US20050236124A1 - Method of preparing decorative laminate - Google Patents

Method of preparing decorative laminate Download PDF

Info

Publication number
US20050236124A1
US20050236124A1 US11/110,181 US11018105A US2005236124A1 US 20050236124 A1 US20050236124 A1 US 20050236124A1 US 11018105 A US11018105 A US 11018105A US 2005236124 A1 US2005236124 A1 US 2005236124A1
Authority
US
United States
Prior art keywords
weight
stage polymer
polymer
paper
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/110,181
Inventor
James Brown
John Haigh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20050236124A1 publication Critical patent/US20050236124A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/22Structures being applied on the surface by special manufacturing processes, e.g. in presses
    • D21H27/26Structures being applied on the surface by special manufacturing processes, e.g. in presses characterised by the overlay sheet or the top layers of the structures
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • D21H21/54Additives of definite length or shape being spherical, e.g. microcapsules, beads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31993Of paper

Definitions

  • the present invention relates to a method of preparing a decorative laminate, using a hollow sphere polymer.
  • the present invention relates to a method of preparing a decorative laminate, using a hollow sphere polymer whose void has been created by swelling the polymer with a fixed or permanent base; and further relates to a decorative laminate prepared by the method.
  • Voided, or hollow emulsion polymers are generally prepared by swelling a multi-stage polymer, having a core and a shell, in such a way that one or more voids form in the interior of the emulsion polymer particle.
  • Hollow emulsion polymers are often used in paints, coatings, inks, sunscreens, paper manufacture, and several other industrial arenas. In the paper industry, hollow emulsion polymers are used to make the surface of the paper, among other things, smoother, brighter, and more opaque. Additional benefits of hollow sphere polymers is that, when used alone, or in combination with costly opacifying pigments, such as titanium dioxide, a more cost effective system is obtainable.
  • the paper typically utilized during the manufacture of decorative laminates has a high pigment content.
  • the pigment typically utilized is titanium dioxide, which, as mentioned above, is extremely costly.
  • hollow emulsion polymers are not currently utilized to replace or complement such costly pigments during processing of the decorative laminate paper. This is due, in part, to the belief that the subjection of the opaque emulsion polymer to the conditions of processing of both the paper, and the decorative laminate, would eliminate the advantages normally associated with the use of opaque emulsion polymers.
  • U.S. Pat. No. 4,594,363 discloses a process for making core/sheath polymer particles containing voids, including the step of swelling, at elevated temperature, the resultant core/sheath polymer particles with fixed or permanent base so as to produce a dispersion of particles which, when dried, contain a microvoid.
  • the patent does not disclose a method of using the core/sheath polymer particles to make a decorative laminate.
  • U.S. Pat. No. 6,139,961 discloses a method for improving the strength and opacity of paper or paperboard by applying to the paper, during wet-end processing of the paper, a hollow sphere organic polymer having a core, a hard polymer shell surrounding the core, and a soft polymer shell surrounding the first shell, wherein (1) the second shell polymer is at least 15% by weight of the total weight of the first shell polymer and the second shell polymer, (2) the second shell polymer has a glass transition temperature of less than 15° C., and (3) the polymer has been swollen by a volatile, or fixed or permanent base.
  • the patent does not disclose use of a hollow sphere polymer to make a decorative laminate.
  • hollow sphere polymers that have been swollen by a fixed or permanent base are useful for preparing decorative laminates, despite the subjection of the hollow sphere polymer to the harsh conditions, such as high temperatures and/or pressures, typically present during processing of a decorative laminate.
  • a first aspect of the present invention is a method of preparing a decorative laminate, comprising the steps of: (I) preparing a paper by (a) providing a hollow sphere polymer made by: (i) forming a core stage polymer by polymerizing at least one monoethylenically unsaturated monomer containing acid functionality, (ii) encapsulating said core stage polymer with at least one shell stage polymer, by emulsion polymerizing at least one shell stage monomer system in the presence of said core stage polymer, wherein said shell stage polymer permits penetration of a fixed or permanent base; (iii) contacting the resulting multi-stage polymer particles with fixed or permanent base, wherein either (I) said shell stage polymer comprises at least 1% acid functional monomer, or (2) said contacting takes place in the presence of solvent; (b) contacting said paper with a composition comprising said hollow sphere polymer and at least one pigment; and (c) drying said paper; (II) impregnating said paper with a crosslinking resin
  • a second aspect of the present invention is a decorative laminate formed by the method of the first aspect.
  • the method of the present invention is directed toward the preparation of a decorative laminate that contains a paper that has incorporated within it, a fixed or permanent base-swollen hollow sphere polymer.
  • decorative laminate is meant herein an article containing a decorative paper, which may or may not be printed or embossed, and that has within and/or upon it a hardened crosslinked resin.
  • the first step of the method is the provision of a hollow sphere polymer that has been made by forming a multi-stage polymer having a core stage that is encapsulated by a shell stage, and then swelling the multi-stage polymer by contacting it with a fixed or permanent base, to form the hollow sphere polymer. Hollow sphere polymers of this type are well known in the art, and commercially available.
  • the core stage polymer is an emulsion polymer that has been formed by polymerizing at least one monoethylenically unsaturated monomer containing acid functionality.
  • the core stage polymer is prepared by emulsion homo-polymerization of the acid-containing monomer, or by co-polymerization of the acid-containing monomer with at least one other acid-containing monomer.
  • Suitable monoethylenicially unsaturated monomers containing acid functionality include, for example, monomers containing at least one carboxylic acid group including acrylic acid, methacrylic acid, acryloxypropionic acid, (meth)acryloxypropionic acid, itaconic acid, aconitic acid, maleic acid or anhydride, fumaric acid, crotonic acid, monomethyl maleate, monomethyl fumarate, and monomethyl itaconate; also contemplated is the use of terminally unsaturated acid-containing oligomers such as, for example, are taught in U.S. Pat. Nos.
  • core copolymers containing at least 5%, preferably at least 10%, by weight of the acid mers have practical swellability for the purposes of the present invention.
  • the copolymer may require more, or less, than 5 weight percent of acid-containing monomer.
  • the core stage polymer may be formed by homo-polymerization of an acid-containing monomer.
  • the invention includes a core containing 100% of the emulsion polymerized acid-containing monomer.
  • a preferred maximum quantity of acid-containing monomer is about 70%, by weight, of the total core stage monomers.
  • the acid-containing monomer is copolymerized with one or more nonionic monoethylenically unsaturated monomers.
  • the core stage polymer is formed by copolymerizing from 5 to 100%, preferably from 20% to 60%, and more preferably, from 30% to 50%, by weight, based on the weight of the core stage polymer, of at least one ethylenicially unsaturated monomer containing acid functionality, and from 0 to 95% by weight, based on the weight of the core stage polymer, of at least one nonionic monoethylenically unsaturated monomer.
  • Suitable nonionic monoethylenically unsaturated monomers for making the core stage polymer include styrene, ⁇ -methyl styrene, p-methyl styrene, t-butyl styrene, vinyltoluene, ethylene, vinyl acetate, vinyl chloride, vinyl idene chloride, (meth)acrylonitrile, (meth)acrylamide, (C 1 -C 20 )alkyl or (C 3 -C 20 )alkenyl esters of (meth)acrylic acid, such as methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, benzyl(meth)acrylate, lauryl(meth)acrylate, oleyl(meth)acrylate, palm
  • the core stage polymer may optionally contain less than 20% by weight, preferably from 0.1 to 3% by weight, based on the total weight of the core, of polyethylenically unsaturated monomer, wherein the amount used is generally approximately directly proportional to the amount of monoethylenically unsaturated acid-containing monomer used; in other words, as the relative amount of monoethylenically unsaturated acid-containing monomer increases, it is acceptable to increase the level of polyethylenically unsaturated monomer.
  • the core polymer may contain from 0.1 to 60% by weight, based on the total weight of the core polymer, of butadiene.
  • Suitable polyethylenically unsaturated monomers include comonomers containing at least two addition polymerizable vinylidene groups and are alpha beta ethylenically unsaturated monocarboxylic acid esters of polyhydric alcohols containing 2-6 ester groups.
  • Such comonomers include alkylene glycol diacrylates and dimethacrylates, such as for example, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate propylene glycol diacrylate and triethylene glycol dimethylacrylate; 1,3-glycerol dimethacrylate; 1,1,1-trimethylol propane dimethacrylate; 1,1,1-trimethylol ethane diacrylate; pentaerythritol trimethacrylate; 1,2,6-hexane triacrylate; sorbitol pentamethacrylate; methylene bis-acrylamide, methylene bis-methacrylamide, divinyl benzene, vinyl methacrylate, vinyl crotonate, vinyl acrylate, vinyl acetylene, trivinyl benzene, triallyl cyanurate, divinyl acetylene, divinyl ethane
  • the shell stage of the hollow sphere polymer of this invention preferably has a relatively moderate to high glass transition temperature (Tg).
  • Tg glass transition temperature
  • the shell stage polymer is the product of emulsion polymerizing a shell stage monomer system in the presence of the core stage polymer.
  • the monomers used, and the relative proportions thereof in the shell stage polymer, should be such that the shell stage polymer permits permeation of a fixed or permanent base. It is preferred that the shell stage monomer system be all acrylic. However, in a particularly preferred embodiment, the shell stage polymer contains as copolymerized units butyl methacrylate, methyl methacrylate, and from about 1 to about 10% by weight methacrylic acid.
  • the core stage polymer contains co-polymer having as co-polymerized units from 5 to 100%, based on the weight of the core stage polymer, of at least one ethylenically unsaturated monomer containing acid functionality, and from 0 to 95% by weight, based on the weight of the core stage polymer, of at least one nonionic monoethylenically unsaturated monomer; and the shell stage polymer is formed by polymerizing from about 90% by weight to about 99.9% by weight, based on the total weight of shell stage polymer, of at least one nonionic monoethylenically unsaturated monomer, and from about 0.1% by weight to about 10% by weight, based on the total weight of shell stage polymer, of an acid-functional monoethylenically unsaturated monomer.
  • the acid-functional monoethylenically unsaturated monomer is preferably added to the polymerization of the shell stage polymer over the 100% of the total shell stage monomer feed, based on the total weight of the shell stage monomer feed, more preferably over the first 50% of the feed, even more preferably over the first 25% of the feed, and most preferably over the first 10% of the feed.
  • the acid-functional monoethylenically unsaturated monomer is preferably added to the polymerization of the shell stage polymer over the 50% of the total shell stage monomer feed, based on the total weight of the shell stage monomer feed, more preferably over the first 25% of the feed, and most preferably over the first 10% of the feed.
  • the hollow sphere polymer system must either (1) contain a shell stage monomer system containing at least 1% by weight acid functional monomer, the balance of which may be a nonionic monoethylenically unsaturated co-monomer, such as those mentioned herein-above for the core stage polymer; or (2) involve the swelling of the hollow sphere polymer in the presence of a solvent.
  • the preferred amount of acid functional monomer in the monomer system used to prepare the shell stage polymer is from 5 to 10% by weight when solvent is not used, and from about 1 to 2% by weight when solvent is used.
  • Suitable amounts of solvent are from 1 to 100 parts by weight, based on 100 parts by weight hollow sphere polymer, preferably from 5-10 parts by weight.
  • Suitable solvents are any which will plasticize the shell, for example, hexanol, ethanol, 3-hydroxy-2,2,4-trimethylpentyl isobutyrate, toluene, mixtures of solvents, and the like.
  • the solvent can be added either before, after, or with the addition of the base.
  • the shell stage monomer system itself can function as the solvent for the shell stage polymer.
  • shell stage polymers which completely encapsulate the core stage polymer; shell stage polymers which substantially, but incompletely encapsulate the core stage polymer; polymers that are swollen to provide a particle with at least one pore communicating between the surface of the particle and the interior, i.e., core or void, of the particle; polymer particles having multiple cores; multistaged polymers wherein the core polymer is a precursor to the acid-functionality containing core polymer of this invention and is subsequently converted to the acid-functionality containing core polymer of this invention by means such as hydrolysis of the core polymer according to the teachings of U.S. Pat. Nos. 5,041,464; 5,157,084; and 5,216,044, whether before, during, or after shell polymer formation and the core polymer is contacted with a fixed or permanent base, during or after the hydrolysis.
  • the shell stage polymer is crosslinked.
  • the crosslinking level is preferably from at least 2 mol percent, more preferably from at least 5%, based on the total mole of monomer used in the hollow sphere polymer.
  • Crosslinking in the shell can be derived from the use of one or more polyethylenically unsaturated monomers. Suitable polyethylenically unsaturated monomers include those described herein-above for the core stage polymer.
  • crosslinking of the shell stage polymer may be derived from the use of one or more multi-functional monomers to provide post-polymerization crosslinking of the shell.
  • the multi-functional monomers contain at least one functional group capable of vinyl-copolymerization, and at least one functional group capable of reaction with suitable reactive molecules.
  • suitable reactive molecules include, for example, amines, diamines, amino acids and aminoalkyltialkoxysilanes; optionally followed by the addition of other reactive molecules: aldehydes (such as formaldehyde)dialdehydes (such as glutaric dialdehyde), hydrazines and dihydrazines (such as succinic dihydrazine) to form post-polymerization crosslinked sol-gels.
  • the multi-stage polymer particles containing the core and shell stage polymers are prepared by sequential emulsion polymerization methods, which are well known in the art, for example as described in U.S. Pat. No. 4,594,363.
  • sequential emulsion polymerization is meant herein that the homo- or co-polymers of one stage of the polymer are prepared in aqueous medium, by an emulsion polymerization process, in the presence of the dispersed polymer particles of a polymer stage previously formed by emulsion polymerization, such that the previously formed emulsion polymers are increased in size by deposition thereon of emulsion polymerized product of one, or more, successive monomer charges that are introduced into the medium containing the dispersed particles of the preformed emulsion polymer.
  • Each stage of the hollow sphere polymer may be made in a single stage, or step, of the sequential polymerization, or may be made by a plurality of steps in sequence.
  • seed polymer is used to refer to an aqueous emulsion polymer dispersion, which may be the dispersion containing the first-formed polymer stage, or it may be the emulsion polymer dispersion obtained at the end of any subsequent stage, except the final stage of the sequential polymerization.
  • a core stage polymer which is intended to be encapsulated by one, or more, subsequent stages of emulsion polymerization, may itself be termed a seed polymer for the next stage.
  • a seed polymer may be utilized to form the nuclei on which the core stage polymer is formed.
  • a water-soluble free radical initiator may be utilized in the aqueous emulsion polymerization.
  • Suitable water-soluble free radical initiators include hydrogen peroxide; tert-butyl peroxide; alkali metal persulfates such as sodium, potassium and lithium persulfate; ammonium persulfate; and mixtures of such initiators with a reducing agent.
  • Reducing agents include: sulfites, such as alkali metal metabisulfite, hydrosulfite, and hyposulfite; sodium formaldehyde sulfoxylate; and reducing sugars such as ascorbic acid and isoascorbic acid.
  • the amount of initiator is preferably from 0.01 to 3% by weight, based on the total amount of monomer and in a redox system the amount of reducing agent is preferably from 0.01 to 3% by weight based on the total amount of monomer.
  • the temperature may be in the range of about 10° C. to 100° C. In the case of the persulfate systems, the temperature is preferably in the range of 60° C. to 90° C. In the redox system, the temperature is preferably in the range of 30° C. to 70° C.
  • the type and amount of initiator may be the same or different in the various stages of the multi-stage polymerization.
  • nonionic or anionic emulsifiers may be used, either alone or together.
  • suitable nonionic emulsifiers include tert-octylphenoxyethylpoly(39)-ethoxyethanol, dodecyloxypoly(10)ethoxyethanol, nonylphenoxyethyl-poly(40)ethoxyethanol, polyethylene glycol 2000 monooleate, ethoxylated castor oil, fluorinated alkyl esters and alkoxylates, polyoxyethylene(20)sorbitan monolaurate, sucrose monococoate, di(2-butyl)phenoxypoly(20)ethoxyethanol, hydroxyethylcellulosepolybutyl acrylate graft copolymer, poly(ethylene oxide)poly(butyl acrylate) block copolymer, block copolymers of propylene oxide and ethylene oxide, 2,4,7,9-tetramethyl-5-decyn
  • anionic emulsifiers include sodium lauryl sulfate, sodium dodecylbenzenesulfonate, potassium stearate, sodium dioctyl sulfosuccinate, sodium dodecyldiphenyloxide disulfonate, nonylphenoxyethylpoly(1)ethoxyethyl sulfate ammonium salt, sodium styrene sulfonate, sodium dodecyl allyl sulfosuccinate, linseed oil fatty acid, sodium or ammonium salts of phosphate esters of ethoxylated nonylphenol, sodium octoxynol-3-sulfonate, sodium cocoyl sarcocinate, sodium 1-alkoxy-2-hydroxypropyl sulfonate, sodium alpha-olefin (C 14 -C 16 )sulfonate, sulfates of hydroxyalkanols
  • the one or more surfactants are generally used at a level of from 0 to 3% based on the weight of the multi-stage polymer.
  • the one or more surfactants can be added prior to the addition of any monomer charge, during the addition of a monomer charge or a combination thereof.
  • the tendency to produce gum or coagulum in the reaction medium may be reduced or prevented by the addition of about 0.05% to about 2.0% by weight, based on total weight of the shell polymer, of emulsifier without detriment to the deposition of the polymer formed on the previously formed core particles.
  • the amount of emulsifier may be zero, in the situation wherein a persulfate initiator is used, to 3% by weight, based on the weight of total weight of the core polymer.
  • the amount of emulsifier should be kept below that corresponding to the critical micelle concentration for a particular monomer system, but while this limitation is preferable and produces a unimodal product, it has been found that in some systems the critical micelle concentration of the emulsifier may be exceeded somewhat without the formation of an objectionable or excessive number of dispersed micelles or particles. It is for the purpose of controlling the number of micelles during the various stages of polymerization so that the deposition of the subsequently formed polymer in each stage occurs upon the dispersed micelles or particles formed in the previous stages, that the concentration of emulsifier is kept low.
  • the viscosity-average molecular weight of the polymer formed in a given stage may range from 100,000, or lower if a chain transfer agent is used, to several million molecular weight.
  • a chain transfer agent is used in making the core
  • the molecular weight is increased whether or not crosslinking occurs.
  • the use of the polyethylenically unsaturated monomer reduces the tendency of the core polymer to dissolve when the multistaged polymer is treated with a swellant for the core.
  • a core having a molecular weight in the lower part of the range such as from 500,000 down to as low as about 20,000
  • a chain transfer agent such as 0.05% to 2% or more thereof, examples being alkyl mercaptans, such as sec-butyl mercaptan.
  • the amount of polymer deposited to form shell polymer is generally such as to provide an overall size of the multistage polymer particle of from 70 nm to 4.5 microns, preferably from 100 nm to 3.5 microns, more preferably from 200 nm to 2.0 microns, in unswollen condition, whether the shell polymer is formed in a single stage, or in a plurality of stages.
  • the multi-stage polymer containing the core and shell stage polymers is swollen when the particles are subjected to a fixed or permanent base capable of swelling the core, resulting in the formation of the hollow sphere polymer.
  • the swelling, or expansion, of the core may involve partial merging of the outer periphery of the core into the pores of the inner periphery of the shell and also partial enlargement or bulging of the shell and the entire particle overall.
  • Suitable swelling agents are those which, in the presence of the multistage emulsion polymer, are capable of permeating the shell and swelling the core.
  • fixed or permanent base is meant herein a nonvolatile hard base, such as a metal hydroxide such as, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, strontium hydroxide, barium hydroxide. Preferred are sodium hydroxide and potassium hydroxide.
  • the fixed or permanent base differs from volatile bases, such as ammonia, ammonium hydroxide, amines, salts of weak acids, which to some greater or lesser degree evaporate from the emulsion, either at ambient temperatures, or upon drying, and which have a pKb ⁇ 7 (in water at 25° C.).
  • Solvents such as, for example, ethanol, hexanol, octanol, Texanol® solvent and those described in U.S. Pat. No. 4,594,363, may be added to aid in fixed or permanent base penetration.
  • hollow sphere polymers are not currently utilized during the manufacture of decorative laminates.
  • the fixed base-swollen hollow sphere polymer when used in conjunction with a pigment is still able to impart to a decorative laminate product the improvements typically associated with fixed base-swollen hollow sphere polymers, often at a lower cost than is achievable where costly pigments, such as titanium dioxide, are utilized without a hollow sphere polymer.
  • a composition containing the hollow sphere polymer is incorporated into a decorative laminate paper during the wet-end formation of the decorative laminate paper.
  • wet-end is meant herein, the part of the decorative laminate paper processing, during which a predominantly cellulosic fiber pulp slurry is formed into a wet sheet on a paper machine, by techniques that are well known in the art.
  • the hollow sphere polymer and at least one pigment, along with other ingredients, as necessary, are added to, and mixed with the slurry, which is then formed into a wet sheet of paper that contains, or incorporates, the hollow sphere polymer. Any suitable pigment may be used, however titanium dioxide is preferred.
  • the decorative laminate paper is dried, and then impregnated with a crosslinking resin.
  • Suitable resins include, for example, thermosetting resins containing phenoplasts and aminoplasts, such as, for example urea formaldehyde and melamine formaldehyde, and the like.
  • impregnation is meant that the paper is at least partially, preferably completely saturated with the crosslinking resin.
  • Pressure, and heat are applied to the crosslinking resin-impregnated decorative laminate paper, causing the resin to cure and harden, forming the decorative laminate.
  • Typical temperatures applied to the crosslinking resin-impregnated decorative laminate paper are in the range of from 100° C. to 300° C., preferably from 125° C.
  • the resulting decorative laminate has improved opacity, above that obtainable in a decorative laminate prepared utilizing only a pigment, as well as lower cost, where a costly pigment, such as titanium dioxide, is used.
  • the decorative laminate paper is formed, and coated with a composition containing the hollow sphere polymer and at least one pigment, before or after drying the paper.
  • the decorative laminate paper is then impregnated with a crosslinking resin of the type mentioned in the preferred embodiment herein-above. Pressure, and heat, are applied to the crosslinking resin-impregnated decorative laminate paper, causing the resin to cure, and harden, forming the decorative laminate.
  • Typical temperatures applied to the crosslinking resin-impregnated decorative laminate paper are as mentioned in the embodiment directly herein-above.
  • a sodium-hydroxide swollen hollow sphere polymer (HSP), and a refined wood pulp and pigment slurry, are mixed to provide a blend containing a ratio of 20/60/20 hollow sphere pigment to wood pulp to TiO2 based on dry weight.
  • This blend is diluted to a 0.2% solids dispersion under agitation and a paper sample is formed on the CTP (Centre Technique demaschine) Retention Former.
  • the paper sample thus formed is dried in an oven at 95° C. at 50% relative humidity for 10 minutes. This drying process is repeated at a range of temperatures (50 to 90° C.), relative humidities (20 to 80%), and drying times (2 to 20 minutes).
  • the resulting paper is impregnated with a crosslinking resin, and then heated under pressure, and dried to form a decorative laminate.
  • the decorative laminate containing the hollow sphere polymer has a higher opacity than the decorative laminate that contains no hollow sphere polymer.

Abstract

A method of preparing a decorative laminate, using a hollow sphere polymer whose void has been created by swelling the polymer with a fixed or permanent base, is provided. Also provided is a decorative laminate produced by the method.

Description

  • The present invention relates to a method of preparing a decorative laminate, using a hollow sphere polymer. In particular, the present invention relates to a method of preparing a decorative laminate, using a hollow sphere polymer whose void has been created by swelling the polymer with a fixed or permanent base; and further relates to a decorative laminate prepared by the method.
  • Voided, or hollow emulsion polymers are generally prepared by swelling a multi-stage polymer, having a core and a shell, in such a way that one or more voids form in the interior of the emulsion polymer particle. Hollow emulsion polymers are often used in paints, coatings, inks, sunscreens, paper manufacture, and several other industrial arenas. In the paper industry, hollow emulsion polymers are used to make the surface of the paper, among other things, smoother, brighter, and more opaque. Additional benefits of hollow sphere polymers is that, when used alone, or in combination with costly opacifying pigments, such as titanium dioxide, a more cost effective system is obtainable. The paper typically utilized during the manufacture of decorative laminates has a high pigment content. The pigment typically utilized is titanium dioxide, which, as mentioned above, is extremely costly. However, hollow emulsion polymers are not currently utilized to replace or complement such costly pigments during processing of the decorative laminate paper. This is due, in part, to the belief that the subjection of the opaque emulsion polymer to the conditions of processing of both the paper, and the decorative laminate, would eliminate the advantages normally associated with the use of opaque emulsion polymers.
  • U.S. Pat. No. 4,594,363 discloses a process for making core/sheath polymer particles containing voids, including the step of swelling, at elevated temperature, the resultant core/sheath polymer particles with fixed or permanent base so as to produce a dispersion of particles which, when dried, contain a microvoid. However, the patent does not disclose a method of using the core/sheath polymer particles to make a decorative laminate.
  • U.S. Pat. No. 6,139,961 discloses a method for improving the strength and opacity of paper or paperboard by applying to the paper, during wet-end processing of the paper, a hollow sphere organic polymer having a core, a hard polymer shell surrounding the core, and a soft polymer shell surrounding the first shell, wherein (1) the second shell polymer is at least 15% by weight of the total weight of the first shell polymer and the second shell polymer, (2) the second shell polymer has a glass transition temperature of less than 15° C., and (3) the polymer has been swollen by a volatile, or fixed or permanent base. However, the patent does not disclose use of a hollow sphere polymer to make a decorative laminate.
  • Applicants have unexpectedly discovered that hollow sphere polymers that have been swollen by a fixed or permanent base are useful for preparing decorative laminates, despite the subjection of the hollow sphere polymer to the harsh conditions, such as high temperatures and/or pressures, typically present during processing of a decorative laminate.
  • A first aspect of the present invention is a method of preparing a decorative laminate, comprising the steps of: (I) preparing a paper by (a) providing a hollow sphere polymer made by: (i) forming a core stage polymer by polymerizing at least one monoethylenically unsaturated monomer containing acid functionality, (ii) encapsulating said core stage polymer with at least one shell stage polymer, by emulsion polymerizing at least one shell stage monomer system in the presence of said core stage polymer, wherein said shell stage polymer permits penetration of a fixed or permanent base; (iii) contacting the resulting multi-stage polymer particles with fixed or permanent base, wherein either (I) said shell stage polymer comprises at least 1% acid functional monomer, or (2) said contacting takes place in the presence of solvent; (b) contacting said paper with a composition comprising said hollow sphere polymer and at least one pigment; and (c) drying said paper; (II) impregnating said paper with a crosslinking resin; (III) applying pressure to said paper; and (IV) exposing said paper to temperatures of from 100° C. to 300° C.
  • A second aspect of the present invention is a decorative laminate formed by the method of the first aspect.
  • The method of the present invention is directed toward the preparation of a decorative laminate that contains a paper that has incorporated within it, a fixed or permanent base-swollen hollow sphere polymer. By “decorative laminate” is meant herein an article containing a decorative paper, which may or may not be printed or embossed, and that has within and/or upon it a hardened crosslinked resin. The first step of the method is the provision of a hollow sphere polymer that has been made by forming a multi-stage polymer having a core stage that is encapsulated by a shell stage, and then swelling the multi-stage polymer by contacting it with a fixed or permanent base, to form the hollow sphere polymer. Hollow sphere polymers of this type are well known in the art, and commercially available.
  • The core stage polymer is an emulsion polymer that has been formed by polymerizing at least one monoethylenically unsaturated monomer containing acid functionality. The core stage polymer is prepared by emulsion homo-polymerization of the acid-containing monomer, or by co-polymerization of the acid-containing monomer with at least one other acid-containing monomer. Suitable monoethylenicially unsaturated monomers containing acid functionality, useful for making the core stage polymer, include, for example, monomers containing at least one carboxylic acid group including acrylic acid, methacrylic acid, acryloxypropionic acid, (meth)acryloxypropionic acid, itaconic acid, aconitic acid, maleic acid or anhydride, fumaric acid, crotonic acid, monomethyl maleate, monomethyl fumarate, and monomethyl itaconate; also contemplated is the use of terminally unsaturated acid-containing oligomers such as, for example, are taught in U.S. Pat. Nos. 5,710,227 and 6,046,278 and EP 1010706, and including comb/graft, block, and mixed block oligomers. The use of the term “(meth)” followed by another term such as acrylate, acrylonitrile, or acrylarnide, as used throughout the disclosure, refers to both acrylate, acrylonitrile, or acrylamide and methacrylate, methacrylonitrile, and methacrylamide, respectively. Acrylic acid and methacrylic acid are preferred.
  • In general, core copolymers containing at least 5%, preferably at least 10%, by weight of the acid mers have practical swellability for the purposes of the present invention. However, there may be instances where, because of the hydrophobicity of certain co-monomers, the copolymer may require more, or less, than 5 weight percent of acid-containing monomer. As noted above, the core stage polymer may be formed by homo-polymerization of an acid-containing monomer. Thus, the invention includes a core containing 100% of the emulsion polymerized acid-containing monomer. A preferred maximum quantity of acid-containing monomer is about 70%, by weight, of the total core stage monomers.
  • In a preferred embodiment, the acid-containing monomer is copolymerized with one or more nonionic monoethylenically unsaturated monomers. In one embodiment, the core stage polymer is formed by copolymerizing from 5 to 100%, preferably from 20% to 60%, and more preferably, from 30% to 50%, by weight, based on the weight of the core stage polymer, of at least one ethylenicially unsaturated monomer containing acid functionality, and from 0 to 95% by weight, based on the weight of the core stage polymer, of at least one nonionic monoethylenically unsaturated monomer. Suitable nonionic monoethylenically unsaturated monomers for making the core stage polymer include styrene, α-methyl styrene, p-methyl styrene, t-butyl styrene, vinyltoluene, ethylene, vinyl acetate, vinyl chloride, vinyl idene chloride, (meth)acrylonitrile, (meth)acrylamide, (C1-C20)alkyl or (C3-C20)alkenyl esters of (meth)acrylic acid, such as methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, benzyl(meth)acrylate, lauryl(meth)acrylate, oleyl(meth)acrylate, palmityl(meth)acrylate, stearyl(meth)acrylate and the like.
  • The core stage polymer may optionally contain less than 20% by weight, preferably from 0.1 to 3% by weight, based on the total weight of the core, of polyethylenically unsaturated monomer, wherein the amount used is generally approximately directly proportional to the amount of monoethylenically unsaturated acid-containing monomer used; in other words, as the relative amount of monoethylenically unsaturated acid-containing monomer increases, it is acceptable to increase the level of polyethylenically unsaturated monomer. Alternatively, the core polymer may contain from 0.1 to 60% by weight, based on the total weight of the core polymer, of butadiene.
  • Suitable polyethylenically unsaturated monomers include comonomers containing at least two addition polymerizable vinylidene groups and are alpha beta ethylenically unsaturated monocarboxylic acid esters of polyhydric alcohols containing 2-6 ester groups. Such comonomers include alkylene glycol diacrylates and dimethacrylates, such as for example, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate propylene glycol diacrylate and triethylene glycol dimethylacrylate; 1,3-glycerol dimethacrylate; 1,1,1-trimethylol propane dimethacrylate; 1,1,1-trimethylol ethane diacrylate; pentaerythritol trimethacrylate; 1,2,6-hexane triacrylate; sorbitol pentamethacrylate; methylene bis-acrylamide, methylene bis-methacrylamide, divinyl benzene, vinyl methacrylate, vinyl crotonate, vinyl acrylate, vinyl acetylene, trivinyl benzene, triallyl cyanurate, divinyl acetylene, divinyl ethane, divinyl sulfide, divinyl ether, divinyl sulfone, diallyl cyanamide, ethylene glycol divinyl ether, diallyl phthalate, divinyl dimethyl silane, glycerol trivinyl ether, divinyl adipate; dicyclopentenyl(meth)acrylates; dicyclopentenyloxy(meth)acrylates; unsaturated esters of glycol monodicyclopentenyl ethers; allyl esters of mono- and dicarboxylic acids having terminal ethylenic unsaturation including allyl(meth)acrylate, diallyl maleate, diallyl fumarate, diallyl itaconate and the like.
  • The shell stage of the hollow sphere polymer of this invention preferably has a relatively moderate to high glass transition temperature (Tg). Preferably, the outermost shell stage polymer Tg is greater then 25° C., more preferably greater than 50° C., even more preferably greater than 70° C., and most preferably greater than 90° C., as calculated by the Fox Equation (T. G. Fox, Bull. Am. Physics Soc., Volume 1, Issue No. 3, page 123 (1956)). That is, for calculating the Tg of a copolymer of monomers M1 and M2,
    1/Tg(calc.)=w(M 1)/Tg(M 1)+w(M 2)/Tg(M 2), wherein
      • Tg(calc.) is the glass transition temperature calculated for the copolymer
      • w(M1) is the weight fraction of monomer M1 in the copolymer
      • w(M2) is the weight fraction of monomer M2 in the copolymer
      • Tg(M1) is the glass transition temperature of the homopolymer of M1
      • Tg(M2) is the glass transition temperature of the homopolymer of M2,
      • all temperatures being in ° K.
  • The shell stage polymer is the product of emulsion polymerizing a shell stage monomer system in the presence of the core stage polymer. The monomers used, and the relative proportions thereof in the shell stage polymer, should be such that the shell stage polymer permits permeation of a fixed or permanent base. It is preferred that the shell stage monomer system be all acrylic. However, in a particularly preferred embodiment, the shell stage polymer contains as copolymerized units butyl methacrylate, methyl methacrylate, and from about 1 to about 10% by weight methacrylic acid.
  • As described herein-above, in one embodiment of the invention, the core stage polymer contains co-polymer having as co-polymerized units from 5 to 100%, based on the weight of the core stage polymer, of at least one ethylenically unsaturated monomer containing acid functionality, and from 0 to 95% by weight, based on the weight of the core stage polymer, of at least one nonionic monoethylenically unsaturated monomer; and the shell stage polymer is formed by polymerizing from about 90% by weight to about 99.9% by weight, based on the total weight of shell stage polymer, of at least one nonionic monoethylenically unsaturated monomer, and from about 0.1% by weight to about 10% by weight, based on the total weight of shell stage polymer, of an acid-functional monoethylenically unsaturated monomer. In this embodiment, when the particle size of the core stage polymer is from about 130 nm to about 2.0 microns, the acid-functional monoethylenically unsaturated monomer is preferably added to the polymerization of the shell stage polymer over the 100% of the total shell stage monomer feed, based on the total weight of the shell stage monomer feed, more preferably over the first 50% of the feed, even more preferably over the first 25% of the feed, and most preferably over the first 10% of the feed. When the particle size of the core stage polymer is less than about 130 nm, the acid-functional monoethylenically unsaturated monomer is preferably added to the polymerization of the shell stage polymer over the 50% of the total shell stage monomer feed, based on the total weight of the shell stage monomer feed, more preferably over the first 25% of the feed, and most preferably over the first 10% of the feed.
  • The hollow sphere polymer system must either (1) contain a shell stage monomer system containing at least 1% by weight acid functional monomer, the balance of which may be a nonionic monoethylenically unsaturated co-monomer, such as those mentioned herein-above for the core stage polymer; or (2) involve the swelling of the hollow sphere polymer in the presence of a solvent. The preferred amount of acid functional monomer in the monomer system used to prepare the shell stage polymer is from 5 to 10% by weight when solvent is not used, and from about 1 to 2% by weight when solvent is used.
  • When solvent is used, it assists in penetration of the shell by the fixed or permanent base. Suitable amounts of solvent are from 1 to 100 parts by weight, based on 100 parts by weight hollow sphere polymer, preferably from 5-10 parts by weight. Suitable solvents are any which will plasticize the shell, for example, hexanol, ethanol, 3-hydroxy-2,2,4-trimethylpentyl isobutyrate, toluene, mixtures of solvents, and the like. The solvent can be added either before, after, or with the addition of the base. In certain cases the shell stage monomer system itself can function as the solvent for the shell stage polymer.
  • Within the scope of the invention are, among others, shell stage polymers which completely encapsulate the core stage polymer; shell stage polymers which substantially, but incompletely encapsulate the core stage polymer; polymers that are swollen to provide a particle with at least one pore communicating between the surface of the particle and the interior, i.e., core or void, of the particle; polymer particles having multiple cores; multistaged polymers wherein the core polymer is a precursor to the acid-functionality containing core polymer of this invention and is subsequently converted to the acid-functionality containing core polymer of this invention by means such as hydrolysis of the core polymer according to the teachings of U.S. Pat. Nos. 5,041,464; 5,157,084; and 5,216,044, whether before, during, or after shell polymer formation and the core polymer is contacted with a fixed or permanent base, during or after the hydrolysis.
  • In one embodiment of the invention, the shell stage polymer is crosslinked. The crosslinking level is preferably from at least 2 mol percent, more preferably from at least 5%, based on the total mole of monomer used in the hollow sphere polymer. Crosslinking in the shell can be derived from the use of one or more polyethylenically unsaturated monomers. Suitable polyethylenically unsaturated monomers include those described herein-above for the core stage polymer. Alternatively, crosslinking of the shell stage polymer may be derived from the use of one or more multi-functional monomers to provide post-polymerization crosslinking of the shell. The multi-functional monomers contain at least one functional group capable of vinyl-copolymerization, and at least one functional group capable of reaction with suitable reactive molecules. Suitable reactive molecules include, for example, amines, diamines, amino acids and aminoalkyltialkoxysilanes; optionally followed by the addition of other reactive molecules: aldehydes (such as formaldehyde)dialdehydes (such as glutaric dialdehyde), hydrazines and dihydrazines (such as succinic dihydrazine) to form post-polymerization crosslinked sol-gels.
  • Examples of suitable functional groups and reactive molecules for post-polymerization crosslinking of the shell stage polymer, as well as multi-functional monomers suitable for post-polymerization crosslinking, are illustrated, without limitation, in European Patent Application EP 1092421.
  • The multi-stage polymer particles containing the core and shell stage polymers are prepared by sequential emulsion polymerization methods, which are well known in the art, for example as described in U.S. Pat. No. 4,594,363. By “sequential emulsion polymerization” is meant herein that the homo- or co-polymers of one stage of the polymer are prepared in aqueous medium, by an emulsion polymerization process, in the presence of the dispersed polymer particles of a polymer stage previously formed by emulsion polymerization, such that the previously formed emulsion polymers are increased in size by deposition thereon of emulsion polymerized product of one, or more, successive monomer charges that are introduced into the medium containing the dispersed particles of the preformed emulsion polymer. Each stage of the hollow sphere polymer may be made in a single stage, or step, of the sequential polymerization, or may be made by a plurality of steps in sequence.
  • In the sequential emulsion polymerization with which the present invention is concerned, the term “seed” polymer is used to refer to an aqueous emulsion polymer dispersion, which may be the dispersion containing the first-formed polymer stage, or it may be the emulsion polymer dispersion obtained at the end of any subsequent stage, except the final stage of the sequential polymerization. Thus, a core stage polymer which is intended to be encapsulated by one, or more, subsequent stages of emulsion polymerization, may itself be termed a seed polymer for the next stage. Likewise, a seed polymer may be utilized to form the nuclei on which the core stage polymer is formed.
  • A water-soluble free radical initiator may be utilized in the aqueous emulsion polymerization. Suitable water-soluble free radical initiators include hydrogen peroxide; tert-butyl peroxide; alkali metal persulfates such as sodium, potassium and lithium persulfate; ammonium persulfate; and mixtures of such initiators with a reducing agent. Reducing agents include: sulfites, such as alkali metal metabisulfite, hydrosulfite, and hyposulfite; sodium formaldehyde sulfoxylate; and reducing sugars such as ascorbic acid and isoascorbic acid. The amount of initiator is preferably from 0.01 to 3% by weight, based on the total amount of monomer and in a redox system the amount of reducing agent is preferably from 0.01 to 3% by weight based on the total amount of monomer. The temperature may be in the range of about 10° C. to 100° C. In the case of the persulfate systems, the temperature is preferably in the range of 60° C. to 90° C. In the redox system, the temperature is preferably in the range of 30° C. to 70° C. The type and amount of initiator may be the same or different in the various stages of the multi-stage polymerization.
  • One or more nonionic or anionic emulsifiers, or surfactants, may be used, either alone or together. Examples of suitable nonionic emulsifiers include tert-octylphenoxyethylpoly(39)-ethoxyethanol, dodecyloxypoly(10)ethoxyethanol, nonylphenoxyethyl-poly(40)ethoxyethanol, polyethylene glycol 2000 monooleate, ethoxylated castor oil, fluorinated alkyl esters and alkoxylates, polyoxyethylene(20)sorbitan monolaurate, sucrose monococoate, di(2-butyl)phenoxypoly(20)ethoxyethanol, hydroxyethylcellulosepolybutyl acrylate graft copolymer, poly(ethylene oxide)poly(butyl acrylate) block copolymer, block copolymers of propylene oxide and ethylene oxide, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylated with 30 moles of ethylene oxide, N-polyoxyethylene(20)lauramide, N-lauryl-N-polyoxyethylene(3)amine and poly(10)ethylene glycol dodecyl thioether. Examples of suitable anionic emulsifiers include sodium lauryl sulfate, sodium dodecylbenzenesulfonate, potassium stearate, sodium dioctyl sulfosuccinate, sodium dodecyldiphenyloxide disulfonate, nonylphenoxyethylpoly(1)ethoxyethyl sulfate ammonium salt, sodium styrene sulfonate, sodium dodecyl allyl sulfosuccinate, linseed oil fatty acid, sodium or ammonium salts of phosphate esters of ethoxylated nonylphenol, sodium octoxynol-3-sulfonate, sodium cocoyl sarcocinate, sodium 1-alkoxy-2-hydroxypropyl sulfonate, sodium alpha-olefin (C14-C16)sulfonate, sulfates of hydroxyalkanols, tetrasodium N-(1,2-dicarboxy ethyl)-N-octadecylsulfo-succinamate, disodium N-octadecylsulfosuccinamate, disodium alkylamido polyethoxy sulfosuccinate, disodium ethoxylated nonylphenol half ester of sulfosuccinic acid and the sodium salt of tert-octylphenoxyethoxypoly(39)ethoxyethyl sulfate. The one or more surfactants are generally used at a level of from 0 to 3% based on the weight of the multi-stage polymer. The one or more surfactants can be added prior to the addition of any monomer charge, during the addition of a monomer charge or a combination thereof. In certain monomer/emulsifier systems for forming the shell, the tendency to produce gum or coagulum in the reaction medium may be reduced or prevented by the addition of about 0.05% to about 2.0% by weight, based on total weight of the shell polymer, of emulsifier without detriment to the deposition of the polymer formed on the previously formed core particles.
  • The amount of emulsifier may be zero, in the situation wherein a persulfate initiator is used, to 3% by weight, based on the weight of total weight of the core polymer. By carrying out the emulsion polymerization while maintaining low levels of emulsifier, the subsequent stage of polymer-formation deposit the most-recently formed polymer on the existing dispersed polymer particles resulting from the preceding step or stage. As a general rule, the amount of emulsifier should be kept below that corresponding to the critical micelle concentration for a particular monomer system, but while this limitation is preferable and produces a unimodal product, it has been found that in some systems the critical micelle concentration of the emulsifier may be exceeded somewhat without the formation of an objectionable or excessive number of dispersed micelles or particles. It is for the purpose of controlling the number of micelles during the various stages of polymerization so that the deposition of the subsequently formed polymer in each stage occurs upon the dispersed micelles or particles formed in the previous stages, that the concentration of emulsifier is kept low.
  • The viscosity-average molecular weight of the polymer formed in a given stage may range from 100,000, or lower if a chain transfer agent is used, to several million molecular weight. When 0.1% by weight to 20% by weight, based on the weight of the monomer, of a polyethylenically unsaturated monomer mentioned herein-above is used in making the core, the molecular weight is increased whether or not crosslinking occurs. The use of the polyethylenically unsaturated monomer reduces the tendency of the core polymer to dissolve when the multistaged polymer is treated with a swellant for the core. If it is desired to produce a core having a molecular weight in the lower part of the range, such as from 500,000 down to as low as about 20,000, it is frequently most practical to do so by avoiding the polyethylenically unsaturated monomers and using a chain transfer agent instead, such as 0.05% to 2% or more thereof, examples being alkyl mercaptans, such as sec-butyl mercaptan.
  • The amount of polymer deposited to form shell polymer is generally such as to provide an overall size of the multistage polymer particle of from 70 nm to 4.5 microns, preferably from 100 nm to 3.5 microns, more preferably from 200 nm to 2.0 microns, in unswollen condition, whether the shell polymer is formed in a single stage, or in a plurality of stages. In order to minimize the dry density of the final product, it is preferable to deposit only as much shell polymer as is needed to fully encapsulate the core.
  • The multi-stage polymer containing the core and shell stage polymers is swollen when the particles are subjected to a fixed or permanent base capable of swelling the core, resulting in the formation of the hollow sphere polymer. The swelling, or expansion, of the core may involve partial merging of the outer periphery of the core into the pores of the inner periphery of the shell and also partial enlargement or bulging of the shell and the entire particle overall. Suitable swelling agents are those which, in the presence of the multistage emulsion polymer, are capable of permeating the shell and swelling the core. By “fixed or permanent base” is meant herein a nonvolatile hard base, such as a metal hydroxide such as, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, strontium hydroxide, barium hydroxide. Preferred are sodium hydroxide and potassium hydroxide. The fixed or permanent base differs from volatile bases, such as ammonia, ammonium hydroxide, amines, salts of weak acids, which to some greater or lesser degree evaporate from the emulsion, either at ambient temperatures, or upon drying, and which have a pKb<7 (in water at 25° C.). Solvents, such as, for example, ethanol, hexanol, octanol, Texanol® solvent and those described in U.S. Pat. No. 4,594,363, may be added to aid in fixed or permanent base penetration.
  • For the reasons noted herein-above, hollow sphere polymers are not currently utilized during the manufacture of decorative laminates. Despite the subjection of the hollow sphere polymer to the wet-end conditions of, among other things, high temperature and/or humidity, or the subjection of the formed paper to the even harsher conditions of decorative laminate processing, the fixed base-swollen hollow sphere polymer, when used in conjunction with a pigment is still able to impart to a decorative laminate product the improvements typically associated with fixed base-swollen hollow sphere polymers, often at a lower cost than is achievable where costly pigments, such as titanium dioxide, are utilized without a hollow sphere polymer.
  • In the preferred embodiment of the invention, a composition containing the hollow sphere polymer is incorporated into a decorative laminate paper during the wet-end formation of the decorative laminate paper. By “wet-end” is meant herein, the part of the decorative laminate paper processing, during which a predominantly cellulosic fiber pulp slurry is formed into a wet sheet on a paper machine, by techniques that are well known in the art. The hollow sphere polymer and at least one pigment, along with other ingredients, as necessary, are added to, and mixed with the slurry, which is then formed into a wet sheet of paper that contains, or incorporates, the hollow sphere polymer. Any suitable pigment may be used, however titanium dioxide is preferred. The decorative laminate paper is dried, and then impregnated with a crosslinking resin. Suitable resins include, for example, thermosetting resins containing phenoplasts and aminoplasts, such as, for example urea formaldehyde and melamine formaldehyde, and the like. By “impregnation” is meant that the paper is at least partially, preferably completely saturated with the crosslinking resin. Pressure, and heat, are applied to the crosslinking resin-impregnated decorative laminate paper, causing the resin to cure and harden, forming the decorative laminate. Typical temperatures applied to the crosslinking resin-impregnated decorative laminate paper are in the range of from 100° C. to 300° C., preferably from 125° C. to 250° C., more preferably from 140° C. to 200° C. The resulting decorative laminate has improved opacity, above that obtainable in a decorative laminate prepared utilizing only a pigment, as well as lower cost, where a costly pigment, such as titanium dioxide, is used.
  • In a different embodiment of the invention, the decorative laminate paper is formed, and coated with a composition containing the hollow sphere polymer and at least one pigment, before or after drying the paper. The decorative laminate paper is then impregnated with a crosslinking resin of the type mentioned in the preferred embodiment herein-above. Pressure, and heat, are applied to the crosslinking resin-impregnated decorative laminate paper, causing the resin to cure, and harden, forming the decorative laminate. Typical temperatures applied to the crosslinking resin-impregnated decorative laminate paper are as mentioned in the embodiment directly herein-above.
  • The following examples illustrate specific aspects and particular embodiments of the invention which, however, in not to be construed as limited thereby.
  • A sodium-hydroxide swollen hollow sphere polymer (HSP), and a refined wood pulp and pigment slurry, are mixed to provide a blend containing a ratio of 20/60/20 hollow sphere pigment to wood pulp to TiO2 based on dry weight. This blend is diluted to a 0.2% solids dispersion under agitation and a paper sample is formed on the CTP (Centre Technique de Papier) Retention Former.
  • The paper sample thus formed is dried in an oven at 95° C. at 50% relative humidity for 10 minutes. This drying process is repeated at a range of temperatures (50 to 90° C.), relative humidities (20 to 80%), and drying times (2 to 20 minutes).
  • The resulting paper is impregnated with a crosslinking resin, and then heated under pressure, and dried to form a decorative laminate. The decorative laminate containing the hollow sphere polymer has a higher opacity than the decorative laminate that contains no hollow sphere polymer.
    Comparative Comparative
    Example: Eg.1 Eg.2 Eg.3 Eg.4
    Slurry pigment 100% TiO2 67% TiO2/ 33% TiO2/ 45% TiO2/
    and HSP 33% CaCO3 45% HSP/ 33% HSP/
    content 22% CaCO3 22% CaCO3
    Opacity 91.5 90.5 93.3 92.9

Claims (7)

1. A method of preparing a decorative laminate, comprising the steps of:
(I) preparing a paper by:
(a) providing a hollow sphere polymer made by:
i. forming a core stage polymer by polymerizing at least one ethylenically unsaturated monomer containing acid functionality,
ii. encapsulating said core stage polymer with a shell stage polymer, by emulsion polymerizing at least one ethylenically unsaturated monomer in the presence of said core stage polymer,
wherein said shell stage polymer permits penetration of a fixed or permanent base,
iii. contacting the resulting multi-stage polymer particles with fixed or permanent base,
wherein either (1) said shell stage polymer comprises at least 1% acid functional monomer, or (2) said contacting takes place in the presence of solvent;
(b) contacting said paper with a composition comprising said hollow sphere polymer, and at least one pigment; and
(c) drying said paper;
(II) impregnating said paper with a crosslinking resin;
(III) applying pressure to said paper; and
(IV) exposing said paper to temperatures of from 100° C. to 300° C., to form the decorative laminate.
2. The method, according to claim 1, wherein said core stage polymer is formed by polymerizing from about 5% by weight to about 100% by weight, based on the total weight of core stage polymer, of said ethylenically unsaturated monomer containing acid functionality, and from 0% by weight to about 95% by weight, based on the total weight of core stage polymer, of at least one nonionic monoethylenically unsaturated monomer;
wherein said shell stage polymer is formed by polymerizing from about 90% by weight to about 99.9% by weight, based on the total weight of shell stage polymer, of at least one nonionic monoethylenically unsaturated monomer, and from about 0.1% by weight to about 10% by weight, based on the total weight of shell stage polymer, of an acid-functional monoethylenically unsaturated monomer; and
wherein said acid-functional monoethylenically unsaturated monomer is added to the polymerization of said shell stage polymer over the 100% of the total shell stage monomer feed, when the particle size of said core stage polymer is from about 130 nm to about 2.0 microns.
3. The method, according to claim 1, wherein said core stage polymer is formed by polymerizing from about 5% by weight to about 100% by weight, based on the total weight of core stage polymer, of said ethylenically unsaturated monomer containing acid functionality, and from 0% by weight to about 95% by weight, based on the total weight of said core stage polymer, of at least one nonionic monoethylenically unsaturated monomer;
wherein said shell stage polymer is formed by polymerizing from about 90% by weight to about 99.9% by weight, based on the total weight of shell stage polymer, of at least one nonionic monoethylenically unsaturated monomer, and from about 0.1% by weight to about 10% by weight, based on the total weight of shell stage polymer, of an acid-functional monoethylenically unsaturated monomer; and
wherein said acid-functional monoethylenically unsaturated monomer is added to the polymerization of said shell stage polymer over the first 50% of the total shell stage monomer feed, when the particle size of said core stage polymer is less than about 130 nm.
4. The method of claim 1, wherein said shell stage polymer is crosslinked.
5. The method of claim 1, wherein said contacting of said paper comprises, incorporating said composition in said paper during the wet-end formation of said paper.
6. The method of claim 1, wherein said contacting of said paper comprises coating said paper with said composition.
7. A decorative laminate formed by the method of any one of claims 1-6.
US11/110,181 2004-04-23 2005-04-20 Method of preparing decorative laminate Abandoned US20050236124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04291068 2004-04-23
FR04291068.7 2004-04-23

Publications (1)

Publication Number Publication Date
US20050236124A1 true US20050236124A1 (en) 2005-10-27

Family

ID=34931050

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/110,181 Abandoned US20050236124A1 (en) 2004-04-23 2005-04-20 Method of preparing decorative laminate

Country Status (4)

Country Link
US (1) US20050236124A1 (en)
CN (1) CN100424267C (en)
DE (1) DE602005024078D1 (en)
ES (1) ES2351869T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691219A (en) * 2020-05-28 2020-09-22 仙鹤股份有限公司 High-tearing-strength CTP plate lining paper and preparation method thereof

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647619A (en) * 1969-11-10 1972-03-07 Eastman Kodak Co High pressure calendering of a paper web between heated calender rolls having non-resilient surfaces
US3798111A (en) * 1972-03-24 1974-03-19 Mead Corp Multiple layer decorated paper,laminates prepared therefrom and process
US3960583A (en) * 1974-05-02 1976-06-01 Philadelphia Quartz Company Method of preparing modified hollow, largely spherical particles by spray drying
US4305987A (en) * 1978-02-22 1981-12-15 Nevamar Corporation Abrasion resistant laminate
US4427836A (en) * 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
US4726986A (en) * 1986-09-17 1988-02-23 Westinghouse Electric Corp. Decorative laminates having a thick chemical resistant outer layer
US4972000A (en) * 1988-02-29 1990-11-20 Japan Synthetic Rubber Co., Ltd. Hollow polymer particles, process for production thereof, and use thereof as pigment
US5077320A (en) * 1989-06-23 1991-12-31 Nippon Zeon Co., Ltd. Microvoid-containing polymer particles
US5216044A (en) * 1989-10-27 1993-06-01 Mitsui Toatsu Chemicals, Incorporated Synthetic core-shell particle resin emulsion, process for producing and coating compositions comprising same
US5494971A (en) * 1994-08-12 1996-02-27 Rohm And Haas Company Encapsulated hydrophilic polymers and their preparation
US5510422A (en) * 1992-04-10 1996-04-23 Rohm And Haas Company Synthesis of latex capsules
US5521253A (en) * 1990-10-12 1996-05-28 The Dow Chemical Company Hollow polymer latex particles
US5639805A (en) * 1991-12-13 1997-06-17 Korea Chemical Co., Ltd. Process for preparing core-shell emulsion polymer particles and resulting product containing such particles
US6020961A (en) * 1995-11-30 2000-02-01 Merlin Gesellschaft Fuer Mikrobiologische Diagnostik Mbh Nephelometer
US6020435A (en) * 1997-11-05 2000-02-01 Rohm And Haas Company Process for preparing polymer core shell type emulsions and polymers formed therefrom
US6139961A (en) * 1998-05-18 2000-10-31 Rohm And Haas Company Hollow sphere organic pigment for paper or paper coatings
US20010036990A1 (en) * 2000-03-30 2001-11-01 Bobsein Barrett Richard Waterborne paper or paperboard coating composition
US20020001698A1 (en) * 1998-05-06 2002-01-03 Blankenship Robert Mitchell Low gloss coating composition
US20020072560A1 (en) * 2000-10-12 2002-06-13 Bardman James Keith Process for forming an aqueous polymeric dispersion
US20030129435A1 (en) * 2002-01-07 2003-07-10 Blankenship Robert Mitchell Process for preparing emulsion polymers and polymers formed therefrom
US20030176535A1 (en) * 2002-03-12 2003-09-18 Chao-Jen Chung Heat resistant non-pigmented inks
US6719932B2 (en) * 1997-11-07 2004-04-13 Shipley Company, L.L.C. Particles and a process for preparing the same
US6765072B1 (en) * 1998-07-22 2004-07-20 National Starch And Chemical Investment Holding Corporation Process for the preparation of aqueous dispersions of latex particles having a heterogeneous morphology, the latex particles obtainable with the process, the dispersions and redispersible powders, as well as the use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1335688C (en) * 1989-09-21 1995-05-30 Loreen Doris Ferguson Vesiculated polymer granules and paper made therefrom

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647619A (en) * 1969-11-10 1972-03-07 Eastman Kodak Co High pressure calendering of a paper web between heated calender rolls having non-resilient surfaces
US3798111A (en) * 1972-03-24 1974-03-19 Mead Corp Multiple layer decorated paper,laminates prepared therefrom and process
US3960583A (en) * 1974-05-02 1976-06-01 Philadelphia Quartz Company Method of preparing modified hollow, largely spherical particles by spray drying
US4305987A (en) * 1978-02-22 1981-12-15 Nevamar Corporation Abrasion resistant laminate
US4427836A (en) * 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
US4726986A (en) * 1986-09-17 1988-02-23 Westinghouse Electric Corp. Decorative laminates having a thick chemical resistant outer layer
US4972000A (en) * 1988-02-29 1990-11-20 Japan Synthetic Rubber Co., Ltd. Hollow polymer particles, process for production thereof, and use thereof as pigment
US5077320A (en) * 1989-06-23 1991-12-31 Nippon Zeon Co., Ltd. Microvoid-containing polymer particles
US5216044A (en) * 1989-10-27 1993-06-01 Mitsui Toatsu Chemicals, Incorporated Synthetic core-shell particle resin emulsion, process for producing and coating compositions comprising same
US5521253A (en) * 1990-10-12 1996-05-28 The Dow Chemical Company Hollow polymer latex particles
US5639805A (en) * 1991-12-13 1997-06-17 Korea Chemical Co., Ltd. Process for preparing core-shell emulsion polymer particles and resulting product containing such particles
US5510422A (en) * 1992-04-10 1996-04-23 Rohm And Haas Company Synthesis of latex capsules
US5494971A (en) * 1994-08-12 1996-02-27 Rohm And Haas Company Encapsulated hydrophilic polymers and their preparation
US5545695A (en) * 1994-08-12 1996-08-13 Rohm And Haas Company Encapsulated hydrophilic polymers and their preparation
US6020961A (en) * 1995-11-30 2000-02-01 Merlin Gesellschaft Fuer Mikrobiologische Diagnostik Mbh Nephelometer
US6020435A (en) * 1997-11-05 2000-02-01 Rohm And Haas Company Process for preparing polymer core shell type emulsions and polymers formed therefrom
US6252004B1 (en) * 1997-11-05 2001-06-26 Rohm And Haas Company Process for preparing multi-stage polymer emulsions and multi-stage polymers formed therefrom
US6719932B2 (en) * 1997-11-07 2004-04-13 Shipley Company, L.L.C. Particles and a process for preparing the same
US20020001698A1 (en) * 1998-05-06 2002-01-03 Blankenship Robert Mitchell Low gloss coating composition
US6139961A (en) * 1998-05-18 2000-10-31 Rohm And Haas Company Hollow sphere organic pigment for paper or paper coatings
US6765072B1 (en) * 1998-07-22 2004-07-20 National Starch And Chemical Investment Holding Corporation Process for the preparation of aqueous dispersions of latex particles having a heterogeneous morphology, the latex particles obtainable with the process, the dispersions and redispersible powders, as well as the use thereof
US20010036990A1 (en) * 2000-03-30 2001-11-01 Bobsein Barrett Richard Waterborne paper or paperboard coating composition
US20020072560A1 (en) * 2000-10-12 2002-06-13 Bardman James Keith Process for forming an aqueous polymeric dispersion
US20030129435A1 (en) * 2002-01-07 2003-07-10 Blankenship Robert Mitchell Process for preparing emulsion polymers and polymers formed therefrom
US20030176535A1 (en) * 2002-03-12 2003-09-18 Chao-Jen Chung Heat resistant non-pigmented inks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691219A (en) * 2020-05-28 2020-09-22 仙鹤股份有限公司 High-tearing-strength CTP plate lining paper and preparation method thereof

Also Published As

Publication number Publication date
DE602005024078D1 (en) 2010-11-25
ES2351869T3 (en) 2011-02-11
CN1690308A (en) 2005-11-02
CN100424267C (en) 2008-10-08

Similar Documents

Publication Publication Date Title
US11802173B2 (en) Voided latex particles containing functionalized outer shells
US10005871B2 (en) Process of preparing an emulsion containing core-sheath-shell polymer particles
KR101172768B1 (en) Core-shell polymeric particles
EP0959176B1 (en) Hollow sphere organic pigment for paper or paper coatings
EP3677423B1 (en) Voided latex particles
US20190292346A1 (en) Voided latex particles
US20060046056A1 (en) Method of using hollow sphere polymers
US20020072560A1 (en) Process for forming an aqueous polymeric dispersion
US8476190B2 (en) Composite particles
US20010036990A1 (en) Waterborne paper or paperboard coating composition
EP1602783B1 (en) Method of preparing paper
EP1602784B1 (en) Method of preparing decorative laminate
US20050236124A1 (en) Method of preparing decorative laminate
US20050236125A1 (en) Method of preparing paper

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION