US20050220791A1 - Novel of cytokine inhibitors - Google Patents

Novel of cytokine inhibitors Download PDF

Info

Publication number
US20050220791A1
US20050220791A1 US10/506,543 US50654304A US2005220791A1 US 20050220791 A1 US20050220791 A1 US 20050220791A1 US 50654304 A US50654304 A US 50654304A US 2005220791 A1 US2005220791 A1 US 2005220791A1
Authority
US
United States
Prior art keywords
substance
wound healing
treatment
group
tnf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/506,543
Inventor
Kjell Olmarker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PharmaSurgics in Sweden AB
Original Assignee
Orthopaedic Research & Development In Gothenburg AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthopaedic Research & Development In Gothenburg AB filed Critical Orthopaedic Research & Development In Gothenburg AB
Priority to US10/506,543 priority Critical patent/US20050220791A1/en
Assigned to ORTHOPAEDIC RESEARCH & DEVELOPMENT IN GOTHENBURG AB reassignment ORTHOPAEDIC RESEARCH & DEVELOPMENT IN GOTHENBURG AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLMARKER, KJELL
Publication of US20050220791A1 publication Critical patent/US20050220791A1/en
Assigned to PHARMASURGICS IN SWEDEN AB reassignment PHARMASURGICS IN SWEDEN AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORTHOPAEDIC RESEARCH & DEVELOPMENT IN GOTHENBURG AB
Priority to US12/717,103 priority patent/US20100305048A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1793Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Definitions

  • the present invention relates to pharmaceutical compositions and methods for improving wound healing.
  • Wound healing is a positive physiological reaction that may restore anatomy and function of various tissues after trauma.
  • the trauma may be accidental, the result of surgical intervention or the effect of a disease or genetic condition.
  • the ideal end result of wound healing should be to restore the tissues to the situation before the trauma.
  • Wound healing may be delayed or incomplete due to various independent factors. This may lead to chronic conditions with impaired restoration and function of the injured tissue.
  • Many factors delaying the wound healing may be inhibited by specific treatment. For instance, infections may be treated by antibiotics, reduced blood flow may be treated by compression bandages and oxygen therapy and seromas may be evacuated by drainage.
  • One additional way to facilitate wound healing would be to reduce the scar formation. In all cases of wound healing, however, it would be desirable to enhance the inborn properties of tissues to heal by interfering with the wound healing process per se.
  • a method for controlling and improving wound healing would be of a great value in most cases of posttraumatic or post surgical wound healing.
  • the cytokine network is complex and what may seem to be evident from an in vitro setting may often prove not to be applicable in the in vivo setting.
  • the in vivo situation at the area of wound healing comprises a vast number of known and unknown substances that may interact in ways not present in vitro.
  • Administration of a cytokine in one concentration may have an effect that is counteracted by administration of the same cytokine in a higher dose due to synergistic inhibition and stimulation between the various cytokines as well as physiological inhibition of its release from adjacent cells.
  • the inflammation at the site of wound healing induces an increased blood flow in the wound healing area.
  • the inflammation also induces an activation of adhesion molecules that, together with a simultaneous increase in vascular permeability, may facilitate the migration of inflammatory cells to the wound healing site.
  • Inflammatory mediators also have leucotactic or chemotactic properties, i.e. attract white blood cells to the area of wound healing.
  • Two important inflammatory mediators responsible for this leucotaxis are TNF and IL-1. TNF and IL-1 synergistically with other chemokines stimulate this local inflammatory response.
  • the inventor therefore assumed that a more feasible way to improve would healing than previously suggested was to reduce the activity of proinflammatory substances, which he also later found to be true. This both prevents cell migration to the site of wound healing and may shift the balance of stimulation and inhibition of tissue regeneration in favor of stimulation. Since TNF and IL-1 are responsible for both these mechanisms, the most efficient way to improve wound healing is to inhibit the action of these two proinflammatory cytokines or other pro-inflammatory cytokines. This was also confirmed in the example displayed below.
  • Such pro-inflammatory cytokines are tumor necrosis factor (TNF), interleukin 1 (IL-1), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 12 (IL-12), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-1), granulocytes-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein 1 (MIP-1), RANTES (regulated upon activation, normal T-cell expressed, and presumably secreted), epithelial cell-derived neutrophil attractant-78 (ENA-78), oncostatin-M (OSM), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and vascular endothelial growth factor (VEGF); and in particular TNF (also called TNF- ⁇ ) and IL-1 (including both IL-1 ⁇ and IL-1
  • Tissue injury may also be the result of toxic influence, as the result of reduced blood flow due to vascular disease, or as the result of a thermic injury, and the treatment according to the invention is applicable also for these three latter conditions.
  • blocking agent for the purpose of this disclosure, the terms “blocking agent”, “blocking substance”, “inhibitor” and “antagonist” may be used interchangeably.
  • inhibition of a pro-inflammatory cytokine is useful for improving wound healing.
  • This inhibition is possible to achieve by any suitable cytokine inhibitor, such as available pharmacological compositions.
  • a pro-inflammatory cytokine relates to any substance from the cytokine family that posses one or more of the following specific mechanisms of action: 1 ) increasing vascular permeability, 2 ) attracting white blood cells (leucotaxia or chemotaxia), 3 ) activating macrophages, and 4 ) recruiting macrophages to the site of wound healing. These effects may be assessed for each individual substance by use of the assays disclosed below.
  • a substance that inhibits a pro-inflammatory cytokine thus relates to a substance that may block one or more of the four listed effects in the assays disclosed below.
  • the hamster is placed on a heated (37° C.) perspex plate, and the right cheek-pouch is everted over a translucent rubber plate and covered with plastic film in order to prevent reduction in blood flow rate due to direct exchange of oxygen.
  • An injection of 0.3 ml of FITC-Dextran (mw 150.000,25 mg/ml, Sigma, St Louis, USA) is made in the femoral vein for fluorescence vital microscopic observations of macromolecular extravascular leakage. Temperature and humidity is controlled by irrigation of saline at 37° C.
  • An injection of approximately 0.02 ml of a suitable concentration of the substance to be tested is made between the two layers of the cheek-pouch using a thin injection needle (diameter 0.4 mm).
  • the same volume of saline is performed in an adjacent part of the cheek-pouch at a distance from the other injection site sufficient to eliminate the risk of communication between the saline and the tested substance within the cheek-pouch.
  • the injection procedures are carried out under a stereomicroscope to minimize mechanical damage to the microvessels. Microvascular reactions are studied for 60 minutes at various magnificications, using fluorescence microscopic techniques (Leitz, Wetzlar, Germany).
  • a pro-inflammatory cytokine as defined according to the present invention induces a leakage of the fluorescent macromolecule FITC-dextran. A similar leakage should not be observed at the site injected by saline.
  • Assay for leucotaxia or chemotaxia A pig, bodyweight 25-30 kg, is anaesthetized with an intramuscular injection of 20 mg/kg bodyweight of Ketalar® (ketamine 50 mg/ml, Parke-Davis, Morris Plains, N.J.) and an intravenous injection of 4 mg/kg bodyweight of Hypnodil® (methomidate chloride 50 mg/ml, AB Leo, Helsingborg, Sweden) and 0.1 mg/kg bodyweight of Stresnil® (azaperon 2 mg/ml, Janssen Pharmaceutica, Beerse, Belgium).
  • Ketalar® ketamine 50 mg/ml, Parke-Davis, Morris Plains, N.J.
  • Hypnodil® metalhomidate chloride 50 mg/ml, AB Leo, Helsingborg, Sweden
  • Stresnil® azaperon 2 mg/ml, Janssen Pharmaceutica, Beerse, Belgium
  • Anesthesia is maintained by additional intravenous injections of 2 mg/kg body-weight of Hypnodil® and 0.05 mg/kg bodyweight of Stresnil®.
  • One ml of a fluid containing a sufficient concentration of the substance to be tested is placed, in a suitable concentration locally in its natural form, in slow-release preparations or by continuous administration by osmotic mini-pumps, in a specially designed titanium-chamber.
  • the chamber is 5 mm high and has a diameter of 15 mm.
  • the top could be dismounted and is perforated with 18 holes, each with a diameter of 1.4 mm.
  • the chamber together with one chamber with the same volume of saline, is placed subcutaneously in the lumbar region through separate incisions, with no communication between the chambers.
  • the pig is reanaesthetized similar to the first procedure.
  • the chambers are harvested and the content of the chamber is placed in a test-tube together with 1 ml of Hanks' Balanced Salt Solution (Life Technologies, Paisley, Scotland). From this suspension, 100 ⁇ l is used to wash out the chamber for remaining cells. This procedure is repeated 5 times.
  • the test-tube is then shaken for 15 seconds.
  • a total of 25 ⁇ l of the suspension and 25 ⁇ l of Schok's staining medium are mixed and placed in a chamber of Burker.
  • the total number of leukocytes in each chamber is determined using light microscopy.
  • the chamber with a pro-inflammatory cytokine as defined according to the present invention then contains significantly more white blood cells than the chamber with only saline.
  • a macrophage cell line is bought and cultured according to the description of the manufacturer. Examples of useful cell lines are; DH-82 from ECACC, Salisbury, Wiltshire, Great Britain; ACC288, ACC269 or ACC416 from Deutsche Sammlung von Mikroorganismen un Zellkulturen GmbH (DSMZ); or ICLC ATL98011 from Institute of Pharmacological Sciences, Milan Italy. The cells are cultured in multiple-well culture plates. The substance to be tested is applied to the culture-wells in various concentrations. After incubation for 6-72 hours, aliquots of the culture media (25-50 ⁇ l) of the culture media are used for assays.
  • Assays of TNF and IL-8 and Nitric oxide (NO) are performed using commercially available assays and the results are compared with assays from culture media without the addition of the substance to be tested.
  • a pro-inflammatory cytokine as defined according to the present invention induces significantly higher levels of one or more of TNF, IL-8 or NO in the culture media compared to culture media without the tested substance.
  • Rats are anaesthetized with a standardized combination of pentobarbital and diazepam. The skin on the back is shaved. A 3 cm long midline incision is made in the skin and in the underlying muscle. The substance to be tested is applied in a suitable concentration locally in its natural form, in slow-release preparations or by continuous administration by osmotic mini-pumps. In control experiments, the same amount and administration of saline is executed. The skin is sutured. After 1-4 weeks the rat is re-anaesthetized and the area of wound healing in the skin and in the muscle is harvested and processed for immunohistochemistry.
  • CDw17, CD23, CD25, CD26, CD64, CD68, CD69, CD71, CD74, CD 80, CD88, CD91 and CD105 are used to visualize the presence of macrophages in the healing tissues. The number of macrophages is then found to be significantly higher in the healing tissue when exposed to the tested substance than in tissues exposed to saline control.
  • An inhibitor of a proinflammatory cytokine as defined according to the present invention will reduce the effects of the pro-inflammatory cytokine in one or more of the four assays above, i.e. increase of vascular permeability, leucotaxia and activation or recruitment of macrophages, and/or it will have an inhibitory effect on the recruitment of macrophages in the assay for inhibition of recruitment of macrophages disclosed below.
  • Rats are anaesthetized with a standardized combination of pentobarbital and diazepam. The skin on the back is shaved. A 3 cm long midline incision is made in the skin and in the underlying muscle. The skin is sutured. The animal receives treatment by a cytokine inhibitor in a suitable concentration and form of administration. Control animals receive no treatment. After 1-4 weeks the rat is re-anaesthetized and the area of wound healing in the skin and in the muscle is harvested and processed for immunohistochemistry.
  • Commercially available antibodies for macrophage specific CD-molecules e.g.
  • CDw17, CD23, CD25, CD26, CD64, CD68, CD69, CD71, CD74, CD 80, CD88, CD91 and CD105 are used to visualize the presence of macrophages in the healing tissues. The number of macrophages is then found to be significantly lower in the healing tissue after treatment with the cytokine inhibitor than in control animals.
  • patient relates to any human or nonhuman mammal in need of treatment according to the invention.
  • Wound healing that may be improved according to the present invention is healing after any kind of tissue injury such as following surgery, by traumatic tissue injury, tissue injury resulting from toxic influence, or thermic injury, or as the result of reduced blood flow due to vascular disease.
  • the expression “improved wound healing” and similar expressions used herein are intended to relate to both improvement of the time for a wound to heal and to improvement of the quality of the wound.
  • improved wound healing is thus intended wound healing that is improved, enhanced and/or facilitated by use of the substances according to the present invention, when compared to a similarly wound not treated with a compound according to the invention.
  • a wound is a state where the normal anatomy of a structure has been destructed.
  • Wounds may also be achieved by metabolic processes due to reduced nutritional supply such as diabetic, leg and decubitus ulcer as well as gastric ulcers, or by exposure to toxic compounds or thermal injury. Wounds may also be induced by surgery. Wound healing is the physiological mechanism to restore the injured tissue to its original condition and anatomy. The success of wound healing can be measured both as the time for a specific wound to heal and the quality of the wound healing. Healing after a traumatic cut wound would encompass the adhesion of the two separated wound surfaces.
  • Improved wound healing is characterized as better data for a wound treated with a substance according to the invention, as compared to a non-treated wound or a wound treated with placebo, regarding clinical appearance, biomechanical testing, histological analyses of biopsy material, high resolution ultra sound scanning and/or other techniques to evaluate degree of wound healing.
  • treatment used herein relates to both treatment in order to cure or alleviate a disease or a condition, and to treatment in order to prevent the development of a disease or a condition.
  • the treatment may either be performed in an acute or in a chronic way.
  • Non-specific TNF blocking substances such as:
  • TNF blocking substances such as:
  • IL-1 ⁇ and IL-1 ⁇ blocking substances such as:
  • Non-specific IL-1 ⁇ and IL-1 ⁇ blocking substances such as
  • IL-6 blocking substances such as:
  • Non-specific IL-6 blocking substances such as:
  • IL-8 blocking substances such as:
  • Non-specific IL-8 blocking substances such as:
  • composition according to the invention may also comprise other substances, such as an inert vehicle, or pharmaceutical acceptable adjuvants, carriers, preservatives etc., which are well known to persons skilled in the art.
  • the administration of the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention should preferably be performed early after injury to limit the inflammatory reaction occurring at the wound healing site.
  • the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention is administered once or repeatedly until the desired result is obtained.
  • the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention is administered in a therapeutically effective amount, i.e. an amount that will lead to the desired therapeutical effect and thus lead to an improvement of the patient's condition.
  • the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention may be administered in any efficacious way normally used to administer such substances.
  • the administration may be done both systemically and locally and may be performed before, during and/or after all kind of surgical or traumatic tissue injury.
  • the suggested treatment may also be applicable at tissue injury as the result of pathological conditions including vascular disease and toxic influence.
  • the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention may for example be injected via intra-articular, intravenous (i.v.), intramuscular (i.m.), intraperitoneal (i.p.), intrathecal (i.t.), epidural, intracerebroventricular (i.c.v.) or subcutaneous (s.c.) routes by bolus injections or by continuous infusion. They may also be administered orally (per os), e.g. in the form of oral preparations, such as pills, syrups, or lozenges. Furthermore, they may be administered by inhalation or intranasally. Moreover, they may be administered transepidermally, e.g. in the form of topical preparations such as lotions, gels, sprays, ointments or patches. They may also be administered in an irrigation solution or by localized injection. Finally, they may also be administered by genetical engineering.
  • the pharmaceutical composition is formulated as a sustained-release preparation.
  • the substance according to the invention may then, for example, be encapsulated in a slowly dissolving biocompatible polymer.
  • TNF inhibitors examples include TNF-1 i.v. 5-200 10-100 30-80 (all doses given in mg for administration once every 4 th week) TBP-1 i.v. 5-200 10-100 30-80 (all doses given in mg for administration once every 4 th week) CDP-571 Humicade ® i.v. 1-100 5-10 5-10 (all doses given in mg/kg body weight for administration as a single dose) D2E7 i.v. 0.1-50 0.5-10 1-10 S.c. 0.1-50 0.5-10 1-10 (all doses given in mg/kg body weight for administration as a single dose) Iloprost i.v.
  • the substances according to the invention may also be administered in combination with other drugs or compounds, provided that these other drugs or compounds do not eliminate the effects desired according to the present invention, i.e. the effect on TNF.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The use of substance that inhibits a pro-inflammatory cytokine, such as TNF or IL-1, for the production of a pharmaceutical composition for improving wound healing is disclosed. Also, a method for improving wound healing wherein a therapeutically effective amount of a substance that inhibits a pro-inflammatory cytokine is administered to a patient in need of said treatment is disclosed.

Description

    FIELD OF THE INVENTION
  • The present invention relates to pharmaceutical compositions and methods for improving wound healing.
  • BACKGROUND OF THE INVENTION
  • Wound healing is a positive physiological reaction that may restore anatomy and function of various tissues after trauma. The trauma may be accidental, the result of surgical intervention or the effect of a disease or genetic condition. The ideal end result of wound healing should be to restore the tissues to the situation before the trauma. Wound healing may be delayed or incomplete due to various independent factors. This may lead to chronic conditions with impaired restoration and function of the injured tissue. Many factors delaying the wound healing may be inhibited by specific treatment. For instance, infections may be treated by antibiotics, reduced blood flow may be treated by compression bandages and oxygen therapy and seromas may be evacuated by drainage. One additional way to facilitate wound healing would be to reduce the scar formation. In all cases of wound healing, however, it would be desirable to enhance the inborn properties of tissues to heal by interfering with the wound healing process per se. A method for controlling and improving wound healing would be of a great value in most cases of posttraumatic or post surgical wound healing.
  • SUMMARY OF THE INVENTION
  • Based on the knowledge derived from the literature the inventor assessed the efficacy of improving wound healing by administration of TNF in a laminectomy model on the rat (see the Comparative Example below). To his surprise, he found, contrary to what could be expected, that the wound healing was significantly impaired in the rats exposed to TNF.
  • Since administration of TNF increased scar formation and also negatively influenced the wound healing per se, the inventor realized that the in vitro data acquired in experimental settings regarding fibroblast regulation are not applicable in vivo, and that these findings had to be re-evaluated in light of the in vivo situation.
  • The cytokine network is complex and what may seem to be evident from an in vitro setting may often prove not to be applicable in the in vivo setting. The in vivo situation at the area of wound healing comprises a vast number of known and unknown substances that may interact in ways not present in vitro. Administration of a cytokine in one concentration may have an effect that is counteracted by administration of the same cytokine in a higher dose due to synergistic inhibition and stimulation between the various cytokines as well as physiological inhibition of its release from adjacent cells.
  • It is generally assumed that the inflammatory reaction seen in tissues undergoing wound healing is a positive event that is necessary for normal wound healing to occur. However, the inventor assumed that this might be a misleading conclusion based on the findings of the comparative example (see below). Various biological substances regulate the activity of specific cells during physiological processes. This may be assumed to be true also regarding wound healing. One component of normal wound healing is the regeneration of injured cells at the site of wound healing. Regeneration is usually promoted by various growth factors. Under certain circumstances, pro-inflammatory cytokines may counteract the effects elicited by the growth factor in a way that there is a balance between stimulation (growth factors) and inhibition (proinflammatory cytokines). The inventor assumed that this might be the case also at wound healing. A feasible way to shift the balance of stimulation and inhibition by pharmacological means would be to either enhance the level of stimulation or to reduce the inhibition. Since the comparative example (see below) clearly indicated that administration of TNF reduced the wound healing the author assumed that inhibition of the same or other substances with similar action instead might improve wound healing.
  • In the literature it is has been recognized that fetal tissues heal with emphasis of regeneration of the injured tissue with no or little scar formation. In contrast, adult tissues instead may result in scar formation that may dominate over tissue regeneration. Since the inflammatory reaction in fetal tissues during wound healing is less pronounced than during adult wound healing one might assume that reduction of the inflammation per se might be beneficial for the wound healing.
  • The inflammation at the site of wound healing induces an increased blood flow in the wound healing area. The inflammation also induces an activation of adhesion molecules that, together with a simultaneous increase in vascular permeability, may facilitate the migration of inflammatory cells to the wound healing site. Inflammatory mediators also have leucotactic or chemotactic properties, i.e. attract white blood cells to the area of wound healing. Two important inflammatory mediators responsible for this leucotaxis are TNF and IL-1. TNF and IL-1 synergistically with other chemokines stimulate this local inflammatory response. Since the main contribution of inflammatory cytokines to the site of wound healing is delivered by invading leucocytes it would be useful to limit the number of leucocytes by inhibiting the migration of these cells. Since pro-inflammatory substances are mainly responsible for the migration of the leucocytes to the wound healing site this should be achieved by inhibiting the activity of such substances.
  • The inventor therefore assumed that a more feasible way to improve would healing than previously suggested was to reduce the activity of proinflammatory substances, which he also later found to be true. This both prevents cell migration to the site of wound healing and may shift the balance of stimulation and inhibition of tissue regeneration in favor of stimulation. Since TNF and IL-1 are responsible for both these mechanisms, the most efficient way to improve wound healing is to inhibit the action of these two proinflammatory cytokines or other pro-inflammatory cytokines. This was also confirmed in the example displayed below.
  • The characterizing features of the invention will be evident from the following description and the appended claims.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As discussed above, and further demonstrated in the Example below wherein administration of infliximab to pigs with a standardized laminectomy is discussed, the inventor found, contrary to what could be expected from existing literature, that inhibition of pro-inflammatory cytokines is an efficient way to control wound healing. Such pro-inflammatory cytokines are tumor necrosis factor (TNF), interleukin 1 (IL-1), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 12 (IL-12), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-1), granulocytes-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein 1 (MIP-1), RANTES (regulated upon activation, normal T-cell expressed, and presumably secreted), epithelial cell-derived neutrophil attractant-78 (ENA-78), oncostatin-M (OSM), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and vascular endothelial growth factor (VEGF); and in particular TNF (also called TNF-α) and IL-1 (including both IL-1 α and IL-1β).
  • The suggested treatment is applicable at all kinds of surgery. It may also be used after traumatic tissue injury. Tissue injury may also be the result of toxic influence, as the result of reduced blood flow due to vascular disease, or as the result of a thermic injury, and the treatment according to the invention is applicable also for these three latter conditions.
  • For the purpose of this disclosure, the terms “blocking agent”, “blocking substance”, “inhibitor” and “antagonist” may be used interchangeably.
  • As stated above, inhibition of a pro-inflammatory cytokine is useful for improving wound healing. This inhibition is possible to achieve by any suitable cytokine inhibitor, such as available pharmacological compositions.
  • Persons skilled in the art are well aware of what is intended by a proinflammatory cytokine. For the purpose of this disclosure, it may, however, be further clarified that the expression “a pro-inflammatory cytokine” relates to any substance from the cytokine family that posses one or more of the following specific mechanisms of action: 1) increasing vascular permeability, 2) attracting white blood cells (leucotaxia or chemotaxia), 3) activating macrophages, and 4) recruiting macrophages to the site of wound healing. These effects may be assessed for each individual substance by use of the assays disclosed below. “A substance that inhibits a pro-inflammatory cytokine” as it is used herein thus relates to a substance that may block one or more of the four listed effects in the assays disclosed below. However, due to differences between species, one may also translate findings from the experimental setting to the human situation. For instance, if a monoclonal antibody with specificity towards a specific cytokine of a certain species inhibits the action of the cytokine in one of the three ways disclosed below in that specific species, one may assume that a monoclonal antibody, with specificity towards the human version of the cytokine, may inhibit this cytokine in the human situation.
  • 1) Assay for increase of vascular permeability: A golden hamster, weighing 65-100 g, is anaesthetized with a mixture of Apozepam® (Diazepam 5 mg/ml Apothekames Laboratorium, Oslo, Norway) and Mebumal Vet® (Penthobarbital 60 mg/ml, NordVacc Vaccin AB, Malmö, Sweden) volume ratio 10:1. An initial dose of 0.3 ml is given intraperitoneally. Additional injections of 0.1-0.4 ml are administered each 30 minutes. The hamster is placed on a heated (37° C.) perspex plate, and the right cheek-pouch is everted over a translucent rubber plate and covered with plastic film in order to prevent reduction in blood flow rate due to direct exchange of oxygen. An injection of 0.3 ml of FITC-Dextran (mw 150.000,25 mg/ml, Sigma, St Louis, USA) is made in the femoral vein for fluorescence vital microscopic observations of macromolecular extravascular leakage. Temperature and humidity is controlled by irrigation of saline at 37° C. An injection of approximately 0.02 ml of a suitable concentration of the substance to be tested is made between the two layers of the cheek-pouch using a thin injection needle (diameter 0.4 mm). The same volume of saline is performed in an adjacent part of the cheek-pouch at a distance from the other injection site sufficient to eliminate the risk of communication between the saline and the tested substance within the cheek-pouch. The injection procedures are carried out under a stereomicroscope to minimize mechanical damage to the microvessels. Microvascular reactions are studied for 60 minutes at various magnificications, using fluorescence microscopic techniques (Leitz, Wetzlar, Germany). A pro-inflammatory cytokine as defined according to the present invention induces a leakage of the fluorescent macromolecule FITC-dextran. A similar leakage should not be observed at the site injected by saline.
  • 2) Assay for leucotaxia or chemotaxia: A pig, bodyweight 25-30 kg, is anaesthetized with an intramuscular injection of 20 mg/kg bodyweight of Ketalar® (ketamine 50 mg/ml, Parke-Davis, Morris Plains, N.J.) and an intravenous injection of 4 mg/kg bodyweight of Hypnodil® (methomidate chloride 50 mg/ml, AB Leo, Helsingborg, Sweden) and 0.1 mg/kg bodyweight of Stresnil® (azaperon 2 mg/ml, Janssen Pharmaceutica, Beerse, Belgium). Anesthesia is maintained by additional intravenous injections of 2 mg/kg body-weight of Hypnodil® and 0.05 mg/kg bodyweight of Stresnil®. One ml of a fluid containing a sufficient concentration of the substance to be tested is placed, in a suitable concentration locally in its natural form, in slow-release preparations or by continuous administration by osmotic mini-pumps, in a specially designed titanium-chamber. The chamber is 5 mm high and has a diameter of 15 mm. The top could be dismounted and is perforated with 18 holes, each with a diameter of 1.4 mm. The chamber, together with one chamber with the same volume of saline, is placed subcutaneously in the lumbar region through separate incisions, with no communication between the chambers. After 7 days the pig is reanaesthetized similar to the first procedure. The chambers are harvested and the content of the chamber is placed in a test-tube together with 1 ml of Hanks' Balanced Salt Solution (Life Technologies, Paisley, Scotland). From this suspension, 100 μl is used to wash out the chamber for remaining cells. This procedure is repeated 5 times. The test-tube is then shaken for 15 seconds. A total of 25 μl of the suspension and 25 μl of Türk's staining medium (Sigma, St Louis, USA) are mixed and placed in a chamber of Burker. The total number of leukocytes in each chamber is determined using light microscopy. The chamber with a pro-inflammatory cytokine as defined according to the present invention then contains significantly more white blood cells than the chamber with only saline.
  • 3) Assay for activation of macrophages: A macrophage cell line is bought and cultured according to the description of the manufacturer. Examples of useful cell lines are; DH-82 from ECACC, Salisbury, Wiltshire, Great Britain; ACC288, ACC269 or ACC416 from Deutsche Sammlung von Mikroorganismen un Zellkulturen GmbH (DSMZ); or ICLC ATL98011 from Institute of Pharmacological Sciences, Milan Italy. The cells are cultured in multiple-well culture plates. The substance to be tested is applied to the culture-wells in various concentrations. After incubation for 6-72 hours, aliquots of the culture media (25-50 μl) of the culture media are used for assays. Assays of TNF and IL-8 and Nitric oxide (NO) are performed using commercially available assays and the results are compared with assays from culture media without the addition of the substance to be tested. A pro-inflammatory cytokine as defined according to the present invention induces significantly higher levels of one or more of TNF, IL-8 or NO in the culture media compared to culture media without the tested substance.
  • 4) Assay for recruitment of macrophages to the site of wound healing: Rats are anaesthetized with a standardized combination of pentobarbital and diazepam. The skin on the back is shaved. A 3 cm long midline incision is made in the skin and in the underlying muscle. The substance to be tested is applied in a suitable concentration locally in its natural form, in slow-release preparations or by continuous administration by osmotic mini-pumps. In control experiments, the same amount and administration of saline is executed. The skin is sutured. After 1-4 weeks the rat is re-anaesthetized and the area of wound healing in the skin and in the muscle is harvested and processed for immunohistochemistry. Commercially available antibodies for macrophage specific CD-molecules (e.g. CDw17, CD23, CD25, CD26, CD64, CD68, CD69, CD71, CD74, CD 80, CD88, CD91 and CD105) are used to visualize the presence of macrophages in the healing tissues. The number of macrophages is then found to be significantly higher in the healing tissue when exposed to the tested substance than in tissues exposed to saline control.
  • Inhibition of pro-inflammatory cytokines: An inhibitor of a proinflammatory cytokine as defined according to the present invention will reduce the effects of the pro-inflammatory cytokine in one or more of the four assays above, i.e. increase of vascular permeability, leucotaxia and activation or recruitment of macrophages, and/or it will have an inhibitory effect on the recruitment of macrophages in the assay for inhibition of recruitment of macrophages disclosed below.
  • 5) Assay for inhibition of recruitment of macrophages to site of wound healing: Rats are anaesthetized with a standardized combination of pentobarbital and diazepam. The skin on the back is shaved. A 3 cm long midline incision is made in the skin and in the underlying muscle. The skin is sutured. The animal receives treatment by a cytokine inhibitor in a suitable concentration and form of administration. Control animals receive no treatment. After 1-4 weeks the rat is re-anaesthetized and the area of wound healing in the skin and in the muscle is harvested and processed for immunohistochemistry. Commercially available antibodies for macrophage specific CD-molecules (e.g. CDw17, CD23, CD25, CD26, CD64, CD68, CD69, CD71, CD74, CD 80, CD88, CD91 and CD105) are used to visualize the presence of macrophages in the healing tissues. The number of macrophages is then found to be significantly lower in the healing tissue after treatment with the cytokine inhibitor than in control animals.
  • The term “patient”, as it is used herein, relates to any human or nonhuman mammal in need of treatment according to the invention.
  • Wound healing that may be improved according to the present invention is healing after any kind of tissue injury such as following surgery, by traumatic tissue injury, tissue injury resulting from toxic influence, or thermic injury, or as the result of reduced blood flow due to vascular disease. The expression “improved wound healing” and similar expressions used herein are intended to relate to both improvement of the time for a wound to heal and to improvement of the quality of the wound. By improved wound healing is thus intended wound healing that is improved, enhanced and/or facilitated by use of the substances according to the present invention, when compared to a similarly wound not treated with a compound according to the invention. A wound is a state where the normal anatomy of a structure has been destructed. This could encompass a separation of the tissue into two wound surfaces as in a traumatic wound induced by a knife or removal of a tissue as in an abrasion wound. Wounds may also be achieved by metabolic processes due to reduced nutritional supply such as diabetic, leg and decubitus ulcer as well as gastric ulcers, or by exposure to toxic compounds or thermal injury. Wounds may also be induced by surgery. Wound healing is the physiological mechanism to restore the injured tissue to its original condition and anatomy. The success of wound healing can be measured both as the time for a specific wound to heal and the quality of the wound healing. Healing after a traumatic cut wound would encompass the adhesion of the two separated wound surfaces. This is a time dependant process and a substance promoting improved wound healing would typically induce a higher degree of adhesion in a wound at a given timepoint following the formation of the wound than a wound not exposed to substance. This is further illustrated in the example below, wherein administration of infliximab provided a higher degree of adhesion than in wounds in pigs without infliximab administration after one week. In this example, infliximab was found to improve wound healing. In cases with abrasion injury, the improved wound healing would be defined as a higher degree of re-epithelialization of the abraded surface in wounds following administration of a substance promoting wound healing than in wounds without administration of such a substance. Improved wound healing is characterized as better data for a wound treated with a substance according to the invention, as compared to a non-treated wound or a wound treated with placebo, regarding clinical appearance, biomechanical testing, histological analyses of biopsy material, high resolution ultra sound scanning and/or other techniques to evaluate degree of wound healing.
  • The term “treatment” used herein relates to both treatment in order to cure or alleviate a disease or a condition, and to treatment in order to prevent the development of a disease or a condition. The treatment may either be performed in an acute or in a chronic way.
  • There are several different types of inhibitors of pro-inflammatory cytokines that may be used according to the invention:
  • Specific TNF blocking substances, such as
      • Monoclonal antibodies, e.g. infliximab, CDP-571 (Humicade™), D2E7, and CDP-870;
      • Soluble cytokine receptors, e.g. etanercept, lenercept, pegylated TNF-receptor type I, TBP-1
      • TNF-receptor antagonists
      • Antisense oligonucleotides; e.g. ISIS-104838;
  • Non-specific TNF blocking substances, such as:
      • MMP inhibitors (i.e. matrix metalloproteinase inhibitors, or TACE-inhibitors, i.e. TNF Alpha Converting Enzyme-inhibitors)
        • Tetracyclines, for example Doxycycline, Lymecycline, Oxitetracycline, Tetracycline, Minocycline and synthetic tetracycline derivatives, such as CMT, i.e. Chemically Modified Tetracyclines;
        • Prinomastat (AG3340)
        • Batimastat
        • Marimastat
        • KB-R7785
        • TIMP-1, TIMP-2, adTIMP-1 (adenoviral delivery of TIMP-1), adTIMP-2 (adenoviral delivery of TIMP-2)
      • Quinolones, for example Norfloxacin, Levofloxacin, Enoxacin, Sparfloxacin, Temafloxacin, Moxifloxacin, Gatifloxacin, Gemifloxacin, Grepafloxacin, Trovafloxacin, Ofloxacin, Ciprofloxacin, Pefloxacin, Lomefloxacin and Temafloxacin;
      • Thalidomide derivates, e.g. SelCID, i.e. Selective Cytokin inhibitors, such as thalidomide derivative, for example CC-1088, CDC-501, CDC-801, and Linomide (Roquininex®;)
      • Lazaroids; nonglucocorticoid 21-aminosteroids such as U-74389G (16-desmethyl tirilazad) and U-74500
      • Prostaglandins; Iloprost (prostacyclin)
      • Cyclosporin
      • Pentoxifyllin derviates
      • Hydroxamic acid derivates
      • Napthopyrans
      • Phosphodiesterase I, II, III, IV, and V-inhibitors; CC-1088, Ro 20-1724, rolipram, amminone, pimobendan, vesnarinone, SB 207499 (Ariflo®)
      • Melancortin agonists; HP-228
  • Other TNF blocking substances, such as:
      • Lactofernin, and peptides derived or derivable from lactofernin such as those disclosed in WO 00/01730
      • CT3
      • ITF-2357
      • PD-168787
      • CLX-1100
      • M-PGA
      • NCS-700
      • PMS-601
      • RDP-58
      • TNF-484A
      • PCM-4
      • CBP-1011
      • SR-31747
      • AGT-1
      • Solimastat
      • CH-3697
      • NR58-3.14.3
      • RIP-3
      • Sch-23863
      • Yissum project no. 11649
      • Pharma projects no. 6181, 6019 and 4657
      • SH-636
  • Specific IL-1α and IL-1β blocking substances, such as:
      • Monoclonal antibodies;
      • Soluble cytokine receptors;
      • IL-1 type II receptor (decoy RII)
      • Receptor antagonists; IL-1ra, (Orthogen®, Orthokin®)
      • Antisense oligonucleotides;
  • Non-specific IL-1α and IL-1β blocking substances, such as
      • MMP inhibitors (i.e. matrix metalloproteinase inhibitors),
        • Tetracyclines, for example Doxycycline, Trovafloxacin, Lymecycline, Oxitetracycline, Tetracycline, Minocycline, and synthetic tetracycline derivatives, such as CMT, i.e. Chemically Modified Tetracyclines;
        • Prinomastat (AG3340)
        • Batimastat
        • Marimastat
        • KB-R7785
        • TIMP-1, TIMP-2, adTIMP-1, adTIMP-2
      • Quinolones (chinolones), for example Norfloxacin, Levofloxacin, Enoxacin, Sparfloxacin, Temafloxacin, Moxifloxacin, Gatifloxacin, Gemifloxacin, Grepafloxacin, Trovafloxacin, Ofloxacin, Ciprofloxacin, Pefloxacin, Lomefloxacin, Temafloxacin;
      • Prostaglandins; Iloprost (prostacyclin);
      • Phosphodiesterase I, II, III, IV, and V-inhibitors; CC-1088, Ro 20-1724, rolipram, amrinone, pimobendan, vesnarinone, SB 207499.
  • Specific IL-6 blocking substances, such as:
      • Monoclonal antibodies;
      • Soluble cytokine receptors;
      • Receptor antagonists;
      • Antisense oligonucleotides;
  • Non-specific IL-6 blocking substances, such as:
      • MMP inhibitors (i.e. matrix metalloproteinase inhibitors)
        • Tetracyclines, for example Doxycycline, Lymecycline, Oxitetracycline, Tetracycline, Minocycline, and synthetic tetracycline derivatives, such as CMT, i.e. Chemically Modified Tetracyclines;
        • Prinomastat (AG3340)
        • Batimastat
        • Marimastat
        • KB-R7785
        • TIMP-1, TIMP-2, adTIMP-1, adTIMP-2
      • Quinolones (chinolones), for example Norfloxacin, Levofloxacin, Enoxacin, Sparfloxacin, Temafloxacin, Moxifloxacin, Gafifloxacin, Gemifloxacin, Grepafloxacin, Trovafloxacin, Ofloxacin, Ciprofloxacin, Pefloxacin, Lomefloxacin, Temafloxacin,
      • Prostaglandins; Iloprost (prostacyclin)
      • Cyclosporin
      • Pentoxifyllin derivates
      • Hydroxamic acid derivates
      • Phosphodiesterase I, II, III, IV, and V-inhibitors; CC-1088, Ro 20-1724, rolipram, amrinone, pimobendan, vesnarinone, SB 207499
      • Melanin and melancortin agonists; HP-228
  • Specific IL-8 blocking substances, such as:
      • Monoclonal antibodies;
      • Soluble cytokine receptors;
      • Receptor antagonists;
      • Antisense oligonucleotides;
  • Non-specific IL-8 blocking substances, such as:
      • Quinolones (chinolones), for example Norfloxacin, Levofloxacin, Enoxacin, Sparfloxacin, Temafloxacin, Moxifloxacin, Gatifloxacin, Gemifloxacin, Grepafloxacin, Trovafloxacin, Ofloxacin, Ciprofloxacin, Pefloxacin, Lomefloxacin, Temafloxacin,
      • Thalidomide derivates, e.g. SelCID, i.e. Selective Cytokin inhibitors, such as; CC-1088, CDC-501, CDC-801 and Linomide (Roquininex®)
      • Lazaroids
      • Cyclosporin
      • Pentoxifyllin derivates.
  • The pharmaceutical composition according to the invention may also comprise other substances, such as an inert vehicle, or pharmaceutical acceptable adjuvants, carriers, preservatives etc., which are well known to persons skilled in the art.
  • The administration of the TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention should preferably be performed early after injury to limit the inflammatory reaction occurring at the wound healing site. The TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention is administered once or repeatedly until the desired result is obtained. The TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention is administered in a therapeutically effective amount, i.e. an amount that will lead to the desired therapeutical effect and thus lead to an improvement of the patient's condition.
  • The TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention may be administered in any efficacious way normally used to administer such substances. Thus, the administration may be done both systemically and locally and may be performed before, during and/or after all kind of surgical or traumatic tissue injury. The suggested treatment may also be applicable at tissue injury as the result of pathological conditions including vascular disease and toxic influence. The TNF-inhibitor and/or IL-1 inhibitor and/or pharmaceutical composition according to the invention may for example be injected via intra-articular, intravenous (i.v.), intramuscular (i.m.), intraperitoneal (i.p.), intrathecal (i.t.), epidural, intracerebroventricular (i.c.v.) or subcutaneous (s.c.) routes by bolus injections or by continuous infusion. They may also be administered orally (per os), e.g. in the form of oral preparations, such as pills, syrups, or lozenges. Furthermore, they may be administered by inhalation or intranasally. Moreover, they may be administered transepidermally, e.g. in the form of topical preparations such as lotions, gels, sprays, ointments or patches. They may also be administered in an irrigation solution or by localized injection. Finally, they may also be administered by genetical engineering.
  • According to one preferred embodiment of the invention, the pharmaceutical composition is formulated as a sustained-release preparation. The substance according to the invention may then, for example, be encapsulated in a slowly dissolving biocompatible polymer.
  • Examples of suitable doses for different administration routes are given below.
    Per os 10-300 mg
    i.m. 25-100 mg
    i.v. 2.5-25 mg
    i.t. 0.1-25 mg daily - every 3rd month
    inhalation 0.2-40 mg
    transepidermally 10-100 mg
    intranasally 0.1-10 mg
    s.c. 5-10 mg
    i.c.v. 0.1-25 mg daily - every 3rd month
    epidurally 1-100 mg
  • Examples of suitable doses for different TNF inhibitors are given below.
    More Most
    Preferred preferred preferred
    dosage dosage dosage
    Lenercept
    i.v. 5-200  10-100 30-80
    (all doses given in mg for administration
    once every 4th week)
    TBP-1
    i.v. 5-200  10-100 30-80
    (all doses given in mg for administration
    once every 4th week)
    CDP-571
    Humicade ®
    i.v. 1-100  5-10  5-10
    (all doses given in mg/kg body weight for
    administration as a single dose)
    D2E7
    i.v. 0.1-50   0.5-10   1-10
    S.c. 0.1-50   0.5-10   1-10
    (all doses given in mg/kg body weight for
    administration as a single dose)
    Iloprost
    i.v. 0.1-2000    1-1500  100-1000
    (all doses given in μg/kg body weight/day)
    intranasally 50-250  100-150 100-150
    (all doses given in μg/day)
    CC-1088
    Per os 50-1200 200-800 400-600
    (all doses given in mg/day)
    CDP-870
    i.v. 1-50   2-10 3-8
    (all doses given in mg/kg body weight for
    administration once every 4th week)
    s.c. 50-600  100-400 100-200
    (all doses given in mg/day)
    Linomide
    (Roquinimex ®)
    Per os 0.1-25    5-20 10-15
    (all doses given in mg/kg body weight/day)
    HP-228
    i.v. 5-100 10-50 20-40
    (all doses given in μg/kg body weight)
    ISIS-104838
    Per os 1-100 10-50 20-50
    S.c. 1-100 10-50 20-50
    i.v. 1-100 10-50 20-50
    (all doses given in mg)
    Ariflo ®
    SB 207499
    Per os 10-100  30-60 30-45
    (all doses given in mg/day)
    KB-R7785
    S.c. 100-500  100-300 150-250
    (all doses given in mg/kg body weight/day)
    Prinomastat
    (AG3340)
    Per os 1-250  5-100 10-50
    (all doses given in mg for administration
    twice daily)
    Batimastat
    Per os 1-250  5-100 10-50
    (all doses given in mg for administration
    twice daily)
    Marimastat
    Per os 1-250  5-100 10-50
    (all doses given in mg for administration
    twice daily)
    CDC-501
    Per os 50-1200 200-800 400-600
    (all doses given in mg/day)
    CDC-801
    Per os 50-1200 200-800 400-600
    (all doses given in mg/day)
  • It is possible to use either one or two or more substances according to the invention in the improvement of wound healing. When two or more substances are used they may be administered either simultaneously or separately.
  • The substances according to the invention may also be administered in combination with other drugs or compounds, provided that these other drugs or compounds do not eliminate the effects desired according to the present invention, i.e. the effect on TNF.
  • It is understood that the response by individual patients to the substances according to the invention or combination therapies, may vary, and the most efficacious combination of drugs for each patient will be determined by the physician in charge.
  • The invention is further illustrated in the Example below, which is only intended to illustrate the invention and should in no way be considered to limit the scope of the invention. The invention is also compared to the stated of the art in the Comparative Example.
  • EXAMPLE
  • Six pigs with body weight 25 kg underwent a laminectomy of the sacral vertebrae. Three pigs received infliximab (4 mg/kg, 100 mg in 10 ml sterile water) intravenously and three pigs received an equivalent volume of saline. After one week, wound healing was assessed macroscopically in a blinded fashion using a semi quantitative scale. The data from the macroscopical evaluation are shown in table 1 below. The data clearly demonstrate that skin healing was superior in the pigs treated with infliximab. This was also the case both for the superficial and deep muscle layers. Also bone healing was found to be more pronounced in the infliximab treated pigs. The intraspinal scar adjacent to the nerves was also less hard and less attached to the underlying nerves in the infliximab treated pigs.
    TABLE 1
    Wound healing and scar formation in pigs subjected to
    laminectomy, with or without treatment of infliximab
    Scar Scar
    Skin M sup. M deep M adh. Bone h. con. adh.
    Control ++ + + 0 ++ + +
    ++ ++ ++ (+) ++ ++ ++
    (+) ++ (+) + + (+) 0
    Infliximab (+) (+) 0 0 + (+) 0
    (+) 0 0 0 + (+) 0
    (+) (+) 0 0 (+) (+) 0

    Skin (healing of the skin incision): 0 = perfectly healed, (+) = slight opening, + = pronounced opening, ++ = infection

    M sup. (healing of superficial muscle layer): 0 = perfectly healed, (+) = slight diastasis, + = clear diastasis, ++ = hematoma or infection with loss of contact

    M deep (healing of deep muscle layer): 0 = perfectly healed, (+) = slight diastasis, + = clear diastasis, ++ = hematoma or infection with loss of contact

    M adh. (adhesion of the muscle incision at weakest point): 0 = firm adhesion, (+) = weak adhesion, + = no adhesion

    Bone h. (bone healing): 0 = laminectomy healed, (+) = more than 50% of the laminectomy healed, + = 25-50% of the laminectomy healed, ++ = less than 25% healing

    Scar con. (consistency of the scar adjacent to the intra spinal nerves): 0 = like water, (+) = soft gel, + = hard gel, ++ hard tissue

    Scar adh. (adhesion of the scar to the nerves): 0 = no adhesion, (+) = gel-like adhesion, + = adhesion that is easily breakable, ++ = firm adhesion
  • COMPARATIVE EXAMPLE Not According To The Invention
  • Following a laminectomy of the lamina of the 4th lumbar vertebra either 0.15 ml of 20 ng/ml of recombinant rat TNF in distilled water or just 0.15 ml of distilled water was instilled in the laminectomy space. The wound was sutured and assessed after 1 week, 2 weeks regarding wound healing and scar tissue formation. There were 20 rats in total. Five rats were treated with TNF and five rats with only distilled water for each duration. Contrary to what could be expected the wound healing was significantly impaired in the rats exposed to TNF. The scar formation in the laminectomy space was significantly more pronounced in the TNF exposed rats, also contrary to what could be expected from the literature. The scar in the TNF exposed rats was also attached to the dura mater covering the spinal cord by adhesions. All observations were performed in a blinded fashion.

Claims (25)

1-24. (canceled)
25. A method for treating a wound and/or improving wound healing wherein a therapeutically effective amount of a pharmaceutical composition comprising a substance that inhibits a pro-inflammatory cytokine is administered to a patient in need of said treatment.
26. A method according to claim 25, wherein said pro-inflammatory cytokine is selected from the group consisting of TNF, IL-1, IL-6, IL-8, IL-12, IL-15, IL-17, IL-18, GM-CSF, M-CSF, MCP-1, MIP-1, RANTES, ENA-78, OSM, FGF, PDGF, and VEGF.
27. A method according to claim 25 or 26, wherein said pro-inflammatory cytokine is selected from the group consisting of TNF and IL-1.
28. A method according to claim 25, for treatment of posttraumatic tissue injury.
29. A method according to claim 28, wherein said posttraumatic tissue injury is caused by surgery.
30. A method according to claim 25, for treatment of thermic injury.
31. A method according to claim 25, for treatment of a wound resulting from a metabolic process due to reduced nutritional supply.
32. A method according to claim 31, for treatment of a diabetic ulcer, a leg ulcer, a decubitus ulcer or a gastric ulcer.
33. A method according to claim 25, for treatment of a wound resulting from exposure to a toxic compound.
34. A method according to claim 25, wherein said substance is a monoclonal antibody.
35. A method according to claim 34, wherein said substance is selected from the group consisting of infliximab, CDP-571, D2E7 and CDP-870.
36. A method according to claim 25, wherein said substance is a soluble cytokine receptor.
37. A method according to claim 36, wherein said substance is etanercept.
38. A method according to claim 25, wherein said substance is a receptor antagonist.
39. A method according to claim 25, wherein said substance is an antisense oligonucleotide.
40. A method according to claim 25, wherein said substance is an MMP inhibitor selected from the group consisting of tetracyclines, chemically modified tetracyclines, Prinomastat, Batimastat, Marimastat, KB-R7785, TIMP-1, TIMP-2, adTIMP-1, and adTIMP-2.
41. A method according to claim 25, wherein said substance is an quinolones selected from the group consisting of Norfloxacin, Levofloxacin, Enoxacin, Sparfloxacin, Temafloxacin, Moxifioxacin, Gatifloxacin, Gemifloxacin, Grepafloxacin, Trovafloxacin, Ofloxacin, Ciprofloxacin, Pefloxacin, Lomefloxacin, and Temafloxacin.
42. A method according to claim 25, wherein said substance is a thalidomide derivate selected from the group consisting of CC-1088, CDC-501, CDC-801 and Linomide.
43. A method according to claim 25, wherein said substance is selected from the group consisting of prostaglandins, phosphodiesterase 1, 11, 111, IV, and V-inhibitors, cyclosporin, pentoxifyllin derivates, hydroxamic acid derivates, melanin and melancortin agonists, and lazaroids.
44. A method according to claim 25, wherein said substance is a specific IL-1α and/or IL-1β blocking substance.
45. A method according to claim 25, wherein said substance is a non-specific IL-1α and/or IL-1β blocking substance.
46. A method according to claim 25, wherein said substance is lactoferrin or a peptide derived or derivable from lactoferrin.
47. A method according to claim 25, wherein said substance is locally administered.
48. A method according to claim 25, wherein said substance is systemically administered.
US10/506,543 2002-03-05 2003-03-04 Novel of cytokine inhibitors Abandoned US20050220791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/506,543 US20050220791A1 (en) 2002-03-05 2003-03-04 Novel of cytokine inhibitors
US12/717,103 US20100305048A1 (en) 2002-03-05 2010-03-03 Novel use of cytokine inhibitors

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE0200667A SE0200667D0 (en) 2002-03-05 2002-03-05 Novel use of cytokine inhibitors
SE0200667-4 2002-03-05
US10/092,919 US7427589B2 (en) 2002-03-05 2002-03-08 Use of cytokine inhibitors
US10/506,543 US20050220791A1 (en) 2002-03-05 2003-03-04 Novel of cytokine inhibitors
PCT/SE2003/000347 WO2003073981A2 (en) 2002-03-05 2003-03-04 Novel of cytokine inhibitors

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/092,919 Continuation-In-Part US7427589B2 (en) 2002-03-05 2002-03-08 Use of cytokine inhibitors
US10/092,919 Continuation US7427589B2 (en) 2002-03-05 2002-03-08 Use of cytokine inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/717,103 Continuation US20100305048A1 (en) 2002-03-05 2010-03-03 Novel use of cytokine inhibitors

Publications (1)

Publication Number Publication Date
US20050220791A1 true US20050220791A1 (en) 2005-10-06

Family

ID=20287172

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/092,919 Expired - Lifetime US7427589B2 (en) 2002-03-05 2002-03-08 Use of cytokine inhibitors
US10/506,543 Abandoned US20050220791A1 (en) 2002-03-05 2003-03-04 Novel of cytokine inhibitors
US12/191,474 Expired - Fee Related US7994116B2 (en) 2002-03-05 2008-08-14 Methods for reduction of adhesion formation using cytokine inhibitors
US12/717,103 Abandoned US20100305048A1 (en) 2002-03-05 2010-03-03 Novel use of cytokine inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/092,919 Expired - Lifetime US7427589B2 (en) 2002-03-05 2002-03-08 Use of cytokine inhibitors

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/191,474 Expired - Fee Related US7994116B2 (en) 2002-03-05 2008-08-14 Methods for reduction of adhesion formation using cytokine inhibitors
US12/717,103 Abandoned US20100305048A1 (en) 2002-03-05 2010-03-03 Novel use of cytokine inhibitors

Country Status (6)

Country Link
US (4) US7427589B2 (en)
EP (1) EP1487491A2 (en)
AU (1) AU2003217105A1 (en)
CA (1) CA2478378A1 (en)
SE (1) SE0200667D0 (en)
WO (1) WO2003073981A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069307A1 (en) * 2004-10-29 2009-03-12 Tamotsu Takagi Use of a pyridine compound for the preparation of a medicament for the treatment of skin lesions

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091181B2 (en) * 1994-12-12 2006-08-15 Omeros Corporation Method of inhibition of pain and inflammation during surgery comprising administration of soluble TNF receptors
US20020028798A1 (en) * 1995-12-12 2002-03-07 Omeros Medical Systems Irrigation solution and method for inhibition of pain and inflammation
US7906481B2 (en) * 1998-09-25 2011-03-15 Sciaticon Ab Specific TNF-A inhibitors for treating spinal disorders mediated by nucleous pulposus
US7115557B2 (en) * 1998-09-25 2006-10-03 Sciaticon Ab Use of certain drugs for treating nerve root injury
SE9803710L (en) * 1998-09-25 2000-03-26 A & Science Invest Ab Use of certain substances for the treatment of nerve root damage
US7811990B2 (en) * 1998-09-25 2010-10-12 Sciaticon Ab Soluble cytokine receptors TNF-α blocking antibodies for treating spinal disorders mediated by nucleus pulposus
US6841153B1 (en) * 1998-10-02 2005-01-11 University Of Florida Prevention of adhesions
AU2003226361B2 (en) * 2002-11-06 2009-01-22 Celgene Corporation Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myeloproliferative diseases
WO2005112917A1 (en) * 2004-05-05 2005-12-01 Celgene Corporation Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myeloproliferative diseases
JP2008521870A (en) * 2004-12-02 2008-06-26 ドマンティス リミテッド Anti-IL-1R1 single domain antibody and therapeutic use
US10080779B2 (en) 2004-12-15 2018-09-25 Universite D'angers Method for increasing the expression of anti-microbial peptides by keratinocytes comprising administering a composition comprising IL-17, TNF-alpha and OSM
US20070066512A1 (en) * 2005-09-12 2007-03-22 Dominique Verhelle Methods and compositions using immunomodulatory compounds for the treatment of disorders associated with low plasma leptin levels
ES2331252T3 (en) * 2005-09-20 2009-12-28 Peter Jon Nelson TISSULAR METALOPROTEINASE INHIBITOR (TIMP) JOINED TO GLUCOSYLPHOSPHYTIDYLINOSITOL ANCHORS (GPI) FOR CANCER TREATMENT.
GB0524103D0 (en) 2005-11-26 2006-01-04 Medical Res Council Healing
TW200736276A (en) * 2005-12-01 2007-10-01 Domantis Ltd Competitive domain antibody formats that bind interleukin 1 receptor type 1
BRPI1006076B8 (en) 2009-01-13 2021-05-25 Pergamum Ab pharmaceutical compositions
JP5745870B2 (en) * 2011-01-24 2015-07-08 花王株式会社 Collagen gel contraction promoter
JP2014520873A (en) 2011-07-18 2014-08-25 ザ ユニバーシティ オブ メルボルン Use of c-Fms antagonists
WO2013112381A2 (en) 2012-01-24 2013-08-01 Bvw Holding Ag New class of anti-adhesion hydrogels with healing aspects
KR20150140752A (en) 2013-04-12 2015-12-16 모르포시스 아게 Antibodies targeting m-csf
EP3265107A4 (en) 2015-03-02 2018-10-24 180 Therapeutics LP Method of treating a localized fibrotic disorder using a tnf receptor 2 antagonist
CN110087705B (en) 2016-05-03 2022-08-05 Bvw控股公司 Multiphase gels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561109A (en) * 1990-11-13 1996-10-01 Santen Pharmaceutical Co., Ltd. Method for the healing of wounds caused by corneal injury
US6156334A (en) * 1998-03-27 2000-12-05 Beiersdorf, Ag Wound coverings for removal of interfering factors from wound fluid
US20020072596A1 (en) * 1999-12-23 2002-06-13 Ruben Steven M. Transferrin polynucleotides, polypeptides, and antibodies

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196430A (en) * 1986-12-31 1993-03-23 Hoechst-Roussel Pharmaceuticals Inc. Method of inhibiting the activity of leukocyte derived cytokines
US4965271A (en) 1986-12-31 1990-10-23 Hoechst Roussel Pharmaceuticals, Inc. Method of inhibiting the activity of leukocyte derived cytokines
JPH08143468A (en) * 1994-11-17 1996-06-04 Morinaga Milk Ind Co Ltd Antiulcer agent
TW332201B (en) * 1995-04-06 1998-05-21 Janssen Pharmaceutica Nv 1,3-Dihydro-1-(phenylalkyl)-2H-imidazol-2-one derivatives
JP2001506230A (en) 1996-08-09 2001-05-15 スミスクライン・ビーチャム・コーポレイション New piperazine-containing compounds
US6348602B1 (en) * 1999-12-23 2002-02-19 Icos Corporation Cyclic AMP-specific phosphodiesterase inhibitors
WO2001057018A1 (en) 2000-02-02 2001-08-09 Abbott Laboratories Azaazulene inhibitors of p38 map kinase and tnf-alpha
WO2001058469A1 (en) 2000-02-08 2001-08-16 Wax Martin B Methods for treating glaucoma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561109A (en) * 1990-11-13 1996-10-01 Santen Pharmaceutical Co., Ltd. Method for the healing of wounds caused by corneal injury
US6156334A (en) * 1998-03-27 2000-12-05 Beiersdorf, Ag Wound coverings for removal of interfering factors from wound fluid
US20020072596A1 (en) * 1999-12-23 2002-06-13 Ruben Steven M. Transferrin polynucleotides, polypeptides, and antibodies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069307A1 (en) * 2004-10-29 2009-03-12 Tamotsu Takagi Use of a pyridine compound for the preparation of a medicament for the treatment of skin lesions
US8809360B2 (en) 2004-10-29 2014-08-19 Mitsubishi Tanabe Pharma Corporation Use of a pyridine compound for the preparation of a medicament for the treatment of skin lesions

Also Published As

Publication number Publication date
AU2003217105A1 (en) 2003-09-16
SE0200667D0 (en) 2002-03-05
AU2003217105A8 (en) 2003-09-16
US20090149379A1 (en) 2009-06-11
US7994116B2 (en) 2011-08-09
WO2003073981A2 (en) 2003-09-12
US20030176332A1 (en) 2003-09-18
CA2478378A1 (en) 2003-09-12
US20100305048A1 (en) 2010-12-02
US7427589B2 (en) 2008-09-23
EP1487491A2 (en) 2004-12-22
WO2003073981A3 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
US20100305048A1 (en) Novel use of cytokine inhibitors
EP0721783B1 (en) Preventive and remedy for diseases caused by fibrinoid or thrombus formation in the lung
US20030012786A1 (en) Use of anti-TNF antibodies as drugs in treating septic disorders of anemic patients
JPH09510967A (en) Wound healing
US8569280B2 (en) Methods for the treatment of multiple myeloma
JP2007119497A (en) PHARMACEUTICAL COMPOSITION CONTAINING INTERFERON-gamma STIMULATOR
BG64436B1 (en) Cd154 blockade therapy for the treatment of protein inhibition syndrome
US7220413B2 (en) Pharmaceutical composition containing inhibitors of interferon-γ
US20070003558A1 (en) Methods for the treatment of multiple myeloma
WO1999003493A1 (en) Drugs containing as the active ingredient midkine or inhibitors thereof
EP1206274B1 (en) Use of interleukin-18 inhibitors to inhibit tumor metastasis
Hosaka et al. The combined effects of anti-TNFα antibody and IL-1 receptor antagonist in human rheumatoid arthritis synovial membrane
US7727520B2 (en) Method of promoting the healing of a chronic wound
JP4023863B2 (en) Serum uric acid level lowering agent containing IL-6
Wahl et al. Ethanol‐induced inhibition of bone formation in a rat model of distraction osteogenesis: a role for the tumor necrosis factor signaling axis
JPH0725785A (en) Medicine composition of interleukin-6
Márquez-Velasco et al. Anti-tumor necrosis factor α F (ab') 2 antibody fragments protect in murine polymicrobial sepsis: Concentration and early intervention are fundamental to the outcome
WO2001049313A1 (en) Use of ngf for the manufacturing of a drug for treating allergic disorders
CA2669109A1 (en) Il-17b for use in wound healing
Kh CHANGES IN CYTOKINE PROFILE AFTER SURGERY
CN116549631A (en) Therapeutic use of targeted IL-17A as anti-leukemia
WO1997039764A1 (en) Antipylori agent
Chen et al. Modulation of endothelial cell function by normal polyspecific human intravenous immunoglobulins: A possible mechanism of action in vascular diseases
US20160022772A1 (en) Cytokine Receptors as Targets for Hypertension Therapy and Methods of Use
US20050025743A1 (en) Method of preventing adhesions wtih ifn-upsilon

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHOPAEDIC RESEARCH & DEVELOPMENT IN GOTHENBURG A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLMARKER, KJELL;REEL/FRAME:015897/0679

Effective date: 20040924

AS Assignment

Owner name: PHARMASURGICS IN SWEDEN AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOPAEDIC RESEARCH & DEVELOPMENT IN GOTHENBURG AB;REEL/FRAME:018685/0262

Effective date: 20061027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION