US20050229456A1 - Pistol with loaded chamber indicator - Google Patents

Pistol with loaded chamber indicator Download PDF

Info

Publication number
US20050229456A1
US20050229456A1 US10/825,509 US82550904A US2005229456A1 US 20050229456 A1 US20050229456 A1 US 20050229456A1 US 82550904 A US82550904 A US 82550904A US 2005229456 A1 US2005229456 A1 US 2005229456A1
Authority
US
United States
Prior art keywords
chamber
pistol
cartridge
rim
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/825,509
Inventor
James McGarry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sturm Ruger and Co Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/825,509 priority Critical patent/US20050229456A1/en
Assigned to STURM, RUGER & COMPANY, INC. reassignment STURM, RUGER & COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCGARRY, JAMES
Priority to US10/949,480 priority patent/US7383655B2/en
Priority to EP05252264A priority patent/EP1586847B1/en
Priority to AT05252264T priority patent/ATE433559T1/en
Priority to PT05252264T priority patent/PT1586847E/en
Priority to DE602005014826T priority patent/DE602005014826D1/en
Priority to ES05252264T priority patent/ES2328494T3/en
Priority to BRPI0501342A priority patent/BRPI0501342B1/en
Publication of US20050229456A1 publication Critical patent/US20050229456A1/en
Priority to US12/150,719 priority patent/US7774970B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A9/00Feeding or loading of ammunition; Magazines; Guiding means for the extracting of cartridges
    • F41A9/53Charged-condition indicators, i.e. indicating the presence of a cartridge in the cartridge chamber

Definitions

  • the present invention generally relates to firearms, and more particularly to an improved device suitable for use with, but not limited to rimfire-type cartridges to indicate the presence of a cartridge in the chamber of a pistol (i.e., a “loaded chamber”).
  • an opening or window is cut into the rear portion of the barrel or chamber wall. The opening extends radially inwards from the side of the barrel and through the barrel's rear face against which the rim of a cartridge abuts when a cartridge is loaded into the barrel bore.
  • An elongated thin elastic clip is provided that is fixed to the front portion of the barrel at one end. At the opposite end, the clip has a small projection that protrudes through the window in the barrel to contact the side of the cartridge casing when a cartridge is loaded into the barrel.
  • the clip is physically deflected outwards only by a very small amount by the cartridge casing.
  • the clip does not protrude beyond the exterior surface of the pistol in a loaded chamber condition, making the indicator not readily noticeable. Both of these factors make it difficult for a pistol user to visually distinguish a loaded chamber condition from an empty chamber condition by use of such devices.
  • a very small viewing window or port is similarly cut into in the barrel or chamber wall of a pistol to allow the presence of the cartridge casing in the barrel bore to be seen through the window. Dirt, unburned gun powder residue, carbon build-up, and grease may obscure the small viewing ports and render them ineffective.
  • the viewing port type indicators are also not useable at night or in other darkened environments.
  • a drawback of the foregoing known loaded chamber indicators is that they are also not suitable for use with all types of known self-contained cartridges currently on the market today because the window cutouts in the rear barrel or chamber reduce structural support of the cartridge casing and rim.
  • the foregoing indicators are not well-suited for the very popular rimfire-type cartridges, such as the 0.22 Long Rifle, which optimally require substantial structural support of the cartridge casing and rim during firing.
  • the impact-sensitive primer material which is used to ignite the propellant powder (i.e., gunpowder) is distributed inside and around the base of the cartridge casing in the rim.
  • the rim is a relatively thin and narrow laterally-protruding hollow annular structure disposed around the circumference of the cartridge casing at its base.
  • An annular space is contained inside the rim for holding the primer material. Striking the rim from the rear (such as with a firing pin) crushes and flattens the rim together against the rear face of the barrel or chamber. This “squeezing” deformation of the rim creates internal friction in the primer material sandwiched in the narrow annular space within the rim, and ignites the primer which in turn sets off the propellant powder.
  • the casing in the base area, and in particular the rim of the cartridge casing are intentionally made relatively thin and weak by structural design to be readily deformable. Therefore, a rimfire-type pistol, to provide maximum support to the base and rim of the cartridge to prevent the fragile rimfire casing from bursting during firing, should preferably not contain cutouts in the barrel or chamber area.
  • a preferred embodiment provides a moveable loaded chamber indicator for a pistol that advantageously does not require cutting away of the rear barrel or chamber, thereby providing substantial structural support of the cartridge casing when the cartridge is loaded in the barrel or chamber.
  • the preferred embodiment further advantageously provides a loaded chamber indicator that is more readily noticeable to a pistol user from a visual and tactile standpoint than known indicators.
  • the loaded chamber indicator operates by contact with the cartridge rim which remains outside of, and to the rear of or behind the chamber when the cartridge is loaded therein. Accordingly, the structural integrity of the chamber is not compromised by any openings cut through the chamber walls into the chamber like the known indicators discussed above. Therefore, the relatively fragile rimfire cartridge casing may be substantially and properly supported by the chamber.
  • a rimfire cartridge In a rimfire cartridge, striking the cartridge rim from the lateral or side direction (instead of from the normal rear firing direction as with a firing pin) does not ignite the primer because the “squeezing” deformation of the rim needed to ignite the primer material (discussed above) is not created by impacting the rim from the side.
  • the arched shape of the rim presented in the lateral direction makes the rim inherently stronger and more resistant to deformation from a blow to the side. Accordingly, the side of the cartridge rim which may conveniently be used to activate the indicator.
  • a pistol designed according to the preferred embodiment includes a barrel, a housing which may be a receiver preferably coupled to the barrel to define a barrel-receiver assembly, and a chamber capable of holding a cartridge and which is operably associated with the barrel-receiver assembly.
  • the chamber may be a cylindrical longitudinal bore which may be contained in a chamber block having sidewalls and a rear surface for abuttingly receiving a cartridge having rim.
  • the rear surface of the chamber block surrounding the chamber opening is uninterrupted by cutouts and forms a continuous circumferential seat for abuttingly contacting and supporting the rim of the cartridge.
  • the chamber is sized for receiving a 0.22 caliber cartridge.
  • An indicating element which preferably operates off contact with the rim of the cartridge. More preferably, in the preferred embodiment, the indicating element operates off contact with the side of the cartridge rim.
  • the indicating element may be pivotally mounted to the barrel-receiver assembly at a pivot defining a pivot point.
  • the indicating element is moveable and displaceable in response to contact by the cartridge from a first inactivated position or location, which may correspond to an absence of a cartridge fully-loaded in the chamber (i.e. an unloaded-chamber-indication position), to a second activated position or location, which may correspond to the presence of a cartridge loaded in the chamber (i.e. a loaded-chamber-indication position).
  • At least a portion of the indicating element protrudes outwards and away from exterior surface of the barrel-receiver assembly in the second position in response to contact by the cartridge. This provides both a visual and tactile indication that a cartridge is loaded in the chamber.
  • the indicating element may have a sensor surface configured to contact and detect the cartridge, and a signal area to identify and communicate the presence of a cartridge in the chamber.
  • the sensor surface may be a cam.
  • the signal area may protrude outward and away from the exterior surface of the pistol in the second loaded-condition-indication position.
  • the signal area has an ornamental shape which in one embodiment may also include an ornamental written, graphic, colored, and/or other suitable indicia or combination thereof on one or more of its surfaces to denote a “loaded chamber” condition.
  • the pistol includes a bolt that is slidably mounted in the barrel-receiver assembly.
  • the bolt is preferably slidable in a forward direction towards the front of the pistol and in a rearward direction towards the rear of the pistol, as further described below.
  • the bolt has a recess configured and arranged to receive the indicating element.
  • the barrel-receiver assembly similarly has a cutout configured and arranged to receive the indicating element.
  • the “front” of a pistol is defined as the barrel end and the “rear” of a pistol is defined as the handle or grip end of a pistol.
  • forward indicates a direction towards the muzzle (front of barrel) end of the pistol and “rearward” indicates a direction towards the handle or grip end of the pistol.
  • Downwards indicates a direction towards the bottom or underside of the pistol and “upwards” indicates a direction towards the top of the pistol opposite the bottom or underside.
  • a biasing member such as a spring
  • the spring may be disposed in the barrel-receiver assembly and interacts with the indicating element to preferably bias the indicating element towards the first position described above (i.e., absence of a fully-loaded cartridge in the chamber).
  • the biasing member may be a helical spring.
  • a method of indicating a loaded pistol chamber including locating the rim of a cartridge on a continuous circumferential seat and displacing an element to a loaded-condition-indication position with the rim of the cartridge.
  • the method further includes protruding at least a portion of the indicating element outwards from an exterior surface of the pistol to provide a user of the pistol with a visual and tactile indication that a cartridge is loaded in the chamber.
  • the method includes the step of retracting the indicating element inside the pistol to an unloaded-chamber-indication position in the absence of contact between the indicating element and cartridge rim.
  • the preferred embodiment of a magazine disconnect mechanism will be described for convenience with reference to a pistol having a receiver that is fixed on the grip frame, and a bolt that is slidably movable within the receiver in response to recoil forces developed during firing
  • the invention is not limited in its applicability by such reference. Accordingly, the preferred embodiment may also be used in pistols having a movable bolt in the form of a slide that is slidably mounted on the grip frame to move in response to the recoil forces developed during firing.
  • the preferred embodiment of a loaded chamber indicator is particularly suited for use with pistols that utilize rimfire-type ammunition, the preferred embodiment may be beneficially used in centerfire cartridge-type pistol applications as well.
  • FIG. 1 is a rear perspective view of a preferred embodiment of a firearm in the form of a pistol and in which the pistol has been partially cut away to show the rear of the chamber and a cartridge rim contacting a loaded chamber indicator;
  • FIG. 1A is a left side elevational detail view of the pistol of FIG. 1 ;
  • FIG. 1B is a left side view detail taken from FIG. 1A ;
  • FIG. 2 is top cross-sectional view taken along line 2 - 2 in FIG. 1A , but instead showing a cartridge partially loaded into the chamber;
  • FIG. 2A is a top detailed view taken from FIG. 2 ;
  • FIG. 3 is the top cross-sectional view taken along line 3 - 3 in FIG. 1A showing a cartridge fully loaded into the chamber;
  • FIG. 3A is a top detailed view taken from FIG. 3 ;
  • FIG. 3B is a detailed cutaway view from FIG. 3A showing a rimfire cartridge with primer material contained in the rim and loaded in the chamber before firing;
  • FIG. 4 is a top view of the indicating element of FIG. 1 ;
  • FIG. 5 is a right side elevational view of the indicating element of FIG. 4 taken along line 5 - 5 in FIG. 4 ;
  • FIG. 5A is a bottom perspective view of the indicating element of FIG. 5 ;
  • FIG. 6 is a rear end view of the indicating element of FIG. 1 taken along line 6 - 6 in FIG. 4 ;
  • FIG. 7 is a left side elevational view of the barrel-receiver assembly of the pistol of FIG. 1 ;
  • FIG. 8 is a top cross-sectional view of the barrel-receiver assembly taken along line 8 - 8 in FIG. 7 ;
  • FIG. 9 shows the pivot pin of FIG. 1 used to mount the indicating element in the pistol of FIG. 1 ;
  • FIG. 10 is a left side elevational view of the bolt of the pistol of FIG. 1 ;
  • FIG. 11 is a top cross-sectional view of the bolt of FIG. 10 taken along line 11 - 11 in FIG. 10 ;
  • FIG. 12 is a front end view of the bolt of FIG. 10 taken along line 12 - 12 in FIG. 10 .
  • FIGS. 1-3 a preferred embodiment will now be described for convenience with reference to a rimfire-type pistol in the form of an autoloading pistol. It will be appreciated that the preferred embodiment is equally applicable for use with other type pistols including, without limitation, non-autoloading pistols, centerfire-type cartridge firing pistols, etc. In addition, the preferred embodiment may be used in non-firearm applications where a tactile and visual indication of a component operating position is desired.
  • Pistol 1 includes a longitudinally-extending barrel 2 with longitudinal bore 5 therethrough and a generally hollow-structured receiver 4 in operational relationship with barrel 2 .
  • receiver 4 is disposed adjacent to and preferably attached to barrel 2 ; the combination defining a barrel-receiver assembly 3 .
  • Receiver 4 has an exterior surface 80 and an interior surface 82 defining a cavity 86 therein (see, e.g., FIGS. 2A and 3A ).
  • Barrel 2 defines a longitudinal axis “LA” for pistol 1 passing through barrel bore 5 .
  • a transverse axis “TA” is defined perpendicular to the longitudinal axis LA.
  • the barrel-receiver assembly 3 is preferably mounted to a grip frame 6 that includes a grip frame handle portion 15 , which in one embodiment may hold a removable magazine (not shown) capable of holding and dispensing a plurality of cartridges.
  • Pistol 1 further includes a trigger 8 for discharging the pistol.
  • a chamber block 70 associated and in operable relationship with barrel-receiver assembly 3 may be provided adjacent to the rear of the barrel 2 .
  • Chamber block 70 may be integral with barrel 2 or a separate component attached to barrel 2 .
  • Chamber block 70 preferably includes a chamber 11 which in the preferred embodiment may be a cylindrical bore.
  • Chamber 11 is positioned and arranged to receive and hold a cartridge 50 which may include a cartridge casing 52 and an annular laterally-protruding rim 54 disposed around the rear or base 58 of the cartridge (best seen in FIG. 3B ).
  • a cartridge 50 which may include a cartridge casing 52 and an annular laterally-protruding rim 54 disposed around the rear or base 58 of the cartridge (best seen in FIG. 3B ).
  • the primer material is distributed and contained inside the rim.
  • Chamber 11 defines a longitudinal chamber centerline 84 which coincides with longitudinal axis LA of the pistol and in which chamber centerline 84 is concentrically aligned with bore 5 of barrel 2 .
  • Chamber 11 preferably communicates with both bore 5 of barrel 2 to its front, and interior receiver cavity 86 to its rear to permit a cartridge to be loaded and chambered from the magazine into chamber 11 , and ultimately discharged from pistol 1 through barrel 2 . Accordingly, chamber 11 functions to hold cartridge 50 in preparation for discharging pistol 1 .
  • chamber block 70 may further includes sidewalls 76 and a rear surface 72 .
  • rim 54 protrudes radially outwards beyond cartridge casing 52 (see FIGS. 2A, 3A , and particularly 3 B) and has a larger outside diameter than the casing.
  • Rear surface 72 includes a circumferential seat 74 which preferably surrounds chamber 11 .
  • Cartridge rim 54 abuts against circumferential seat 74 when cartridge 50 is loaded in chamber 11 (see FIGS. 1A and 3A ).
  • circumferential seat 74 is continuous and uninterrupted by cutouts for a loaded chamber indicator to substantially support cartridge rim 54 and cartridge casing 52 .
  • chamber block sidewall 76 does not have any openings or windows cut therethrough for a loaded chamber indicator to provide maximum and substantial support for cartridge casing 52 when cartridge 50 is loaded in chamber 11 and fired.
  • circumferential seat 74 may include a slight chamfer 75 (e.g., typically about 0.010 inches) around the rear entrance opening to chamber 1 in rear chamber block surface 72 to facilitate loading of cartridge 50 before firing a cartridge from pistol 1 (best seen in FIGS. 2A and 3A ). If a chamfer 75 is provided, however, it should be noted that the structural integrity of circumferential seat 74 is not adversely affected and seat 74 still substantially and sufficiently supports cartridge rim 54 and cartridge casing 52 to seal chamber 11 .
  • a slight chamfer 75 e.g., typically about 0.010 inches
  • a spring-biased hook-like extractor 81 may be provided which removes a spent cartridge casing from chamber 11 by grasping the cartridge rim 54 after pistol 1 is discharged. The spent casing is subsequently ejected from pistol 1 .
  • a small extractor notch 79 (best seen in FIGS. 2A and 3A ) may also be provided in chamber block 70 to further facilitate removal of a spent cartridge casing from chamber 11 .
  • Notch 79 is preferably angled towards the rear entrance to chamber 11 disposed in chamber block rear surface 72 . However, notch 79 does not penetrate into chamber 11 . Therefore, notch 79 does not adversely affect substantial and sufficient support of cartridge rim 54 and cartridge casing 52 during firing.
  • cutout(s) may be made in circumferential seat 74 and/or sidewall 76 of chamber block 70 .
  • Centerfire cartridges have a deformable primer cup located in the center of the rear or bottom of the casing. The firing pin in a centerfire pistol is therefore positioned to strike the rear center of the cartridge at the primer cup. Accordingly, centerfire casings are typically strong in contrast to relatively fragile rimfire cartridges and do not require substantial support of the casing.
  • Chamber block 70 may have any suitable overall size and three-dimensional shape (e.g., square or rectangular block, cylindrical, etc.) so long as the chamber block is capable of housing a chamber 11 disposed therein.
  • Receiver 4 may further have a cartridge loading opening 17 as shown in FIG. 7 which communicates with grip frame 6 and the magazine therein (not shown) for loading cartridge 50 into chamber 11 .
  • Receiver 4 also preferably includes a cartridge ejector opening 13 (see, e.g., FIGS. 2-3 ) to allow a spent cartridge casing 52 to be ejected from pistol 1 after firing.
  • Pistol 1 further includes a firing pin 36 to strike the cartridge and discharge the pistol.
  • Firing pin 36 has a longitudinally reciprocating forward and rearward motion and is mechanically actuated by trigger 8 (eventually) through various intermediate operable linkages.
  • the rear of rim 54 In the case of a rimfire cartridge, the rear of rim 54 must be struck and deformed by firing pin 36 (best seen FIGS. 1A and 1B ) to ignite the primer and discharge pistol 1 (see Background of the Invention).
  • firing pin 36 is preferably mounted and positioned in the pistol offset from centerline 84 of chamber 11 (see, e.g., FIGS. 1A and 1B ) which coincides with longitudinal axis LA of pistol 1 .
  • firing pin 36 is offset and positioned to strike a portion of cartridge rim 54 from the rear during the firing pin's forward motion. This crushes rim 54 sandwiched between rear surface 72 of chamber block 70 and firing pin 36 , thereby causing the needed “squeezing” deformation of rim 54 (as discussed above) which ignites the primer therein and sets off the propellant powder to discharge pistol 1 .
  • pistol 1 further includes a bolt 7 which may be slidably mounted in barrel-receiver assembly 3 .
  • Bolt 7 preferably slides in a forward and axial direction towards the front of pistol 1 to push and load a cartridge 50 into chamber 11 from the magazine (not shown).
  • Bolt 7 also preferably slides and is retractable in a rearward axial direction to recoil upon discharging the pistol. This rearward motion allows a spent cartridge casing 52 to be ejected, and a new cartridge to be positioned in receiver 4 for loading forward into chamber 11 .
  • Bolt 7 further includes a forward bolt stop surface 47 and breech face 90 which contacts the rear or base 58 of cartridge 50 when it is loaded into chamber 11 by bolt 7 .
  • Bolt stop surface 47 abuttingly contacts rear surface 72 of chamber block 70 when cartridge 50 is loaded into chamber 11 .
  • breech face 90 is recessed below bolt stop surface 47 (see, e.g., FIGS. 3B and 11 ), thereby defining a space to accommodate base 58 and rim 54 of cartridge 50 when bolt stop surface 75 abuts rear surface 72 as shown in FIG. 3B .
  • the depth that breech face 90 is recessed is sufficient to provide extra clearance 91 beyond that necessary to accommodate the actual size and depth of cartridge rim 54 .
  • the extra clearance 91 ensures that cartridge rim 54 is not compressed when cartridge 50 is loaded into chamber 11 to avoid discharging pistol 1 .
  • cartridge casing 52 and rim 54 expands into the space between chamber block rear surface 72 and breech face 90 .
  • the rear of bolt 7 may further have ears 40 as shown to allow a user to readily grip and manually retract the bolt.
  • pistol 1 includes a moveable indicating element 10 which identifies and communicates the presence of a fully-loaded cartridge 50 in chamber 11 (i.e., a “loaded chamber”) to a user of the pistol.
  • indicating element 10 provides a visual and tactile indication or signal to the user of a loaded chamber condition, as further described below.
  • indicating element 10 may be pivotally mounted in the barrel-receiver assembly 3 about a pivot point P, and preferably in the general proximity of chamber 11 , as shown.
  • indicating element 10 may be mounted inside the barrel-receiver assembly 3 such that indicating element 10 is substantially contained within the barrel-receiver assembly 3 .
  • indicating element 10 may be positioned and mounted to the side or laterally of chamber 11 .
  • indicating element 10 is positioned to be contacted by cartridge 50 , and more preferably contacted by the side 56 of cartridge rim 54 .
  • indicating element 10 may come into operable contact with and be displaceable by cartridge 50 when the cartridge is loaded in the chamber.
  • FIGS. 4-6 shows a preferred embodiment of indicating element 10 in greater detail.
  • indicating element 10 shows a preferred embodiment of indicating element 10 in greater detail.
  • FIGS. 4-6 shows a preferred embodiment of indicating element 10 in greater detail.
  • the indicator is displaceable to a loaded chamber position by contact with the cartridge, and more preferably the cartridge rim 54 . Accordingly, the invention is not limited by the preferred embodiment described herein.
  • indicating element 10 may include a substantially planar or flat body portion 25 having an overall width W and overall length L, a top surface 16 , a bottom surface 18 , and at least two longitudinally-extending sides 24 , 34 connecting the top and bottom surfaces thereby defining a thickness 21 for indicating element 10 .
  • side 24 may be substantially flat and faces towards the exterior of pistol 1 in one embodiment.
  • Opposite side 34 may be irregularly-shaped for reasons described below.
  • Indicating element 10 and side 24 are preferably configured as shown such that indicating element 10 will not protrude substantially beyond the exterior of the barrel-receiver assembly 3 when indicating element is in the first position (i.e., cartridge not fully-loaded into chamber 11 ) described above. It will be appreciated, however, that in some embodiments indicating element 10 may protrude slightly beyond the exterior of barrel-receiver assembly 3 .
  • the other side 34 faces towards chamber 11 and is configured to contact cartridge 50 when the cartridge is loaded into the chamber.
  • Indicating element 10 preferably may be generally elongate in shape and have two ends 12 , 14 .
  • indicating element 10 also preferably includes a broadened and laterally projecting portion 26 adjacent to body portion 25 .
  • Broadened portion 26 is preferably located between ends 12 , 14 approximately near the middle of length L of indicating element 10 .
  • broadened portion 26 may be configured to contact cartridge 50 and may be substantially planar.
  • laterally projecting and broadened portion 26 may be flanged such that its thickness 23 is thinner than the thickness 21 of body portion 25 (best seen in FIGS. 5A and 6 ). This allows the amount material to be removed from bolt 7 to accommodate indicating element 10 to be kept at a minimal so as to not unduly weaken the bolt, for reasons described in more detail below. Also preferably, flanged portion 26 projects from side 34 and in a lateral direction towards chamber 11 when indicating element 10 is mounted in pistol 1 .
  • indicating element 10 in one embodiment may be substantially rigid in structure.
  • indicating element 10 may made of any type steel; however, other suitable metallic (e.g., aluminum, titanium, etc.) and non-metallic materials (e.g., plastics) that are rigid may be used.
  • indicating element 10 is made of steel.
  • indicating element 10 may further include a signal area to provide a visual and/or tactile indication of a “loaded chamber” condition to the user of pistol.
  • the signal area may be configured as an elongated section 27 having an ornamental shape as shown.
  • Elongated section 27 may be attached to or integral with body portion 25 of indicating element 10 .
  • At least a portion of elongated section 27 preferably may be capable of protruding outwards beyond the exterior surface 80 of barrel-receiver assembly 3 to provide a tactile and visual signal of a loaded chamber condition to a user of pistol 1 .
  • Elongate section 27 may further include an indicia 22 on one or more of its top surface 6 , bottom surface 18 , or sides 24 , 34 .
  • indicia are only shown on top surface 6 to avoid unduly cluttering and clearly show the details indicating element 10 .
  • emplacement of indicia is not limited to top surface 6 alone.
  • the indicia 22 may be in the form of a color, symbolic graphic, marking, alphanumeric characters (in any language), and/or other suitable indicia or combination thereof to communicate and denote that a cartridge 50 is loaded in chamber 11 .
  • the indicia may be incorporated onto and/or into the surface by any suitable method commonly used in the art such as painting, etching, inscribing, etc.
  • elongated section 27 is sized sufficiently large enough to include at least one surface area on which at least one alphanumeric character may be placed that is at least about 0.075 inches tall in height 92 (see FIG. 4 ). In an alternative embodiment, elongate section 27 may be plain without any indicia place thereon.
  • Indicating element 10 may further preferably include a sensor surface such as cartridge contact surface 28 which is configured and located on element 10 to physically and operably contact cartridge 50 when loaded into chamber 11 .
  • cartridge contact sensor surface 28 is located on indicating element 10 such that it may be operably contacted by side 56 of cartridge rim 54 .
  • Contact sensor surface 28 may be located on broadened portion 26 of indicating element 10 .
  • contact surface 28 may be a cam having a generally arcuate or curved shape to come into gradual and smooth engagement with cartridge rim 54 when loaded into chamber 11 ; however, other suitable shapes may be used and are contemplated so long as cartridge 50 is able to physically deflect indicating element 10 by contact.
  • Contact surface 28 may also include a chamfer 77 on its underside (see, e.g., FIG. 5A ) to further enhance smooth engagement of indicating element 10 with cartridge rim 54 .
  • contact surface 28 is an integral part of indicating element 10 and more preferably of portion 26 .
  • contact surface 28 may be a separate component connected to indicating element 10 .
  • cartridge contact surface 28 may preferably be disposed on flanged portion 26 . The functioning of contact surface 28 will be discussed below.
  • indicating element 10 may be pivotally mounted in barrel-receiver assembly 3 and moveable in preferably a substantially arcuate manner around a pivot point, as will now be described.
  • Indicating element 10 preferably may be located in barrel-receiver assembly 3 so as to be moveable in a lateral direction (as indicated by directional arrow 60 ) generally perpendicular to the longitudinal axis LA of pistol 1 in the direction of the transverse axis TA.
  • indicating element 10 may be mounted in barrel-receiver assembly 3 via a moveable pinned arrangement between indicating element 10 and barrel-receiver assembly 3 .
  • indicating element 10 may therefore have a hole 20 configured to receive a pin 29 (shown for example in FIGS. 1-3 ).
  • Barrel-receiver assembly 3 is provided with a pin cavity 32 (best seen in FIG. 7 ) that is configured to receive pin 29 .
  • the location of hole 20 through which pin 29 passes defines a pivot point “P” for indicating element 10 (see, e.g., FIGS. 2A and 3A ).
  • pin 29 is preferably a separate component insertable through into hole 20 as described above.
  • pin 29 may be part of indicating element 10 formed as an integral part thereof or rigidly attached via shrink fitting, welding, threadable attachment, or other suitable method commonly employed in the art.
  • pin 29 is held in pin cavity 32 by being trapped in the cavity by grip frame 6 when pistol 1 is assembled.
  • a biasing member may be provided which is in operable relationship with loaded chamber indicating element 10 .
  • the biasing member is a helical spring 38 as shown.
  • Spring 38 may be disposed in the barrel-receiver assembly 3 and interacts with indicating element 10 to preferably bias the indicating element towards the first position described above and shown in FIG. 2 (i.e., absence of a fully-loaded cartridge in the chamber).
  • indicating element 10 may have a notch 31 (best seen in FIG. 4 ) to engage and confine spring 38 in position. Spring 38 may be trapped in position within notch 31 and the barrel-receiver assembly 3 when pistol 1 is assembled.
  • a biasing member in the form of spring 38 is disclosed, it should be noted that any suitable type of biasing member may be used so long as indicating element 10 may be biased towards the first position.
  • FIG. 2 shows cartridge 50 , which in this embodiment without limitation is a rimfire cartridge, partially loaded into chamber 11 with the assistance of bolt 7 which is biased forwards by a recoil spring (not shown).
  • indicating element 10 preferably does not contact or may slightly contact the side of the cartridge casing 52 provided element 10 does not physically impede the proper loading of cartridge 50 into chamber 11 .
  • Indicating element 10 is in the first and non-activated position corresponding to the absence of a cartridge 50 fully-loaded in chamber 11 (i.e., the unloaded-chamber-indication position).
  • elongated section 27 of indicating element 10 is preferably substantially flush with or recessed with respect to the exterior surface 80 of barrel-receiver assembly 3 such that indicating element 10 does not substantially physically protrude outwards from pistol 1 .
  • the first position therefore signifies an unloaded chamber condition.
  • Rim 54 activates and physically displaces indicating element 10 , causing indicating element 10 to pivotally move about pivot point P. Indicating element 10 comes to a second and fully-activated position as shown in FIG. 3 , wherein cartridge 50 is fully-loaded into chamber 11 , and the side 56 of cartridge rim 54 holds indicating element 10 in a fully-extended position (i.e., the loaded-chamber-indication position).
  • elongated section 27 of indicating element 10 preferably protrudes beyond the exterior surface 80 of barrel-receiver assembly 3 to indicate that a cartridge is fully-loaded in chamber 11 .
  • elongated section 27 may be clearly seen and felt by a user of pistol 1 to provide a visual and tactile indication of a loaded chamber condition. Accordingly, the change in position of indicating element 10 from the first inactivated position to the activated second position is used to identify and communicate the presence of a fully-loaded chamber to the pistol user. The second position therefore signifies a loaded chamber condition.
  • Pistol 1 is normally discharged when trigger 8 is pulled, thereby causing firing pin 36 to strike the rear of cartridge rim 54 .
  • a portion of rim 54 rests outside of and overlaps the rear of chamber 11 , thereby allowing firing pin 36 to crush the rim against the rear of chamber 11 to ignite the primer material, and discharge pistol 1 .
  • the spent cartridge casing 52 is then ejected from pistol 1 .
  • spring 38 returns indicating element 10 to the initial first or non-activated position described above.
  • the above sequence is repeated and indicating element 11 moves to the second fully-activated position to indicate that the pistol is loaded.
  • pin 29 may be located in a number of suitable positions along the length L (see FIG. 5 ) of indicating element 10 .
  • pivot point P is asymmetrically located along the length L of indicating element 10 being positioned closer towards the forward end 12 of indicating element 10 than towards the rear end 14 , and preferably near and forward of sensor contact surface 28 . Accordingly, the distance between pivot point P and forward end 12 is shorter than the distance between pivot point P and rear end 14 .
  • the end 14 of elongate section 27 i.e., the signal area
  • This advantageous arrangement physically magnifies the lateral displacement of elongated section 27 (i.e., in a direction along the transverse axis TA) when indicating element 10 is activated by contact with cartridge rim 54 , making the signal area more visually and tactiley noticeable to a pistol user than known loaded chamber indicators.
  • the signal area of indicating element 10 is located farther from pivot point P than sensor contact surface 28 of indicating element 10 . It will be appreciated, however, that numerous variations and configurations of indicating element 10 and accompanying positioning of sensor contact surface 28 and signal area 27 are possible and contemplated within the scope of the claims appended hereto.
  • the barrel-receiver assembly 3 preferably includes a-cutout 30 (best seen in FIGS. 7 and 8 ).
  • cutout 30 allows indicating element to be housed inside pistol 1 when a cartridge 50 is not loaded in chamber 11 .
  • cutout 30 is sized and configured cooperatively with the size and configuration of indicating element 10 .
  • cutout 30 in the embodiment shown has at least one curved or arcuate surface to match the embodiment of indicating element 10 (as shown in FIG. 4 ).
  • Cutout 30 preferably may be designed to communicate with the area to the rear of chamber 11 to allow indicating element 10 to be contacted and activated by rim 54 of cartridge 50 .
  • Cutout 30 also preferably communicates with the exterior of pistol 1 such that indicating element 10 may protrude outwards from barrel-receiver assembly 3 to visually and tactiley indicate a loaded chamber condition.
  • bolt 7 also preferably includes a cutout or recess 42 to receive indicating element 10 .
  • Bolt recess 42 may preferably configured to accommodate indicating element 10 when bolt 7 slidably moves forwards and rearwards in barrel-receiver assembly 3 to avoid physical interference with the operation of these components.
  • Bolt recess 42 includes an upper cavity 41 , lower cavity 43 , and a step 45 between upper and lower cavities 41 , 43 .
  • step 45 may be inclined or ramped as shown.
  • lower cavity 43 and upper cavity 45 are preferably contiguous and form a common space to accommodate indicating element 10 .
  • upper cavity 41 preferably is deeper extending farther radially inwards towards the center of bolt 7 than lower cavity 43 . Accordingly, in a preferred embodiment, the volume of upper cavity 41 is larger than that of lower cavity 43 .
  • the forward or bolt stop surface 47 of bolt 7 (typically made of steel) preferably may be surface work hardened during the manufacturing process. This toughens bolt stop surface 47 to withstand forces imparted by bolt 7 striking the rear surface 72 of chamber block 70 , thereby minimizing the possibility of structural fractures. Interior portions of bolt 7 , however, are not hardened and less resistant to such impact forces. Accordingly, bolt recess 42 preferably may be stepped in shape as shown to minimize the amount of undercutting required and concomitantly maximize the strength of bolt 7 . Thus, indicating element 10 is preferably cooperatively shaped with bolt recess 42 and in the preferred embodiment may have a stepped configuration also (as best shown in FIG. 6 ).

Abstract

A pistol including a loaded chamber indicator to identify the presence of a cartridge loaded in the firing chamber. The pistol may generally include a barrel, a receiver attached to the barrel thereby defining a barrel-receiver assembly, and a chamber associated with the barrel-receiver assembly. An indicating element is provided which in one embodiment may be pivotally mounted in the barrel-receiver assembly. The indicating element is displaceable in response to contact by the cartridge from a first position which may in one embodiment correspond to an absence of a cartridge loaded in the chamber, to a second position which may in one embodiment correspond to a presence of a cartridge loaded in the chamber. A biasing member, such as a spring, may be provided to bias the indicating element towards the first position. In one embodiment, the indicating element protrudes outwards from the exterior of the pistol in response to contact by the cartridge rim to provide a visual and tactile indication of a loaded chamber condition to a user of the pistol.

Description

    BACKGROUND OF THE INVENTION
  • The present invention generally relates to firearms, and more particularly to an improved device suitable for use with, but not limited to rimfire-type cartridges to indicate the presence of a cartridge in the chamber of a pistol (i.e., a “loaded chamber”).
  • While the loaded condition of a firearm's chamber is customarily and most positively checked by the user opening the action and visually observing the presence of a cartridge therein, there have been prior devices which attempt to augment this procedure by providing a mechanical device to signal the chamber's state of readiness, particularly in military firearms where opening the chamber and observing the loaded condition of same may not be practical or possible due to the need for stealth. In a known loaded chamber indicator, an opening or window is cut into the rear portion of the barrel or chamber wall. The opening extends radially inwards from the side of the barrel and through the barrel's rear face against which the rim of a cartridge abuts when a cartridge is loaded into the barrel bore. An elongated thin elastic clip is provided that is fixed to the front portion of the barrel at one end. At the opposite end, the clip has a small projection that protrudes through the window in the barrel to contact the side of the cartridge casing when a cartridge is loaded into the barrel. The clip, however, is physically deflected outwards only by a very small amount by the cartridge casing. Moreover, the clip does not protrude beyond the exterior surface of the pistol in a loaded chamber condition, making the indicator not readily noticeable. Both of these factors make it difficult for a pistol user to visually distinguish a loaded chamber condition from an empty chamber condition by use of such devices.
  • In another known indicator, a very small viewing window or port is similarly cut into in the barrel or chamber wall of a pistol to allow the presence of the cartridge casing in the barrel bore to be seen through the window. Dirt, unburned gun powder residue, carbon build-up, and grease may obscure the small viewing ports and render them ineffective. The viewing port type indicators are also not useable at night or in other darkened environments.
  • A drawback of the foregoing known loaded chamber indicators is that they are also not suitable for use with all types of known self-contained cartridges currently on the market today because the window cutouts in the rear barrel or chamber reduce structural support of the cartridge casing and rim. In particular, the foregoing indicators are not well-suited for the very popular rimfire-type cartridges, such as the 0.22 Long Rifle, which optimally require substantial structural support of the cartridge casing and rim during firing. In a rimfire cartridge, the impact-sensitive primer material, which is used to ignite the propellant powder (i.e., gunpowder), is distributed inside and around the base of the cartridge casing in the rim. The rim is a relatively thin and narrow laterally-protruding hollow annular structure disposed around the circumference of the cartridge casing at its base. An annular space is contained inside the rim for holding the primer material. Striking the rim from the rear (such as with a firing pin) crushes and flattens the rim together against the rear face of the barrel or chamber. This “squeezing” deformation of the rim creates internal friction in the primer material sandwiched in the narrow annular space within the rim, and ignites the primer which in turn sets off the propellant powder. Accordingly, the casing in the base area, and in particular the rim of the cartridge casing, are intentionally made relatively thin and weak by structural design to be readily deformable. Therefore, a rimfire-type pistol, to provide maximum support to the base and rim of the cartridge to prevent the fragile rimfire casing from bursting during firing, should preferably not contain cutouts in the barrel or chamber area.
  • The known loaded chamber indicators discussed above all require cutting away of cartridge support provided by the barrel or chamber to allow those indicators to function properly. There has never been a loaded chamber indicator in the prior art that functions in a truly satisfactory fashion on firearms chambered for rimfire-type ammunition, which comprise a large percentage of the firearms sold. Accordingly, there is a need for a loaded chamber indicator that does not undermine support of a cartridge during firing and, in particular, one which functions satisfactorily with rimfire-type ammunition such as the 0.22 Long Rifle.
  • SUMMARY OF THE INVENTION
  • A preferred embodiment provides a moveable loaded chamber indicator for a pistol that advantageously does not require cutting away of the rear barrel or chamber, thereby providing substantial structural support of the cartridge casing when the cartridge is loaded in the barrel or chamber. The preferred embodiment further advantageously provides a loaded chamber indicator that is more readily noticeable to a pistol user from a visual and tactile standpoint than known indicators.
  • In a preferred embodiment, the loaded chamber indicator operates by contact with the cartridge rim which remains outside of, and to the rear of or behind the chamber when the cartridge is loaded therein. Accordingly, the structural integrity of the chamber is not compromised by any openings cut through the chamber walls into the chamber like the known indicators discussed above. Therefore, the relatively fragile rimfire cartridge casing may be substantially and properly supported by the chamber.
  • In a rimfire cartridge, striking the cartridge rim from the lateral or side direction (instead of from the normal rear firing direction as with a firing pin) does not ignite the primer because the “squeezing” deformation of the rim needed to ignite the primer material (discussed above) is not created by impacting the rim from the side. In addition, the arched shape of the rim presented in the lateral direction makes the rim inherently stronger and more resistant to deformation from a blow to the side. Accordingly, the side of the cartridge rim which may conveniently be used to activate the indicator.
  • A pistol designed according to the preferred embodiment includes a barrel, a housing which may be a receiver preferably coupled to the barrel to define a barrel-receiver assembly, and a chamber capable of holding a cartridge and which is operably associated with the barrel-receiver assembly. In a preferred embodiment, the chamber may be a cylindrical longitudinal bore which may be contained in a chamber block having sidewalls and a rear surface for abuttingly receiving a cartridge having rim. Preferably, the rear surface of the chamber block surrounding the chamber opening is uninterrupted by cutouts and forms a continuous circumferential seat for abuttingly contacting and supporting the rim of the cartridge. In one embodiment, the chamber is sized for receiving a 0.22 caliber cartridge.
  • An indicating element is provided which preferably operates off contact with the rim of the cartridge. More preferably, in the preferred embodiment, the indicating element operates off contact with the side of the cartridge rim. The indicating element may be pivotally mounted to the barrel-receiver assembly at a pivot defining a pivot point. Preferably, the indicating element is moveable and displaceable in response to contact by the cartridge from a first inactivated position or location, which may correspond to an absence of a cartridge fully-loaded in the chamber (i.e. an unloaded-chamber-indication position), to a second activated position or location, which may correspond to the presence of a cartridge loaded in the chamber (i.e. a loaded-chamber-indication position). In one embodiment, at least a portion of the indicating element protrudes outwards and away from exterior surface of the barrel-receiver assembly in the second position in response to contact by the cartridge. This provides both a visual and tactile indication that a cartridge is loaded in the chamber.
  • In one embodiment, the indicating element may have a sensor surface configured to contact and detect the cartridge, and a signal area to identify and communicate the presence of a cartridge in the chamber. The sensor surface may be a cam. Preferably, the signal area may protrude outward and away from the exterior surface of the pistol in the second loaded-condition-indication position. The signal area has an ornamental shape which in one embodiment may also include an ornamental written, graphic, colored, and/or other suitable indicia or combination thereof on one or more of its surfaces to denote a “loaded chamber” condition.
  • According to another aspect of the preferred embodiment, the pistol includes a bolt that is slidably mounted in the barrel-receiver assembly. The bolt is preferably slidable in a forward direction towards the front of the pistol and in a rearward direction towards the rear of the pistol, as further described below. In one embodiment, the bolt has a recess configured and arranged to receive the indicating element. In another embodiment, the barrel-receiver assembly similarly has a cutout configured and arranged to receive the indicating element.
  • As the terms are used herein, the “front” of a pistol is defined as the barrel end and the “rear” of a pistol is defined as the handle or grip end of a pistol. Also as the terms may be used herein with respect to orientation using the pistol as a frame of reference to direction, “forward” indicates a direction towards the muzzle (front of barrel) end of the pistol and “rearward” indicates a direction towards the handle or grip end of the pistol. “Downwards” indicates a direction towards the bottom or underside of the pistol and “upwards” indicates a direction towards the top of the pistol opposite the bottom or underside.
  • In the foregoing definitions and descriptions provided herein, any reference to either orientation or direction is intended primarily for the convenience in describing the preferred embodiment and is not intended in any way to limit the scope of the present invention thereto.
  • According to another aspect of the preferred embodiment, a biasing member, such as a spring, may be provided in one embodiment which is associated with the loaded chamber indicating element. The spring may be disposed in the barrel-receiver assembly and interacts with the indicating element to preferably bias the indicating element towards the first position described above (i.e., absence of a fully-loaded cartridge in the chamber). In one embodiment, the biasing member may be a helical spring.
  • A method of indicating a loaded pistol chamber is also provided including locating the rim of a cartridge on a continuous circumferential seat and displacing an element to a loaded-condition-indication position with the rim of the cartridge. In one embodiment, the method further includes protruding at least a portion of the indicating element outwards from an exterior surface of the pistol to provide a user of the pistol with a visual and tactile indication that a cartridge is loaded in the chamber. In yet another embodiment, the method includes the step of retracting the indicating element inside the pistol to an unloaded-chamber-indication position in the absence of contact between the indicating element and cartridge rim.
  • Although the preferred embodiment of a magazine disconnect mechanism will be described for convenience with reference to a pistol having a receiver that is fixed on the grip frame, and a bolt that is slidably movable within the receiver in response to recoil forces developed during firing, the invention is not limited in its applicability by such reference. Accordingly, the preferred embodiment may also be used in pistols having a movable bolt in the form of a slide that is slidably mounted on the grip frame to move in response to the recoil forces developed during firing. Although the preferred embodiment of a loaded chamber indicator is particularly suited for use with pistols that utilize rimfire-type ammunition, the preferred embodiment may be beneficially used in centerfire cartridge-type pistol applications as well.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the preferred embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
  • FIG. 1 is a rear perspective view of a preferred embodiment of a firearm in the form of a pistol and in which the pistol has been partially cut away to show the rear of the chamber and a cartridge rim contacting a loaded chamber indicator;
  • FIG. 1A is a left side elevational detail view of the pistol of FIG. 1;
  • FIG. 1B is a left side view detail taken from FIG. 1A;
  • FIG. 2 is top cross-sectional view taken along line 2-2 in FIG. 1A, but instead showing a cartridge partially loaded into the chamber;
  • FIG. 2A is a top detailed view taken from FIG. 2;
  • FIG. 3 is the top cross-sectional view taken along line 3-3 in FIG. 1A showing a cartridge fully loaded into the chamber;
  • FIG. 3A is a top detailed view taken from FIG. 3;
  • FIG. 3B is a detailed cutaway view from FIG. 3A showing a rimfire cartridge with primer material contained in the rim and loaded in the chamber before firing;
  • FIG. 4 is a top view of the indicating element of FIG. 1;
  • FIG. 5 is a right side elevational view of the indicating element of FIG. 4 taken along line 5-5 in FIG. 4;
  • FIG. 5A is a bottom perspective view of the indicating element of FIG. 5;
  • FIG. 6 is a rear end view of the indicating element of FIG. 1 taken along line 6-6 in FIG. 4;
  • FIG. 7 is a left side elevational view of the barrel-receiver assembly of the pistol of FIG. 1;
  • FIG. 8 is a top cross-sectional view of the barrel-receiver assembly taken along line 8-8 in FIG. 7;
  • FIG. 9 shows the pivot pin of FIG. 1 used to mount the indicating element in the pistol of FIG. 1;
  • FIG. 10 is a left side elevational view of the bolt of the pistol of FIG. 1;
  • FIG. 11 is a top cross-sectional view of the bolt of FIG. 10 taken along line 11-11 in FIG. 10; and
  • FIG. 12 is a front end view of the bolt of FIG. 10 taken along line 12-12 in FIG. 10.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring generally to FIGS. 1-3, a preferred embodiment will now be described for convenience with reference to a rimfire-type pistol in the form of an autoloading pistol. It will be appreciated that the preferred embodiment is equally applicable for use with other type pistols including, without limitation, non-autoloading pistols, centerfire-type cartridge firing pistols, etc. In addition, the preferred embodiment may be used in non-firearm applications where a tactile and visual indication of a component operating position is desired.
  • Pistol 1 includes a longitudinally-extending barrel 2 with longitudinal bore 5 therethrough and a generally hollow-structured receiver 4 in operational relationship with barrel 2. In a preferred embodiment, receiver 4 is disposed adjacent to and preferably attached to barrel 2; the combination defining a barrel-receiver assembly 3. Receiver 4 has an exterior surface 80 and an interior surface 82 defining a cavity 86 therein (see, e.g., FIGS. 2A and 3A).
  • Barrel 2 defines a longitudinal axis “LA” for pistol 1 passing through barrel bore 5. A transverse axis “TA” is defined perpendicular to the longitudinal axis LA. The barrel-receiver assembly 3 is preferably mounted to a grip frame 6 that includes a grip frame handle portion 15, which in one embodiment may hold a removable magazine (not shown) capable of holding and dispensing a plurality of cartridges. Pistol 1 further includes a trigger 8 for discharging the pistol.
  • A chamber block 70 associated and in operable relationship with barrel-receiver assembly 3 may be provided adjacent to the rear of the barrel 2. Chamber block 70 may be integral with barrel 2 or a separate component attached to barrel 2. Chamber block 70 preferably includes a chamber 11 which in the preferred embodiment may be a cylindrical bore. Chamber 11 is positioned and arranged to receive and hold a cartridge 50 which may include a cartridge casing 52 and an annular laterally-protruding rim 54 disposed around the rear or base 58 of the cartridge (best seen in FIG. 3B). In the case of a rimfire cartridge (as shown in FIG; 3B), the primer material is distributed and contained inside the rim.
  • Chamber 11 defines a longitudinal chamber centerline 84 which coincides with longitudinal axis LA of the pistol and in which chamber centerline 84 is concentrically aligned with bore 5 of barrel 2. Chamber 11 preferably communicates with both bore 5 of barrel 2 to its front, and interior receiver cavity 86 to its rear to permit a cartridge to be loaded and chambered from the magazine into chamber 11, and ultimately discharged from pistol 1 through barrel 2. Accordingly, chamber 11 functions to hold cartridge 50 in preparation for discharging pistol 1.
  • In one embodiment, chamber block 70 may further includes sidewalls 76 and a rear surface 72. In a rimfire cartridge 50, rim 54 protrudes radially outwards beyond cartridge casing 52 (see FIGS. 2A, 3A, and particularly 3B) and has a larger outside diameter than the casing. Rear surface 72 includes a circumferential seat 74 which preferably surrounds chamber 11. Cartridge rim 54 abuts against circumferential seat 74 when cartridge 50 is loaded in chamber 11 (see FIGS. 1A and 3A). Preferably, circumferential seat 74 is continuous and uninterrupted by cutouts for a loaded chamber indicator to substantially support cartridge rim 54 and cartridge casing 52. Also preferably, chamber block sidewall 76 does not have any openings or windows cut therethrough for a loaded chamber indicator to provide maximum and substantial support for cartridge casing 52 when cartridge 50 is loaded in chamber 11 and fired.
  • In one embodiment (as best seen in FIG. 3B), circumferential seat 74 may include a slight chamfer 75 (e.g., typically about 0.010 inches) around the rear entrance opening to chamber 1 in rear chamber block surface 72 to facilitate loading of cartridge 50 before firing a cartridge from pistol 1 (best seen in FIGS. 2A and 3A). If a chamfer 75 is provided, however, it should be noted that the structural integrity of circumferential seat 74 is not adversely affected and seat 74 still substantially and sufficiently supports cartridge rim 54 and cartridge casing 52 to seal chamber 11.
  • A spring-biased hook-like extractor 81 may be provided which removes a spent cartridge casing from chamber 11 by grasping the cartridge rim 54 after pistol 1 is discharged. The spent casing is subsequently ejected from pistol 1. A small extractor notch 79 (best seen in FIGS. 2A and 3A) may also be provided in chamber block 70 to further facilitate removal of a spent cartridge casing from chamber 11. Notch 79 is preferably angled towards the rear entrance to chamber 11 disposed in chamber block rear surface 72. However, notch 79 does not penetrate into chamber 11. Therefore, notch 79 does not adversely affect substantial and sufficient support of cartridge rim 54 and cartridge casing 52 during firing.
  • It will be appreciated that in an embodiment of pistol 1 intended to be used with centerfire cartridges (not shown), it is contemplated that cutout(s) may be made in circumferential seat 74 and/or sidewall 76 of chamber block 70. Centerfire cartridges have a deformable primer cup located in the center of the rear or bottom of the casing. The firing pin in a centerfire pistol is therefore positioned to strike the rear center of the cartridge at the primer cup. Accordingly, centerfire casings are typically strong in contrast to relatively fragile rimfire cartridges and do not require substantial support of the casing.
  • Chamber block 70 may have any suitable overall size and three-dimensional shape (e.g., square or rectangular block, cylindrical, etc.) so long as the chamber block is capable of housing a chamber 11 disposed therein.
  • Receiver 4 may further have a cartridge loading opening 17 as shown in FIG. 7 which communicates with grip frame 6 and the magazine therein (not shown) for loading cartridge 50 into chamber 11. Receiver 4 also preferably includes a cartridge ejector opening 13 (see, e.g., FIGS. 2-3) to allow a spent cartridge casing 52 to be ejected from pistol 1 after firing.
  • Pistol 1 further includes a firing pin 36 to strike the cartridge and discharge the pistol. Firing pin 36 has a longitudinally reciprocating forward and rearward motion and is mechanically actuated by trigger 8 (eventually) through various intermediate operable linkages. In the case of a rimfire cartridge, the rear of rim 54 must be struck and deformed by firing pin 36 (best seen FIGS. 1A and 1B) to ignite the primer and discharge pistol 1 (see Background of the Invention). Accordingly, in a rimfire-type pistol 1 as shown herein, firing pin 36 is preferably mounted and positioned in the pistol offset from centerline 84 of chamber 11 (see, e.g., FIGS. 1A and 1B) which coincides with longitudinal axis LA of pistol 1. More preferably, firing pin 36 is offset and positioned to strike a portion of cartridge rim 54 from the rear during the firing pin's forward motion. This crushes rim 54 sandwiched between rear surface 72 of chamber block 70 and firing pin 36, thereby causing the needed “squeezing” deformation of rim 54 (as discussed above) which ignites the primer therein and sets off the propellant powder to discharge pistol 1.
  • Referring now also to FIGS. 10-12, pistol 1 further includes a bolt 7 which may be slidably mounted in barrel-receiver assembly 3. Bolt 7 preferably slides in a forward and axial direction towards the front of pistol 1 to push and load a cartridge 50 into chamber 11 from the magazine (not shown). Bolt 7 also preferably slides and is retractable in a rearward axial direction to recoil upon discharging the pistol. This rearward motion allows a spent cartridge casing 52 to be ejected, and a new cartridge to be positioned in receiver 4 for loading forward into chamber 11. Bolt 7 further includes a forward bolt stop surface 47 and breech face 90 which contacts the rear or base 58 of cartridge 50 when it is loaded into chamber 11 by bolt 7. Bolt stop surface 47 abuttingly contacts rear surface 72 of chamber block 70 when cartridge 50 is loaded into chamber 11. Preferably, breech face 90 is recessed below bolt stop surface 47 (see, e.g., FIGS. 3B and 11), thereby defining a space to accommodate base 58 and rim 54 of cartridge 50 when bolt stop surface 75 abuts rear surface 72 as shown in FIG. 3B. Preferably, the depth that breech face 90 is recessed is sufficient to provide extra clearance 91 beyond that necessary to accommodate the actual size and depth of cartridge rim 54. The extra clearance 91 ensures that cartridge rim 54 is not compressed when cartridge 50 is loaded into chamber 11 to avoid discharging pistol 1. Upon firing, cartridge casing 52 and rim 54 expands into the space between chamber block rear surface 72 and breech face 90.
  • The rear of bolt 7 may further have ears 40 as shown to allow a user to readily grip and manually retract the bolt.
  • With further reference to FIGS. 1-3, pistol 1 includes a moveable indicating element 10 which identifies and communicates the presence of a fully-loaded cartridge 50 in chamber 11 (i.e., a “loaded chamber”) to a user of the pistol. Preferably, indicating element 10 provides a visual and tactile indication or signal to the user of a loaded chamber condition, as further described below. In one embodiment, indicating element 10 may be pivotally mounted in the barrel-receiver assembly 3 about a pivot point P, and preferably in the general proximity of chamber 11, as shown.
  • As shown in FIGS. 1-3, at least a portion of indicating element 10 may be mounted inside the barrel-receiver assembly 3 such that indicating element 10 is substantially contained within the barrel-receiver assembly 3. In the preferred embodiment shown, indicating element 10 may be positioned and mounted to the side or laterally of chamber 11. Preferably, indicating element 10 is positioned to be contacted by cartridge 50, and more preferably contacted by the side 56 of cartridge rim 54.
  • It will be appreciated that other mounting positions of indicating element 10 are possible so long as indicating element 10 is mounted close enough to chamber 11 such that at least a portion of indicating element 10 may come into operable contact with and be displaceable by cartridge 50 when the cartridge is loaded in the chamber.
  • Additional reference is now made to FIGS. 4-6 which shows a preferred embodiment of indicating element 10 in greater detail. Alternatively, it will be appreciated that other suitable embodiments and configurations of an indicating element 10 are possible so long as the indicator is displaceable to a loaded chamber position by contact with the cartridge, and more preferably the cartridge rim 54. Accordingly, the invention is not limited by the preferred embodiment described herein.
  • As shown, indicating element 10 may include a substantially planar or flat body portion 25 having an overall width W and overall length L, a top surface 16, a bottom surface 18, and at least two longitudinally-extending sides 24, 34 connecting the top and bottom surfaces thereby defining a thickness 21 for indicating element 10. Preferably, side 24 may be substantially flat and faces towards the exterior of pistol 1 in one embodiment. Opposite side 34 may be irregularly-shaped for reasons described below. Indicating element 10 and side 24 are preferably configured as shown such that indicating element 10 will not protrude substantially beyond the exterior of the barrel-receiver assembly 3 when indicating element is in the first position (i.e., cartridge not fully-loaded into chamber 11) described above. It will be appreciated, however, that in some embodiments indicating element 10 may protrude slightly beyond the exterior of barrel-receiver assembly 3. Also preferably, the other side 34 faces towards chamber 11 and is configured to contact cartridge 50 when the cartridge is loaded into the chamber.
  • Indicating element 10 preferably may be generally elongate in shape and have two ends 12, 14. In one embodiment, indicating element 10 also preferably includes a broadened and laterally projecting portion 26 adjacent to body portion 25. Broadened portion 26 is preferably located between ends 12, 14 approximately near the middle of length L of indicating element 10. In one embodiment, broadened portion 26 may be configured to contact cartridge 50 and may be substantially planar.
  • In one embodiment, laterally projecting and broadened portion 26 may be flanged such that its thickness 23 is thinner than the thickness 21 of body portion 25 (best seen in FIGS. 5A and 6). This allows the amount material to be removed from bolt 7 to accommodate indicating element 10 to be kept at a minimal so as to not unduly weaken the bolt, for reasons described in more detail below. Also preferably, flanged portion 26 projects from side 34 and in a lateral direction towards chamber 11 when indicating element 10 is mounted in pistol 1.
  • Preferably, indicating element 10 in one embodiment may be substantially rigid in structure. Preferably, indicating element 10 may made of any type steel; however, other suitable metallic (e.g., aluminum, titanium, etc.) and non-metallic materials (e.g., plastics) that are rigid may be used. In the preferred embodiment, indicating element 10 is made of steel.
  • With continuing reference to FIGS. 4-6, indicating element 10 may further include a signal area to provide a visual and/or tactile indication of a “loaded chamber” condition to the user of pistol. In one embodiment, the signal area may be configured as an elongated section 27 having an ornamental shape as shown. Elongated section 27 may be attached to or integral with body portion 25 of indicating element 10. At least a portion of elongated section 27 preferably may be capable of protruding outwards beyond the exterior surface 80 of barrel-receiver assembly 3 to provide a tactile and visual signal of a loaded chamber condition to a user of pistol 1. Elongate section 27 may further include an indicia 22 on one or more of its top surface 6, bottom surface 18, or sides 24, 34. In the drawings, indicia are only shown on top surface 6 to avoid unduly cluttering and clearly show the details indicating element 10. However, emplacement of indicia is not limited to top surface 6 alone. The indicia 22 may be in the form of a color, symbolic graphic, marking, alphanumeric characters (in any language), and/or other suitable indicia or combination thereof to communicate and denote that a cartridge 50 is loaded in chamber 11. The indicia may be incorporated onto and/or into the surface by any suitable method commonly used in the art such as painting, etching, inscribing, etc. or any combination thereof. In one embodiment, elongated section 27 is sized sufficiently large enough to include at least one surface area on which at least one alphanumeric character may be placed that is at least about 0.075 inches tall in height 92 (see FIG. 4). In an alternative embodiment, elongate section 27 may be plain without any indicia place thereon.
  • Indicating element 10 may further preferably include a sensor surface such as cartridge contact surface 28 which is configured and located on element 10 to physically and operably contact cartridge 50 when loaded into chamber 11. Preferably, cartridge contact sensor surface 28 is located on indicating element 10 such that it may be operably contacted by side 56 of cartridge rim 54. Contact sensor surface 28 may be located on broadened portion 26 of indicating element 10. In one embodiment, contact surface 28 may be a cam having a generally arcuate or curved shape to come into gradual and smooth engagement with cartridge rim 54 when loaded into chamber 11; however, other suitable shapes may be used and are contemplated so long as cartridge 50 is able to physically deflect indicating element 10 by contact. Contact surface 28 may also include a chamfer 77 on its underside (see, e.g., FIG. 5A) to further enhance smooth engagement of indicating element 10 with cartridge rim 54.
  • Preferably, contact surface 28 is an integral part of indicating element 10 and more preferably of portion 26. However, contact surface 28 may be a separate component connected to indicating element 10. In an embodiment of an indicating element 10 having a flanged portion 26 as described above, cartridge contact surface 28 may preferably be disposed on flanged portion 26. The functioning of contact surface 28 will be discussed below.
  • As best shown in FIGS. 2 and 3 (and noted above), indicating element 10 may be pivotally mounted in barrel-receiver assembly 3 and moveable in preferably a substantially arcuate manner around a pivot point, as will now be described. Indicating element 10 preferably may be located in barrel-receiver assembly 3 so as to be moveable in a lateral direction (as indicated by directional arrow 60) generally perpendicular to the longitudinal axis LA of pistol 1 in the direction of the transverse axis TA. In one embodiment, indicating element 10 may be mounted in barrel-receiver assembly 3 via a moveable pinned arrangement between indicating element 10 and barrel-receiver assembly 3. In one embodiment, indicating element 10 may therefore have a hole 20 configured to receive a pin 29 (shown for example in FIGS. 1-3). Barrel-receiver assembly 3 is provided with a pin cavity 32 (best seen in FIG. 7) that is configured to receive pin 29. The location of hole 20 through which pin 29 passes defines a pivot point “P” for indicating element 10 (see, e.g., FIGS. 2A and 3A). It should be noted that pin 29 is preferably a separate component insertable through into hole 20 as described above. Alternatively, pin 29 may be part of indicating element 10 formed as an integral part thereof or rigidly attached via shrink fitting, welding, threadable attachment, or other suitable method commonly employed in the art. In one embodiment, pin 29 is held in pin cavity 32 by being trapped in the cavity by grip frame 6 when pistol 1 is assembled.
  • A biasing member may be provided which is in operable relationship with loaded chamber indicating element 10. In one embodiment, the biasing member is a helical spring 38 as shown. Spring 38 may be disposed in the barrel-receiver assembly 3 and interacts with indicating element 10 to preferably bias the indicating element towards the first position described above and shown in FIG. 2 (i.e., absence of a fully-loaded cartridge in the chamber). In one embodiment, indicating element 10 may have a notch 31 (best seen in FIG. 4) to engage and confine spring 38 in position. Spring 38 may be trapped in position within notch 31 and the barrel-receiver assembly 3 when pistol 1 is assembled. Although a biasing member in the form of spring 38 is disclosed, it should be noted that any suitable type of biasing member may be used so long as indicating element 10 may be biased towards the first position.
  • Operation of the loaded chamber indicator mechanism in conjunction with loading a cartridge into the chamber of a pistol will now be described with reference to the preferred embodiment described herein. FIG. 2 shows cartridge 50, which in this embodiment without limitation is a rimfire cartridge, partially loaded into chamber 11 with the assistance of bolt 7 which is biased forwards by a recoil spring (not shown). In FIG. 2, indicating element 10 preferably does not contact or may slightly contact the side of the cartridge casing 52 provided element 10 does not physically impede the proper loading of cartridge 50 into chamber 11. Indicating element 10 is in the first and non-activated position corresponding to the absence of a cartridge 50 fully-loaded in chamber 11 (i.e., the unloaded-chamber-indication position). In this position, elongated section 27 of indicating element 10 is preferably substantially flush with or recessed with respect to the exterior surface 80 of barrel-receiver assembly 3 such that indicating element 10 does not substantially physically protrude outwards from pistol 1. The first position therefore signifies an unloaded chamber condition.
  • As cartridge 50 continues to be loaded forward into chamber 11 by bolt 7, the side 56 of rim 54 eventually contacts and engages indicating element 10, preferably at cartridge contact sensor surface 28 of side 34 of indicating element 10. Rim 54 activates and physically displaces indicating element 10, causing indicating element 10 to pivotally move about pivot point P. Indicating element 10 comes to a second and fully-activated position as shown in FIG. 3, wherein cartridge 50 is fully-loaded into chamber 11, and the side 56 of cartridge rim 54 holds indicating element 10 in a fully-extended position (i.e., the loaded-chamber-indication position). As shown, elongated section 27 of indicating element 10 preferably protrudes beyond the exterior surface 80 of barrel-receiver assembly 3 to indicate that a cartridge is fully-loaded in chamber 11. In this position, elongated section 27 may be clearly seen and felt by a user of pistol 1 to provide a visual and tactile indication of a loaded chamber condition. Accordingly, the change in position of indicating element 10 from the first inactivated position to the activated second position is used to identify and communicate the presence of a fully-loaded chamber to the pistol user. The second position therefore signifies a loaded chamber condition.
  • Pistol 1 is normally discharged when trigger 8 is pulled, thereby causing firing pin 36 to strike the rear of cartridge rim 54. As shown in the figures (particularly FIG. 3B), a portion of rim 54 rests outside of and overlaps the rear of chamber 11, thereby allowing firing pin 36 to crush the rim against the rear of chamber 11 to ignite the primer material, and discharge pistol 1. The spent cartridge casing 52 is then ejected from pistol 1. Without cartridge 50 in chamber 11, spring 38 returns indicating element 10 to the initial first or non-activated position described above. As another cartridge 50 is loaded into chamber 11 either automatically via the magazine or manually, the above sequence is repeated and indicating element 11 moves to the second fully-activated position to indicate that the pistol is loaded.
  • It should be noted that pin 29, and thus pivot point P, may be located in a number of suitable positions along the length L (see FIG. 5) of indicating element 10. Preferably, in one embodiment as shown in FIG. 4, pivot point P is asymmetrically located along the length L of indicating element 10 being positioned closer towards the forward end 12 of indicating element 10 than towards the rear end 14, and preferably near and forward of sensor contact surface 28. Accordingly, the distance between pivot point P and forward end 12 is shorter than the distance between pivot point P and rear end 14. Also preferably, the end 14 of elongate section 27 (i.e., the signal area) may be located relatively far from pivot point P. This advantageous arrangement physically magnifies the lateral displacement of elongated section 27 (i.e., in a direction along the transverse axis TA) when indicating element 10 is activated by contact with cartridge rim 54, making the signal area more visually and tactiley noticeable to a pistol user than known loaded chamber indicators. Thus in a preferred embodiment, the signal area of indicating element 10 is located farther from pivot point P than sensor contact surface 28 of indicating element 10. It will be appreciated, however, that numerous variations and configurations of indicating element 10 and accompanying positioning of sensor contact surface 28 and signal area 27 are possible and contemplated within the scope of the claims appended hereto.
  • To accommodate and receive indicating element 10, the barrel-receiver assembly 3 preferably includes a-cutout 30 (best seen in FIGS. 7 and 8). Preferably, cutout 30 allows indicating element to be housed inside pistol 1 when a cartridge 50 is not loaded in chamber 11. Accordingly, in one embodiment, cutout 30 is sized and configured cooperatively with the size and configuration of indicating element 10. Preferably, cutout 30 in the embodiment shown has at least one curved or arcuate surface to match the embodiment of indicating element 10 (as shown in FIG. 4). Cutout 30 preferably may be designed to communicate with the area to the rear of chamber 11 to allow indicating element 10 to be contacted and activated by rim 54 of cartridge 50. Cutout 30 also preferably communicates with the exterior of pistol 1 such that indicating element 10 may protrude outwards from barrel-receiver assembly 3 to visually and tactiley indicate a loaded chamber condition.
  • As shown in FIGS. 10-12, and functionally similar to cutout 30 in barrel-receiver assembly 3 described above, bolt 7 also preferably includes a cutout or recess 42 to receive indicating element 10. Bolt recess 42 may preferably configured to accommodate indicating element 10 when bolt 7 slidably moves forwards and rearwards in barrel-receiver assembly 3 to avoid physical interference with the operation of these components.
  • Bolt recess 42 includes an upper cavity 41, lower cavity 43, and a step 45 between upper and lower cavities 41, 43. Preferably, step 45 may be inclined or ramped as shown. In one embodiment as shown, lower cavity 43 and upper cavity 45 are preferably contiguous and form a common space to accommodate indicating element 10. Also as shown, upper cavity 41 preferably is deeper extending farther radially inwards towards the center of bolt 7 than lower cavity 43. Accordingly, in a preferred embodiment, the volume of upper cavity 41 is larger than that of lower cavity 43.
  • The forward or bolt stop surface 47 of bolt 7 (typically made of steel) preferably may be surface work hardened during the manufacturing process. This toughens bolt stop surface 47 to withstand forces imparted by bolt 7 striking the rear surface 72 of chamber block 70, thereby minimizing the possibility of structural fractures. Interior portions of bolt 7, however, are not hardened and less resistant to such impact forces. Accordingly, bolt recess 42 preferably may be stepped in shape as shown to minimize the amount of undercutting required and concomitantly maximize the strength of bolt 7. Thus, indicating element 10 is preferably cooperatively shaped with bolt recess 42 and in the preferred embodiment may have a stepped configuration also (as best shown in FIG. 6).
  • While the foregoing description and drawings represent the preferred embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.

Claims (39)

1. A pistol with loaded chamber indicator comprising:
a chamber to receive a cartridge having a rim;
a continuous circumferential seat surrounding the chamber that locates the rim of the cartridge; and
an element positioned to contact the rim of the cartridge, the element displaceable to a loaded-chamber-indication position by contact with the cartridge rim.
2. The pistol of claim 1, wherein the element is positioned in the loaded-chamber-indication position by contact with a side of the cartridge rim.
3. The pistol of claim 1, wherein the element comprises a pivot to pivotally mount the element in the pistol.
4. The pistol of claim 3, wherein the element is substantially rigid in structure such that the element does not bend by contact with the cartridge rim but is moveable about the pivot by contact with the cartridge rim.
5. The pistol of claim 3, wherein the pivot comprises a pin.
6. The pistol of claim 3, wherein the element comprises a sensor contact surface to operably contact the cartridge and a signal area to communicate the loaded chamber condition to a pistol user, the signal area being located at a distance farther from the pivot on the element than the sensor contact surface.
7. The pistol of claim 6, wherein the signal area has an indicia to denote a loaded chamber condition.
8. The pistol of claim 7, wherein the signal area is sized to include an indicia in the form of at least one alphanumeric character that is at least about 0.075 inches tall.
9. The pistol of claim 1, wherein the pistol comprises an exterior surface and at least a portion of the element protrudes outwards from the exterior surface of the pistol in the loaded-chamber-indication position to provide a user of the pistol with a visual and tactile indication that the cartridge is in a loaded condition.
10. The pistol of claim 1, wherein the chamber is sized to receive a 0.22 caliber cartridge.
11. The pistol of claim 10, wherein the element comprises a broadened portion that is flanged and has a thickness that is less than the thickness of an adjacent body portion of the element, the flanged portion laterally projecting outwards from the body portion in a direction generally towards the chamber when the element is mounted in pistol.
12. The pistol of claim 11, further comprising the broadened portion having an arcuately shaped surface configured to contact the cartridge rim.
13. The pistol of claim 1, wherein the element is positioned in the pistol to a lateral side of the chamber area and the element contacts the rim of the cartridge behind and outside of the chamber.
14. The pistol of claim 1, wherein the element is displaceable by the cartridge rim in generally a lateral direction along a transverse axis with respect to the pistol.
15. The pistol of claim 1, further comprising a biasing member mounted in the barrel-receiver assembly that biases the element towards the first position.
16. The pistol of claim 15, wherein the biasing member is a spring.
17. The pistol of claim 1, further comprising the chamber being disposed in a chamber block having a rear surface and the continuous circumferential seat is disposed on the rear surface, wherein the element contacts the cartridge rim at the rear surface with the cartridge loaded in the chamber.
18. The pistol of claim 17, wherein the chamber block has sidewalls without cutouts to substantially support the cartridge.
19. The pistol of claim 1, wherein the cartridge rim holds the element in the loaded-chamber-indication position.
20. A pistol with loaded chamber indicator comprising:
a barrel-receiver assembly having an exterior surface and defining a chamber that receives a cartridge having rim;
a continuous circumferential seat surrounding the chamber that contacts the rim of the cartridge when the entire body of the cartridge is disposed in the chamber; and
an indicating element positioned to contact the rim of the cartridge and simultaneously protrude outwards from the exterior surface of the barrel-receiver assembly.
21. The pistol of claim 20, wherein the indicating element is disposed in a first position wherein the cartridge rim does not contact the indicating element and a second position wherein the indicating element contacts the cartridge rim and protrudes outwards from the exterior surface of the barrel-receiver assembly.
22. The pistol of claim 21, wherein the indicating element does not protrude outwards from the exterior surface of the barrel-receiver assembly in the first position.
23. The pistol of claim 20, wherein the indicating element is pivotally mounted in the pistol about a pivot and is substantially rigid in structure such that the indicating element does not bend by contact with the cartridge rim but is moveable about the pivot by contact with the cartridge rim.
24. The pistol of claim 20, wherein the indicating element comprises a sensor contact surface to operably contact the cartridge and a signal area to communicate a loaded chamber condition to a user of the pistol, the signal area being located farther from the pivot on the indicating element than the sensor contact surface.
25. The pistol of claim 20, further comprising a biasing member that biases the indicating element towards the first position.
26. The pistol of claim 20, further comprising a continuous circumferential seat to abuttingly contact the cartridge rim when the cartridge is loaded in the chamber.
27. The pistol of claim 26, further comprising the chamber being disposed in a chamber block having a rear surface, and the circumferential seat located on the rear surface surrounding the chamber.
28. The pistol of claim 20, wherein the indicating element comprises a longitudinally-extending substantially planar side and an opposite longitudinally extending irregularly-shaped side, the irregularly-shaped side facing towards the chamber to operably contact the cartridge rim.
29. The pistol of claim 20, wherein the indicating element includes an indicia to denote a loaded chamber condition to a user of the pistol.
30. A method of indicating a loaded pistol chamber comprising:
locating a rim of a cartridge on a continuous circumferential seat; and
displacing an element to a loaded-chamber-indication position with the rim of the cartridge.
31. The method of claim 30, further comprising the step of protruding at least a portion of the indicating element outwards from an exterior surface of the pistol to provide a user of the pistol with a visual and tactile indication that a cartridge is loaded in the chamber.
32. The method of claim 31, further comprising the step of retracting the indicating element inside the pistol to an unloaded-chamber-indication position in the absence of contact between the indicating element and cartridge rim.
33. A pistol with loaded chamber indicator comprising:
a housing that defines a chamber to receive a cartridge with a rim, the chamber being disposed along a longitudinal axis passing through the chamber;
a firing pin offset from the longitudinal axis of the chamber; and
an indicating element positioned to contact the rim of the cartridge, the element displaceable to a loaded-chamber-indication position by contact with the cartridge rim.
34. The pistol of claim 33, wherein the chamber includes a continuous circumferential seat to locate the rim of the cartridge.
35. The pistol of claim 33, further comprising the chamber disposed in a chamber block having sidewalls without cutouts, the chamber block substantially supporting the cartridge.
36. A pistol with loaded chamber indicator comprising:
a housing having an exterior surface;
a barrel having a bore defining a longitudinal axis;
a chamber having a longitudinal centerline to receive a cartridge with a rim, the chamber disposed adjacent to the barrel and positioned such that the chamber centerline and longitudinal axis are concentrically aligned;
a firing pin offset from the centerline of the chamber; and
an indicating element positioned to contact the rim of the cartridge and simultaneously protrude outwards from the exterior surface of the pistol housing to indicate a loaded chamber condition to a user of the pistol.
37. The pistol of claim 36, wherein the indicating element is moveable from a first position wherein the cartridge rim does not contact the indicating element to a second position wherein the indicating element contacts the cartridge rim and simultaneously protrudes outwards from the exterior surface of the pistol.
38. The pistol of claim 36, further comprising the chamber disposed in a chamber block having a continuous circumferential seat to provide abutting contact with the cartridge rim when the cartridge is loaded in the chamber.
39. A pistol with loaded chamber indicator comprising:
a frame;
a trigger mounted to the frame;
a barrel-receiver assembly having an exterior surface and defining a chamber that receives a cartridge having rim, the barrel-receiver assembly mounted to the frame;
a continuous circumferential seat surrounding the chamber that supports the rim of the cartridge when the entire body of the cartridge is disposed in the chamber;
a bolt slidably disposed in the barrel-receiver assembly;
an indicating element positioned to contact the rim of the cartridge and simultaneously protrude outwards from the exterior surface of the barrel-receiver assembly; and
a spring to bias the indicating element towards a position wherein the indicating element does not protrude outwards from the exterior surface of the barrel-receiver assembly when not contacting the rim of the cartridge.
US10/825,509 2004-04-15 2004-04-15 Pistol with loaded chamber indicator Abandoned US20050229456A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/825,509 US20050229456A1 (en) 2004-04-15 2004-04-15 Pistol with loaded chamber indicator
US10/949,480 US7383655B2 (en) 2004-04-15 2004-09-24 Pistol with loaded chamber indicator
ES05252264T ES2328494T3 (en) 2004-04-15 2005-04-12 GUN WITH LOADED BED INDICATOR.
PT05252264T PT1586847E (en) 2004-04-15 2005-04-12 Pistol with loaded chamber indicator
AT05252264T ATE433559T1 (en) 2004-04-15 2005-04-12 PISTOL WITH LOADING INDICATOR FOR CARTRIDGES
EP05252264A EP1586847B1 (en) 2004-04-15 2005-04-12 Pistol with loaded chamber indicator
DE602005014826T DE602005014826D1 (en) 2004-04-15 2005-04-12 Pistol with charge indicator for cartridge chamber
BRPI0501342A BRPI0501342B1 (en) 2004-04-15 2005-04-14 ring percussion gun with charged chamber indicator and method for indicating a charged pistol chamber
US12/150,719 US7774970B1 (en) 2004-04-15 2008-04-30 Method for indicating loaded firearm chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/825,509 US20050229456A1 (en) 2004-04-15 2004-04-15 Pistol with loaded chamber indicator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/949,480 Continuation-In-Part US7383655B2 (en) 2004-04-15 2004-09-24 Pistol with loaded chamber indicator

Publications (1)

Publication Number Publication Date
US20050229456A1 true US20050229456A1 (en) 2005-10-20

Family

ID=35094772

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/825,509 Abandoned US20050229456A1 (en) 2004-04-15 2004-04-15 Pistol with loaded chamber indicator

Country Status (1)

Country Link
US (1) US20050229456A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003959B4 (en) * 2006-02-04 2008-05-21 Carl Walther Gmbh Disassembly safety device for pistols
DE112007000104B4 (en) * 2006-02-04 2012-05-03 Carl Walther Gmbh Disassembly safety device for pistols
US9062926B2 (en) * 2012-11-19 2015-06-23 Apex Tactical Specialties, Inc. Extractor for a firearm
US10760862B2 (en) * 2018-10-09 2020-09-01 Daniel Defense, Inc. Bolt stop assemblies
US20220196355A1 (en) * 2020-12-22 2022-06-23 Axts Inc Barrel with recess on barrel face of breech end

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US891438A (en) * 1907-11-14 1908-06-23 Colt S Mfg Co Indicator for firearms.
US1082969A (en) * 1912-10-15 1913-12-30 Savage Arms Company Firearm.
US5142805A (en) * 1989-12-29 1992-09-01 Horne John N Cartridge monitoring and display system for a firearm
US6161322A (en) * 1998-05-15 2000-12-19 Smith & Wesson Corp. Firearm having chamber status indicator and firearm retrofitting method
US6256915B1 (en) * 1998-12-29 2001-07-10 Forjas Taurus S/A In-chamber cartridge indicator for pistols
US6493977B1 (en) * 1998-05-15 2002-12-17 Smith & Wesson Corp. Firearm having chamber status indicator and firearm retrofitting method
US6857213B2 (en) * 2001-11-28 2005-02-22 Heckler & Koch Gmbh Loading indicators for firearms

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US891438A (en) * 1907-11-14 1908-06-23 Colt S Mfg Co Indicator for firearms.
US1082969A (en) * 1912-10-15 1913-12-30 Savage Arms Company Firearm.
US5142805A (en) * 1989-12-29 1992-09-01 Horne John N Cartridge monitoring and display system for a firearm
US6161322A (en) * 1998-05-15 2000-12-19 Smith & Wesson Corp. Firearm having chamber status indicator and firearm retrofitting method
US6493977B1 (en) * 1998-05-15 2002-12-17 Smith & Wesson Corp. Firearm having chamber status indicator and firearm retrofitting method
US20020194761A1 (en) * 1998-05-15 2002-12-26 Paul Liebenberg Firearm having chamber status indicator and firearm retrofitting method
US6256915B1 (en) * 1998-12-29 2001-07-10 Forjas Taurus S/A In-chamber cartridge indicator for pistols
US6857213B2 (en) * 2001-11-28 2005-02-22 Heckler & Koch Gmbh Loading indicators for firearms

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003959B4 (en) * 2006-02-04 2008-05-21 Carl Walther Gmbh Disassembly safety device for pistols
DE112007000104B4 (en) * 2006-02-04 2012-05-03 Carl Walther Gmbh Disassembly safety device for pistols
US9062926B2 (en) * 2012-11-19 2015-06-23 Apex Tactical Specialties, Inc. Extractor for a firearm
US9677834B2 (en) 2012-11-19 2017-06-13 Apex Tactical Specialties, Inc. Extractor for a firearm
US10378843B2 (en) 2012-11-19 2019-08-13 Apex Tactical Specialties, Inc. Extractor for a firearm
US10760862B2 (en) * 2018-10-09 2020-09-01 Daniel Defense, Inc. Bolt stop assemblies
US20220196355A1 (en) * 2020-12-22 2022-06-23 Axts Inc Barrel with recess on barrel face of breech end

Similar Documents

Publication Publication Date Title
US7774970B1 (en) Method for indicating loaded firearm chamber
EP1586846B1 (en) Pistol with loaded chamber indicator
US9714804B2 (en) Firearm with safe axis firing pin and center aligned barrel
US9513074B1 (en) Firearm with interchangeable parts
US8505428B2 (en) Anti jam, grooved and expanding charging handle for sub caliber actions
US4061075A (en) Automatic weapon
US10365059B2 (en) Firearm having a removable striker housing
EP2065667B1 (en) Magazine for air gun having rotary clip
US7895786B2 (en) Adaptable firing pin assembly for a bolt action firearm
US7377066B2 (en) Firearm with a readily interchangeable bolt face
US20050229456A1 (en) Pistol with loaded chamber indicator
US5608981A (en) Single spring bolt lock and cartridge ejector
US11674762B2 (en) Bolt action firearm
US20210404758A1 (en) Lever-coupled device for selectively preventing a firearm from discharging
CN108139185B (en) Bolt stop buffer in gun
US7877918B2 (en) Multi-shot firearm using separate chamber tubes
US4370822A (en) Convertible firearm-airgun
US4575962A (en) Unitary bolt face and firing pin device
US5513550A (en) Firearm with pivoting barrel
CA2575285C (en) An adaptable firing pin asssembly for a bolt action firearm
US8733010B2 (en) Rimless cartridge extractor assembly and method of use
CA2614189C (en) Fastening device with opening lever
CN116997763A (en) Semi-automatic pistol with double firing modes
AU2005266850A1 (en) An adaptable firing pin asssembly for a bolt action firearm

Legal Events

Date Code Title Description
AS Assignment

Owner name: STURM, RUGER & COMPANY, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCGARRY, JAMES;REEL/FRAME:015731/0463

Effective date: 20040709

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION