, such that the flow of the pumped fluid propels the tube along the tubular. When the tubular is coiled tubing, the fiber optic tube may be deployed in the coiled tubing while the tubing is spooled on a reel or while the tubing is deployed in a wellbore. In another embodiment, the present invention provides a method of communicating in a wellbore comprising deploying an optical fiber equipped tubing having at least one optical fiber disposed therein, the fiber optic tubing being disposed in the tubing by fluid flow; determining a property in the wellbore; and transmitting the determined property via at least one of the optical fibers disposed in the fiber optic tubing. In some embodiments, the least one optical fiber senses the information for transmitting. The method may also comprise disposing at least one sensor in the wellbore, with the sensor determining the property, and the sensed information transmitted to the surface via the optical fiber in the fiber optic tube. In other embodiments, more than one sensor may be disposed in the wellbore, each sensor transmitting its sensed property over a different optical fiber in the coiled tubing. In many embodiments the optical fiber or fibers will be attached to a wireless communication device via a pressure bulkhead so that the optical signal can readily transmitted to a surface computer while the coiled tubing is being spooled into and out of the wellbore. In some embodiments, the present invention provides an apparatus that is deployed into the wellbore and in communication with the surface for receiving signals or transmitting sensed information over the fiber optic tubing.
  • While a particular embodiment and area of application is presented as an exemplar, namely that of fiber optic equipped coiled tubing useful for wellbore applications, the present invention is not limited to this embodiment and is useful for any application wherein a fiber optic equipped tubing is desirable.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an embodiment of the apparatus of the present invention.
  • FIG. 2A is a cross-sectional view of an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of another embodiment of the present invention.
  • FIG. 3 shows a typical configuration for coiled tubing operations.
  • DETAILED DESCRIPTION
  • The present invention provides an optical fiber equipped tubing and methods of making and using. The optical fiber equipped tubing of the present invention comprises one or more fiber optic tubes disposed in a tubular. An embodiment comprises a method for installing one or more fiber optic tubes in reeled or spooled tubing such as coiled tubing. Another embodiment provides a method for installing one or more fiber optic tubes in coiled tubing deployed in a wellbore.
  • Within the present invention is the unexpected recognition that a fiber optic tube may be deployed a tubular by pumping the fiber optic tube in a fluid without additional structure or protection. Methods of pumping cables into a tubular are generally considered infeasible owning to the inherent lack of compressional stiffness of cables. Furthermore, the teachings of fiber optic cables suggest that a fiber optic tube needs additional protection or structure for use in a wellbore environment. Thus it is counter-intuitive to consider deploying a fiber optic tube directly in a tubular without encapsulating the tube in additional layers, providing a protective coating, or encompassing it in armor. Similarly it is counter-intuitive to consider deploying a fiber optic tube directly through fluid pumping.
  • An advantage of the optical fiber equipped tubing of the present invention is that the fiber optic tube possesses a certain level of stiffness in compression, leading it to behave more similar mechanically to coiled tubing than does cable or optical fiber alone. As such, use of a fiber optic tube inside coiled tubing avoids many of the slack management challenges presented by other transmission mechanism. Furthermore, the cross-section of a fiber optic tube is relatively small compared to the inner area within coiled tubing, thus limiting the possible physical influence that the fiber optic tube could have on the mechanical behavior of coiled tubing during deployment and retrieval. The small relative diameter of the fiber optic tube combined with its light weight make it more tolerant of pumping action, which is advantageous to avoid the “bird-nesting” or bundling within the coiled tubing that commonly occurs when installing wireline in coiled tubing. Moreover, as slack management problems are avoided in the present invention, optical fiber equipped coiled tubing may be deploying into and retrieved from a wellbore at a quicker rate than coiled tubing with wireline.
  • Referring now to FIG. 1, optical fiber equipped tubing 200 is shown having tubular 105 within which is disposed fiber optic tube 211. In FIG. 1, fiber optic tube 211 is shown comprising duct 203 in which a single optical fiber 201 is disposed. In other embodiments, more than one optical fiber 201 may be provided within fiber optic duct 203. Surface termination 301 or downhole termination 207 may be provided for both physical and optical connections between optical fiber 201 and one or more borehole apparatus or sensor 209. The optical fibers may be multi-mode or single-mode. Types of borehole apparatus or sensor 209 may include, for example, gauges, valves, sampling devices, temperature sensors, pressure sensors, distributed temperature sensors, distributed pressure sensors, flow-control devices, flow rate measurement devices, oil/water/gas ratio measurement devices, scale detectors, actuators, locks, release mechanisms, equipment sensors (e.g., vibration sensors), sand detection sensors, water detection sensors, data recorders, viscosity sensors, density sensors, bubble point sensors, composition sensors, resistivity array devices and sensors, acoustic devices and sensors, other telemetry devices, near infrared sensors, gamma ray detectors, H2S detectors, CO2 detectors, downhole memory units, downhole controllers, perforating devices, shape -charges, firing heads, locators, and other devices.
  • Referring to FIG. 2A, a cross-sectional view of the fiber optic equipped tubing 200 of FIG. 1 is shown. Within tubing 105 is shown a fiber optic tube 211 comprising optical fiber 201 located inside duct 203. Referring to FIG. 2B, another embodiment of the present invention is shown in cross-sectional view in which fiber optic equipped tubing 200 has more than one fiber optic tube 211 is disposed in tubular 105 and in which more than one optical fiber 201 is disposed within duct 203 in at least one of the fiber optic tube 211.
  • In fiber optic tube 211, an inert gas such as nitrogen may be used to fill the space between the optical fiber or fibers 201 and the interior of the duct 203. The fluid may be pressurized in some embodiments to decrease the susceptibility of the fiber optic tube to localized buckling. In a further embodiment, this laser-welding technique is performed in an enclosed environment filled with an inert gas such as nitrogen to avoid exposure to water or hydrogen during manufacturing, thereby minimizing any hydrogen-induced darkening of the optical fibers during oilfield operations. Using nitrogen to fill the space offers advantages of lower cost and greater convenience over other techniques that may require a buffer material, gel, or sealer in the space. In one embodiment, the duct 203 is constructed by bending a metal strip around the optical fiber or fibers 201 and then welding that strip to form an encompassing duct using laser-welding techniques such as described in U.S. Pat. No. 4,852,790. This gives a significant reduction in the cost and weight of the resulting fiber optic tube 211 compared to other optical cables previously known in the art. A small amount of gel containing palladium or tantalum can optionally be inserted into either end of the fiber optic tube to keep hydrogen ions away from the optical fiber or fibers 201 during transportation of the optically enabled tubing 200.
  • Materials suitable for use in duct 203 in fiber optic tube 211 of the present invention provide stiffness to the tube, are resistant to fluids encountered in oilfield applications, and are rated to withstand the high temperature and high pressure conditions found in some wellbore environments. Typically duct 203 in a fiber optic tube 211 is a metallic material, and in some embodiments, duct 203 comprises metal materials such as Inconel™, stainless steel, or Hasetloy™. While fiber optic tubes manufactured by any method may be used in the present invention, laser welded fiber optic tubes are preferred as the heat affected zone generated by laser welding is normally less than that generated by other methods such as TIG, thus reducing the possibility of damage to the optical fiber during welding.
  • While the dimensions of such fiber optic tubes are small (for example the diameter of such products commercially available from K-Tube, Inc of California, U.S.A. range from 0.5 mm to 3.5 mm), they have sufficient inner void space to accommodate multiple optical fibers. The small size of such fiber optic tubes is particularly useful in the present invention as they do not significantly deduct from the capacity of a tubular to accommodate fluids or create obstacles to other devices or equipment to be deployed in or through the tubular.
  • In some embodiments, fiber optic tube 211 comprises a duct 203 with an outer diameter of 0.071 inches to 0.125 inches (3.175 mm) formed around one or more optical fibers 201. In a preferred embodiment, standard optical fibers are used, and duct 203 is no more than 0.020 inches (0.508 mm) thick. While the diameter of the optical fibers, the protective tube, and the thickness of the protective tube given here are exemplary, it is noteworthy that the inner diameter of the protective tube can be larger than needed for a close packing of the optical fibers.
  • In some embodiments of the present invention, fiber optic tube 211 may comprise multiple optical fibers may be disposed in a duct. In some applications, a particular downhole apparatus may have its own designated optical fiber, or each of a group of apparatuses may have their own designated optical fiber within the fiber optic tube. In other applications, a series of apparatus may use a single optical fiber.
  • Referring now to FIG. 3, a typical configuration for wellbore operations is shown in which coiled tubing 15 is suitable for use as tubular 105 in the present invention. Surface handling equipment includes an injector system 20 on supports 29 and coiled tubing reel assembly 10 on reel stand 12, flat, trailer, truck or other such device. The tubing is deployed into or pulled out of the well using an injector head 19. The equipment further includes a levelwind mechanism 13 for guiding coiled tubing 15 on and off the reel 10. The coiled tubing 15 passes over tubing guide arch 18 which provides a bending radius for moving the tubing into a vertical orientation for injection through wellhead devices into the wellbore. The tubing passes from tubing guide arch 18 into the injector head 19 that grippingly engages the tubing and pushes it into the well. A stripper assembly 21 under the injector maintains a dynamic and static seal around the tubing to hold well pressure within the well as the tubing passes into the wellhead devices under well pressure. The coiled tubing then moves through a blowout preventor (BOP) stack 23, a flow tee 25 and wellhead master valve or tree valve 27. When coiled tubing 15 disposed on coiled tubing reel 10 is deployed into or retrieved from a borehole 8, the coiled tubing reel 10 rotates.
  • Fiber optic tube 211 may be inserted into the coiled tubing 15 through any variety of means. One embodiment comprises attaching a hose to the reel 10 to the other end of which hose is attached a Y-joint. In this configuration, fiber optic tube 211 may be introduced into one leg of the Y and fluid pumped into the other leg. The drag force of the fluid on fiber optic tube 211 then propels the tube down the hose and into the reel 10. It has been found, that in preferred embodiments wherein the outer diameter of the tether is less than 0.125 inches (3.175 mm), a pump rate as low as 1-5 barrels per minute (2.65-13.25 liters per second) is sufficient to propel the tether the full length of the coiled tubing even while it is spooled on the reel.
  • In the method and apparatus of the present invention, a fluid, such as gas or water, may be used to propel a fiber optic tube 211 in a tubular 105. Typically, fiber optic tube 211 is disposed in an unrestrained manner in the pumped fluid. As the fluid is pumped into the tubular, the fiber optic tube is permitted to self-locate in the tubular without the use of external apparatus such as pigs for conveyance or placement or restricting anchors. In particular embodiments, the fluid is pumped and the fiber optic tube or tubes are deployed into coiled tubing while it said coiled tubing is configured in a spooled state on a reel. These embodiments provide logistical advantages as the fiber optic tube or tubes can be deployed into the coiled tubing at a manufacturing plant or other location remote from a wellsite. Thus the optical fiber equipped tubing of the present invention may be transported and field-deployed as a single apparatus, thereby reducing costs and simplifying operations.
  • The optical fiber equipped tubing 200 of the present invention may be used in conventional wellbore operations such as providing a stimulation fluid to a subterranean formation through coiled tubing. One advantage of the present invention is that fiber optic tube 211 tolerates exposure to various well treatment fluids that may be pumped into the coiled tubing; in particular, the fiber optic tube or tubes of the present invention can withstand abrasion by proppant or sand and exposure to corrosive fluids such as acids. Preferably the fiber optic tube is configured as a round tube having a smooth outer diameter, this configuration providing less opportunity for degradation and thus a longer useful life for the fiber optic tube.
  • The optical fiber equipped tubing of the present invention is useful to perform a variety of wellbore operation including determining a wellbore property and transmitting information from the wellbore. Determining includes, by way of example and not limitation, sensing using the optical fiber, sensing using a separate sensor, locating by a downhole apparatus, and confirming a configuration by a downhole apparatus. The optical fiber equipped tubing of the present invention may further comprise sensors such as fiber optic temperature and pressure sensors or electrical sensors coupled with electro-optical converters, disposed in a wellbore and linked to the surface via a fiber optic tube 211. Wellbore conditions that are sensed may be transmitted via fiber optic tube 211. Data sensed by electrical sensors may be converted to analog or digital optical signals using pure digital or wavelength, intensity or polarization modulation and then provided to the optical fiber or fibers in fiber optic tube 211. Alternatively, optical fiber 201 may sense some properties directly, for example when optical fiber 201 serves as a distributed temperature sensor or when optical fiber 201 comprises Fiber-Bragg grating and directly senses strain, stress, stretch, or pressure.
  • The information from the sensors or the property information sensed by optical fiber 201 may be communicated to the surface via fiber optic tube 211. Similarly, signals or commands may be transmitted from the surface to a downhole sensor or apparatus via fiber optic tube 201. In one embodiment of this invention, the surface communication includes a wireless telemetry link such as described in U.S. patent application Ser. No. 10/926,522, which is incorporated herein in its entirety by reference. In a further embodiment, the wireless telemetry apparatus may be mounted to the reel so that the optical signals can be transmitted while the reel is rotating without the need of a complicated optical collector apparatus. In yet a further embodiment, the wireless apparatus mounted to the reel may include additional optical connectors so that surface optical cables can be attached when the reel is not rotating.
  • It is to be appreciated that the embodiments of the invention described herein are given by way of example only, and that modifications and additional components can be provided to enhance the performance of the apparatus without deviating from the overall nature of the invention disclosed herein.

Claims (26)

1. An optical fiber equipped tubing comprising a fiber optic tube disposed within a tubular.
2. The tubing of claim 1 wherein the fiber optic tube comprises more than one optical fiber.
3. The tubing of claim 1 wherein the fiber optic tube comprises a duct comprising a metallic material.
4. The tubing of claim 1 wherein the tubular is coiled tubing.
5. The tubing of claim 4 wherein the coiled tubing is spooled on a reel.
6. The tubing of claim 4 wherein the coiled tubing is deployed in a wellbore.
7. The tubing of claim 1 wherein the fiber optic tube is internally pressurized.
8. The tubing of claim 1 wherein the fiber optic tube further contains an inert gas.
9. The tubing of claim 1 wherein the fiber optic tube further contains a gel.
10. A method of making an optical fiber equipped tubing comprising
pumping a fluid into a tubular; and
deploying a fiber optic tube into the fluid as pumped in the tubular, the tube having at least one optical fiber disposed therein,
wherein the flow of the pumped fluid propels the tube along the tubular.
11. The method of claim 10, wherein the tubular is coiled tubing.
12. The method of claim 11 wherein the fluid is pumped into the coiled tubing whilst the tubing is at least partially spooled on a reel.
13. The method of claim 11 wherein the fluid is pumped into the coiled tubing whilst the tubing is deployed in a wellbore.
14. The method of claim 10, wherein the at least one optical fiber is disposed in the fiber optic tube in an inert environment.
15. A method of communicating in a wellbore comprising
deploying an optical fiber equipped tubing into a wellbore, said tubing comprising a fiber optic tube having at least one optical fiber disposed therein, the fiber optic tubing being disposed in the tubing by fluid flow;
determining a property in the wellbore; and
transmitting the determined property via at least one of the optical fibers disposed in the fiber optic tubing.
16. The method of claim 15 wherein the property is determined by the least one optical fiber.
17. The method of claim 15 further comprising disposing at least one sensor in the wellbore, wherein at least one sensor determines the property.
18. The method of claim 15 wherein the determined property is transmitted from the wellbore to the surface.
19. The method of claim 15 further comprising deploying an apparatus into the wellbore and transmitting a signal to the apparatus via at least one of the optical fibers disposed in the fiber optic tubing.
20. The method of claim 15 wherein the tubing is coiled tubing and the step of deploying the tubing comprises unspooling the coiled tubing from a reel into the wellbore.
21. The method of claim 20 further comprising the step of retrieving the coiled tubing from the wellbore by spooling the coiled tubing onto the reel.
22. The method of claim 21 wherein the apparatus is conveyed on the tubing into the wellbore.
23. The method of claim 15, further comprising transmitting a signal from the surface via at least one of the optical fibers.
24. The method of claim 15 wherein the transmission includes wireless communication.
25. The method of claim 24 wherein said fiber optic tubing is disposed on a reel and a wireless apparatus is mounted on the reel.
26. The method of claim 15 wherein more than one optical fiber is disposed within the fiber optic tubing; and further comprising disposing more than one sensor in the wellbore, wherein at least two of the sensors determines a property, each determined property being transmitted on different ones of the optical fibers within the fiber optic tubing.
US11/111,230 2004-04-23 2005-04-21 Optical fiber equipped tubing and methods of making and using Abandoned US20050236161A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US11/111,230 US20050236161A1 (en) 2004-04-23 2005-04-21 Optical fiber equipped tubing and methods of making and using
PCT/IB2005/051329 WO2005103437A1 (en) 2004-04-23 2005-04-22 Optical fiber equipped tubing and methods of making and using
EA200601962A EA010141B1 (en) 2004-04-23 2005-04-22 A tubing equipped with an optical fiber and methods of its making and using
BRPI0509995A BRPI0509995B1 (en) 2004-04-23 2005-04-22 method of producing a fiber-optic coil-shaped coiled pipe, method of taking measurements in a borehole, and method of communicating in a borehole
JP2007509053A JP4712797B2 (en) 2004-04-23 2005-04-22 Optical fiber mounting tube, its manufacturing method and its use
AT05732292T ATE471434T1 (en) 2004-04-23 2005-04-22 PIPE EQUIPPED WITH OPTICAL FIBER AND METHOD OF PRODUCTION AND USE THEREOF
EP05732292A EP1743081B1 (en) 2004-04-23 2005-04-22 Optical fiber equipped tubing and methods of making and using
CA2562019A CA2562019C (en) 2004-04-23 2005-04-22 Optical fiber equipped tubing and methods of making and using
DE602005021874T DE602005021874D1 (en) 2004-04-23 2005-04-22 PIPELINE EQUIPPED WITH LIGHT WAVEGUIDE AND METHOD AND METHOD OF MANUFACTURING THEREOF
DK05732292.7T DK1743081T3 (en) 2004-04-23 2005-04-22 An optical fiber tubing and methods of making and using it
MXPA06011981A MXPA06011981A (en) 2004-04-23 2005-04-22 Optical fiber equipped tubing and methods of making and using.
NO20065263A NO335257B1 (en) 2004-04-23 2006-11-15 Method of producing a coiled tubing equipped with optical fiber, method of performing measurements in a wellbore, and method of communication in a wellbore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56493404P 2004-04-23 2004-04-23
US11/111,230 US20050236161A1 (en) 2004-04-23 2005-04-21 Optical fiber equipped tubing and methods of making and using

Publications (1)

Publication Number Publication Date
US20050236161A1 true US20050236161A1 (en) 2005-10-27

Family

ID=34965977

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/111,230 Abandoned US20050236161A1 (en) 2004-04-23 2005-04-21 Optical fiber equipped tubing and methods of making and using

Country Status (12)

Country Link
US (1) US20050236161A1 (en)
EP (1) EP1743081B1 (en)
JP (1) JP4712797B2 (en)
AT (1) ATE471434T1 (en)
BR (1) BRPI0509995B1 (en)
CA (1) CA2562019C (en)
DE (1) DE602005021874D1 (en)
DK (1) DK1743081T3 (en)
EA (1) EA010141B1 (en)
MX (1) MXPA06011981A (en)
NO (1) NO335257B1 (en)
WO (1) WO2005103437A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060044156A1 (en) * 2004-08-26 2006-03-02 Sarmad Adnan Well site communication system
US20060049155A1 (en) * 2004-09-02 2006-03-09 Samsung Electro-Mechanics Co., Ltd. Wafer level package fabrication method using laser illumination
US20070122104A1 (en) * 2005-11-29 2007-05-31 Petrospec Engineering Ltd. Method of preventing hydrogen darkening of optic fibre
US20070227741A1 (en) * 2006-04-03 2007-10-04 Lovell John R Well servicing methods and systems
WO2008001310A1 (en) 2006-06-28 2008-01-03 Schlumberger Canada Limited Method and system for treating a subterraean formation using diversion
US20080118209A1 (en) * 2006-11-20 2008-05-22 Joseph Varkey High strength-to-weight-ratio slickline and multiline cables
US20080185144A1 (en) * 2006-03-30 2008-08-07 Schlumberger Technology Corporation Providing an expandable sealing element having a slot to receive a sensor array
US20090166042A1 (en) * 2007-12-28 2009-07-02 Welldynamics, Inc. Purging of fiber optic conduits in subterranean wells
US20090266562A1 (en) * 2008-04-23 2009-10-29 Schlumberger Technology Corporation System and method for deploying optical fiber
US20090266537A1 (en) * 2008-04-25 2009-10-29 Henning Hansen Combination injection string and distributed sensing string for well evaluation and treatment control
US7646953B2 (en) 2003-04-24 2010-01-12 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
US20100014818A1 (en) * 2005-03-29 2010-01-21 Luis Sales Casals Method and apparatus for manufacturing an optical cable and cable so manufactured
US20100013663A1 (en) * 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US20100089571A1 (en) * 2004-05-28 2010-04-15 Guillaume Revellat Coiled Tubing Gamma Ray Detector
US20100155059A1 (en) * 2008-12-22 2010-06-24 Kalim Ullah Fiber Optic Slickline and Tools
US20100178020A1 (en) * 2008-12-23 2010-07-15 Draka Comteq B.V. Optical Waveguide Assembly, Storage Device, And Method For Installing An Optical Waveguide
WO2011043768A1 (en) * 2009-10-07 2011-04-14 Ziebel, As Combination injection string and distributed sensing string
US20110140907A1 (en) * 2008-08-01 2011-06-16 Saber Limited Downhole communication
US8113284B2 (en) 2002-08-15 2012-02-14 Schlumberger Technology Corporation Use of distributed temperature sensors during wellbore treatments
US8235127B2 (en) 2006-03-30 2012-08-07 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
WO2012112799A2 (en) * 2011-02-16 2012-08-23 David Randolph Smith Conduit assembly and method of making and using same
WO2012128900A3 (en) * 2011-03-22 2012-11-15 Baker Hughes Incorporated Extended temperature fiber optic cable design
US8312923B2 (en) 2006-03-30 2012-11-20 Schlumberger Technology Corporation Measuring a characteristic of a well proximate a region to be gravel packed
US8406590B2 (en) 2009-10-06 2013-03-26 Prysmian Cavi E Sistemi Energia S.R.L. Apparatus for manufacturing an optical cable and cable so manufactured
WO2013134201A1 (en) * 2012-03-08 2013-09-12 Shell Oil Company Low profile magnetic orienting protectors
US20140219056A1 (en) * 2013-02-04 2014-08-07 Halliburton Energy Services, Inc. ("HESI") Fiberoptic systems and methods for acoustic telemetry
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US8903243B2 (en) 2009-09-17 2014-12-02 Schlumberger Technology Corporation Oilfield optical data transmission assembly joint
US20140376332A1 (en) * 2012-01-06 2014-12-25 Schlumberger Technology Corporation Optical Fiber Well Deployment for Seismic Surveying
US8991492B2 (en) 2005-09-01 2015-03-31 Schlumberger Technology Corporation Methods, systems and apparatus for coiled tubing testing
US9175523B2 (en) 2006-03-30 2015-11-03 Schlumberger Technology Corporation Aligning inductive couplers in a well
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9377598B2 (en) 2003-04-24 2016-06-28 Weatherford Technology Holdings, Llc Fiber optic cable systems and methods to prevent hydrogen ingress
WO2016122906A1 (en) * 2015-01-27 2016-08-04 Schlumberger Canada Limited Subsurface deployment for monitoring along a borehole
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9708867B2 (en) 2004-05-28 2017-07-18 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US20180073310A1 (en) * 2015-01-26 2018-03-15 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US9988893B2 (en) 2015-03-05 2018-06-05 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
US10023789B2 (en) * 2014-09-02 2018-07-17 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
US20190226882A1 (en) * 2018-01-24 2019-07-25 Saudi Arabian Oil Company Fiber optic line for monitoring of well operations
US20190250357A1 (en) * 2017-07-12 2019-08-15 Zhongtian Power Optical Cable Co., Ltd. Hybrid cable and manufacturing method
US10522271B2 (en) 2016-06-09 2019-12-31 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US10550684B2 (en) 2013-10-21 2020-02-04 Schlumberger Technology Corporation Observation of vibration of rotary apparatus
US10718202B2 (en) 2015-03-05 2020-07-21 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
US10883810B2 (en) 2019-04-24 2021-01-05 Saudi Arabian Oil Company Subterranean well torpedo system
US10995574B2 (en) 2019-04-24 2021-05-04 Saudi Arabian Oil Company Subterranean well thrust-propelled torpedo deployment system and method
US11268329B2 (en) 2013-09-13 2022-03-08 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
US11365958B2 (en) 2019-04-24 2022-06-21 Saudi Arabian Oil Company Subterranean well torpedo distributed acoustic sensing system and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628214B2 (en) * 2006-02-06 2009-12-08 Baker Hughes Incorporated Automatic control line insertion tools and system
US7548681B2 (en) 2006-11-30 2009-06-16 Schlumberger Technology Corporation Prevention of optical fiber darkening
US7708078B2 (en) 2007-04-05 2010-05-04 Baker Hughes Incorporated Apparatus and method for delivering a conductor downhole
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
WO2013188903A1 (en) * 2012-06-22 2013-12-27 Nautilus Minerals Pacific Pty Ltd An apparatus, system and method for actuating downhole tools in subsea drilling operations
US10656342B2 (en) 2016-09-30 2020-05-19 Halliburton Energy Services, Inc. Optical wireless rotary joint
RU2661674C1 (en) * 2017-04-27 2018-07-18 Валерий Николаевич Земеров Method of state control of a long object and device for its implementation
ES2826623A1 (en) * 2019-11-18 2021-05-18 Equipos Nucleares Sa Distributed and/or quasi-distributed fiber optic transducer for high temperatures (Machine-translation by Google Translate, not legally binding)

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366362A (en) * 1980-03-18 1982-12-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha All position TIG welding process
US4852790A (en) * 1987-07-16 1989-08-01 K-Tube Corporation Apparatus and method for continuous manufacture of armored optical fiber cable
US5121872A (en) * 1991-08-30 1992-06-16 Hydrolex, Inc. Method and apparatus for installing electrical logging cable inside coiled tubing
US5435351A (en) * 1992-03-31 1995-07-25 Head; Philip F. Anchored wavey conduit in coiled tubing
US5503370A (en) * 1994-07-08 1996-04-02 Ctes, Inc. Method and apparatus for the injection of cable into coiled tubing
US5566706A (en) * 1995-10-20 1996-10-22 Harpenau; Richard J. Siphoning device to attain desired water level in pools and the like
US5573225A (en) * 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US5599004A (en) * 1994-07-08 1997-02-04 Coiled Tubing Engineering Services, Inc. Apparatus for the injection of cable into coiled tubing
US5667706A (en) * 1996-05-03 1997-09-16 Westinghouse Electric Corporation Apparatus and method for laser welding the inner surface of a tube
US5804713A (en) * 1994-09-21 1998-09-08 Sensor Dynamics Ltd. Apparatus for sensor installations in wells
US5892176A (en) * 1996-11-05 1999-04-06 Phillip E. Pruett Smooth surfaced fiber optic logging cable for well bores
US5950298A (en) * 1996-12-11 1999-09-14 Koninklijke Kpn N.V. Method for inserting a cable-like element into a tube coiled in or on a holder
US5992250A (en) * 1996-03-29 1999-11-30 Geosensor Corp. Apparatus for the remote measurement of physical parameters
US6009216A (en) * 1997-11-05 1999-12-28 Cidra Corporation Coiled tubing sensor system for delivery of distributed multiplexed sensors
US6268911B1 (en) * 1997-05-02 2001-07-31 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US20020007945A1 (en) * 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
US6404961B1 (en) * 1998-07-23 2002-06-11 Weatherford/Lamb, Inc. Optical fiber cable having fiber in metal tube core with outer protective layer
US20020125009A1 (en) * 2000-08-03 2002-09-12 Wetzel Rodney J. Intelligent well system and method
US6496625B1 (en) * 1998-08-26 2002-12-17 Weatherford/Lamb, Inc. Transmission cable optical fiber protector and method
US6496624B1 (en) * 1998-04-14 2002-12-17 Nippon Telegraph And Telephone Corporation Optical waveguide device for optical wiring and manufacturing method therefor
US6497290B1 (en) * 1995-07-25 2002-12-24 John G. Misselbrook Method and apparatus using coiled-in-coiled tubing
US6557630B2 (en) * 2001-08-29 2003-05-06 Sensor Highway Limited Method and apparatus for determining the temperature of subterranean wells using fiber optic cable
US20030172752A1 (en) * 1996-03-29 2003-09-18 Kluth Erhard Luther Edgar Apparatus for the remote measurement of physical parameters
US6644402B1 (en) * 1999-02-16 2003-11-11 Schlumberger Technology Corporation Method of installing a sensor in a well
US20040045705A1 (en) * 2002-09-09 2004-03-11 Gardner Wallace R. Downhole sensing with fiber in the formation
US20040112596A1 (en) * 2002-12-17 2004-06-17 Williams Glynn R. Use of fiber optics in deviated flows
US6828547B2 (en) * 1997-05-02 2004-12-07 Sensor Highway Limited Wellbores utilizing fiber optic-based sensors and operating devices
US6847034B2 (en) * 2002-09-09 2005-01-25 Halliburton Energy Services, Inc. Downhole sensing with fiber in exterior annulus
US7420475B2 (en) * 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE134046T1 (en) * 1982-11-08 1996-02-15 British Telecomm OPTICAL CABLE
GB8321229D0 (en) * 1983-08-05 1983-09-07 Bicc Plc Optical cables
JPH0247611A (en) * 1988-08-09 1990-02-16 Yoichi Yabuki Device for inserting optical fiber into pipe
JPH0774849B2 (en) * 1989-08-07 1995-08-09 住友電気工業株式会社 Wire laying / collecting device and laying / collecting method
JPH04295810A (en) * 1991-03-25 1992-10-20 Hitachi Cable Ltd Coated optical fiber for high temperature
JP3174594B2 (en) * 1991-05-29 2001-06-11 株式会社オーシーシー Method and apparatus for manufacturing optical fiber coated with metal tube
JPH05142455A (en) * 1991-07-26 1993-06-11 Fuji Xerox Co Ltd Heat resistant communication cable
JPH06309943A (en) * 1993-04-22 1994-11-04 Furukawa Electric Co Ltd:The Cable accommodating optical fiber
ATE326689T1 (en) * 1998-12-17 2006-06-15 Chevron Usa Inc DEVICE AND METHOD FOR PROTECTING OPTICAL DEVICES UNDER HARSH OPERATING CONDITIONS

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366362A (en) * 1980-03-18 1982-12-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha All position TIG welding process
US4852790A (en) * 1987-07-16 1989-08-01 K-Tube Corporation Apparatus and method for continuous manufacture of armored optical fiber cable
US5121872A (en) * 1991-08-30 1992-06-16 Hydrolex, Inc. Method and apparatus for installing electrical logging cable inside coiled tubing
US5435351A (en) * 1992-03-31 1995-07-25 Head; Philip F. Anchored wavey conduit in coiled tubing
US5573225A (en) * 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US5699996A (en) * 1994-05-06 1997-12-23 Schlumberger Technology Corporation Method for placing cable within coiled tubing
US5503370A (en) * 1994-07-08 1996-04-02 Ctes, Inc. Method and apparatus for the injection of cable into coiled tubing
US5599004A (en) * 1994-07-08 1997-02-04 Coiled Tubing Engineering Services, Inc. Apparatus for the injection of cable into coiled tubing
US5804713A (en) * 1994-09-21 1998-09-08 Sensor Dynamics Ltd. Apparatus for sensor installations in wells
US6497290B1 (en) * 1995-07-25 2002-12-24 John G. Misselbrook Method and apparatus using coiled-in-coiled tubing
US5566706A (en) * 1995-10-20 1996-10-22 Harpenau; Richard J. Siphoning device to attain desired water level in pools and the like
US20030172752A1 (en) * 1996-03-29 2003-09-18 Kluth Erhard Luther Edgar Apparatus for the remote measurement of physical parameters
US5992250A (en) * 1996-03-29 1999-11-30 Geosensor Corp. Apparatus for the remote measurement of physical parameters
US5667706A (en) * 1996-05-03 1997-09-16 Westinghouse Electric Corporation Apparatus and method for laser welding the inner surface of a tube
US5892176A (en) * 1996-11-05 1999-04-06 Phillip E. Pruett Smooth surfaced fiber optic logging cable for well bores
US5950298A (en) * 1996-12-11 1999-09-14 Koninklijke Kpn N.V. Method for inserting a cable-like element into a tube coiled in or on a holder
US6268911B1 (en) * 1997-05-02 2001-07-31 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US6828547B2 (en) * 1997-05-02 2004-12-07 Sensor Highway Limited Wellbores utilizing fiber optic-based sensors and operating devices
US6009216A (en) * 1997-11-05 1999-12-28 Cidra Corporation Coiled tubing sensor system for delivery of distributed multiplexed sensors
US6496624B1 (en) * 1998-04-14 2002-12-17 Nippon Telegraph And Telephone Corporation Optical waveguide device for optical wiring and manufacturing method therefor
US6404961B1 (en) * 1998-07-23 2002-06-11 Weatherford/Lamb, Inc. Optical fiber cable having fiber in metal tube core with outer protective layer
US6690866B2 (en) * 1998-07-23 2004-02-10 Weatherford/Lamb, Inc. Optical fiber cable for use in harsh environments
US6496625B1 (en) * 1998-08-26 2002-12-17 Weatherford/Lamb, Inc. Transmission cable optical fiber protector and method
US6644402B1 (en) * 1999-02-16 2003-11-11 Schlumberger Technology Corporation Method of installing a sensor in a well
US20020007945A1 (en) * 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
US20020125009A1 (en) * 2000-08-03 2002-09-12 Wetzel Rodney J. Intelligent well system and method
US6557630B2 (en) * 2001-08-29 2003-05-06 Sensor Highway Limited Method and apparatus for determining the temperature of subterranean wells using fiber optic cable
GB2386625A (en) * 2002-03-04 2003-09-24 Schlumberger Holdings A method for monitoring an operation in a well
US20040045705A1 (en) * 2002-09-09 2004-03-11 Gardner Wallace R. Downhole sensing with fiber in the formation
US6847034B2 (en) * 2002-09-09 2005-01-25 Halliburton Energy Services, Inc. Downhole sensing with fiber in exterior annulus
US20040112596A1 (en) * 2002-12-17 2004-06-17 Williams Glynn R. Use of fiber optics in deviated flows
US7420475B2 (en) * 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113284B2 (en) 2002-08-15 2012-02-14 Schlumberger Technology Corporation Use of distributed temperature sensors during wellbore treatments
US7646953B2 (en) 2003-04-24 2010-01-12 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
US9377598B2 (en) 2003-04-24 2016-06-28 Weatherford Technology Holdings, Llc Fiber optic cable systems and methods to prevent hydrogen ingress
US10077618B2 (en) 2004-05-28 2018-09-18 Schlumberger Technology Corporation Surface controlled reversible coiled tubing valve assembly
US10697252B2 (en) 2004-05-28 2020-06-30 Schlumberger Technology Corporation Surface controlled reversible coiled tubing valve assembly
US10815739B2 (en) 2004-05-28 2020-10-27 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US9540889B2 (en) 2004-05-28 2017-01-10 Schlumberger Technology Corporation Coiled tubing gamma ray detector
US20100089571A1 (en) * 2004-05-28 2010-04-15 Guillaume Revellat Coiled Tubing Gamma Ray Detector
US9708867B2 (en) 2004-05-28 2017-07-18 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US7420475B2 (en) * 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system
US20060044156A1 (en) * 2004-08-26 2006-03-02 Sarmad Adnan Well site communication system
US20060049155A1 (en) * 2004-09-02 2006-03-09 Samsung Electro-Mechanics Co., Ltd. Wafer level package fabrication method using laser illumination
US7241966B2 (en) * 2004-09-02 2007-07-10 Samsung Electro-Mechanics Co., Ltd. Wafer level package fabrication method using laser illumination
US20100014818A1 (en) * 2005-03-29 2010-01-21 Luis Sales Casals Method and apparatus for manufacturing an optical cable and cable so manufactured
US8150226B2 (en) * 2005-03-29 2012-04-03 Prysmian Cavi E Sistemi Energia S.R.L. Method and apparatus for manufacturing an optical cable and cable so manufactured
US8991492B2 (en) 2005-09-01 2015-03-31 Schlumberger Technology Corporation Methods, systems and apparatus for coiled tubing testing
US7561776B2 (en) * 2005-11-29 2009-07-14 Petrospec Engineering Ltd. Method of preventing hydrogen darkening of optic fibre
US20070122104A1 (en) * 2005-11-29 2007-05-31 Petrospec Engineering Ltd. Method of preventing hydrogen darkening of optic fibre
US9175523B2 (en) 2006-03-30 2015-11-03 Schlumberger Technology Corporation Aligning inductive couplers in a well
US8235127B2 (en) 2006-03-30 2012-08-07 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US7896070B2 (en) * 2006-03-30 2011-03-01 Schlumberger Technology Corporation Providing an expandable sealing element having a slot to receive a sensor array
US8312923B2 (en) 2006-03-30 2012-11-20 Schlumberger Technology Corporation Measuring a characteristic of a well proximate a region to be gravel packed
US20080185144A1 (en) * 2006-03-30 2008-08-07 Schlumberger Technology Corporation Providing an expandable sealing element having a slot to receive a sensor array
US20070227741A1 (en) * 2006-04-03 2007-10-04 Lovell John R Well servicing methods and systems
US8573313B2 (en) * 2006-04-03 2013-11-05 Schlumberger Technology Corporation Well servicing methods and systems
US8646529B2 (en) 2006-06-28 2014-02-11 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
WO2008001310A1 (en) 2006-06-28 2008-01-03 Schlumberger Canada Limited Method and system for treating a subterraean formation using diversion
US20080118209A1 (en) * 2006-11-20 2008-05-22 Joseph Varkey High strength-to-weight-ratio slickline and multiline cables
US7603011B2 (en) 2006-11-20 2009-10-13 Schlumberger Technology Corporation High strength-to-weight-ratio slickline and multiline cables
US20090166042A1 (en) * 2007-12-28 2009-07-02 Welldynamics, Inc. Purging of fiber optic conduits in subterranean wells
US8090227B2 (en) 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US10221677B2 (en) 2007-12-28 2019-03-05 Halliburton Energy Services, Inc. Purging of Fiber Optic Conduits in Subterranean Wells
US7946350B2 (en) * 2008-04-23 2011-05-24 Schlumberger Technology Corporation System and method for deploying optical fiber
US20090266562A1 (en) * 2008-04-23 2009-10-29 Schlumberger Technology Corporation System and method for deploying optical fiber
US20090266537A1 (en) * 2008-04-25 2009-10-29 Henning Hansen Combination injection string and distributed sensing string for well evaluation and treatment control
US9151866B2 (en) 2008-07-16 2015-10-06 Halliburton Energy Services, Inc. Downhole telemetry system using an optically transmissive fluid media and method for use of same
US20100013663A1 (en) * 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US20110140907A1 (en) * 2008-08-01 2011-06-16 Saber Limited Downhole communication
US9593573B2 (en) * 2008-12-22 2017-03-14 Schlumberger Technology Corporation Fiber optic slickline and tools
US20100155059A1 (en) * 2008-12-22 2010-06-24 Kalim Ullah Fiber Optic Slickline and Tools
US8374475B2 (en) * 2008-12-23 2013-02-12 Draka Comteq B.V. Optical waveguide assembly, storage device, and method for installing an optical waveguide
US20100178020A1 (en) * 2008-12-23 2010-07-15 Draka Comteq B.V. Optical Waveguide Assembly, Storage Device, And Method For Installing An Optical Waveguide
US8903243B2 (en) 2009-09-17 2014-12-02 Schlumberger Technology Corporation Oilfield optical data transmission assembly joint
US9285547B2 (en) 2009-09-17 2016-03-15 Schlumberger Technology Corporation Oilfield optical data transmission assembly joint
US8406590B2 (en) 2009-10-06 2013-03-26 Prysmian Cavi E Sistemi Energia S.R.L. Apparatus for manufacturing an optical cable and cable so manufactured
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
WO2011043768A1 (en) * 2009-10-07 2011-04-14 Ziebel, As Combination injection string and distributed sensing string
US20120211235A1 (en) * 2011-02-16 2012-08-23 Smith David R Conduit assembly and method of making and using same
WO2012112799A3 (en) * 2011-02-16 2014-04-24 David Randolph Smith Conduit assembly and method of making and using same
WO2012112799A2 (en) * 2011-02-16 2012-08-23 David Randolph Smith Conduit assembly and method of making and using same
WO2012128900A3 (en) * 2011-03-22 2012-11-15 Baker Hughes Incorporated Extended temperature fiber optic cable design
US8942527B2 (en) 2011-03-22 2015-01-27 Baker Hughes Incorporated Extended temperature fiber optic cable design
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US20140376332A1 (en) * 2012-01-06 2014-12-25 Schlumberger Technology Corporation Optical Fiber Well Deployment for Seismic Surveying
US9798023B2 (en) * 2012-01-06 2017-10-24 Schlumberger Technology Corporation Optical fiber well deployment for seismic surveying
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
GB2517089A (en) * 2012-03-08 2015-02-11 Shell Int Research Low profile magnetic orienting protectors
WO2013134201A1 (en) * 2012-03-08 2013-09-12 Shell Oil Company Low profile magnetic orienting protectors
GB2517089B (en) * 2012-03-08 2016-01-20 Shell Int Research Low profile magnetic orienting protectors
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
US20140219056A1 (en) * 2013-02-04 2014-08-07 Halliburton Energy Services, Inc. ("HESI") Fiberoptic systems and methods for acoustic telemetry
US11268329B2 (en) 2013-09-13 2022-03-08 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
US10550684B2 (en) 2013-10-21 2020-02-04 Schlumberger Technology Corporation Observation of vibration of rotary apparatus
US10023789B2 (en) * 2014-09-02 2018-07-17 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
US20180073310A1 (en) * 2015-01-26 2018-03-15 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
US11725468B2 (en) * 2015-01-26 2023-08-15 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
WO2016122906A1 (en) * 2015-01-27 2016-08-04 Schlumberger Canada Limited Subsurface deployment for monitoring along a borehole
US9988893B2 (en) 2015-03-05 2018-06-05 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
US10718202B2 (en) 2015-03-05 2020-07-21 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
US11776712B2 (en) 2016-06-09 2023-10-03 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US10522271B2 (en) 2016-06-09 2019-12-31 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US11335478B2 (en) 2016-06-09 2022-05-17 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US10712520B2 (en) * 2017-07-12 2020-07-14 Zhongtian Power Optical Cable Co., Ltd. Photoelectric composite cable
US20190250357A1 (en) * 2017-07-12 2019-08-15 Zhongtian Power Optical Cable Co., Ltd. Hybrid cable and manufacturing method
US10955264B2 (en) * 2018-01-24 2021-03-23 Saudi Arabian Oil Company Fiber optic line for monitoring of well operations
US20190226882A1 (en) * 2018-01-24 2019-07-25 Saudi Arabian Oil Company Fiber optic line for monitoring of well operations
US10995574B2 (en) 2019-04-24 2021-05-04 Saudi Arabian Oil Company Subterranean well thrust-propelled torpedo deployment system and method
US10883810B2 (en) 2019-04-24 2021-01-05 Saudi Arabian Oil Company Subterranean well torpedo system
US11365958B2 (en) 2019-04-24 2022-06-21 Saudi Arabian Oil Company Subterranean well torpedo distributed acoustic sensing system and method

Also Published As

Publication number Publication date
DK1743081T3 (en) 2010-10-18
CA2562019A1 (en) 2005-11-03
NO20065263L (en) 2006-11-15
BRPI0509995A (en) 2007-10-16
EP1743081B1 (en) 2010-06-16
NO335257B1 (en) 2014-10-27
EA010141B1 (en) 2008-06-30
EP1743081A1 (en) 2007-01-17
CA2562019C (en) 2016-02-16
WO2005103437A1 (en) 2005-11-03
DE602005021874D1 (en) 2010-07-29
JP4712797B2 (en) 2011-06-29
BRPI0509995B1 (en) 2017-01-31
ATE471434T1 (en) 2010-07-15
JP2007534862A (en) 2007-11-29
EA200601962A1 (en) 2007-02-27
MXPA06011981A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
EP1743081B1 (en) Optical fiber equipped tubing and methods of making and using
US6817257B2 (en) Apparatus for the remote measurement of physical parameters
US8573313B2 (en) Well servicing methods and systems
EP1766180B1 (en) Intervention rod
US7152685B2 (en) Method and apparatus for deploying a line in coiled tubing
CA2201384C (en) Apparatus for the remote measurement of physical parameters
US7000696B2 (en) Method and apparatus for determining the temperature of subterranean wells using fiber optic cable
US20080041596A1 (en) Coiled tubing well tool and method of assembly
US20060153508A1 (en) System and method for deploying an optical fiber in a well
US11828121B2 (en) Downhole fiber installation equipment and method
GB2421748A (en) A method and apparatus for conveying and operating tools into a wellbore.
US7424176B2 (en) Optical fiber termination apparatus and methods of use, and optical fiber termination process
US10711591B2 (en) Sensing umbilical
GB2347448A (en) Apparatus for the remote measurement of physical parameters
CA2471867A1 (en) Apparatus for the remote measurement of physical parameters

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAY, MICHAEL G.;ADNAN, SARMAD;LOVELL, JOHN R.;REEL/FRAME:016221/0953;SIGNING DATES FROM 20050421 TO 20050506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION