Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050230419 A1
Publication typeApplication
Application numberUS 11/067,586
Publication date20 Oct 2005
Filing date28 Feb 2005
Priority date28 Feb 1997
Also published asCA2230768A1, CA2230768C, US6083450, US6238201, US20020001687
Publication number067586, 11067586, US 2005/0230419 A1, US 2005/230419 A1, US 20050230419 A1, US 20050230419A1, US 2005230419 A1, US 2005230419A1, US-A1-20050230419, US-A1-2005230419, US2005/0230419A1, US2005/230419A1, US20050230419 A1, US20050230419A1, US2005230419 A1, US2005230419A1
InventorsJohn Safian
Original AssigneeSafian John W
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multilayer container package
US 20050230419 A1
Abstract
A multilayer container including an outer relatively rigid plastic layer having a body portion, a finish defining an opening and a base having an atmospheric vent opening therethrough. The container includes an inner flexible plastic layer of relative thin flexible material throughout which does not adhere to the outer plastic layer. The inner flexible layer has a closed bottom portion engaging the inner surface of the finish of the outer plastic layer and a radially extending flange portion of the inner layer overlying the finish of the outer layer. The outer layer preferably comprises an olefin and the inner layer preferably comprises amorphous nylon. The method of making the multilayer container includes coextruding a parison comprising the relatively thick outer layer of plastic material and the relatively thin inner layer of plastic material, closing molds about the parison, blow molding the parison to form the outer rigid plastic layer having a body portion, the finish defining an opening, and the base and the inner flexible layer of relatively thin flexible material.
Images(9)
Previous page
Next page
Claims(6)
1. A multilayer container that comprises:
inner and outer layers that are coextruded and blow molded simultaneously with each other,
said outer layer being a relatively rigid plastic layer having a body portion, a finish having an axial end surrounding a dispensing opening, and a base having an atmospheric vent opening formed by removal of material from said base after blow molding,
said inner layer being a relatively thin flexible plastic layer that extends around an inner surface of said outer layer and is unadhered to said outer layer,
said inner flexible layer being of uniform thickness throughout, having a portion that overlies said vent opening, and having a portion engaging the inner surface of said finish and a radially extending flange portion overlying an axial edge of said finish.
2. The multilayer container set forth in claim 1 wherein said flange portion of said inner layer entirely overlies the end of said finish of said outer layer and terminates at an outer edge of said finish.
3. The multilayer container set forth in claim 2 wherein said portion of said inner layer engaging said finish and overlying said finish is unadhered to said finish.
4. The multilayer container set forth in claim 3 wherein said outer plastic layer comprises olefinic plastic and said inner flexible layer comprises amorphous nylon.
5. The multilayer container set forth in claim 4 wherein said olefinic plastic comprises high density polyethylene.
6. The multilayer container set forth in claim 2 including a product in said container, and a closure, and a dispenser on said finish of said outer layer such that the flange portion of the inner flexible container forms a seal with the closure.
Description
  • [0001]
    This application is a division of application Ser. No. 09/561,326 filed Apr. 28, 2000, which is a division of Ser. No. 09/197,732 filed Nov. 20, 1998 and now U.S. Pat. No. 6,083,450, which is a division of application Ser. No. 08/807,944 filed Feb. 27, 1997 and now abandoned.
  • [0002]
    This invention relates to multilayer containers and particularly to multilayer container packages that comprise an outer relatively rigid plastic container and an inner relatively thin plastic container.
  • BACKGROUND AND SUMMARY OF THE INVENTION
  • [0003]
    One type of container which is well known comprises an outer relatively rigid plastic layer and an inner relatively flexible inner layer. The outer layer is provided with an atmospheric vent opening such that the inner flexible layer collapses and delaminates from the outer layer when the liquid contents are dispensed. In the manufacture of such containers, it is common to apply a differential pressure to insure that the delamination will occur. In addition, it is usually necessary to trim the containers. Typical containers are shown, for example, in U.S. Pat. Nos. 5,435,452 and 5,513,761. Such containers are used with dispensers such as pump dispensers or spray dispensers and the inner layer, sometimes called a bag, is made of a resin which is compatible with the liquid contents.
  • [0004]
    Among the objectives of the invention are to provide a multilayer container wherein the container does not require trimming and the like; wherein the atmospheric vent opening is obtained during the blow molding of the package; wherein any tendency of the inner layer to adhere to the outer layer is eliminated; and wherein no delamination step is required in the manufacture.
  • [0005]
    In accordance with the invention, the multilayer container comprises an outer relatively rigid plastic layer having a body portion, a finish defining an opening and a base. The outer rigid layer has an atmospheric vent opening therethrough. The container includes an inner flexible plastic layer of relative thin flexible material throughout which does not adhere to the outer plastic layer. The inner flexible layer has a closed bottom portion engaging the inner surface of the finish of the outer plastic layer and a radially extending flange portion of the inner layer overlying the finish of the outer layer. The outer layer preferably comprises an olefin and the inner layer preferably comprises amorphous nylon. The method of making the multilayer container includes coextruding a parison comprising a relatively thick outer layer of plastic material and a relatively thin inner layer of plastic material, the outer plastic material and inner plastic material being such that the layers will not adhere to one another, closing molds about the parison, blow molding the parison to form an outer rigid plastic layer having a body portion, a finish defining an opening, and a base and an inner flexible layer of relatively thin flexible material throughout which does not adhere to the outer plastic layer and the inner flexible layer having a portion engaging the inner surface of the finish of the outer plastic layer and a radially extending flange portion of the inner layer overlying the finish, and simultaneously forming an atmospheric vent opening to the outer layer. During the blow molding, the base of the outer layer is formed with an outer generally planar surface and a diametral slit. A portion of the inner layer extends along the inner surface of the base of the outer layer and a portion of the inner layer extends into the opening but not beyond the outer surface of the base. When the contents are dispensed by a differential pressure, air enters through the vent opening and the inner layer readily delaminates from the outer layer without the need of any prelamination step in the making of the container.
  • DESCRIPTION OF THE DRAWINGS
  • [0006]
    FIG. 1 is an elevational view of the multilayer container embodying the invention.
  • [0007]
    FIG. 2 is a top plan view.
  • [0008]
    FIG. 3 is a bottom plan view.
  • [0009]
    FIG. 4 is a sectional view taken along the line 4-4 in FIG. 2.
  • [0010]
    FIG. 5 is a sectional view on an enlarged scale taken along the line 5-5 in FIG. 2.
  • [0011]
    FIG. 5A is a sectional view on a greatly enlarged scale taken at the circle 5A in FIG. 5.
  • [0012]
    FIG. 6 is a partly diagrammatic vertical sectional view of the apparatus for forming the finish of the container.
  • [0013]
    FIG. 7 is a sectional view showing the apparatus of FIG. 6 in a different operative position.
  • [0014]
    FIG. 8 is a sectional view showing the apparatus of FIG. 7 in a further operative position.
  • [0015]
    FIG. 9 is an enlarged view taken at the circle 9 in FIG. 8.
  • [0016]
    FIG. 10 is a sectional view showing the apparatus of FIG. 8 in a further operative position.
  • [0017]
    FIG. 11 is an enlarged view taken at the circle 11 in FIG. 10.
  • [0018]
    FIG. 12 is a partly diagrammatic view showing the movement of the inner layer relative to the outer layer during dispensing of the contents.
  • [0019]
    FIG. 13 is a similar view of a prior art container.
  • [0020]
    FIG. 14 is a fragmentary sectional view on an enlarged scale of the container embodying the invention with a closure and pump in position.
  • [0021]
    FIG. 15 is a fragmentary sectional view on a greatly enlarged scale of a portion of the assembly shown in FIG. 14.
  • [0022]
    FIG. 16 is an elevational view of a tail puller associated with the blow mold.
  • [0023]
    FIG. 17 is an end view taken from the right in FIG. 16.
  • [0024]
    FIG. 18 is a perspective view of one of the molds showing the tail removed from the container.
  • [0025]
    FIG. 19 is a fragmentary perspective view of a portion of FIG. 18.
  • [0026]
    FIG. 20 is a fragmentary perspective view on an enlarged scale of a portion of FIG. 19.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0027]
    Referring to FIGS. 1-5A, the container C embodying the invention comprises an outer relatively rigid plastic layer 30 and an inner relatively thin inner layer 32. The outer layer 30 includes a body portion 34, a finish 36 and a base 38 having a diametral slit 40 defining an atmospheric vent opening 42. The inner layer 32 comprises a body portion 44, a finish portion 46 extending along the inside surface of the finish 36 of the outer layer and having a radial flange 48 overlying the radial surface of the finish 36. The bottom 50 of the inner layer is closed.
  • [0028]
    The container is made by coextruding a parison, closing molds about the parison and blow molding the parison. A preferred apparatus is shown in U.S. Pat. Nos. 3,781,395, 3,767,747 and 3,978,184, incorporated herein by reference.
  • [0029]
    In accordance with the invention, a blowpin assembly 52 is provided which applies air to blow the layers and shape the flange 48 and sever the moil. The blowpin assembly is composed of a blowpin tip 54, a cutter 56, a spacer 58 and a sleeve 60. These components are assembled together and attached onto a blowpin station stem. Expansion air is blown through the assembly to blow the container. The blowpin tip 54 is sized so that specific container finish and neck dimensions are achieved. The cutter 56 is sized to be about 0.010 inches larger in diameter than the diameter of anvil 62 so that it can fold and flatten the inner layer over the outer layer. In addition, it pinches the extra parison portion or moil between the anvil and the cutter 56. This cutting is the result of the downward motion of the blowpin assembly cutter 56 against the anvil. The sleeve 60 is larger in diameter than the bottom of the opening in the anvil 62, for example, approximately 0.030 inch, and is used as an air deflector which both cools the severed moil and acts as a carrier which removes the moil as the blowpin assembly 52 moves upward and away from the finished container. The spacer 58 establishes the position of the blowpin tip 54 and cutter 56 at the proper depth in relation to the mold and sleeve away from the anvil surface. It also has through-holes drilled therein such that air can be channeled to the sleeve.
  • [0030]
    In the blow molding cycle, the open molds are transferred from a resting position to an up and under position relative to the free-flowing parison. At the correct time, the molds are closed and the parison is cut. The closed mold is transferred to a down and resting position where the blowpin station is positioned over the mold. The machine control then moves the blowpin assembly 52 downward towards the mold and enters the mold through the anvil 62. FIG. 6 shows this entry point of the blowpin assembly, position and shape of the top portion of the hot parison. The top portion of the cut parison and above the bottom of the anvil is called the moil. It is cone-like in shape and lays around the upper portion of the anvil 62.
  • [0031]
    Referring to FIGS. 7 and 8, the blowpin assembly 52 is shown down and bottomed against the anvil 62 and mold. Since the blowpin 54 entered the inner layer of the multilayer container, the cutter 56 first comes in contact with the parison. It will tend to push outward, flatten and then compress the inner layer against the outer layer as in FIG. 9. When the blowpin assembly 52 reaches its final downward travel, the sharp cutter edge 56 will pinch and cut both layers against the sidewall of the anvil 62. During this time, expansion air is flowing thru the spacer 58, sleeve 60 and the severed parison so that the moil M will form around the sleeve 60. As the blow cycle is complete and the blowpin assembly is moved upward, the moil M stays on the assembly to be stripped away, as shown in FIG. 10. FIG. 9 shows flange 48 created during molding. The moil M is removed as the blowpin assembly 52 is removed from the container. With a finished flange 48, a finger pump or trigger sprayer with a closure can be secured to the container. The compression of closure against the flange will create an hermetic seal between these layers at the mouth of the container. As a result, a gasket is not required between the closure and flange.
  • [0032]
    Referring to FIG. 12, this figure shows the difference between a collapsible inner layer or bag or multilayer container with a flange and no adhesive used. In FIG. 11, the flange 48 which was molded over the finish will prevent the air from flowing into the bag from the atmospheric vent. The compression of the closure without a gasket compresses together both the inner layer flange 48 and radial surface of the finish 36 on the outer layer 30. This prevents the vacuum from escaping. The prior art container shown in FIG. 13 will not retain vacuum because the outside air will flow up through the vent, between layers across the closure and through the pumping device.
  • [0033]
    In accordance with another aspect of the invention, the outer container is made of olefin plastic, preferably high density polyethylene (HDPE) and the inner container is made of amorphous nylon. Amorphous nylon as used herein means a polyamide that is not crystalline in the sense that it does not display any crystalline melting point as measured by differential scanning calorimetry. In the preferred embodiment, the amorphous nylon is made by condensation of hexamethylene diamine, isophthalic acid and terephthalic acid.
  • [0034]
    Thus, the inner layer of a multilayer container delaminates or separates from the outer layer easily without additional handling or using a secondary machine operation. The layer separation is accomplished by choosing resins which do not adhere to each other and satisfy customer criteria. In a functional multilayer container package, the neck is sealed with a finger pump or similar device which is used to create a vacuum that will draw the contents out while collapsing the inner layer. Outer layer deformation is not an acceptable effect. No adhesives are used between the different thermoplastic layers. Using an outer layer of high density polyethylene together with amorphous nylon will function correctly and meet the above criteria.
  • [0035]
    Processing with differently structured nylons such as an amorphous nylon results in the inner layer significantly separating with less force than is required with other resins such as a crystalline structured nylon.
  • [0036]
    In addition to the aforementioned advantages of utilizing amorphous nylon, the following advantages are achieved in the container made utilizing amorphous nylon:
  • [0037]
    1. Eliminate predelamination of the inner layer relative to outer layer of a bag in a bottle type multilayer container. The predelamination is defined as any method of pre-separating the inner from the outer layer prior to filling the container with a product.
  • [0038]
    2. Less force or vacuum is required to separate the inner layer from the outer layer. Typically, the container is filled with a product and evacuated without extra handling or predelaminating the inner layer so to help it function. A finger pump or trigger sprayer device is used to evacuate product and collapse the inner bag together.
  • [0039]
    3. Does not require special equipment or extra secondary processing which injects or traps air between layers.
  • [0040]
    4. Eliminates container outer wall deformation.
  • [0041]
    5. Eliminates using multiple atmospheric vent holes in the container outer layer.
  • [0042]
    Previous designs need to inject air or gas through holes made in the base and/or sidewalls of the outer layer of a multilayer container to help separate layers. Other designs have extensive processing steps or expensive equipment to separate the inner from the outer layer before it is filled with a product. The amorphous nylon does not require any predelamination to separate the nylon from a HDPE layer when the container is evacuated with product. Using a thin layer of amorphous nylon of approximately 0.002 to 0.006 in. thick as an inner layer and a outer layer of HDPE of 0.020 in. or greater thickness will separate as previously mentioned without extra handling. The thickness of the inner amorphous nylon layer is uniform throughout but can vary depending on the oxygen barrier requirements and package functional requirements. Using a crystalline structured nylon requires a force or vacuum two times or greater to separate the inner layer from the outer layer. This causes container outer wall deformation and is very undesirable. When processing, a co-crystalline barrier may be developed between the HDPE and the crystalline nylon. Crystalline nylon which shows these characteristics are Allied-Signal's Capron Xtraform XPN1539F and also CA73YP. A satisfactory amorphous nylon, Selar PA 3426, made byDuPont results in good separation from the HDPE.
  • [0043]
    Amorphous nylon does not have a defined crystalline melting point, as contrasted with crystalline, and therefore softens as the melt temperature increases over a large range. Amorphous nylon is a polyamide made by condensation of hexamethylene diamine, isophthalic acid and terephthalic acid. Amorphous nylon has better oxygen, moisture and carbon dioxide barrier properties especially at high humidities when compared to crystalline nylon. Amorphous nylon has better transparency, higher gloss and lower haze than crystalline nylon. It has been found that an amorphous nylon inner layer tends to shrink away from the outer layer and eliminates any tendency for adhering to the outer layer, as contrasted to crystalline nylon. The properties of amorphous nylon and crystalline nylon can be compared by reference to the following:
      • Melting Point Differential Scanning Calorimeter (DSC)
      • Amorphous Nylon (Selar Pa 3426): No melting point
      • Crystalline Nylon (Capron): 201.94 C.
      • High Density Polyethylene (Paxon): 132.03 C.
      • Oxygen Permeation
      • Amorphous Nylon: 1.3 cc/mil/100 in.sq./24 hr./atm (95% RH) @ 77 F.
      • Crystalline Nylon: 12 cc/mil/100 in.sq./24 hr./atm (95% RH) @ 77 F.
      • Carbon Dioxide Permeation
      • Amorphous Nylon: 6 cc/mil/100 in.sq./24 hr./atm (95% RH) @ 77 F.
      • Crystalline Nylon: 120 cc/mil/100 in.sq./24 hr./atm (95% RH) @ 77 F.
      • Moisture Vapor Transmission Rate
      • Amorphous Nylon: 1.85 gm/100 in.sq./24 hr. @ 95% RH @ 73 F.
      • Crystalline Nylon: 12.44 gm/100 in.sq./24 hr. @ 95% RH @ 73 F.
      • Optical Properties Transparency (1 mil blown film)
      • Amorphous Nylon: 70% Total
      • Crystalline Nylon: 10% Total
  • [0060]
    Although the multilayer container has been described as comprising two layers, the container may have more layers as shown in the following examples:
  • EXAMPLE I
  • [0061]
    outer layer high density polyethylene
    inner layer amorphous nylon
  • EXAMPLE II
  • [0062]
    outer layer high density polyethylene
    inner layer amorphous nylon
    intermediate layer composite of outer and inner layer regrind
  • Testing Test I
  • [0063]
    A layer breakaway comparative test was made between containers having an outer layer of high density polyethylene and an inner layer of the crystalline or amorphous nylon. A vacuum gage was attached to each test sample. Vacuum was generated until a peak reading was achieved on the gage. After the peak reading was reached, a dropoff of vacuum was expected. The peak reading is the force it takes to separate the inner layer from the outer layer. The vacuum dropoff reading occurs when the layers separate. All test containers had atmospheric vents created in their bases. The test was aborted if the sidewall panels collapsed before the inner layer separated or vacuum dropoff was not achieved.
    TABLE I
    Capron Capron Selar
    Sample XPN1539F CA73YP PA 3426
    1 200-SWD 200-SWD 100-60-NSWD
    2 200-SWD 200-SWD  90-60-NSWD
    3 200-SWD 200-SWD 100-80-NSWD
    4 200-SWD 200-SWD 100-70-NSWD
    5 180-SWD 210-SWD  50-50-NSWD
    6 160-SWD 200-SWD  90-50-NSWD
    7 160-SWD 210-SWD 120-50-NSWD
    8 180-SWD 220-SWD 120-70-NSWD
    9 190-SWD 210-SWD 110-70-NSWD
    10  150-SWD 200-SWD 110-70-NSWD

    All measurements are MM-HG

    S.W.D. indicates sidewall deformation. Vacuum dropoff was not achieved.

    N.S.W.D. indicates no sidewall deformation. Vacuum dropoff was achieved.

    The third column indicates two numbers. The left number is the peak vacuum and the right number is when the collapsed inner layer lifts from the base of the container.
  • Test II
  • [0064]
    A visual observation test was performed. Two groups of test samples were collected. Test group one consisted of containers which have an amorphous nylon inner layer and high density polyethylene as the outer layer. Test group two was composed of crystalline nylon as the inner layer and the same high density polyethylene as the outer layer. No adhesives were used between layers. The container panels were removed from both groups of containers. The test consisted of separating the layers by hand to observe the ease of separation and to view any material which would adhere to one of the layers. Group one was found to have no peeling, material threading or adhering between layers. Actually, they slipped apart from each other very easily. Test group two was found to have fine material strands between the layers or layers which stick together, i.e., like glue.
  • [0065]
    In accordance with another aspect of the invention, the atmospheric vent is made during the blow molding of the parison without the need for further trimming.
  • [0066]
    In the present invention, the inner bag layer is not secured to the outer layer by adhesives, bonding, pinching or gathering at the base of the bottle, sidewalls or panels or at the neck of the container.
  • [0067]
    Current base tooling is modified to help start the creation of the atmospheric vent opening 42. The vent opening 42 is created across the central portion of the parting line at the base of the container. The tooling is designed so that the central portion of the parting line does not pinch the central portion of the tail as much as the remaining portions of the tail. The slot in the tooling for forming the vent opening is wider than the rest of the pinch line, for example, an additional 0.004 inch width (0.002 in. per side) is provided for approximately 70% of the parting line width. The wider gap on the tooling creates additional clearance so the material is thicker at that point. The remaining parting line pinches the parison tail to less than 0.005 in. A tail removing device is attached to the mold so that when the tails are removed at the end of the machine cycle, more material is removed at the slit. This forms a wider gap than the remaining parting line. None of the material from the inner layer 32 extends entirely through the vent opening 42 to the generally planar outer surface of the base 38. As the container cools, the gap will widen slightly due to the thermal shrinkage of the resins and the difference of thickness of the HDPE and amorphous nylon.
  • [0068]
    It can be seen that the finished vent opening 42 does not have a molded rib projecting downward. In a wet area, i.e., bathroom, the problem with a rib projecting downward is that it could come in contact with water and draw the water up between the layers.
  • [0069]
    If one or more decorating lugs L are provided on the outer surface of the base of the outer container for rotating the container during handling and decorating, they are located in circumferentially spaced relation to the parting line and radially outwardly with respect to the vent opening 42 (FIG. 3).
  • [0070]
    FIGS. 14 and 15 show the container embodying the invention with a closure and a ventless pump in the shipping position. The pump includes a ventless tank 70 having an integral flange 72; a threaded cap 74 having a radial flange 76; and integral axial locating elements 78 extending through an opening in the flange 76 to retain a closure 80 in position. An actuator 82 is snapped into a piston 84 after threaded cap 74 is snapped into the tank 70 and a closure is snapped over the axial locating elements 78. This assembly actuates piston 84 and associated spring loaded ball 86 in accordance with conventional pump design after the actuator 82 is unthreaded out of shipping position. The flanges 72 and 76 are interposed between the base wall 88 of the closure and the flange on the inner layer overlying the finish of the outer layer thereby providing a construction that does not require any other gasket or sealing. It can be seen that a flange is interposed between the base of the closure and the flange on the inner layer. Upon actuation of the pump, the product is dispensed and the differential pressure causes the bottom of the inner layer to lift off the base of the outer layer.
  • [0071]
    Partly diagrammatic FIGS. 16-20 show the apparatus for forming the atmospheric vent opening in the outer layer of the container. Each mold half 90 wherein the container is blow molded has a bottom forming insert 92 with a radial recess 94 such that when the molds are brought together a slot is formed which pinches the central portion of a parison a lesser amount than the outer portions of the parison. A pair of tail puller assemblies 96 is provided to clamp the tail T defined by pinching the parison. Each tail assembly 96 includes serrated jaws 100 actuated by an air cylinder 98 when the molds close to grasp the tail. Toward the end of the molding cycle, while the molds are closed, cylinders 98 are actuated and serrated jaws 100 are pivoted and pulled downwardly to remove the tail T leaving a vent opening 42 in the outer layer of the container which has been blow molded.
  • [0072]
    It can thus be seen that there has been provided a multilayer container wherein any tendency of the inner layer to adhere to the outer layer is assured, wherein no delamination step is required in the manufacture; wherein the container does not require trimming and the like; and wherein the atmospheric vent opening is obtained during the blow molding of the package.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US798093 *11 May 190429 Aug 1905Edward F DeanHypodermic syringe.
US1035718 *12 Jul 191013 Aug 1912James H MarstersDrinking-cup device.
US1632559 *22 Dec 192314 Jun 1927 Howard ashley pedbick
US2433945 *22 Oct 19466 Jan 1948Julius C ForemanGarbage can liner
US2571424 *6 Aug 194616 Oct 1951Cascade Sprayer CompanyDilution of liquid concentrates
US2678764 *6 Dec 195118 May 1954Emery Carpenter Container CompAccessory for use in filling lined containers
US2715980 *9 Oct 195023 Aug 1955Leo M HarveyLiquid handling dispenser
US2891700 *19 Nov 195623 Jun 1959Gestetner LtdCollapsible containers
US2924359 *15 Feb 19579 Feb 1960Thompson Ramo Wooldridge IncExpulsion bag fuel tank
US3023461 *7 Nov 19586 Mar 1962Owens Illinois Glass CoMethod for extruding plastic materials
US3039648 *23 Sep 195919 Jun 1962Arthur F BuschContainer for gasoline
US3097766 *17 Sep 195916 Jul 1963Curtiss Wright CorpPre-filled propellant tank for rockets
US3171571 *8 Mar 19632 Mar 1965Bastian Blessing CoBeverage dispenser
US3198392 *5 Nov 19633 Aug 1965Polytop CorpTube collapsing structure
US3257147 *13 Jan 196421 Jun 1966Carter Andrew GDevice for removing slack from a safety belt
US3260412 *25 Mar 196512 Jul 1966Phillips Petroleum CoDispensing container with collapse securing means
US3263009 *8 May 196426 Jul 1966Phillips Petroleum CoMethod of making a carrying case
US3355069 *13 Dec 196528 Nov 1967Colgate Palmolive CoDispensing container
US3409714 *9 Aug 19665 Nov 1968Goodrich Co B FFuel tank
US3508587 *29 Sep 196628 Apr 1970Hans A MauchTubular structural member
US3651186 *29 Mar 196821 Mar 1972Hercules IncMethod for forming blow molded articles of oriented thermoplastic material
US3733013 *22 Dec 197015 May 1973Sterling Drug IncDouble dip tube aerosol
US3752351 *27 Jan 197114 Aug 1973Nagata KHigh impact resistant double-walled container
US3762613 *18 Sep 19722 Oct 1973Baron Ltd AndrewDevice for turning tubular fabrics
US3767747 *4 Jan 197123 Oct 1973Owens Illinois IncMethod for blow molding
US3773233 *28 Dec 197020 Nov 1973Phoenix Closures IncSelf-closing dispenser
US3831395 *30 May 197327 Aug 1974Levy HAir conditioner
US3836335 *1 Jun 197317 Sep 1974Corning Glass WorksReagent storage and dispensing system
US3896602 *1 Aug 197329 Jul 1975Petterson Tor HMethod of manufacturing of a barrier package
US3978184 *22 Jul 197431 Aug 1976Owens-Illinois, Inc.Method of two-step blow molding employing a transfer clamp
US4034896 *18 Dec 197512 Jul 1977Wilson Walon KDiaphragm controlled garden and orchard sprayer
US4147278 *7 Apr 19773 Apr 1979Owens-Illinois, Inc.Fluid product dispenser
US4154345 *22 Feb 197815 May 1979Sweetheart Plastics, Inc.Food product containers and the method and apparatus for manufacturing same
US4182457 *3 Aug 19778 Jan 1980Toyo Seikan Kaisha LimitedMultilayer container
US4254075 *23 Mar 19783 Mar 1981Reed Irrigation SystemsMethod for forming holes in a member
US4322020 *7 Jan 198030 Mar 1982Raymond StoneInvertible pump sprayer
US4330066 *21 Nov 198018 May 1982Robert BerlinerReceptacle with collapsible internal container
US4457455 *13 Oct 19813 Jul 1984Philip MeshbergCollapsible container
US4497622 *2 Aug 19825 Feb 1985Brockway-Imco Inc.Blow pin assembly
US4526823 *28 Dec 19832 Jul 1985American Can CompanyLaminate structure for collapsible dispensing container
US4550009 *22 Feb 198429 Oct 1985Rehau Plastiks Ag & Co.Method of making blow-molded parts of thermoplastic material
US4609516 *17 Feb 19842 Sep 1986Continental Pet Technologies, Inc.Method of forming laminated preforms
US4657151 *12 Apr 198414 Apr 1987Baxter Travenol Laboratories, Inc.Container such as a nursing container, with flexible liner
US4693395 *2 Sep 198615 Sep 1987Colgate-Palmolive CompanyEthylene propylene copolymer in a substrate and collapsible dispensing container made therefrom
US4693396 *2 Sep 198615 Sep 1987Colgate-Palmolive CompanyLaminate substrate and article therefrom incorporating fluorinated polyethylene
US4719069 *13 May 198612 Jan 1988Krupp Corpoplast Maschinenbau GmbhMethod for making a preform consisting of at least three layers of thermoplastic material
US4741936 *2 Dec 19863 May 1988Toyo Seikan Kaisha, Ltd.Laminate preform for a multi-layer polyester bottle
US4753591 *29 Jul 198628 Jun 1988The Procter & Gamble CompanyApparatus for forming the neck finish of blow molded containers
US4775879 *18 Mar 19874 Oct 1988Motorola Inc.FET structure arrangement having low on resistance
US4816093 *25 Sep 198728 Mar 1989Robbins Edward S IiiSeparable laminate container
US4821896 *24 Mar 198818 Apr 1989Cheng Ping NNursing bottle with a liner and vent
US4875508 *25 Sep 198524 Oct 1989The Coca-Cola CompanyBeverage container suitable for use in outer space
US4892230 *14 Sep 19889 Jan 1990Lynn Jr Arthur ECarbonated beverage bottle
US4893731 *20 Dec 198816 Jan 1990The Coca-Cola CompanyCollapsible bag with evacuation passageway and method for making the same
US4937130 *18 Jan 198926 Jun 1990General Electric CompanyPolycarbonate container having internal layers of amorphous polyamide
US4951341 *24 Feb 198928 Aug 1990Mary ShearsWall and ceiling mop
US4953750 *3 Apr 19894 Sep 1990Abernathy Frank WDispensing method for a variable volume disposable carbonated beverage container
US4954376 *30 Dec 19884 Sep 1990Continental Pet Technologies, Inc.Two material three/five layer preform
US4966543 *21 Dec 198930 Oct 1990Continental Pet Technologies, Inc.Apparatus for forming a vented recyclable multilayer barrier container
US4982872 *15 Dec 19888 Jan 1991Avery Donald JFilm-encapsulated-structure container for food, beverages and other consumable products and method for making of same
US4984713 *31 Mar 198715 Jan 1991Chambers Gary CCarbonated beverage dispenser
US4990301 *25 Jan 19895 Feb 1991Continental Pet Technologies, Inc.Method and apparatus for injection molding of multilayer preforms
US5012956 *7 Aug 19897 May 1991Stoody William RSqueeze bottle with bag, dispensing system
US5020691 *12 Dec 19884 Jun 1991Nye Norman HContainer shell and method of producing same
US5021209 *31 Oct 19894 Jun 1991Edward S. Robbins, IIIProcess for forming an extrusion-blow molded ultrathin container using a heat generating pinch off arrangement
US5032341 *15 Nov 198916 Jul 1991Continental Pet Technologies, Inc.Method of forming two material three/five layer preform
US5035931 *12 Sep 198930 Jul 1991Dai Nippon Insatsu K.K.Multi-layer parison, multi-layer bottle and apparatus for and method of manufacturing parison and bottle
US5049345 *9 Nov 198917 Sep 1991Continental Pet Technologies, Inc.Method of forming a multi-layer preform
US5078948 *30 Apr 19917 Jan 1992Ford Motor CompanyArrowhead tip blow needle and method of using the needle to blow mold an article
US5104607 *26 Feb 199114 Apr 1992Azrak-Hamway International, Inc.Air cushion table game and method of making same
US5108805 *4 May 198728 Apr 1992Raymond Morin, S.A.Multilayer decorative composite, substantially of a thermoshrinking thermoplastic material, for packaging, process for applying such a composite and packaging thus obtained
US5125526 *21 Nov 199130 Jun 1992Sumanis Arnold JWaste receptacle with interior bag that is opened and closed automatically
US5129735 *22 Mar 199014 Jul 1992Robert A. NealTrash compactor bag
US5137179 *15 Feb 199011 Aug 1992Hans StoffelContainers and methods for preparing and manufacturing the same
US5141695 *8 Sep 198725 Aug 1992Nissei Asb Machine Co., Ltd.Injection molding method for multi-layer bottomed parisons
US5145107 *10 Dec 19918 Sep 1992International Paper CompanyInsulated paper cup
US5147071 *9 Apr 199115 Sep 1992The Coca-Cola CompanyCollapsible bag with evacuation passageway and method for making the same
US5152427 *30 Apr 19916 Oct 1992Monsanto CompanyFluid product dispenser with volume indicator
US5156300 *1 Nov 199120 Oct 1992The Procter & Gamble CompanyBag-in-squeeze-bottle fluid dispenser with unsealed fluid passage
US5242085 *5 Dec 19917 Sep 1993The Coca-Cola CompanyLiquid container system
US5242086 *14 Jan 19937 Sep 1993The Coca-Cola CompanyLiquid container system
US5301838 *8 Jan 199212 Apr 1994Continental Pet Technologies, Inc.Multilayer bottle with separable inner layer and method for forming same
US5301840 *22 Jun 199312 Apr 1994Colgate-Palmolive CompanyTube dispenser capable of creating a suckback effect in the nozzle
US5305921 *13 Sep 199326 Apr 1994The Procter & Gamble CompanyPackage with replaceable inner receptacle having large integrally molded fitment
US5344045 *24 May 19936 Sep 1994The Coca-Cola CompanyLiquid container system
US5353930 *6 Aug 199311 Oct 1994Carr Metal Products, Inc.Vacuum-formed enclosure with vacuum-formed apertures
US5383576 *2 Sep 199324 Jan 1995The Coca-Cola CompanyLiquid container system
US5385269 *2 Sep 199331 Jan 1995The Coca-Cola CompanyLiquid container system
US5407629 *5 Aug 199318 Apr 1995Continental Pet Technologies, Inc.Multilayer bottle with separable inner layer and method of forming same
US5429702 *7 Jul 19944 Jul 1995The Procter & Gamble CompanyMethod for sealing an inner bag to an outer container
US5433347 *29 Jun 199418 Jul 1995The Coca-Cola CompanyLiquid container system
US5435452 *5 Aug 199225 Jul 1995Yoshino Kogyosho Co., Ltd.Multilayer bottle with separable layer
US5443766 *10 Sep 199322 Aug 1995Plastipak Packaging, Inc.Method of making multi-layer preform used for plastic blow molding
US5445783 *6 Jul 199329 Aug 1995Ford Motor CompanyBlow molding method
US5497911 *2 Sep 199412 Mar 1996Ellion; M. EdmundHand-held universal dispensing container which operates regardless of its orientation
US5513761 *11 May 19937 May 1996Yoshino Kogyosho Co., Ltd.Laminated bottle and pump device therefor
US5791532 *23 Nov 199511 Aug 1998Phoenix Airbag Gmbh & Co. KgProcess for reversing and end-shaping inflatable bodies
USH469 *4 Nov 19863 May 1988E. I. Du Pont De Nemours And CompanyClear plastic container with good gas and water vapor barrier properties
USRE33969 *9 Nov 199023 Jun 1992The Coca-Cola CompanyBinary syrup system bag and valve
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8061540 *9 Aug 200722 Nov 2011Yoshino Kogyosho Co., Ltd.Multi-layered, blow molded container and process for molding the same
US9469443 *14 Sep 201018 Oct 2016The Glad Products CompanyMultilayer plastic film
US20070235472 *5 Apr 200611 Oct 2007Mcfarland C JSpray Bottle Bladder
US20090230074 *9 Aug 200717 Sep 2009Yoshino Kogyosho Co., Ltd.Multi-layered, blow molded container and process for molding the same
US20110062185 *17 Nov 201017 Mar 2011Mcfarland C JustinSpray bottle assembly
US20120063704 *14 Sep 201015 Mar 2012Hoying David JMultilayer Plastic Film
Classifications
U.S. Classification222/105
International ClassificationB65D1/00, B29L9/00, B32B1/02, B05B11/00, B29C49/72, B29K23/00, B29C49/50, B29C49/22, B32B27/32, B29L22/00, B29K77/00, B29C49/04, B65D35/56, B65D1/02
Cooperative ClassificationB29C49/22, B29C2793/0054, B29L2009/001, Y10T428/1393, B29L2031/7158, B29C49/04, B65D1/0215, B05B11/0043, B29C2793/009, B29C49/50, Y10T428/1352, B29K2077/00, B05B11/3001
European ClassificationB05B11/00B5A2, B29C49/22, B29C49/50, B65D1/02B1