Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050214339 A1
Publication typeApplication
Application numberUS 10/812,780
Publication date29 Sep 2005
Filing date29 Mar 2004
Priority date29 Mar 2004
Also published asEP1737505A1, EP1737505B1, US8846070, US20080279898, US20140370073, WO2005097220A1
Publication number10812780, 812780, US 2005/0214339 A1, US 2005/214339 A1, US 20050214339 A1, US 20050214339A1, US 2005214339 A1, US 2005214339A1, US-A1-20050214339, US-A1-2005214339, US2005/0214339A1, US2005/214339A1, US20050214339 A1, US20050214339A1, US2005214339 A1, US2005214339A1
InventorsYiwen Tang, Syed Hossainy, Andrew Tung, Stephen Pacetti
Original AssigneeYiwen Tang, Hossainy Syed F, Tung Andrew C, Pacetti Stephen D
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Biologically degradable compositions for medical applications
US 20050214339 A1
Abstract
A medical article is disclosed, comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.
Images(9)
Previous page
Next page
Claims(27)
1. A medical article, comprising:
(a) a medical substrate; and
(b) a coating deposited on the substrate, the coating comprising a first polymer and a second polymer, wherein the first polymer includes a biologically degradable AB block copolymer, and the second polymer includes a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.
2. The medical article of claim 1, wherein the medical article is a stent, graft, or a stent-graft.
3. The medical article of claim 1, wherein the AB block-copolymer is capable of absorbing, at equilibrium and at room temperature, about 5 mass % or more water.
4. The medical article of claim 1, wherein the second polymer does not include or is substantially free from AB polymeric blocks.
5. The medical article of claim 1, wherein the AB block-copolymer comprises a biocompatible polymeric moiety and a structural polymeric moiety.
6. The medical article of claim 5, wherein the biocompatible polymeric moiety is selected from a group consisting of a poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof.
7. The medical article of claim 6, wherein the poly(alkylene glycol) is selected from a group consisting of poly(ethylene glycol), poly(propylene glycol), poly(tetramethylene glycol), and poly(ethylene oxide-co-propylene oxide).
8. The medical article of claim 5, wherein the structural polymeric moiety is selected from a group consisting of poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
9. The medical article of claim 1, wherein the AB block-copolymer is selected from poly(ethylene-glycol)-block-co-poly(caprolactone) and poly(ethylene-glycol)-block-co-poly(butyleneterephthalate).
10. The medical article of claim 1, wherein the AB block-copolymer is:
wherein m, n, I, K, and r are positive integers.
11. The medical article of claim 1, wherein the second polymer is selected from a group consisting of poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
12. The medical article of claim 1, wherein the second polymer has the formula:
wherein n is a positive integer.
13. The medical article of claim 1, additionally including a therapeutic substance.
14. A medical article, comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water.
15. The article of claim 14, wherein the medical article is a stent, a graft or a stent graft.
16. The article of claim 14, wherein the AB block-copolymer is capable of absorbing, at equilibrium at room temperature, about 5 mass % or more water.
17. The article of claim 14, wherein the second polymer does not include or is substantially free from AB polymeric blocks.
18. The article of claim 14, wherein the AB block-copolymer comprises a biocompatible polymeric moiety and a structural polymeric moiety.
19. The article of claim 18, wherein the biocompatible polymeric moiety is selected from a group consisting of a poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof.
20. The article of claim 19, wherein the poly(alkylene glycol) is selected from a group consisting of poly(ethylene glycol), poly(propylene glycol), poly(tetramethylene glycol), and poly(ethylene oxide-co-propylene oxide).
21. The article of claim 18, wherein the structural polymeric moiety is selected from a group consisting of poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
22. The article of claim 14, wherein the AB block-copolymer is selected from poly(ethylene-glycol)-block-co-poly(caprolactone) and poly(ethylene-glycol)-block-co-poly(butyleneterephthalate).
23. The article of claim 14, wherein the AB block-copolymer is
wherein m, n, I, K, and r are positive integers.
24. The article of claim 14, wherein the biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water is selected from a group consisting of poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
25. The article of claim 14, wherein the biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water is:
wherein n is a positive integer.
26. The article of claim 14, additionally including a therapeutic agent mixed, bonded, conjugated, linked or blended with the block copolymer and/or the polymer.
27. A method of treating a disorder in a human being, comprising:
implanting in the human being a medical article as defined in claim 14, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
Description
    BACKGROUND
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention is relates to biologically degradable compositions for medical applications such as for coatings for implantable medical devices.
  • [0003]
    2. Description of the State of the Art
  • [0004]
    A wide spectrum of devices, from vascular devices such as catheters, stents, and guidewires, to ocular devices such as intra-ocular lenses is incorporating polymeric material. Polymeric materials are being used for a variety of reasons, including making a surface of a device more biocompatible or as a vehicle for delivering a drug. Since polymeric materials are treated as a foreign object by the body's immune system, the challenge has been to make the polymers highly biocompatible as well as to reduce any fouling effects that the polymer may produce or harbor. As a better option, it may be better to make the polymer not only highly biocompatible and non-fouling, but also biodegradable such that the polymer is eliminated by the body after it has served its function. The degradation of the polymer should not create any residues that can provide adverse effects for the patient, such as excess inflammation. To the contrary, the products of degradation should enhance the treatment that is being provided to the patient or should provide medicinal effects. Should the polymeric material include a drug for local application, the composition should be capable of carrying the drug so as to release the drug at an efficacious rate for a therapeutically effective duration of time. Finally, if the material is used as a coating, the properties of the composition should be suitable so as to allow a film layer to be formed on the medical device. For devices that include body geometry that expand or fold, such as a stent or a balloon, the polymer must be flexible enough so as to expand or fold with the device without significant detachment or delamination of the coating. Tradeoffs do exist between biocompatibility, structural integrity and drug delivery capabilities of the polymer. Enhancing one characteristic may determinately affect the other. Accordingly, a proper balance must be drawn to provide for a polymeric composition that meets the specific need of the application for which it is being used.
  • [0005]
    The embodiments of the present invention provide for biocompatible polymeric compositions that can be used medical applications.
  • SUMMARY
  • [0006]
    A medical article is provided comprising a biologically degradable AB block copolymer and a biologically degradable polymer that is capable, at equilibrium and at room temperature, of absorbing less than about 5 mass % water. The medical article can be a stent, a graft or a stent graft. The AB block-copolymer can be capable of absorbing, at equilibrium and at room temperature, about 5 mass % or more water. The AB block-copolymer can include a biocompatible polymeric moiety and a structural polymeric moiety. The biocompatible polymeric moiety can be, for example, poly(alkylene glycol), poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, a graft copolymer of poly(L-lysine)-graft-co-poly(ethylene glycol), and copolymers thereof. The structural polymeric moiety can be poly(D,L-lactide), poly(caprolactone), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone. The second polymer can be poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and combinations thereof.
  • DETAILED DESCRIPTION Terms and Definitions
  • [0007]
    For the purposes of the present invention, the following terms and definitions apply:
  • [0008]
    The terms “biologically degradable” and “biodegradable” are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like. For coating applications, it is understood that after the process of degradation, erosion, absorption, and/or resorption has been completed, no polymer will remain on the device. In some embodiments, very negligible traces or residue may be left behind. Whenever the terms “degradable,” “biodegradable,” or “biologically degradable” are used in this application, they are intended to broadly include biologically erodable, bioabsorbable, and bioresorbable polymers as well as other types of polymers that are broken down and/or eliminated by the body.
  • [0009]
    “Biodegradable polymer composition” or “biodegradable composition” is defined as a composition having a combination of at least two biologically degradable polymers. In some embodiments, the composition can also include a non-biologically degradable component or polymer. The polymers can be blended, combined, mixed, bonded, linked by linking agent, or conjugated.
  • [0010]
    The term “block-copolymer” is defined in accordance with the terminology used by the International Union for Pure and Applied Chemistry (IUPAC). “Block-copolymer” refers to a copolymer containing a linear arrangement of blocks. The block is defined as a portion of a polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from the adjacent portions. The term “AB block-copolymer” is defined as a block-copolymer having moieties A and B arranged according to the general formula
      • where each of “m,” “n,” and “x” is a positive integer, and m can be ≧2 and n can be ≧2. The blocks of the AB block-copolymers, could be, but need not be linked on the ends, since the values of the integers “m” and “n” determining the number of blocks are such as to ensure that the individual blocks are usually long enough to be considered polymers in their own right. An AB block copolymer can be, accordingly, named poly A-block-co-poly B block polymer. In some embodiments, the AB block-copolymer can be part of a chain of another polymer such as in the backbone or as a pendant or side group.
  • [0012]
    The term “moiety” is defined as a portion of a complete structure of a copolymer, the portion to include at least 2 atoms joined together in a particular way. The term “moiety” includes functional groups and/or discreet bonded residues that are present in the macromolecule of a copolymer. The term “moiety” as used in the present application is inclusive of individual units in the copolymers. The term “moiety” as used in the present application is also inclusive of entire polymeric blocks in the copolymers.
  • Embodiments of the Invention
  • [0013]
    The biodegradable polymer composition includes at least one biodegradable AB block-copolymer or a polymer that includes biodegradable AB blocks (“the first component”) and at least one other biodegradable polymer (“the second component”). The first component can be capable of absorbing, at equilibrium and at room temperature, about 2 mass % or more water, preferably 5 mass % or more water. The second component can be capable of absorbing, at equilibrium and at room temperature, less than about 2 mass % water, preferably less than about 5 mass % water. The second component is not or does not include an AB polymeric block or can include a polymer that is substantially free of AB polymeric blocks. In other words, the second component can include a polymer the molecular structure of which is substantially free of fragments shown by formula (I) above. The ratio between the first component and the second component in the biodegradable polymer composition can be between about 1:1 and about 1:99, more narrowly, between about 1:2 and about 1:49, for example, about 1:19.
  • The First Component (AB Block-Copolymer)
  • [0014]
    The AB block copolymer can be capable of absorbing, at equilibrium and at room temperature, about 2 mass %, preferably about 5 mass % or more water. AB block copolymers that can be used comprise two polymeric moieties A and B. The first polymeric moiety is a biocompatible moiety that can be capable of providing the block-copolymer with blood compatibility. The second polymeric moiety is a structural moiety that can be capable of providing the block-copolymer with mechanical and/or adhesive properties. The structural moiety allows the copolymer to form a film layer on substrates, such as metallic stents. Moiety A can be the biocompatible moiety and moiety B can be the structural moiety. In some embodiments, Moiety B can be the biocompatible moiety and moiety A can be the structural moiety. The mass ratio between be the biocompatible moiety and the structural moiety can be between about 1:9 and about 1:0.7, for example, about 1:0.81. The mass ratio 1:0.81 corresponds to an AB block-copolymer comprising about 55 mass % the biocompatible moiety and the balance, the structural moiety.
  • [0015]
    The biocompatible and the structural moieties can be selected to make the AB block-copolymers biologically degradable. Molecular weight of a biocompatible moiety that can be used can be below 40,000 Daltons, for example, between about 300 and 20,000 Daltons. To illustrate, one example of a biocompatible moiety A that can be used is poly(ethylene glycol) (PEG) having the molecular weight between about 300 and 20,000 Daltons. In this example (when the A moiety is PEG), the value of “m” in formula (I) can be between about 5 and about 1,000.
  • [0016]
    In addition to PEG, other poly(alkylene glycols) can be used to form the biocompatible moiety, for example, poly(propylene glycol) (PPG), poly(tetramethylene glycol), or poly(ethylene oxide-co-propylene oxide). Examples of other biocompatible moieties that can be used include poly(2-hydroxyethyl methacrylate), poly(3-hydroxypropyl methacrylamide), hydroxylated poly(vinyl pyrrolidone), sulfonated dextran, sulfonated polystyrene, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, heparin, poly(L-lysine)-graft-co-poly(ethylene glycol), which is a graft copolymer of poly(L-lysine) and PEG, or copolymers thereof.
  • [0017]
    Molecular weight of a structural moiety that can be used can be between about 20,000 and about 200,000 Daltons, more narrowly, between about 40,000 and about 100,000 Daltons, for example, about 60,000 Daltons. To illustrate, one example of a structural moiety B that can be used is poly(D,L-lactide) having the molecular weight between about 20,000 and about 200,000 Daltons. In this example, the value of “n” in formula (I) can be between about 250 and about 3,000.
  • [0018]
    In addition to poly(D,L-lactide), other structural moieties can be used. Some examples of such moieties include poly(caprolactone) (PCL), poly(caprolactone-co-D,L-lactide), poly(butylene terephthalate) (PBT), poly(ester amide), poly(aspirin), poly(L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), and polydioxanone.
  • [0019]
    One example of the biodegradable AB block copolymer is poly(ethylene-glycol)-block-co-poly(caprolactone) (PEG-PCL). One possible structure of the PEG-PCL block copolymer can be illustrated by formula (II):
    wherein m are n are positive integers.
  • [0020]
    In PEG-PCL block copolymer shown by formula (II), the PEG blocks constitute the biocompatible moiety A, while the PCL block constitutes the structural moiety B. Block copolymer shown by formula (II) can be synthesized by standard methods known to those having ordinary skill in the art, for example, copolycondensation of PEG with PCL. The process of copolycondensation can be catalyzed by a catalyst which can be selected by those having ordinary skill in the art, for example, by an acid catalyst or a base catalyst.
  • [0021]
    Another example of the PEG-containing polyester includes a block-copolymer of PEG with PBT, such as poly(ethylene-glycol)-block-poly(butyleneterephthalate)(PEG-PBT), shown by formula (III):
    wherein m, n, I and K are positive integers.
  • [0022]
    The PEG-PBT block-copolymer can be obtained by a synthetic process that can be selected by those having ordinary skill in the art. One example of the synthetic process that can be used includes trans-esterification of dibutyleneterephthalate with PEG. One brand of PEG-PBT block copolymer is known under a trade name PolyActive™ and is available from IsoTis Corp. of Holland. In PEG-PBT, the ratio between the PEG units and the PBT units can be between about 0.67:1 and about 9:1. The molecular weight of the PEG units can be between about 300 and about 4,000 Daltons.
  • [0023]
    PEG-PCL and PEG-PBT block copolymers all contain fragments with ester bonds. Ester bonds are known to be water-labile bonds. When in contact with slightly alkaline blood, ester bonds are subject to catalyzed hydrolysis, thus ensuring biological degradability of the block-copolymer. One product of degradation of every block polymer, belonging to the group PEG-PCL and PEG-PBT, is expected to be PEG, which is highly biologically compatible. PEG also has an additional advantage of being biologically active, reducing smooth muscle cells proliferation at the lesion site and thus capable of treating, delaying, preventing or inhibiting restenosis.
  • The Second Component
  • [0024]
    The second component of the composition can comprise at least one biodegradable polymer capable of absorbing, at equilibrium and at room temperature, less than about 2 mass %, preferably less than 5 mass % water.
  • [0025]
    Examples of suitable biodegradable polymers that can be used as a second component of the biodegradable polymer composition include poly(L-lactide), poly(D,L-lactide), poly(glycolide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), polyhydroxyalkanoates, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(hydroxyvalerate), poly(3-hydroxybutyrate-co-valerate), poly(4-hydroxybutyrate-co-valerate), poly(ester amides), poly(anhydrides), poly(carbonates), poly(trimethylene carbonate-co-glycolide), poly(trimethylene carbonate-co-L-lactide), poly(trimethylene carbonate-co-D,L-lactide), poly(dioxanone), poly(phosphazenes), poly(orthoesters), poly(tyrosine-co-carbonates), polyalkylene oxalates, poly(glycerol-co-sebacic acid esters), cyanoacrylates, poly(amino acids), poly(lysine), poly(glutamic acid) and mixtures thereof.
  • Optional Third Components
  • [0026]
    In some embodiments, a third component can be included, mixed, blended, bonded, conjugated or linked with the composition. This can be a drug, an active agent, or a therapeutic substance. In some embodiments, another polymer can be included, mixed, blended, bonded, conjugated or linked with the composition. These polymers need not be biodegradable. Examples include polyacrylates, such as poly(butyl methacrylate), poly(ethyl methacrylate), and poly(ethyl methacrylate-co-butyl methacrylate), and fluorinated polymers and/or copolymers, such as poly(vinylidene fluoride) and poly(vinylidene fluoride-co-hexafluoro propene), poly(vinyl pyrrolidone), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), copolymers of vinyl monomers with each other and olefins, e.g., poly(ethylene-co-vinyl alcohol) (EVAL), ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides (such as Nylon 66 and polycaprolactam), alkyd resins, polyoxymethylenes, polyimides, polyethers, epoxy resins, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.
  • [0027]
    The therapeutic substance can include any substance capable of exerting a therapeutic, diagnostic or prophylactic effect for a patient. The therapeutic substance may include small molecule substances, peptides, proteins, oligonucleotides, and the like. The therapeutic substance could be designed, for example, to inhibit the activity of vascular smooth muscle cells. It can be directed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells to inhibit restenosis.
  • [0028]
    Examples of therapeutic substances include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich of Milwaukee, Wis., or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. The active agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOLŽ by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. TaxotereŽ, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. AdriamycinŽ from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. MutamycinŽ from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as ANGIOMAX (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. CapotenŽ and CapozideŽ from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. PrinivilŽ and PrinzideŽ from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name MevacorŽ from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, and rapamycin and structural derivatives or functional analogs thereof, such as 40-O-(2-hydroxy)ethyl-rapamycin (known by the trade name of EVEROLIMUS available from Novartis), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, prodrugs thereof, co-drugs thereof, and combinations thereof.
  • Application of the Composition
  • [0029]
    The composition can have a variety of medical applications, such as coatings for medical devices, coatings for implantable prostheses, capsules for drugs, drug delivery particles as well as devices made at least in part from the composition. Examples of medical devices, that can be used in conjunction with the embodiments of this invention include stents (e.g., self expandable or balloon expandable), biodegradable stents, stent-grafts, grafts (e.g., aortic grafts), catheters, balloons, coating on balloons, guidewires, artificial hearts and valves, blood oxygenerators, ventricular assist devices, cardiopulmonary bypass systems, cerebrospinal fluid shunts, pacemaker electrodes, axius coronary shunts and leads as well as other devices such as intraocular lenses. The devices, e.g., the stent, can be made from a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made from bioabsorbable or biostable polymers can also be used or coated with the embodiments of the present invention. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Drug Delivery Stent
  • [0030]
    A coating for a stent made from the composition of the present invention can be a multi-layer structure and can include a primer layer; a drug-polymer layer (also referred to as “reservoir” or “reservoir layer”) or alternatively a polymer free drug layer; and/or a topcoat layer. Intermediary layers can also be provided. Each layer of the stent coating can be formed on the stent by dissolving the biodegradable polymer composition in a solvent, or a mixture of solvents, and applying the resulting solution on the stent by spraying or immersing the stent in the solution. At least one of the layers should include the bidegradable polymeric composition of the present invention. The remaining portion of a layer or the other layers can be made from other polymeric material, such as poly(butyl methacrylate), poly(ethyl methacrylate), and poly(ethyl methacrylate-co-butyl methacrylate), or the others disclosed above.
  • [0031]
    Preferably, the outer most layer (e.g., the reservoir layer or the topcoat layer) is made from the biodegradable composition. If a topcoat layer is used, the topcoat layer can be made from the biodegradable polymer. The reservoir layer or the optional primer layer can be made from the same composition, the same composition but with different ratios of the first to second component, the same composition but with different ratios of the first to second to third component or from a different polymeric material.
  • [0032]
    In some embodiments at least two of the layers can be made from the embodiments of the biodegradable polymeric composition such that for each layer the ratio of the first to second component is different. In some embodiments, if a third component is used, the ratio of the first to second to third component can be different for each layer.
  • [0033]
    After the solution has been applied onto the stent, the coating is dried by allowing the solvent to evaporate. The process of drying can be accelerated if the drying is conducted at an elevated temperature.
  • [0034]
    Representative examples of some solvents suitable for making the coating solution include N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), tethrahydrofurane (THF), cyclohexanone, xylene, toluene, acetone, i-propanol, methyl ethyl ketone, propylene glycol monomethyl ether, methyl butyl ketone, ethyl acetate, n-butyl acetate, and dioxane. Some solvent mixtures can be used as well. Representative examples of the mixtures include DMAC and methanol (e.g., a 50:50 by mass mixture); water, i-propanol, and DMAC (e.g., a 10:3:87 by mass mixture); i-propanol and DMAC (e.g., 80:20, 50:50, or 20:80 by mass mixtures); acetone and cyclohexanone (e.g., 80:20, 50:50, or 20:80 by mass mixtures); acetone and xylene (e.g. a 50:50 by mass mixture); acetone, FLUX REMOVER AMS, and xylene (e.g., a 10:50:40 by mass mixture); and 1,1,2-trichloroethane and chloroform (e.g., a 80:20 by mass mixture). FLUX REMOVER AMS is trade name of a solvent manufactured by Tech Spray, Inc. of Amarillo, Tex. comprising about 93.7% of a mixture of 3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and the balance of methanol, with trace amounts of nitromethane. Those having ordinary skill in the art will select the solvent or a mixture of solvents suitable for a particular polymer being dissolved.
  • [0035]
    To incorporate a drug into the reservoir layer, the drug in a form of a solution can be combined with the polymer solution that is applied onto the stent as described above. Alternatively, to fabricate a polymer free drug layer, the drug can be dissolved in a suitable solvent or mixture of solvents, and the resulting drug solution can be applied on the stent by spraying or immersing the stent in the drug solution. Instead of introducing the drug in a solution, the drug can be introduced as a colloid system, such as a suspension in an appropriate solvent phase. To make the suspension, the drug can be dispersed in the solvent phase using conventional techniques used in colloid or emulsion chemistry. Depending on a variety of factors, e.g., the nature of the drug, those having ordinary skill in the art can select the suitable solvent to form the solvent phase of the suspension, as well as the quantity of the drug to be dispersed in the solvent phase. The suspension can be mixed with a polymer solution and the mixture can be applied on the stent as described above. Alternatively, the drug suspension can be applied on the stent without being mixed with the polymer solution.
  • [0036]
    The biological degradation of the biodegradable polymer composition is expected to cause an increase of the rate of release of the drug due to the gradual disappearance of the polymer that forms the reservoir and/or the topcoat layer. By choosing an appropriate biodegradable polymer composition or by varying the ratio of the components of the composition, or by including a third polymeric component to the matrix, a stent coating having a costumed release rate can be engineered.
  • Method of Use
  • [0037]
    In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will be retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • [0038]
    The compositions of the invention can be used for the treatment of a variety of disorder in mammals including atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, cancer as well as other disorders.
  • [0039]
    For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
  • EXAMPLES
  • [0040]
    The following examples are provided to further illustrate embodiments of the present invention.
  • Example 1
  • [0041]
    A first composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % poly(caprolactone) (PCL); and the balance, mixture of tetrahydrofuran (THF) and xylene solvents, where a mass ratio between THF and xylene was about 3:1. The first composition can be applied onto the surface of a bare 12 mm VISION stent (available from Guidant Corporation) by spraying and dried to form a primer layer. A spray coater was used, having a 0.014 fan nozzle maintained at about 60° C. with a feed pressure of about 0.2 atm (about 3 psi) and an atomization pressure of about 1.3 atm (about 20 psi). About 75 μg of the wet coating can be applied. The primer was baked at about 60° C. for about 2 hours, yielding a dry primer layer.
  • [0042]
    A second composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PCL; about 0.05 mass % to about 2.0 mass %, for example, about 1.0 mass % EVEROLIMUS; and the balance, THF/xylene solvent mixture described above. The second composition can contain about 300 μg PCL and about 150 μg EVEROLIMUS. The second composition can be applied onto the dried primer layer to form the reservoir layer, using the same spraying technique and equipment used for applying the primer layer, followed by drying, e.g., by baking at about 50° C. for about 1 hour. A third composition can prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PCL; about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PEG-PBT (4000PEGT80PBT20); and the balance, THF/xylene solvent mixture described above.
  • [0043]
    The brand of PEG-PBT that can be used can have about 20 molar % PBT units and about 80 molar % PEG units. The molecular weight of the PEG units was about 4,000 Daltons. The third composition can contain about 50 μg PCL and about 50 μg PEG-PBT. The third composition can be applied onto the dried reservoir layer to form a topcoat layer, using the same spraying technique and equipment used for applying the primer layer and the reservoir layer, followed by drying at about 50° C. for about 1 hour.
  • Example 2
  • [0044]
    A primer and reservoir layers can be formed on a stent as described in Example 1. A composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % poly(L-lactide); about 1.0 mass % to about 15 mass %, for example, about 2.0 mass % PEG-PBT; and the balance, the mixture of chloroform and tricholoethane solvents, wherein the mass ratio between chloroform and trichlorethane can be about 1:1. The same brand of PEG-PBT as described in Example 1 can be used. The composition can contain about 60 μg poly(L-lactide), about 40 μg PEG-PBT, and if desired, about 200 μg paclitaxel. The composition can be applied onto the dried reservoir layer to form a topcoat layer.
  • Example 3
  • [0045]
    A primer and reservoir layers can be formed on a stent as described in Example 1, except rapamycin can be used instead of EVEROLIMUS. A composition can be prepared by mixing about 1.0 mass % to about 15 mass %, for example, about 1.5 mass % poly(ester amide); about 1.0 mass % to about 15 mass %, for example, about 0.5 mass % PEG-PBT; and the balance, a mixture of ethanol and DMAC solvents, wherein mass ratio between ethanol and DMAC can be about 1:1.
  • [0046]
    The same brand of PEG-PBT as described in Example 1 can be used. Poly(ester amide)-8,4 having the formula (IV) can be used:
    wherein n is a positive integer.
  • [0047]
    The composition can contain about 75 μg poly(ester amide), and about 25 μg PEG-PBT. The composition can be applied onto the dried reservoir layer to form a topcoat layer, using the same spraying technique and equipment as described above, followed by drying, e.g., by baking. The poly(ester amide) shown by formula (IV) is expected to degrade when exposed to bodily fluids such as blood to yield sebacic and glycolic acids and 1,4-butanediamine (putrescine), all of which are biocompatible.
  • [0048]
    While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4321711 *12 Oct 197930 Mar 1982Sumitomo Electric Industries, Ltd.Vascular prosthesis
US4633873 *26 Apr 19846 Jan 1987American Cyanamid CompanySurgical repair mesh
US4656083 *11 Mar 19857 Apr 1987Washington Research FoundationPlasma gas discharge treatment for improving the biocompatibility of biomaterials
US4718907 *20 Jun 198512 Jan 1988Atrium Medical CorporationVascular prosthesis having fluorinated coating with varying F/C ratio
US4722335 *20 Oct 19862 Feb 1988Vilasi Joseph AExpandable endotracheal tube
US4723549 *18 Sep 19869 Feb 1988Wholey Mark HMethod and apparatus for dilating blood vessels
US4732152 *5 Dec 198522 Mar 1988Medinvent S.A.Device for implantation and a method of implantation in a vessel using such device
US4733665 *7 Nov 198529 Mar 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762 *3 Nov 198626 Apr 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4740207 *10 Sep 198626 Apr 1988Kreamer Jeffry WIntralumenal graft
US4743252 *13 Jan 198610 May 1988Corvita CorporationComposite grafts
US4816339 *28 Apr 198728 Mar 1989Baxter International Inc.Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4850999 *26 May 198125 Jul 1989Institute Fur Textil-Und Faserforschung Of StuttgartFlexible hollow organ
US4902289 *9 Aug 198820 Feb 1990Massachusetts Institute Of TechnologyMultilayer bioreplaceable blood vessel prosthesis
US4994298 *18 Apr 199019 Feb 1991Biogold Inc.Method of making a biocompatible prosthesis
US5019090 *1 Sep 198828 May 1991Corvita CorporationRadially expandable endoprosthesis and the like
US5028597 *13 Apr 19902 Jul 1991Agency Of Industrial Science And TechnologyAntithrombogenic materials
US5084065 *10 Jul 198928 Jan 1992Corvita CorporationReinforced graft assembly
US5085629 *27 Sep 19894 Feb 1992Medical Engineering CorporationBiodegradable stent
US5100429 *20 Oct 198931 Mar 1992C. R. Bard, Inc.Endovascular stent and delivery system
US5108755 *27 Apr 198928 Apr 1992Sri InternationalBiodegradable composites for internal medical use
US5112457 *23 Jul 199012 May 1992Case Western Reserve UniversityProcess for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5123917 *27 Apr 199023 Jun 1992Lee Peter YExpandable intraluminal vascular graft
US5192311 *13 Aug 19909 Mar 1993Angeion CorporationMedical implant and method of making
US5197977 *30 Apr 199230 Mar 1993Meadox Medicals, Inc.Drug delivery collagen-impregnated synthetic vascular graft
US5279594 *23 May 199018 Jan 1994Jackson Richard RIntubation devices with local anesthetic effect for medical use
US5282860 *8 Oct 19921 Feb 1994Olympus Optical Co., Ltd.Stent tube for medical use
US5289831 *21 Apr 19921 Mar 1994Vance Products IncorporatedSurface-treated stent, catheter, cannula, and the like
US5290271 *29 Jul 19931 Mar 1994Jernberg Gary RSurgical implant and method for controlled release of chemotherapeutic agents
US5306286 *1 Feb 199126 Apr 1994Duke UniversityAbsorbable stent
US5306294 *5 Aug 199226 Apr 1994Ultrasonic Sensing And Monitoring Systems, Inc.Stent construction of rolled configuration
US5328471 *4 Aug 199312 Jul 1994Endoluminal Therapeutics, Inc.Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5330500 *17 Oct 199119 Jul 1994Song Ho YSelf-expanding endovascular stent with silicone coating
US5383925 *14 Sep 199224 Jan 1995Meadox Medicals, Inc.Three-dimensional braided soft tissue prosthesis
US5385580 *21 Sep 199231 Jan 1995Meadox Medicals, Inc.Self-supporting woven vascular graft
US5502158 *22 Sep 199226 Mar 1996Ecopol, LlcDegradable polymer composition
US5514379 *7 Aug 19927 May 1996The General Hospital CorporationHydrogel compositions and methods of use
US5527337 *22 Feb 199418 Jun 1996Duke UniversityBioabsorbable stent and method of making the same
US5591607 *6 Jun 19957 Jan 1997Lynx Therapeutics, Inc.Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation
US5593403 *14 Sep 199414 Jan 1997Scimed Life Systems Inc.Method for modifying a stent in an implanted site
US5593434 *7 Jun 199514 Jan 1997Advanced Cardiovascular Systems, Inc.Stent capable of attachment within a body lumen
US5599301 *22 Nov 19934 Feb 1997Advanced Cardiovascular Systems, Inc.Motor control system for an automatic catheter inflation system
US5599922 *18 Mar 19944 Feb 1997Lynx Therapeutics, Inc.Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties
US5605696 *30 Mar 199525 Feb 1997Advanced Cardiovascular Systems, Inc.Drug loaded polymeric material and method of manufacture
US5629077 *27 Jun 199413 May 1997Advanced Cardiovascular Systems, Inc.Biodegradable mesh and film stent
US5631135 *6 Jun 199520 May 1997Lynx Therapeutics, Inc.Oligonucleotide N3'→P5' phosphoramidates: hybridization and nuclease resistance properties
US5637113 *13 Dec 199410 Jun 1997Advanced Cardiovascular Systems, Inc.Polymer film for wrapping a stent structure
US5707385 *16 Nov 199413 Jan 1998Advanced Cardiovascular Systems, Inc.Drug loaded elastic membrane and method for delivery
US5716981 *7 Jun 199510 Feb 1998Angiogenesis Technologies, Inc.Anti-angiogenic compositions and methods of use
US5725549 *12 Sep 199610 Mar 1998Advanced Cardiovascular Systems, Inc.Coiled stent with locking ends
US5726297 *5 Jun 199510 Mar 1998Lynx Therapeutics, Inc.Oligodeoxyribonucleotide N3' P5' phosphoramidates
US5728751 *25 Nov 199617 Mar 1998Meadox Medicals, Inc.Bonding bio-active materials to substrate surfaces
US5733925 *28 Oct 199631 Mar 1998Neorx CorporationTherapeutic inhibitor of vascular smooth muscle cells
US5741881 *25 Nov 199621 Apr 1998Meadox Medicals, Inc.Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions
US5756457 *5 May 199526 May 1998Genetics Institute, Inc.Neural regeneration using human bone morphogenetic proteins
US5756476 *26 Jan 199426 May 1998The United States Of America As Represented By The Department Of Health And Human ServicesInhibition of cell proliferation using antisense oligonucleotides
US5766710 *19 Jun 199616 Jun 1998Advanced Cardiovascular Systems, Inc.Biodegradable mesh and film stent
US5855618 *13 Sep 19965 Jan 1999Meadox Medicals, Inc.Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
US5858746 *25 Jan 199512 Jan 1999Board Of Regents, The University Of Texas SystemGels for encapsulation of biological materials
US5865814 *6 Aug 19972 Feb 1999Medtronic, Inc.Blood contacting medical device and method
US5873904 *24 Feb 199723 Feb 1999Cook IncorporatedSilver implantable medical device
US5874165 *27 May 199723 Feb 1999Gore Enterprise Holdings, Inc.Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5876743 *22 Sep 19972 Mar 1999Den-Mat CorporationBiocompatible adhesion in tissue repair
US5877263 *25 Nov 19962 Mar 1999Meadox Medicals, Inc.Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents
US5879713 *23 Jan 19979 Mar 1999Focal, Inc.Targeted delivery via biodegradable polymers
US5891192 *22 May 19976 Apr 1999The Regents Of The University Of CaliforniaIon-implanted protein-coated intralumenal implants
US5897955 *21 Aug 199827 Apr 1999Gore Hybrid Technologies, Inc.Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5914182 *3 Jun 199622 Jun 1999Gore Hybrid Technologies, Inc.Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5916870 *22 Sep 199829 Jun 1999Stryker CorporationCompositions and therapeutic methods using morphogenic proteins and stimulatory factors
US6015541 *3 Nov 199718 Jan 2000Micro Therapeutics, Inc.Radioactive embolizing compositions
US6042875 *2 Mar 199928 Mar 2000Schneider (Usa) Inc.Drug-releasing coatings for medical devices
US6048964 *12 Dec 199511 Apr 2000Stryker CorporationCompositions and therapeutic methods using morphogenic proteins and stimulatory factors
US6051648 *13 Jan 199918 Apr 2000Cohesion Technologies, Inc.Crosslinked polymer compositions and methods for their use
US6056993 *17 Apr 19982 May 2000Schneider (Usa) Inc.Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6060451 *20 Mar 19959 May 2000The National Research Council Of CanadaThrombin inhibitors based on the amino acid sequence of hirudin
US6071266 *23 Oct 19986 Jun 2000Kelley; Donald W.Lubricious medical devices
US6074659 *10 Jul 199813 Jun 2000Noerx CorporationTherapeutic inhibitor of vascular smooth muscle cells
US6080177 *28 Apr 199827 Jun 2000Igaki; KeijiLuminal stent, holding structure therefor and device for attaching luminal stent
US6080488 *24 Mar 199827 Jun 2000Schneider (Usa) Inc.Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6169170 *3 Sep 19972 Jan 2001Lynx Therapeutics, Inc.Oligonucleotide N3′→N5′Phosphoramidate Duplexes
US6171609 *23 Oct 19959 Jan 2001Neorx CorporationTherapeutic inhibitor of vascular smooth muscle cells
US6174330 *1 Aug 199716 Jan 2001Schneider (Usa) IncBioabsorbable marker having radiopaque constituents
US6177523 *14 Jul 199923 Jan 2001Cardiotech International, Inc.Functionalized polyurethanes
US6224626 *1 Apr 19991 May 2001Md3, Inc.Ultra-thin expandable stent
US6228845 *21 Oct 19988 May 2001Medtronic, Inc.Therapeutic intraluminal stents
US6240616 *15 Apr 19975 Jun 2001Advanced Cardiovascular Systems, Inc.Method of manufacturing a medicated porous metal prosthesis
US6245103 *1 Aug 199712 Jun 2001Schneider (Usa) IncBioabsorbable self-expanding stent
US6251135 *8 Mar 199926 Jun 2001Schneider (Usa) IncRadiopaque marker system and method of use
US6251142 *9 Dec 199726 Jun 2001Sorin Biomedica Cardio S.P.A.Implantation device and a kit including the device
US6395326 *31 May 200028 May 2002Advanced Cardiovascular Systems, Inc.Apparatus and method for depositing a coating onto a surface of a prosthesis
US6527801 *13 Apr 20004 Mar 2003Advanced Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US6746773 *25 Sep 20018 Jun 2004Ethicon, Inc.Coatings for medical devices
US6752826 *14 Dec 200122 Jun 2004Thoratec CorporationLayered stent-graft and methods of making the same
US20020002399 *8 May 20013 Jan 2002Huxel Shawn ThayerRemovable stent for body lumens
US20020004060 *17 Jul 199810 Jan 2002Bernd HeubleinMetallic implant which is degradable in vivo
US20020004101 *30 Aug 200110 Jan 2002Schneider (Usa) Inc.Drug coating with topcoat
US20030100865 *9 Dec 200229 May 2003Santini John T.Implantable drug delivery stents
US20030105518 *10 Jan 20035 Jun 2003Debashis DuttaBiodegradable drug delivery material for stent
US20040098095 *30 Sep 200320 May 2004Burnside Diane K.Stent-graft with bioabsorbable structural support
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7176261 *21 Oct 200513 Feb 2007Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US7247364 *25 Feb 200524 Jul 2007Advanced Cardiovascular Systems, Inc.Coating for implantable medical devices
US7717363 *8 May 200818 May 2010California Institute Of TechnologyDegradable polymers and methods of preparation thereof
US8052637 *10 Jul 20068 Nov 2011Abbott LaboratoriesMedical device balloon
US812898311 Apr 20086 Mar 2012Abbott Cardiovascular Systems Inc.Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
US813355318 Jun 200713 Mar 2012Zimmer, Inc.Process for forming a ceramic layer
US830952119 Jun 200713 Nov 2012Zimmer, Inc.Spacer with a coating thereon for use with an implant device
US835008712 Apr 20078 Jan 2013Agency For Science, Technology And ResearchBiodegradable thermogelling polymer
US860229022 Apr 201110 Dec 2013Zimmer, Inc.Method for bonding a tantalum structure to a cobalt-alloy substrate
US860804910 Oct 200717 Dec 2013Zimmer, Inc.Method for bonding a tantalum structure to a cobalt-alloy substrate
US864206231 Oct 20074 Feb 2014Abbott Cardiovascular Systems Inc.Implantable device having a slow dissolving polymer
US86633376 Mar 20124 Mar 2014Zimmer, Inc.Process for forming a ceramic layer
US868543013 Jul 20071 Apr 2014Abbott Cardiovascular Systems Inc.Tailored aliphatic polyesters for stent coatings
US869711014 May 200915 Apr 2014Abbott Cardiovascular Systems Inc.Polymers comprising amorphous terpolymers and semicrystalline blocks
US869711314 May 200915 Apr 2014Abbott Cardiovascular Systems Inc.Coating comprising a terpolymer comprising caprolactone and glycolide
US888917010 Jan 201418 Nov 2014Abbott Cardiovascular Systems Inc.Implantable device having a coating with a triblock copolymer
US891618818 Apr 200823 Dec 2014Abbott Cardiovascular Systems Inc.Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US909074515 Nov 201328 Jul 2015Abbott Cardiovascular Systems Inc.Biodegradable triblock copolymers for implantable devices
US934566817 Nov 201424 May 2016Abbott Cardiovascular Systems Inc.Implantable device having a slow dissolving polymer
US946870620 Mar 201518 Oct 2016Abbott Cardiovascular Systems Inc.Phosphoryl choline coating compositions
US946870726 Jun 201518 Oct 2016Abbott Cardiovascular Systems Inc.Biodegradable triblock copolymers for implantable devices
US953933212 Feb 201510 Jan 2017Abbott Cardiovascular Systems Inc.Plasticizers for coating compositions
US962994420 May 201625 Apr 2017Abbott Cardiovascular Systems Inc.Implantable device with a triblock polymer coating
US973763820 Jun 200722 Aug 2017Abbott Cardiovascular Systems, Inc.Polyester amide copolymers having free carboxylic acid pendant groups
US20060018948 *24 Jun 200526 Jan 2006Guire Patrick EBiodegradable implantable medical devices, methods and systems
US20060088572 *21 Oct 200527 Apr 2006Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US20060198868 *22 Dec 20057 Sep 2006Dewitt David MBiodegradable coating compositions comprising blends
US20070021772 *10 Jul 200625 Jan 2007Abbott LaboratoriesMedical device balloon
US20080249281 *8 May 20089 Oct 2008California Institute Of TechnologyDegradable polymers and methods of preparation thereof
US20080299164 *30 May 20074 Dec 2008Trollsas Mikael OSubstituted polycaprolactone for coating
US20090104241 *23 Oct 200723 Apr 2009Pacetti Stephen DRandom amorphous terpolymer containing lactide and glycolide
US20090110711 *31 Oct 200730 Apr 2009Trollsas Mikael OImplantable device having a slow dissolving polymer
US20090110713 *31 Oct 200730 Apr 2009Florencia LimBiodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices
US20090259302 *11 Apr 200815 Oct 2009Mikael TrollsasCoating comprising poly (ethylene glycol)-poly (lactide-glycolide-caprolactone) interpenetrating network
US20090285873 *15 Jun 200919 Nov 2009Abbott Cardiovascular Systems Inc.Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US20090297584 *20 Aug 20083 Dec 2009Florencia LimBiosoluble coating with linear over time mass loss
US20100030313 *29 Jul 20094 Feb 2010Boston Scientific Scimed, Inc.Medical articles comprising biodegradable block copolymers
US20100080795 *12 Apr 20071 Apr 2010Jun LiBiodegradable thermogelling polymer
US20100209476 *14 May 200919 Aug 2010Abbott Cardiovascular Systems Inc.Coating comprising a terpolymer comprising caprolactone and glycolide
Classifications
U.S. Classification424/423
International ClassificationA61L31/10, A61L27/34
Cooperative ClassificationA61L31/148, A61L2420/06, A61L27/34, A61L31/10
European ClassificationA61L31/10, A61L27/34
Legal Events
DateCodeEventDescription
19 May 2008ASAssignment
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, YIWEN;HOSSAINY, SYED F. A.;TUNG, ANDREW C.;AND OTHERS;REEL/FRAME:020967/0783;SIGNING DATES FROM 20040401 TO 20040409