US20050212143A1 - Multichip semiconductor package - Google Patents

Multichip semiconductor package Download PDF

Info

Publication number
US20050212143A1
US20050212143A1 US11/138,169 US13816905A US2005212143A1 US 20050212143 A1 US20050212143 A1 US 20050212143A1 US 13816905 A US13816905 A US 13816905A US 2005212143 A1 US2005212143 A1 US 2005212143A1
Authority
US
United States
Prior art keywords
bond site
elongated members
connection structure
microelectronic substrate
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/138,169
Inventor
Jerrold King
Jerry Brooks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US11/138,169 priority Critical patent/US20050212143A1/en
Publication of US20050212143A1 publication Critical patent/US20050212143A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates generally to multichip semiconductor packages and particularly relates to an improved semiconductor package having a plurality of semiconductor chips fabricated as a singular coextensive substrate and to its method of making.
  • Multichip packaging is one of the fastest growing disciplines in the chip packaging industry. Initially, the multichip package came into existence for applications requiring numerous and varied circuits configured into a least amount of space, such as with mainframes and supercomputers. Since then, multichip packages have transcended traditional boundaries and moved into conventional single-chip applications because they characteristically possess reduced weight and size per each circuit, increased reliability and increased electrical performance. As such, multichip packages are now regularly employed in consumer electronics, medical and avionic devices, and in the automotive and aerospace industries. Multichip packages also find particular usefulness in telecommunication applications because of their high bandwidth performance.
  • Wafer Scale Integration (WSI) techniques have been used to fabricate various other multichip arrangements. Yet WSI often utilizes 800, or more, semiconductor chips as a single multichip which, in effect, is too cumbersome, if not prohibitive, to encapsulate into a package format. The large size is also inefficient for applications requiring relatively few semiconductor chips, around 64 or less, because of the high wiring density used in WSI wirebonding operations and the surplus unneeded chips. Effective testing of each individual chip with WSI is also problematic because of the large number of chips. Additionally, WSI techniques frequently require expensive photolithography equipment, not typically utilized with single-chip packages, to transfer a circuit image onto a multichip substrate.
  • a novel multichip semiconductor package, and method of making has a plurality of semiconductor chips fabricated in electrical isolation, one from another, as a singular coextensive semiconductor substrate useful for numerous and varied semiconductor chip applications.
  • semiconductor substrate is defined to mean any construction comprising semiconductive material, including but not limited to bulk semiconductive material such as a semiconductive wafer, either alone or in assemblies comprising other materials thereon, and semiconductive material layers, either alone or in assemblies comprising other materials.
  • substrate refers to any supporting structure including but not limited to the semiconductor substrates described above. As such, silicon on insulator and silicon on sapphire are within the definition of substrate.
  • the semiconductor chips are kept integrally on the substrate.
  • the semiconductor chips which are electrically isolated one from another, are then wired so as to be electrically connected together to form a larger circuit, such as to expand a memory circuit, and then encapsulated and processed into a single, multichip package.
  • a multichip package has a plurality of electrically isolated semiconductor chips integrally formed on a unitary semiconductor substrate.
  • a plurality of conductive leads electrically connect the electrically isolated semiconductor chips.
  • a compound substantially encapsulates at least a portion of the semiconductor substrate, and a plurality of electrodes extend through the compound to make contact with the conductive leads.
  • a multichip semiconductor package in another preferred embodiment, includes a plurality of electrically isolated semiconductor chips that are integrally formed on a unitary semiconductor substrate, each semiconductor chip having an active device formed thereon.
  • the multichip semiconductor package also includes a plurality of bond pads, each bond pad being electrically connected one per each active device.
  • a plurality of conductive leads electrically connect the electrically isolated semiconductor chips, where each conductive lead is electrically connected one per each bond pad.
  • a compound substantially encapsulates at least a portion of the semiconductor substrate, the bond pads, and the conductive leads.
  • the common signals of the plurality of semiconductor chips are bussed in electrical common across the substrate to a common electrode suitable for electrically providing the signal to another, external circuit, such as a Printed Wiring Board (PWB).
  • PWB Printed Wiring Board
  • the common bussing is achieved by conductive leads disposed across the substrate in pair sets having an extended portion that accommodates the electrode in contact therewith.
  • the electrode contacts the conductive lead through an opening formed in the encapsulant that surrounds the substrate.
  • the extended portions of each conductive lead are staggered with respect to the extended portion of the conductive lead in the same, or juxtaposed, pair set. In this manner, multiple electrodes are available for close proximity positioning while, simultaneously, avoiding electrical shorts amongst the pair sets.
  • the conductive leads extend beyond the encapsulant to facilitate testing or improve manageability of the package during the manufacturing process.
  • the conductive leads, after the testing or manufacturing, may then be sheared flush to avoid mechanical interferences between the external circuit, i.e., the PWB, or to create a stronger and thicker multichip package.
  • a method of making the inventive multichip package includes providing a unitary semiconductor substrate and integrally forming a plurality of electrically isolated semiconductor chips on the unitary semiconductor substrate. There is then formed a plurality of conductive leads that electrically connect the electrically isolated semiconductor chips. A compound then substantially encapsulates at least a portion of the semiconductor substrate, and a plurality of electrodes are formed so as to extend through the compound to make contact with the conductive leads.
  • Another method of making the inventive multichip package includes providing a unitary semiconductor substrate.
  • a plurality of electrically isolated semiconductor chips are integrally formed on the unitary semiconductor substrate each having an active device formed thereon.
  • a plurality of bond pads are formed so as to make electrical connections from each bond pad to one of the active devices.
  • Electrical connections are also formed to electrically connect the electrically isolated semiconductor chips with a plurality of conductive leads.
  • Each conductive lead is electrically connected one per each bond pad.
  • a compound is formed so as to substantially encapsulate at least a portion of the semiconductor substrate, the bond pads, and the conductive leads.
  • a plurality of solder balls are formed so as to extend through the compound to make contact with a respective one of the conductive leads.
  • a still further method of making the inventive multichip package includes a singular substrate being fabricated with a plurality of electrically isolated semiconductor chips integrally formed thereon. Centrally located bond pads are provided for connection with the active devices of the chips by exposing the bond pads through apertures in an insulating or passivation layer which forms the upper surface of each chip. Conductive leads are positioned over the chips and are extended in length to an area near the bond pads for wire bonding connections thereto. The conductive leads are attached to an upper surface of the chips with Lead-Over-Chip (LOC) tape.
  • LOC Lead-Over-Chip
  • the multichip package is at least partially encapsulated with a compound, and openings are formed in the compound to at least partially expose the conductive leads. Electrodes are made to contact the conductive leads that are exposed through the openings in the compound.
  • FIG. 1 is a top view of a multichip package as taken from beneath a top layer of encapsulating material according to one embodiment of the present invention
  • FIG. 2 is a cross section view of the multichip package of FIG. 1 taken along line 2 - 2 ;
  • FIG. 3 is a cross section view of a multichip package having conductive leads extending beyond the encapsulating compound according to another embodiment of the present invention
  • FIG. 4 is a cross section view of a multichip package having conductive leads sheared flush with the encapsulating compound according to a further embodiment of the present invention.
  • FIG. 5 is a top perspective view of a multichip package with a cut-away view through the encapsulating material to reveal eight semiconductor chips and a plurality of common busses across the semiconductor chips according to a still further embodiment of the present invention.
  • the present invention relates to a novel multichip semiconductor package having a plurality of semiconductor chips fabricated as a singular coextensive substrate and to its method of making.
  • a multichip semiconductor package depicted generally as package 20 , has a plurality of semiconductor chips 22 each arranged in electrical isolation, one from another, adjacently along a terminal boundary 24 thereof as a singular coextensive substrate 26 .
  • Chips 22 are integrally formed on substrate 26 which may be a semiconductor material such as gallium arsenide, silicon, or can be silicon on sapphire, silicon on insulator.
  • substrate 26 preferably a monocrystalline silicon wafer, has the individual semiconductor chips 22 fabricated thereon by conventional techniques currently employed in the manufacture of single-chip packages.
  • a lead frame 28 attached to semiconductor chip 22 , preferably by lamination techniques using a lead-over-chip (LOC) adhesive 27 , a lead locking tape 29 , and a wire bonding segment 31 , is a lead frame 28 to which electrodes 30 are electrically contacted.
  • Lead frame 28 is provided, one per package 20 , to yield electrical continuity between electrodes 30 and the internal devices of semiconductor chip 22 by way of a singular conductive lead 32 , one per each electrode 30 .
  • Electrode 30 is connected to conductive lead 32 at a selected position along a length thereof. It should be appreciated that each selected position of connection between each electrode 30 and each respective conductive lead 32 yields an arrangement of electrodes 30 about package 20 , known commonly as a package footprint.
  • the package footprint has a corresponding footprint on a PWB (not shown), for example, that allows for completion of an electrical circuit between the internal devices of package 20 and the circuit fabricated on the PWB when the two footprints are electrically connected.
  • each electrode 30 is not directly connected to semiconductor chip 22 by way of bond pads or wiring traces, as are conventional BGA's, flip-chips, and chip-scale packages, the package footprint can remain consistent in size and shape despite continual size reductions in individual semiconductor chips. This is possible because the length of conductive lead 32 acts as an electrical bus from the internal devices in semiconductor chips 22 to the position of electrode 30 . As semiconductor chip 22 is reduced in size, the dimensions of conductive lead 32 are adjusted and electrical continuity remains bussed out to electrode 30 .
  • conductive leads 32 are plated at an electrode bond area 58 with a thin layer of metal to improve the strength and conductivity between electrode 30 and conductive lead 32 .
  • electrodes 30 can be solder balls, the metal composition thereof is preferably gold, palladium/nickel, or tin.
  • the package footprint has rows 35 of electrodes 30 disposed across semiconductor chips 22 in two substantially parallel lines 34 , 36 with each individual electrode 30 being contacted, one per each conductive lead 32 , along an extended portion 38 of the substantially rectangular conductive lead.
  • the extended portion is present on conductive lead 32 because the width of the remainder of conductive lead 32 , while a cost effective use of materials, is too thin to fully accommodate electrode 30 .
  • electrode 30 only exceeds the width of conductive leads 32 to the extent necessary to prevent mechanical bonding failures, such as solder joint failures.
  • Conductive leads 32 are preferably arranged in sets of pairs 40 , 42 across semiconductor chips 22 . Each pair set 40 , 42 is arranged in relatively close proximity. Each extended portion 38 of each conductive lead 32 is staggered with respect to another extended portion 38 of conductive lead 32 in the same or juxtaposed to pair set 40 , 42 . In this manner, multiple electrodes 30 are available for close proximity positioning while, simultaneously, avoiding electrical shorts in and amongst pair sets 40 , 42 which would otherwise occur with electrodes of the size and shape depicted if electrodes 30 were all placed side-by-side in a linear fashion.
  • electrode 30 changes in the size and shape of electrode 30 are contemplated that would yield other distinct package footprints without altering the fabrication or effectiveness of singular coextensive substrate 26 having a plurality of semiconductor chips 22 integrally formed thereon.
  • the portion of electrode 30 contacting conductive lead 32 can be reduced in area to a size that does not exceed the pitch of conductive leads 32 , thereby making extended portions 38 superfluous.
  • extended portions 38 could be alternated at opposite ends of their respective pair sets 40 , 42 or arranged in other ways that maintain a cost effective conductive lead 32 while preventing electrical shorts.
  • the plurality of semiconductor chips 22 are electrically bonded together, along a periphery 43 and a central portion 44 of package 20 , by way of bond pads 45 and bond wires 46 to form, for example, a larger package circuit, or as in a preferred embodiment, to expand the overall memory of semiconductor chips, such as DRAM semiconductor chips.
  • the bond pads can be any of the various terminals formed near the surface of semiconductor chip 22 through which electrical connections can be made between the active devices in chip 22 and external circuits.
  • Bond wires 46 are preferably connected along a terminal end 48 of conductive leads 32 at a respective terminal end 48 , as depicted in FIGS. 3 and 4 .
  • conductive leads 32 are plated at a wire bond area with a thin layer of metal suitable for wire bonding, such as gold, silver or palladium/nickel to improve the strength and conductivity of the bond between conductive leads 32 and bond wires 46 .
  • Package 20 is encapsulated in a compound 50 which has openings formed therein that partially expose conductive leads 32 at the selected connection positions, which is preferably electrode bond area 58 .
  • the openings are sized and shaped according to the selected size and shape of electrodes 30 and are adjustable to correspond with changes in the selected size and shape.
  • Compound 50 often a molding compound, is generally an electrically insulating formulation used to distribute power, dissipate heat and protect the active devices therein from thermomechanical stresses and pollutants found in the operating environment.
  • compound 50 is a thermosetting epoxy resin, but may also be silicon, phenolic, or polyeurethane.
  • the composition of compound 50 is generally derived from a balance of numerous engineering factors including the cost of manufacturing, production volume, expected use environment, expected use market and other related considerations. It is also contemplated that compound 50 may be a polyimide compound useful as an alpha barrier.
  • conductive leads 32 have been fully encapsulated within compound 50 .
  • conductive leads 32 are extended out from compound 50 to facilitate chip testing and also to enable package 20 to be easily maneuvered during the manufacturing process. It is also contemplated that conductive leads 32 could remain attached to semiconductor chips 22 without any of, or as a compliment to, electrodes 30 so that a signal could be taken directly therefrom as package 20 is used in either a surface mount, or through-hole capacity.
  • conductive leads 32 have been sheared flush with compound 50 after either testing or manufacturing in order to create a thicker and stronger terminal portion of package 20 , or to remove any potential mechanical interferences from conductive leads 32 .
  • package 20 has eight semiconductor chips 22 adjacently arranged in electrical isolation, in the manner previously described, with conductive leads 32 again disposed in pairs 40 , 42 across substrate 26 .
  • conductive leads 32 in this embodiment are bussed common to eliminate high wiring density within package 20 and to provide for redundant back-up in the event a semiconductor chip 22 has a bad, or deteriorated, signal line.
  • the common bussing also allows for common addresses (A0, A1 . . . An), common data out (DO), common data queries (DQ) or voltage steady state (Vss) electrodes, for example, to be fabricated together electrically, thereby eliminating electrode repetition and reducing material costs.
  • a plurality of wiring banks 54 are configured about the periphery of package 20 along three sides and about the interior of package 20 in rows 35 having two substantially parallel lines 34 , 36 of electrodes 30 . It should be understood that wiring banks 54 could all be grouped together, but to do so would be at the expense of increasing wiring densities and creating manufacturing difficulties such as having inadequate wiring angles for attaching bond pads 45 to conductive leads 32 . Yet, alternatives exist that will effectively accommodate the grouping of wiring banks 54 about package 20 that provide ease of electrical connection with other external circuits and are within the spirit of the present invention.
  • this embodiment depicts compound 50 as being disposed upon top side 60 of substrate 26 while bottom side 62 remains uncovered. It is possible, however, to forego disposing any of compound 50 on substrate 26 . It is preferred, however, that at least a partial encapsulation of compound 50 is applied about substrate 26 to prevent undesirable conditions, such as electrical shorting.
  • semiconductor chips 22 have heretofore been described as either being two or eight in number and fabricated in adjacent arrangement with one another within substantially rectangular packages, one skilled in the art should appreciate that still other embodiments exist that are within the express teachings of the present invention.
  • semiconductor chips 22 range in preferred quantities from 2 to 8 but may also be as large as 64 or more.
  • the arrangement of semiconductor chips 22 may also be fabricated into various other patterns so long as chips 22 remain as discrete, electrically isolated units integrally formed on singular coextensive substrate 26 .
  • the steps of fabrication of multichip package 20 include a singular substrate 26 being fabricated with a plurality of electrically isolated semiconductor chips 22 thereon. Instead of a singulation process of sawing the individual chips into discrete single-chips for packaging, chips 22 are kept as integrally formed electrically isolated elements that are thereafter electrically connected together.
  • bond pads 45 are provided to connect to the active devices (not shown) by exposing bond pads 45 through apertures in an insulating or passivation layer which forms the upper surface of chip 22 .
  • Conductive leads 32 which form the inner portion of the singular lead frame 28 , are then positioned over chips 22 and extended in length to an area near bond pads 45 for wire bonding connections thereto.
  • Conductive leads 32 are usually prefabricated with a plating of a thin layer of suitable metal at terminal end 48 but can also be plated after encapsulation. In sequence, conductive leads 32 are connected to an upper surface of chips 22 with LOC adhesive 27 .
  • LOC adhesive 27 For a detailed description thereof, refer to U.S. Pat. No. 5,286,679, issued to Farnworth et al., which is incorporated herein by reference.
  • package 20 is at least partially encapsulated with compound 50 and openings are formed therein to at least partially expose conductive leads 32 , where exposure preferably is at electrode bond area 58 .
  • conductive leads 32 are usually prefabricated with a plating of a thin layer of suitable metal at electrode bond area 58 . After encapsulation, any remaining resin residue that is present on the wire 46 or electrode bond area 58 is removed by electrolytic or mechanical deflash processes known in the art.
  • electrodes 30 are bonded to electrode bond areas 58 through openings in compound 50 .
  • the solder balls may be attached, as is known in the art, by coating the solder balls or bond areas 58 with flux, placing the solder balls on electrode bond area 58 through the openings with conventional pick and place or shaker/hopper equipment, and reflowing the balls in place using an infrared or hot air reflow process. The excess flux is then removed with an appropriate cleaning agent. In this manner, the solder balls are electrically and mechanically connected to conductive leads 32 to form electrodes 30 external to compound 50 .
  • Other processes may also be used to form electrodes 30 .
  • electrodes 30 may be “plated up” using conventional plating techniques rather than using the solder ball techniques as described above.
  • the completed multichip semiconductor package 20 can then be assembled to a printed circuit board or the like using conventional surface mount or through hole processes and equipment.

Abstract

A multichip semiconductor package and method of making is provided that has a plurality of semiconductor chips fabricated in electrical isolation one from another integrally on a singular coextensive substrate useful for numerous and varied semiconductor chip applications. The semiconductor chips, instead of being singulated into a plurality of single-chip packages, are kept as integrally formed together and are thereafter electrically connected together so as to form a larger circuit. Encapsulation follows so as to form a single, multichip package. Common signals of the plurality of semiconductor chips are bussed together in electrical common across the substrate to a common electrode suitable for electrically providing the signal to another, external circuit, such as a PWB. The common bussing is achieved by conductive leads disposed across the substrate in pair sets having an extended portion that accommodates the common electrode in contact therewith. The common electrode contacts the conductive lead through an opening formed in the encapsulant that surrounds the substrate. The extended portions of each conductive lead are staggered with respect to the extended portion of the conductive lead in the same, or juxtaposed, pair set. In this manner, multiple electrodes are available for close proximity positioning while, simultaneously, avoiding electrical shorts amongst the pair sets.

Description

    BACKGROUND OF THE INVENTION
  • This is a continuation of U.S. patent application Ser. No. 09/032,191, filed on Feb. 27, 1998, which is incorporated herein by reference.
  • 1. The Field of the Invention
  • The present invention relates generally to multichip semiconductor packages and particularly relates to an improved semiconductor package having a plurality of semiconductor chips fabricated as a singular coextensive substrate and to its method of making.
  • 2. The Relevant Technology
  • Multichip packaging is one of the fastest growing disciplines in the chip packaging industry. Initially, the multichip package came into existence for applications requiring numerous and varied circuits configured into a least amount of space, such as with mainframes and supercomputers. Since then, multichip packages have transcended traditional boundaries and moved into conventional single-chip applications because they characteristically possess reduced weight and size per each circuit, increased reliability and increased electrical performance. As such, multichip packages are now regularly employed in consumer electronics, medical and avionic devices, and in the automotive and aerospace industries. Multichip packages also find particular usefulness in telecommunication applications because of their high bandwidth performance.
  • In general, conventional multichip packages are available in one of two varieties. One has two or more bare chips bonded directly to a multichip substrate and the other, the most commercially predominant package, has two or more pre-packaged single-chips in their respective single-chip carriers and bonded to a multichip substrate. Although the former variety enjoys advantages over the latter, both varieties remain bound by single-chip constraints because of their dependence upon either a bare, or packaged, single-chip. As such, both varieties frequently share common problems with their single-chip counterparts.
  • For example, in response to an industry-wide demand for high lead counts and small “footprints,” i.e., the arrangement of electrical contacts on the printed circuit board to which the chip package is ultimately connected, single-chip packages became available in Ball Grid Array (BGA), “flip-chip” and “chip-scale” packages. The problem, however, is that these singular-chip packages have external electrodes, which can be solder balls, that are directly attached to contacts on the surface of the semiconductor chip. As semiconductor chips are continually reduced in size, the arrangement of the external electrodes must also be continually reconfigured into a correspondingly smaller size. In turn, the footprint on the printed circuit board must also be continually reconfigured. This problem is even further amplified with multichip packages because footprint reconfiguration also needs to occur on the multichip substrate itself to which the single-chip packages are attached. It is, therefore, desirous to eliminate the continual reconfiguring of the footprint of the multichip package and the rearrangement of the multichip substrate.
  • In a separate and distinct discipline, Wafer Scale Integration (WSI) techniques have been used to fabricate various other multichip arrangements. Yet WSI often utilizes 800, or more, semiconductor chips as a single multichip which, in effect, is too cumbersome, if not prohibitive, to encapsulate into a package format. The large size is also inefficient for applications requiring relatively few semiconductor chips, around 64 or less, because of the high wiring density used in WSI wirebonding operations and the surplus unneeded chips. Effective testing of each individual chip with WSI is also problematic because of the large number of chips. Additionally, WSI techniques frequently require expensive photolithography equipment, not typically utilized with single-chip packages, to transfer a circuit image onto a multichip substrate.
  • A need exists for a multichip package that overcomes the foregoing problems.
  • SUMMARY OF THE INVENTION
  • In accordance with the invention as embodied and broadly described herein, a novel multichip semiconductor package, and method of making, is provided that has a plurality of semiconductor chips fabricated in electrical isolation, one from another, as a singular coextensive semiconductor substrate useful for numerous and varied semiconductor chip applications. In the context of this document, the term “semiconductor substrate” is defined to mean any construction comprising semiconductive material, including but not limited to bulk semiconductive material such as a semiconductive wafer, either alone or in assemblies comprising other materials thereon, and semiconductive material layers, either alone or in assemblies comprising other materials. The term “substrate” refers to any supporting structure including but not limited to the semiconductor substrates described above. As such, silicon on insulator and silicon on sapphire are within the definition of substrate.
  • Once fabricated, instead of being singulated into a plurality of single-chip packages, the semiconductor chips are kept integrally on the substrate. The semiconductor chips, which are electrically isolated one from another, are then wired so as to be electrically connected together to form a larger circuit, such as to expand a memory circuit, and then encapsulated and processed into a single, multichip package.
  • In a preferred embodiment, a multichip package has a plurality of electrically isolated semiconductor chips integrally formed on a unitary semiconductor substrate. A plurality of conductive leads electrically connect the electrically isolated semiconductor chips. A compound substantially encapsulates at least a portion of the semiconductor substrate, and a plurality of electrodes extend through the compound to make contact with the conductive leads.
  • In another preferred embodiment, a multichip semiconductor package includes a plurality of electrically isolated semiconductor chips that are integrally formed on a unitary semiconductor substrate, each semiconductor chip having an active device formed thereon. The multichip semiconductor package also includes a plurality of bond pads, each bond pad being electrically connected one per each active device. A plurality of conductive leads electrically connect the electrically isolated semiconductor chips, where each conductive lead is electrically connected one per each bond pad. A compound substantially encapsulates at least a portion of the semiconductor substrate, the bond pads, and the conductive leads. There are also a plurality of solder balls, where each solder ball extends through the compound to make contact with a respective one of the conductive leads.
  • In yet another preferred embodiment, the common signals of the plurality of semiconductor chips are bussed in electrical common across the substrate to a common electrode suitable for electrically providing the signal to another, external circuit, such as a Printed Wiring Board (PWB). The common bussing is achieved by conductive leads disposed across the substrate in pair sets having an extended portion that accommodates the electrode in contact therewith. The electrode contacts the conductive lead through an opening formed in the encapsulant that surrounds the substrate. The extended portions of each conductive lead are staggered with respect to the extended portion of the conductive lead in the same, or juxtaposed, pair set. In this manner, multiple electrodes are available for close proximity positioning while, simultaneously, avoiding electrical shorts amongst the pair sets.
  • In an alternate embodiment, the conductive leads extend beyond the encapsulant to facilitate testing or improve manageability of the package during the manufacturing process. The conductive leads, after the testing or manufacturing, may then be sheared flush to avoid mechanical interferences between the external circuit, i.e., the PWB, or to create a stronger and thicker multichip package.
  • A method of making the inventive multichip package includes providing a unitary semiconductor substrate and integrally forming a plurality of electrically isolated semiconductor chips on the unitary semiconductor substrate. There is then formed a plurality of conductive leads that electrically connect the electrically isolated semiconductor chips. A compound then substantially encapsulates at least a portion of the semiconductor substrate, and a plurality of electrodes are formed so as to extend through the compound to make contact with the conductive leads.
  • Another method of making the inventive multichip package includes providing a unitary semiconductor substrate. A plurality of electrically isolated semiconductor chips are integrally formed on the unitary semiconductor substrate each having an active device formed thereon. A plurality of bond pads are formed so as to make electrical connections from each bond pad to one of the active devices. Electrical connections are also formed to electrically connect the electrically isolated semiconductor chips with a plurality of conductive leads. Each conductive lead is electrically connected one per each bond pad. A compound is formed so as to substantially encapsulate at least a portion of the semiconductor substrate, the bond pads, and the conductive leads. A plurality of solder balls are formed so as to extend through the compound to make contact with a respective one of the conductive leads.
  • A still further method of making the inventive multichip package includes a singular substrate being fabricated with a plurality of electrically isolated semiconductor chips integrally formed thereon. Centrally located bond pads are provided for connection with the active devices of the chips by exposing the bond pads through apertures in an insulating or passivation layer which forms the upper surface of each chip. Conductive leads are positioned over the chips and are extended in length to an area near the bond pads for wire bonding connections thereto. The conductive leads are attached to an upper surface of the chips with Lead-Over-Chip (LOC) tape. The multichip package is at least partially encapsulated with a compound, and openings are formed in the compound to at least partially expose the conductive leads. Electrodes are made to contact the conductive leads that are exposed through the openings in the compound.
  • These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to more fully understand the manner in which the above-recited and other advantages of the invention are obtained, a more particular description of the invention will be rendered by reference to the specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention in its presently understood best mode for making and using the same will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1 is a top view of a multichip package as taken from beneath a top layer of encapsulating material according to one embodiment of the present invention;
  • FIG. 2 is a cross section view of the multichip package of FIG. 1 taken along line 2-2;
  • FIG. 3 is a cross section view of a multichip package having conductive leads extending beyond the encapsulating compound according to another embodiment of the present invention;
  • FIG. 4 is a cross section view of a multichip package having conductive leads sheared flush with the encapsulating compound according to a further embodiment of the present invention; and
  • FIG. 5 is a top perspective view of a multichip package with a cut-away view through the encapsulating material to reveal eight semiconductor chips and a plurality of common busses across the semiconductor chips according to a still further embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a novel multichip semiconductor package having a plurality of semiconductor chips fabricated as a singular coextensive substrate and to its method of making.
  • With reference to FIGS. 1 and 2, a multichip semiconductor package, depicted generally as package 20, has a plurality of semiconductor chips 22 each arranged in electrical isolation, one from another, adjacently along a terminal boundary 24 thereof as a singular coextensive substrate 26. Chips 22 are integrally formed on substrate 26 which may be a semiconductor material such as gallium arsenide, silicon, or can be silicon on sapphire, silicon on insulator. Substrate 26, preferably a monocrystalline silicon wafer, has the individual semiconductor chips 22 fabricated thereon by conventional techniques currently employed in the manufacture of single-chip packages. The difference, however, is that instead of dividing individual chips 22 into discrete single-chip packages by a singulation process performed upon the wafer, the individual chips, though electrically isolated one from another, are then electrically connected and then encapsulated into a singular multichip package 20 as described hereinafter.
  • In particular, attached to semiconductor chip 22, preferably by lamination techniques using a lead-over-chip (LOC) adhesive 27, a lead locking tape 29, and a wire bonding segment 31, is a lead frame 28 to which electrodes 30 are electrically contacted. Lead frame 28 is provided, one per package 20, to yield electrical continuity between electrodes 30 and the internal devices of semiconductor chip 22 by way of a singular conductive lead 32, one per each electrode 30. Electrode 30 is connected to conductive lead 32 at a selected position along a length thereof. It should be appreciated that each selected position of connection between each electrode 30 and each respective conductive lead 32 yields an arrangement of electrodes 30 about package 20, known commonly as a package footprint. The package footprint has a corresponding footprint on a PWB (not shown), for example, that allows for completion of an electrical circuit between the internal devices of package 20 and the circuit fabricated on the PWB when the two footprints are electrically connected. Advantageously, since each electrode 30 is not directly connected to semiconductor chip 22 by way of bond pads or wiring traces, as are conventional BGA's, flip-chips, and chip-scale packages, the package footprint can remain consistent in size and shape despite continual size reductions in individual semiconductor chips. This is possible because the length of conductive lead 32 acts as an electrical bus from the internal devices in semiconductor chips 22 to the position of electrode 30. As semiconductor chip 22 is reduced in size, the dimensions of conductive lead 32 are adjusted and electrical continuity remains bussed out to electrode 30. Typically, as in FIGS. 3 and 4, conductive leads 32 are plated at an electrode bond area 58 with a thin layer of metal to improve the strength and conductivity between electrode 30 and conductive lead 32. Since electrodes 30 can be solder balls, the metal composition thereof is preferably gold, palladium/nickel, or tin.
  • In the preferred embodiment of FIG. 1, the package footprint has rows 35 of electrodes 30 disposed across semiconductor chips 22 in two substantially parallel lines 34, 36 with each individual electrode 30 being contacted, one per each conductive lead 32, along an extended portion 38 of the substantially rectangular conductive lead. The extended portion is present on conductive lead 32 because the width of the remainder of conductive lead 32, while a cost effective use of materials, is too thin to fully accommodate electrode 30. It should be appreciated that electrode 30 only exceeds the width of conductive leads 32 to the extent necessary to prevent mechanical bonding failures, such as solder joint failures.
  • Conductive leads 32 are preferably arranged in sets of pairs 40, 42 across semiconductor chips 22. Each pair set 40, 42 is arranged in relatively close proximity. Each extended portion 38 of each conductive lead 32 is staggered with respect to another extended portion 38 of conductive lead 32 in the same or juxtaposed to pair set 40, 42. In this manner, multiple electrodes 30 are available for close proximity positioning while, simultaneously, avoiding electrical shorts in and amongst pair sets 40, 42 which would otherwise occur with electrodes of the size and shape depicted if electrodes 30 were all placed side-by-side in a linear fashion. Yet, it should be appreciated that changes in the size and shape of electrode 30 are contemplated that would yield other distinct package footprints without altering the fabrication or effectiveness of singular coextensive substrate 26 having a plurality of semiconductor chips 22 integrally formed thereon. For example, it is contemplated that the portion of electrode 30 contacting conductive lead 32 can be reduced in area to a size that does not exceed the pitch of conductive leads 32, thereby making extended portions 38 superfluous. It is also contemplated that extended portions 38 could be alternated at opposite ends of their respective pair sets 40, 42 or arranged in other ways that maintain a cost effective conductive lead 32 while preventing electrical shorts.
  • The plurality of semiconductor chips 22 are electrically bonded together, along a periphery 43 and a central portion 44 of package 20, by way of bond pads 45 and bond wires 46 to form, for example, a larger package circuit, or as in a preferred embodiment, to expand the overall memory of semiconductor chips, such as DRAM semiconductor chips. It is to be appreciated that the bond pads can be any of the various terminals formed near the surface of semiconductor chip 22 through which electrical connections can be made between the active devices in chip 22 and external circuits. Bond wires 46 are preferably connected along a terminal end 48 of conductive leads 32 at a respective terminal end 48, as depicted in FIGS. 3 and 4. Typically, conductive leads 32 are plated at a wire bond area with a thin layer of metal suitable for wire bonding, such as gold, silver or palladium/nickel to improve the strength and conductivity of the bond between conductive leads 32 and bond wires 46.
  • Package 20 is encapsulated in a compound 50 which has openings formed therein that partially expose conductive leads 32 at the selected connection positions, which is preferably electrode bond area 58. The openings are sized and shaped according to the selected size and shape of electrodes 30 and are adjustable to correspond with changes in the selected size and shape. Compound 50, often a molding compound, is generally an electrically insulating formulation used to distribute power, dissipate heat and protect the active devices therein from thermomechanical stresses and pollutants found in the operating environment. Preferably, compound 50 is a thermosetting epoxy resin, but may also be silicon, phenolic, or polyeurethane. The composition of compound 50 is generally derived from a balance of numerous engineering factors including the cost of manufacturing, production volume, expected use environment, expected use market and other related considerations. It is also contemplated that compound 50 may be a polyimide compound useful as an alpha barrier.
  • In the preferred embodiment depicted in FIG. 2, conductive leads 32 have been fully encapsulated within compound 50. There are other useful embodiments for conductive leads 32. For example, in FIG. 3, conductive leads 32 are extended out from compound 50 to facilitate chip testing and also to enable package 20 to be easily maneuvered during the manufacturing process. It is also contemplated that conductive leads 32 could remain attached to semiconductor chips 22 without any of, or as a compliment to, electrodes 30 so that a signal could be taken directly therefrom as package 20 is used in either a surface mount, or through-hole capacity. In FIG. 4, conductive leads 32 have been sheared flush with compound 50 after either testing or manufacturing in order to create a thicker and stronger terminal portion of package 20, or to remove any potential mechanical interferences from conductive leads 32.
  • With reference to FIG. 5, package 20 has eight semiconductor chips 22 adjacently arranged in electrical isolation, in the manner previously described, with conductive leads 32 again disposed in pairs 40, 42 across substrate 26. Instead of the semiconductor chips 22 being interconnected by discretely wiring conductive leads 32 thereof, conductive leads 32 in this embodiment are bussed common to eliminate high wiring density within package 20 and to provide for redundant back-up in the event a semiconductor chip 22 has a bad, or deteriorated, signal line. The common bussing also allows for common addresses (A0, A1 . . . An), common data out (DO), common data queries (DQ) or voltage steady state (Vss) electrodes, for example, to be fabricated together electrically, thereby eliminating electrode repetition and reducing material costs. Although some signal lines are independent and cannot, for various reasons, be bussed common, such as individual chip enables (CE) and row address strobes (RAS), those signal lines can be grouped together into common areas for efficaciously facilitating interconnection with an external circuit, such as a PWB. For example, a plurality of wiring banks 54 are configured about the periphery of package 20 along three sides and about the interior of package 20 in rows 35 having two substantially parallel lines 34, 36 of electrodes 30. It should be understood that wiring banks 54 could all be grouped together, but to do so would be at the expense of increasing wiring densities and creating manufacturing difficulties such as having inadequate wiring angles for attaching bond pads 45 to conductive leads 32. Yet, alternatives exist that will effectively accommodate the grouping of wiring banks 54 about package 20 that provide ease of electrical connection with other external circuits and are within the spirit of the present invention.
  • In response to industry demands for thin packages, this embodiment depicts compound 50 as being disposed upon top side 60 of substrate 26 while bottom side 62 remains uncovered. It is possible, however, to forego disposing any of compound 50 on substrate 26. It is preferred, however, that at least a partial encapsulation of compound 50 is applied about substrate 26 to prevent undesirable conditions, such as electrical shorting.
  • Although the arrangement of the discrete electrically isolated semiconductor chips 22 has heretofore been described as either being two or eight in number and fabricated in adjacent arrangement with one another within substantially rectangular packages, one skilled in the art should appreciate that still other embodiments exist that are within the express teachings of the present invention. For example, it is contemplated that semiconductor chips 22 range in preferred quantities from 2 to 8 but may also be as large as 64 or more. The arrangement of semiconductor chips 22 may also be fabricated into various other patterns so long as chips 22 remain as discrete, electrically isolated units integrally formed on singular coextensive substrate 26.
  • The steps of fabrication of multichip package 20 include a singular substrate 26 being fabricated with a plurality of electrically isolated semiconductor chips 22 thereon. Instead of a singulation process of sawing the individual chips into discrete single-chips for packaging, chips 22 are kept as integrally formed electrically isolated elements that are thereafter electrically connected together. Next, bond pads 45 are provided to connect to the active devices (not shown) by exposing bond pads 45 through apertures in an insulating or passivation layer which forms the upper surface of chip 22.
  • Conductive leads 32, which form the inner portion of the singular lead frame 28, are then positioned over chips 22 and extended in length to an area near bond pads 45 for wire bonding connections thereto. Conductive leads 32 are usually prefabricated with a plating of a thin layer of suitable metal at terminal end 48 but can also be plated after encapsulation. In sequence, conductive leads 32 are connected to an upper surface of chips 22 with LOC adhesive 27. For a detailed description thereof, refer to U.S. Pat. No. 5,286,679, issued to Farnworth et al., which is incorporated herein by reference.
  • Once connected, package 20 is at least partially encapsulated with compound 50 and openings are formed therein to at least partially expose conductive leads 32, where exposure preferably is at electrode bond area 58. Also, conductive leads 32 are usually prefabricated with a plating of a thin layer of suitable metal at electrode bond area 58. After encapsulation, any remaining resin residue that is present on the wire 46 or electrode bond area 58 is removed by electrolytic or mechanical deflash processes known in the art.
  • Lastly, electrodes 30, preferably solder balls, are bonded to electrode bond areas 58 through openings in compound 50. The solder balls may be attached, as is known in the art, by coating the solder balls or bond areas 58 with flux, placing the solder balls on electrode bond area 58 through the openings with conventional pick and place or shaker/hopper equipment, and reflowing the balls in place using an infrared or hot air reflow process. The excess flux is then removed with an appropriate cleaning agent. In this manner, the solder balls are electrically and mechanically connected to conductive leads 32 to form electrodes 30 external to compound 50. Other processes may also be used to form electrodes 30. For example, electrodes 30 may be “plated up” using conventional plating techniques rather than using the solder ball techniques as described above. The completed multichip semiconductor package 20 can then be assembled to a printed circuit board or the like using conventional surface mount or through hole processes and equipment.
  • While there has been shown and described a novel multichip package having a package footprint configured independently of the size of the individual semiconductor chips therein that is made with conventional leaded chip packaging processes and equipment, it is to be appreciated that the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered, in all respects, only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (28)

1-20. (canceled)
21. An apparatus for supporting a microelectronic substrate, comprising:
a support member having a support surface configured to carry a microelectronic substrate;
a first connection structure carried by the support member and configured to remain decoupled from the microelectronic substrate when the support member carries the microelectronic substrate, the first connection structure having a first bond site configured to receive a flowable conductive material, the first connection structure further having a first number of first elongated members connected to and extending outwardly from the first bond site, wherein none of the first elongated members is configured to be electrically connected to the microelectronic substrate; and
a second connection structure carried by the support member, the second connection structure having a second bond site configured to receive a flowable conductive material, the second connection structure being configured to be coupled to the microelectronic substrate when the support member carries the microelectronic substrate, the second connection structure further having a second number of second elongated members extending outwardly from the second bond site, the second number being the same as the first number.
22. The apparatus of claim 21 wherein each of the first elongated members is configured to receive at least a portion of the flowable conductive material and wherein each of the second elongated members is configured to receive at least a portion of the flowable conductive material.
23. The apparatus of claim 21 wherein the second connection structure has a third bond site configured to be wire bonded to the microelectronic substrate when the microelectronic substrate is carried by the support member, and wherein at least one of the second elongated members extends between the second and third bond sites.
24. The apparatus of claim 21 wherein the first conductive structure includes two first elongated members extending away from opposite sides of the first bond site.
25. The apparatus of claim 21 wherein the first connection structure includes at least one electrically conductive metallic material.
26. The apparatus of claim 21 wherein one of the first elongated members is shorter than another of the first elongated members.
27. The apparatus of claim 21 wherein the first bond site includes a solder ball pad, and wherein the apparatus further comprises a solder ball disposed on the solder ball pad.
28. The apparatus of claim 21, further comprising:
a first solder ball disposed on the first bond site and having a first size and shape;
a second solder ball disposed on the second bond site and having a second size at least approximately the same as the first size, and a second shape at least approximately the same as the first shape; and
a microelectronic substrate carried by the support member, the microelectronic substrate being electrically coupled to the second connection structure and being electrically isolated from the first connection structure.
29. The apparatus of claim 21 wherein the first connection structure and the second connection structure each have two elongated members.
30. The apparatus of claim 21 wherein each of the first and second elongated members has an axis along which the member is elongated and wherein each member has a width transverse to the axis, further wherein the widths of all the elongated members on the support member are approximately equal.
31. The apparatus of claim 21, further comprising:
a first solder ball disposed on the first bond site and projecting away from the first bond site by a first distance; and
a second solder ball disposed on the second bond site and projecting away from the second bond site by a second distance at least approximately the same as the first distance.
32. An apparatus for supporting a microelectronic substrate, comprising:
a support member having a support surface configured to carry a microelectronic substrate;
a first bond site carried by the support member and configured to remain decoupled from the microelectronic substrate when the support member carries the microelectronic substrate;
first elongated members connected to and extending outwardly from the first bond site;
a first portion of a flowable conductive material disposed on the first bond site, the first portion of the flowable conductive material projecting from the first bond site in a direction generally normal to the first bond site by a first distance;
a second bond site carried by the support member and configured to be electrically coupled to the microelectronic substrate when the support member carries the microelectronic substrate;
second elongated members extending outwardly from the second bond site; and
a second portion of a flowable conductive material disposed on the second bond site, the second portion of the flowable conductive material projecting from the second bond site in a direction generally normal to the second bond site by a second distance at least approximately equal to the first distance.
33. The apparatus of claim 32 wherein the first bond site has a total of a first number of first elongated members and the second bond site has a total of a second number of second elongated members, and wherein the first number is the same as the second number.
34. The apparatus of claim 32, further comprising a third bond site configured to be wire bonded to the microelectronic substrate when the microelectronic substrate is carried by the support member, and wherein at least one of the second elongated members extends between the second and third bond sites.
35. The apparatus of claim 32 wherein at least part of the first portion of the flowable conductive material extends along the first elongated members, and wherein at least part of the second portion of the flowable conductive material extends along the second elongated members.
36. The apparatus of claim 32 wherein the first elongated members include two first elongated members extending away from opposite sides of the first bond site.
37. The apparatus of claim 32 wherein the first elongated members include at least one electrically conductive metallic material.
38. The apparatus of claim 32 wherein the first bond site includes a solder ball pad, and wherein the flowable conductive material includes a solder ball disposed on the solder ball pad.
39. The apparatus of claim 32, further comprising:
a first solder ball disposed on the first bond site;
a second solder ball disposed on the second bond site; and
a microelectronic substrate carried by the support member, the microelectronic substrate being electrically coupled to the second bond site and being electrically isolated from the first bond site.
40. A microelectronic assembly, comprising:
a microelectronic substrate;
a support member carrying the microelectronic substrate; and
a connection structure carried by the support member, the connection structure having a bond site configured to receive a flowable conductive material, the connection structure further having at least two elongated members connected to and extending outwardly from the bond site with none of the elongated members being electrically coupled to the microelectronic substrate.
41. The assembly of claim 40 wherein each elongated member is configured to receive at least a portion of the flowable conductive material from the bond site.
42. The assembly of claim 40 wherein the connection structure is a first connection structure and the elongated members are first elongated members configured to receive at least a portion of a flowable conductive material from the first bond site, and wherein the apparatus further comprises a second connection structure carried by the support member, the second connection structure having a second bond site configured to receive a flowable conductive material, the second connection structure being electrically coupled to the microelectronic substrate and having second elongated members extending outwardly from the second bond site, wherein each of the second elongated members is configured to receive at least a portion of the flowable conductive material from the second bond site.
43. The assembly of claim 40 wherein the connection structure is a first connection structure and the elongated members are first elongated members, and wherein the apparatus further comprises a second connection structure carried by the support member, the second connection structure having a second bond site configured to receive a flowable conductive material, the second connection structure having a third bond site electrically coupled to the microelectronic substrate, the second connection structure further having second elongated members extending outwardly from the second bond site, wherein each of the second elongated members is configured to receive at least a portion of the flowable conductive material from the second bond site, and wherein at least one of the second elongated members extends between the second and third bond sites.
44. The assembly of claim 40 wherein the conductive structure includes exactly two elongated members extending away from opposite sides of the bond site.
45. The assembly of claim 40 wherein the connection structure includes at least one electrically conductive metallic material.
46. The assembly of claim 40 wherein the bond site includes a solder ball pad, and wherein the apparatus further comprises a solder ball disposed on the solder ball pad.
47. The apparatus of claim 40 wherein the connection structure is a first connection structure and the elongated members are first elongated members configured to receive at least a portion of a flowable material from the first bond site, and wherein the apparatus further comprises a second connection structure carried by the support member, the second connection structure having a second bond site configured to receive a flowable conductive material, the second connection structure being electrically coupled to the microelectronic substrate and having second elongated members extending outwardly from the second bond site, wherein each of the second elongated members is configured to receive at least a portion of the flowable conductive material from the second bond site, and wherein the apparatus further comprises:
a first solder ball disposed on the first bond site and projecting away from the first bond site by a first distance; and
a second solder ball disposed on the second bond site and projecting away from the second bond site by a second distance at least approximately the same as the first distance.
US11/138,169 1998-02-27 2005-05-26 Multichip semiconductor package Abandoned US20050212143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/138,169 US20050212143A1 (en) 1998-02-27 2005-05-26 Multichip semiconductor package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/032,191 US6429528B1 (en) 1998-02-27 1998-02-27 Multichip semiconductor package
US10/153,086 US6906409B2 (en) 1998-02-27 2002-05-22 Multichip semiconductor package
US11/138,169 US20050212143A1 (en) 1998-02-27 2005-05-26 Multichip semiconductor package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/153,086 Continuation US6906409B2 (en) 1998-02-27 2002-05-22 Multichip semiconductor package

Publications (1)

Publication Number Publication Date
US20050212143A1 true US20050212143A1 (en) 2005-09-29

Family

ID=21863595

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/032,191 Expired - Lifetime US6429528B1 (en) 1998-02-27 1998-02-27 Multichip semiconductor package
US09/502,538 Expired - Lifetime US6228548B1 (en) 1998-02-27 2000-02-11 Method of making a multichip semiconductor package
US10/153,086 Expired - Lifetime US6906409B2 (en) 1998-02-27 2002-05-22 Multichip semiconductor package
US11/138,169 Abandoned US20050212143A1 (en) 1998-02-27 2005-05-26 Multichip semiconductor package

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/032,191 Expired - Lifetime US6429528B1 (en) 1998-02-27 1998-02-27 Multichip semiconductor package
US09/502,538 Expired - Lifetime US6228548B1 (en) 1998-02-27 2000-02-11 Method of making a multichip semiconductor package
US10/153,086 Expired - Lifetime US6906409B2 (en) 1998-02-27 2002-05-22 Multichip semiconductor package

Country Status (3)

Country Link
US (4) US6429528B1 (en)
AU (1) AU2686199A (en)
WO (1) WO1999044235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004827A1 (en) * 2006-03-31 2009-01-01 Nec Electronics Corporation Lead cutter and method of fabricating semiconductor device

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429528B1 (en) * 1998-02-27 2002-08-06 Micron Technology, Inc. Multichip semiconductor package
US6246615B1 (en) * 1998-12-23 2001-06-12 Micron Technology, Inc. Redundancy mapping in a multichip semiconductor package
KR100319609B1 (en) * 1999-03-09 2002-01-05 김영환 A wire arrayed chip size package and the fabrication method thereof
US6558600B1 (en) * 2000-05-04 2003-05-06 Micron Technology, Inc. Method for packaging microelectronic substrates
WO2001085415A1 (en) 2000-05-08 2001-11-15 Micron Technology, Inc. Method and apparatus for distributing mold material in a mold for packaging microelectronic devices
US6589820B1 (en) 2000-06-16 2003-07-08 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
US6576494B1 (en) 2000-06-28 2003-06-10 Micron Technology, Inc. Recessed encapsulated microelectronic devices and methods for formation
US6365434B1 (en) 2000-06-28 2002-04-02 Micron Technology, Inc. Method and apparatus for reduced flash encapsulation of microelectronic devices
US7298031B1 (en) 2000-08-09 2007-11-20 Micron Technology, Inc. Multiple substrate microelectronic devices and methods of manufacture
US7273769B1 (en) 2000-08-16 2007-09-25 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US6483044B1 (en) * 2000-08-23 2002-11-19 Micron Technology, Inc. Interconnecting substrates for electrical coupling of microelectronic components
US7183138B2 (en) * 2000-08-23 2007-02-27 Micron Technology, Inc. Method and apparatus for decoupling conductive portions of a microelectronic device package
US6607937B1 (en) 2000-08-23 2003-08-19 Micron Technology, Inc. Stacked microelectronic dies and methods for stacking microelectronic dies
US6979595B1 (en) * 2000-08-24 2005-12-27 Micron Technology, Inc. Packaged microelectronic devices with pressure release elements and methods for manufacturing and using such packaged microelectronic devices
US6838760B1 (en) * 2000-08-28 2005-01-04 Micron Technology, Inc. Packaged microelectronic devices with interconnecting units
US6762502B1 (en) * 2000-08-31 2004-07-13 Micron Technology, Inc. Semiconductor device packages including a plurality of layers substantially encapsulating leads thereof
US6577004B1 (en) * 2000-08-31 2003-06-10 Micron Technology, Inc. Solder ball landpad design to improve laminate performance
JP2002158312A (en) * 2000-11-17 2002-05-31 Oki Electric Ind Co Ltd Semiconductor package for three-dimensional mounting, its manufacturing method and semiconductor device
US6727533B2 (en) * 2000-11-29 2004-04-27 Fujitsu Limited Semiconductor apparatus having a large-size bus connection
DE10231385B4 (en) * 2001-07-10 2007-02-22 Samsung Electronics Co., Ltd., Suwon Semiconductor chip with bond pads and associated multi-chip package
US6564979B2 (en) 2001-07-18 2003-05-20 Micron Technology, Inc. Method and apparatus for dispensing adhesive on microelectronic substrate supports
DE10139985B4 (en) * 2001-08-22 2005-10-27 Infineon Technologies Ag Electronic component with a semiconductor chip and method for its production
SG111919A1 (en) * 2001-08-29 2005-06-29 Micron Technology Inc Packaged microelectronic devices and methods of forming same
US20030042615A1 (en) 2001-08-30 2003-03-06 Tongbi Jiang Stacked microelectronic devices and methods of fabricating same
JP2003109986A (en) * 2001-09-27 2003-04-11 Toshiba Corp Semiconductor device
US6747348B2 (en) * 2001-10-16 2004-06-08 Micron Technology, Inc. Apparatus and method for leadless packaging of semiconductor devices
US6750547B2 (en) 2001-12-26 2004-06-15 Micron Technology, Inc. Multi-substrate microelectronic packages and methods for manufacture
US6870276B1 (en) * 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
TW523889B (en) * 2002-01-09 2003-03-11 Advanced Semiconductor Eng Semiconductor packaged device
US6896760B1 (en) * 2002-01-16 2005-05-24 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US6622380B1 (en) 2002-02-12 2003-09-23 Micron Technology, Inc. Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards
US6838876B2 (en) * 2002-02-18 2005-01-04 Baker Hughes Incorporated Slotted NMR antenna cover
US7109588B2 (en) * 2002-04-04 2006-09-19 Micron Technology, Inc. Method and apparatus for attaching microelectronic substrates and support members
US7579681B2 (en) * 2002-06-11 2009-08-25 Micron Technology, Inc. Super high density module with integrated wafer level packages
US6903001B2 (en) * 2002-07-18 2005-06-07 Micron Technology Inc. Techniques to create low K ILD for BEOL
JP2004055080A (en) * 2002-07-23 2004-02-19 Renesas Technology Corp Semiconductor memory module and method for manufacturing semiconductor chip to be used for the same
US7067905B2 (en) * 2002-08-08 2006-06-27 Micron Technology, Inc. Packaged microelectronic devices including first and second casings
SG120879A1 (en) * 2002-08-08 2006-04-26 Micron Technology Inc Packaged microelectronic components
SG127684A1 (en) * 2002-08-19 2006-12-29 Micron Technology Inc Packaged microelectronic component assemblies
US6740546B2 (en) * 2002-08-21 2004-05-25 Micron Technology, Inc. Packaged microelectronic devices and methods for assembling microelectronic devices
US6969914B2 (en) * 2002-08-29 2005-11-29 Micron Technology, Inc. Electronic device package
US6784525B2 (en) * 2002-10-29 2004-08-31 Micron Technology, Inc. Semiconductor component having multi layered leadframe
SG114585A1 (en) * 2002-11-22 2005-09-28 Micron Technology Inc Packaged microelectronic component assemblies
US6831355B2 (en) * 2002-12-04 2004-12-14 Minilogic Device Corporation Ltd. Flip-chip sub-assembly, methods of making same and device including same
US7132734B2 (en) * 2003-01-06 2006-11-07 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US6879050B2 (en) 2003-02-11 2005-04-12 Micron Technology, Inc. Packaged microelectronic devices and methods for packaging microelectronic devices
SG143931A1 (en) * 2003-03-04 2008-07-29 Micron Technology Inc Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths
US7183485B2 (en) * 2003-03-11 2007-02-27 Micron Technology, Inc. Microelectronic component assemblies having lead frames adapted to reduce package bow
SG137651A1 (en) * 2003-03-14 2007-12-28 Micron Technology Inc Microelectronic devices and methods for packaging microelectronic devices
US6921860B2 (en) 2003-03-18 2005-07-26 Micron Technology, Inc. Microelectronic component assemblies having exposed contacts
SG143932A1 (en) * 2003-05-30 2008-07-29 Micron Technology Inc Packaged microelectronic devices and methods of packaging microelectronic devices
KR100592786B1 (en) * 2003-08-22 2006-06-26 삼성전자주식회사 Stack package made of area array type packages, and manufacturing method thereof
US7071421B2 (en) * 2003-08-29 2006-07-04 Micron Technology, Inc. Stacked microfeature devices and associated methods
US7368810B2 (en) 2003-08-29 2008-05-06 Micron Technology, Inc. Invertible microfeature device packages
SG153627A1 (en) 2003-10-31 2009-07-29 Micron Technology Inc Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components
US7091124B2 (en) * 2003-11-13 2006-08-15 Micron Technology, Inc. Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices
US20050104171A1 (en) * 2003-11-13 2005-05-19 Benson Peter A. Microelectronic devices having conductive complementary structures and methods of manufacturing microelectronic devices having conductive complementary structures
US8084866B2 (en) 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US7243169B2 (en) * 2004-06-08 2007-07-10 International Business Machines Corporation Method, system and program for oscillation control of an internal process of a computer program
SG145547A1 (en) * 2004-07-23 2008-09-29 Micron Technology Inc Microelectronic component assemblies with recessed wire bonds and methods of making same
US7632747B2 (en) * 2004-08-19 2009-12-15 Micron Technology, Inc. Conductive structures for microfeature devices and methods for fabricating microfeature devices
US7602618B2 (en) * 2004-08-25 2009-10-13 Micron Technology, Inc. Methods and apparatuses for transferring heat from stacked microfeature devices
US20060043534A1 (en) * 2004-08-26 2006-03-02 Kirby Kyle K Microfeature dies with porous regions, and associated methods and systems
US7157310B2 (en) * 2004-09-01 2007-01-02 Micron Technology, Inc. Methods for packaging microfeature devices and microfeature devices formed by such methods
US7095122B2 (en) * 2004-09-01 2006-08-22 Micron Technology, Inc. Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
TW200614448A (en) * 2004-10-28 2006-05-01 Advanced Semiconductor Eng Method for stacking bga packages and structure from the same
US7719108B2 (en) * 2005-01-10 2010-05-18 Lockheed Martin Corporation Enhanced reliability semiconductor package
US8278751B2 (en) * 2005-02-08 2012-10-02 Micron Technology, Inc. Methods of adhering microfeature workpieces, including a chip, to a support member
US20060261498A1 (en) * 2005-05-17 2006-11-23 Micron Technology, Inc. Methods and apparatuses for encapsulating microelectronic devices
SG130055A1 (en) 2005-08-19 2007-03-20 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices
SG130061A1 (en) 2005-08-24 2007-03-20 Micron Technology Inc Microelectronic devices and microelectronic support devices, and associated assemblies and methods
SG130066A1 (en) * 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
US7807505B2 (en) * 2005-08-30 2010-10-05 Micron Technology, Inc. Methods for wafer-level packaging of microfeature devices and microfeature devices formed using such methods
US7745944B2 (en) 2005-08-31 2010-06-29 Micron Technology, Inc. Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts
US7485969B2 (en) * 2005-09-01 2009-02-03 Micron Technology, Inc. Stacked microelectronic devices and methods for manufacturing microelectronic devices
US20070148820A1 (en) * 2005-12-22 2007-06-28 Micron Technology, Inc. Microelectronic devices and methods for manufacturing microelectronic devices
SG133445A1 (en) * 2005-12-29 2007-07-30 Micron Technology Inc Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US8012867B2 (en) * 2006-01-31 2011-09-06 Stats Chippac Ltd Wafer level chip scale package system
SG135074A1 (en) 2006-02-28 2007-09-28 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
SG135979A1 (en) * 2006-03-08 2007-10-29 Micron Technology Inc Microelectronic device assemblies including assemblies with recurved leadframes, and associated methods
SG136009A1 (en) 2006-03-29 2007-10-29 Micron Technology Inc Packaged microelectronic devices recessed in support member cavities, and associated methods
US7863737B2 (en) * 2006-04-01 2011-01-04 Stats Chippac Ltd. Integrated circuit package system with wire bond pattern
US7910385B2 (en) 2006-05-12 2011-03-22 Micron Technology, Inc. Method of fabricating microelectronic devices
SG138501A1 (en) * 2006-07-05 2008-01-28 Micron Technology Inc Lead frames, microelectronic devices with lead frames, and methods for manufacturing lead frames and microelectronic devices with lead frames
SG139573A1 (en) * 2006-07-17 2008-02-29 Micron Technology Inc Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods
US7868440B2 (en) * 2006-08-25 2011-01-11 Micron Technology, Inc. Packaged microdevices and methods for manufacturing packaged microdevices
SG143098A1 (en) * 2006-12-04 2008-06-27 Micron Technology Inc Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US7833456B2 (en) * 2007-02-23 2010-11-16 Micron Technology, Inc. Systems and methods for compressing an encapsulant adjacent a semiconductor workpiece
US7955898B2 (en) 2007-03-13 2011-06-07 Micron Technology, Inc. Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US7750449B2 (en) 2007-03-13 2010-07-06 Micron Technology, Inc. Packaged semiconductor components having substantially rigid support members and methods of packaging semiconductor components
KR20080086754A (en) * 2007-03-23 2008-09-26 엠케이전자 주식회사 Semiconductor package using wires consist of ag or ag alloy
SG149724A1 (en) 2007-07-24 2009-02-27 Micron Technology Inc Semicoductor dies with recesses, associated leadframes, and associated systems and methods
SG149725A1 (en) * 2007-07-24 2009-02-27 Micron Technology Inc Thin semiconductor die packages and associated systems and methods
SG149726A1 (en) * 2007-07-24 2009-02-27 Micron Technology Inc Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
SG150396A1 (en) 2007-08-16 2009-03-30 Micron Technology Inc Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
US7872332B2 (en) 2008-09-11 2011-01-18 Micron Technology, Inc. Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods
US7863100B2 (en) * 2009-03-20 2011-01-04 Stats Chippac Ltd. Integrated circuit packaging system with layered packaging and method of manufacture thereof
DE102017127089B4 (en) * 2017-11-17 2022-05-25 Infineon Technologies Austria Ag Multi-die package and power converters
US11600544B2 (en) * 2019-02-27 2023-03-07 Intel Corporation Chip package with staggered pin pattern

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062565A (en) * 1990-07-13 1991-11-05 Micron Technology, Inc. Method for combining die attach and wirebond in the assembly of a semiconductor package
US5128831A (en) * 1991-10-31 1992-07-07 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5145099A (en) * 1990-07-13 1992-09-08 Micron Technology, Inc. Method for combining die attach and lead bond in the assembly of a semiconductor package
US5225156A (en) * 1989-02-01 1993-07-06 Metal Research Corporation Clean steel composition
US5286679A (en) * 1993-03-18 1994-02-15 Micron Technology, Inc. Method for attaching a semiconductor die to a leadframe using a patterned adhesive layer
US5444303A (en) * 1994-08-10 1995-08-22 Motorola, Inc. Wire bond pad arrangement having improved pad density
US5504373A (en) * 1993-05-14 1996-04-02 Samsung Electronics Co., Ltd. Semiconductor memory module
US5544124A (en) * 1995-03-13 1996-08-06 Micron Technology, Inc. Optimization circuitry and control for a synchronous memory device with programmable latency period
US5554940A (en) * 1994-07-05 1996-09-10 Motorola, Inc. Bumped semiconductor device and method for probing the same
US5593927A (en) * 1993-10-14 1997-01-14 Micron Technology, Inc. Method for packaging semiconductor dice
US5642262A (en) * 1995-02-23 1997-06-24 Altera Corporation High-density programmable logic device in a multi-chip module package with improved interconnect scheme
US5656863A (en) * 1993-02-18 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Resin seal semiconductor package
US5677566A (en) * 1995-05-08 1997-10-14 Micron Technology, Inc. Semiconductor chip package
US5723906A (en) * 1996-06-07 1998-03-03 Hewlett-Packard Company High-density wirebond chip interconnect for multi-chip modules
US5734559A (en) * 1996-03-29 1998-03-31 Intel Corporation Staggered bond finger design for fine pitch integrated circuit packages
US5792594A (en) * 1996-04-01 1998-08-11 Motorola, Inc. Metallization and termination process for an integrated circuit chip
US5826628A (en) * 1996-01-24 1998-10-27 Micron Technology, Inc. Form tooling and method of forming semiconductor package leads
US5843799A (en) * 1991-11-05 1998-12-01 Monolithic System Technology, Inc. Circuit module redundancy architecture process
US5879965A (en) * 1997-06-19 1999-03-09 Micron Technology, Inc. Plastic lead frames for semiconductor devices, packages including same, and methods of fabrication
US5891797A (en) * 1997-10-20 1999-04-06 Micron Technology, Inc. Method of forming a support structure for air bridge wiring of an integrated circuit
US5936844A (en) * 1998-03-31 1999-08-10 Emc Corporation Memory system printed circuit board
US5946314A (en) * 1995-11-29 1999-08-31 Cselt - Centro Studi E Laboratori Telecommunicazioni S.P.A. Method of expanding the capacity of switching elements, and switching stage obtained by the method
US5946553A (en) * 1991-06-04 1999-08-31 Micron Technology, Inc. Process for manufacturing a semiconductor package with bi-substrate die
US5986209A (en) * 1997-07-09 1999-11-16 Micron Technology, Inc. Package stack via bottom leaded plastic (BLP) packaging
US5990566A (en) * 1998-05-20 1999-11-23 Micron Technology, Inc. High density semiconductor package
USRE36469E (en) * 1988-09-30 1999-12-28 Micron Technology, Inc. Packaging for semiconductor logic devices
US6018249A (en) * 1997-12-11 2000-01-25 Micron Technolgoy, Inc. Test system with mechanical alignment for semiconductor chip scale packages and dice
US6025728A (en) * 1997-04-25 2000-02-15 Micron Technology, Inc. Semiconductor package with wire bond protective member
US6048755A (en) * 1998-11-12 2000-04-11 Micron Technology, Inc. Method for fabricating BGA package using substrate with patterned solder mask open in die attach area
US6048744A (en) * 1997-09-15 2000-04-11 Micron Technology, Inc. Integrated circuit package alignment feature
US6072233A (en) * 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
US6089920A (en) * 1998-05-04 2000-07-18 Micron Technology, Inc. Modular die sockets with flexible interconnects for packaging bare semiconductor die
US6097087A (en) * 1997-10-31 2000-08-01 Micron Technology, Inc. Semiconductor package including flex circuit, interconnects and dense array external contacts
US6103547A (en) * 1997-01-17 2000-08-15 Micron Technology, Inc. High speed IC package configuration
US6108210A (en) * 1998-04-24 2000-08-22 Amerasia International Technology, Inc. Flip chip devices with flexible conductive adhesive
US6107122A (en) * 1997-08-04 2000-08-22 Micron Technology, Inc. Direct die contact (DDC) semiconductor package
US6111205A (en) * 1997-10-28 2000-08-29 Intel Corporation Via pad geometry supporting uniform transmission line structures
US6118179A (en) * 1999-08-27 2000-09-12 Micron Technology, Inc. Semiconductor component with external contact polymer support member and method of fabrication
US6130474A (en) * 1996-12-30 2000-10-10 Micron Technology, Inc. Leads under chip IC package
US6133068A (en) * 1997-10-06 2000-10-17 Micron Technology, Inc. Increasing the gap between a lead frame and a semiconductor die
US6150710A (en) * 1998-08-20 2000-11-21 Micron Technology, Inc. Transverse hybrid LOC package
US6148509A (en) * 1997-04-07 2000-11-21 Micron Technology, Inc. Method for supporting an integrated circuit die
US6153924A (en) * 1998-02-23 2000-11-28 Micron Technology, Inc. Multilayered lead frame for semiconductor package
US6159764A (en) * 1997-07-02 2000-12-12 Micron Technology, Inc. Varied-thickness heat sink for integrated circuit (IC) packages and method of fabricating IC packages
US6188232B1 (en) * 1996-12-31 2001-02-13 Micron Technology, Inc. Temporary package, system, and method for testing semiconductor dice and chip scale packages
US6201304B1 (en) * 1995-12-19 2001-03-13 Micron Technology, Inc. Flip chip adaptor package for bare die
US6201305B1 (en) * 2000-06-09 2001-03-13 Amkor Technology, Inc. Making solder ball mounting pads on substrates
US6214716B1 (en) * 1998-09-30 2001-04-10 Micron Technology, Inc. Semiconductor substrate-based BGA interconnection and methods of farication same
US6221750B1 (en) * 1998-10-28 2001-04-24 Tessera, Inc. Fabrication of deformable leads of microelectronic elements
US6225689B1 (en) * 1998-08-21 2001-05-01 Micron Technology, Inc. Low profile multi-IC chip package connector
US6228548B1 (en) * 1998-02-27 2001-05-08 Micron Technology, Inc. Method of making a multichip semiconductor package
US6235552B1 (en) * 1999-07-09 2001-05-22 Samsung Electronics Co., Ltd. Chip scale package and method for manufacturing the same using a redistribution substrate
US6246110B1 (en) * 1998-07-06 2001-06-12 Micron Technology, Inc. Downset lead frame for semiconductor packages
US6247629B1 (en) * 1997-09-08 2001-06-19 Micron Technology, Inc. Wire bond monitoring system for layered packages
US6258624B1 (en) * 2000-01-10 2001-07-10 Micron Technology, Inc. Semiconductor package having downset leadframe for reducing package bow
US6261865B1 (en) * 1998-10-06 2001-07-17 Micron Technology, Inc. Multi chip semiconductor package and method of construction
US6277660B1 (en) * 1995-09-08 2001-08-21 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method and apparatus for testing chips
US6281042B1 (en) * 1998-08-31 2001-08-28 Micron Technology, Inc. Structure and method for a high performance electronic packaging assembly
US6285204B1 (en) * 1996-03-19 2001-09-04 Micron Technology, Inc. Method for testing semiconductor packages using oxide penetrating test contacts
US6284571B1 (en) * 1997-07-02 2001-09-04 Micron Technology, Inc. Lead frame assemblies with voltage reference plane and IC packages including same
US6291894B1 (en) * 1998-08-31 2001-09-18 Micron Technology, Inc. Method and apparatus for a semiconductor package for vertical surface mounting
US6297547B1 (en) * 1998-02-13 2001-10-02 Micron Technology Inc. Mounting multiple semiconductor dies in a package
US6300782B1 (en) * 1999-05-03 2001-10-09 Micron Technology, Inc. System for testing semiconductor components having flexible interconnect
US6303981B1 (en) * 1999-09-01 2001-10-16 Micron Technology, Inc. Semiconductor package having stacked dice and leadframes and method of fabrication
US6303985B1 (en) * 1998-11-12 2001-10-16 Micron Technology, Inc. Semiconductor lead frame and package with stiffened mounting paddle
US6310390B1 (en) * 1999-04-08 2001-10-30 Micron Technology, Inc. BGA package and method of fabrication
US6326698B1 (en) * 2000-06-08 2001-12-04 Micron Technology, Inc. Semiconductor devices having protective layers thereon through which contact pads are exposed and stereolithographic methods of fabricating such semiconductor devices
US6329222B1 (en) * 1998-12-04 2001-12-11 Micron Technology, Inc. Interconnect for packaging semiconductor dice and fabricating BGA packages
US6329705B1 (en) * 1998-05-20 2001-12-11 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and method of designing and fabricating such leadframes
US6331221B1 (en) * 1998-04-15 2001-12-18 Micron Technology, Inc. Process for providing electrical connection between a semiconductor die and a semiconductor die receiving member
US6344976B1 (en) * 1997-04-07 2002-02-05 Micron Technology, Inc. Interdigitated leads-over-chip lead frame device and method for supporting an integrated circuit die
US20020017711A1 (en) * 1999-07-12 2002-02-14 Kwon Yong Hwan Semiconductor package
US6362087B1 (en) * 2000-05-05 2002-03-26 Aptos Corporation Method for fabricating a microelectronic fabrication having formed therein a redistribution structure
US6380555B1 (en) * 1999-12-24 2002-04-30 Micron Technology, Inc. Bumped semiconductor component having test pads, and method and system for testing bumped semiconductor components
US6391681B1 (en) * 2001-03-16 2002-05-21 Micron Technology, Inc. Semiconductor component having selected terminal contacts with multiple electrical paths
US6410990B2 (en) * 1997-12-12 2002-06-25 Intel Corporation Integrated circuit device having C4 and wire bond connections
US6455408B1 (en) * 1999-09-30 2002-09-24 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor devices having redistribution patterns with a concave pattern in a bump pad area
US20020139578A1 (en) * 2001-03-28 2002-10-03 International Business Machines Corporation Hyperbga buildup laminate
US6477046B1 (en) * 1997-05-09 2002-11-05 Texas Instruments Incorporated Ball grid array package and method using enhanced power and ground distribution circuitry
US20020195345A1 (en) * 1999-11-18 2002-12-26 3M Innovative Properties Company Film based addressable programmable electronic matrix articles and methods of manufacturing and using the same
US6606235B2 (en) * 2000-05-17 2003-08-12 Christopher L. Chua Photolithographically-patterned variable capacitor structures and method of making
US6682948B2 (en) * 2000-06-27 2004-01-27 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6740983B2 (en) * 2000-05-16 2004-05-25 Micron Technology, Inc. Method for ball grind array chip packages having improved testing and stacking characteristics
US20040159921A1 (en) * 2001-12-26 2004-08-19 Stephen Moxham Methods for coupling a flowable conductive material to microelectronic substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD123488A1 (en) 1975-12-03 1976-12-20
US5255156A (en) 1989-02-22 1993-10-19 The Boeing Company Bonding pad interconnection on a multiple chip module having minimum channel width
EP0398628A3 (en) 1989-05-15 1991-09-25 Kabushiki Kaisha Toshiba Semiconductor memory device
GB8918482D0 (en) 1989-08-14 1989-09-20 Inmos Ltd Packaging semiconductor chips
CA2106872A1 (en) 1991-03-27 1992-09-28 Charles W. Eichelberger Multichip integrated circuit module and method of fabrication
DE19600401A1 (en) 1996-01-08 1997-07-17 Siemens Ag Surface-mounted semiconductor device
EP0853337B1 (en) 1996-07-12 2004-09-29 Fujitsu Limited Method for manufacturing semiconductor device
US5969424A (en) * 1997-03-19 1999-10-19 Fujitsu Limited Semiconductor device with pad structure
US6239489B1 (en) * 1999-07-30 2001-05-29 Micron Technology, Inc. Reinforcement of lead bonding in microelectronics packages

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36469E (en) * 1988-09-30 1999-12-28 Micron Technology, Inc. Packaging for semiconductor logic devices
US5225156A (en) * 1989-02-01 1993-07-06 Metal Research Corporation Clean steel composition
US5145099A (en) * 1990-07-13 1992-09-08 Micron Technology, Inc. Method for combining die attach and lead bond in the assembly of a semiconductor package
US5062565A (en) * 1990-07-13 1991-11-05 Micron Technology, Inc. Method for combining die attach and wirebond in the assembly of a semiconductor package
US6020624A (en) * 1991-06-04 2000-02-01 Micron Technology, Inc. Semiconductor package with bi-substrate die
US5946553A (en) * 1991-06-04 1999-08-31 Micron Technology, Inc. Process for manufacturing a semiconductor package with bi-substrate die
US5128831A (en) * 1991-10-31 1992-07-07 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5843799A (en) * 1991-11-05 1998-12-01 Monolithic System Technology, Inc. Circuit module redundancy architecture process
US5656863A (en) * 1993-02-18 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Resin seal semiconductor package
US5286679A (en) * 1993-03-18 1994-02-15 Micron Technology, Inc. Method for attaching a semiconductor die to a leadframe using a patterned adhesive layer
US5504373A (en) * 1993-05-14 1996-04-02 Samsung Electronics Co., Ltd. Semiconductor memory module
US5593927A (en) * 1993-10-14 1997-01-14 Micron Technology, Inc. Method for packaging semiconductor dice
US5554940A (en) * 1994-07-05 1996-09-10 Motorola, Inc. Bumped semiconductor device and method for probing the same
US5444303A (en) * 1994-08-10 1995-08-22 Motorola, Inc. Wire bond pad arrangement having improved pad density
US5642262A (en) * 1995-02-23 1997-06-24 Altera Corporation High-density programmable logic device in a multi-chip module package with improved interconnect scheme
US5544124A (en) * 1995-03-13 1996-08-06 Micron Technology, Inc. Optimization circuitry and control for a synchronous memory device with programmable latency period
US5677566A (en) * 1995-05-08 1997-10-14 Micron Technology, Inc. Semiconductor chip package
US6277660B1 (en) * 1995-09-08 2001-08-21 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method and apparatus for testing chips
US5946314A (en) * 1995-11-29 1999-08-31 Cselt - Centro Studi E Laboratori Telecommunicazioni S.P.A. Method of expanding the capacity of switching elements, and switching stage obtained by the method
US6201304B1 (en) * 1995-12-19 2001-03-13 Micron Technology, Inc. Flip chip adaptor package for bare die
US6265766B1 (en) * 1995-12-19 2001-07-24 Micron Technology, Inc. Flip chip adaptor package for bare die
US5826628A (en) * 1996-01-24 1998-10-27 Micron Technology, Inc. Form tooling and method of forming semiconductor package leads
US6285204B1 (en) * 1996-03-19 2001-09-04 Micron Technology, Inc. Method for testing semiconductor packages using oxide penetrating test contacts
US5734559A (en) * 1996-03-29 1998-03-31 Intel Corporation Staggered bond finger design for fine pitch integrated circuit packages
US5792594A (en) * 1996-04-01 1998-08-11 Motorola, Inc. Metallization and termination process for an integrated circuit chip
US5723906A (en) * 1996-06-07 1998-03-03 Hewlett-Packard Company High-density wirebond chip interconnect for multi-chip modules
US6271580B1 (en) * 1996-12-30 2001-08-07 Micron Technology, Inc. Leads under chip in conventional IC package
US6130474A (en) * 1996-12-30 2000-10-10 Micron Technology, Inc. Leads under chip IC package
US6188232B1 (en) * 1996-12-31 2001-02-13 Micron Technology, Inc. Temporary package, system, and method for testing semiconductor dice and chip scale packages
US6133622A (en) * 1997-01-17 2000-10-17 Micron Technology, Inc. High speed IC package configuration
US6103547A (en) * 1997-01-17 2000-08-15 Micron Technology, Inc. High speed IC package configuration
US6344976B1 (en) * 1997-04-07 2002-02-05 Micron Technology, Inc. Interdigitated leads-over-chip lead frame device and method for supporting an integrated circuit die
US6148509A (en) * 1997-04-07 2000-11-21 Micron Technology, Inc. Method for supporting an integrated circuit die
US6025728A (en) * 1997-04-25 2000-02-15 Micron Technology, Inc. Semiconductor package with wire bond protective member
US6477046B1 (en) * 1997-05-09 2002-11-05 Texas Instruments Incorporated Ball grid array package and method using enhanced power and ground distribution circuitry
US5879965A (en) * 1997-06-19 1999-03-09 Micron Technology, Inc. Plastic lead frames for semiconductor devices, packages including same, and methods of fabrication
US6159764A (en) * 1997-07-02 2000-12-12 Micron Technology, Inc. Varied-thickness heat sink for integrated circuit (IC) packages and method of fabricating IC packages
US6284571B1 (en) * 1997-07-02 2001-09-04 Micron Technology, Inc. Lead frame assemblies with voltage reference plane and IC packages including same
US5986209A (en) * 1997-07-09 1999-11-16 Micron Technology, Inc. Package stack via bottom leaded plastic (BLP) packaging
US6150717A (en) * 1997-08-04 2000-11-21 Micron Technology, Inc. Direct die contact (DDC) semiconductor package
US6107122A (en) * 1997-08-04 2000-08-22 Micron Technology, Inc. Direct die contact (DDC) semiconductor package
US6247629B1 (en) * 1997-09-08 2001-06-19 Micron Technology, Inc. Wire bond monitoring system for layered packages
US6048744A (en) * 1997-09-15 2000-04-11 Micron Technology, Inc. Integrated circuit package alignment feature
US6246108B1 (en) * 1997-09-15 2001-06-12 Micron Technology, Inc. Integrated circuit package including lead frame with electrically isolated alignment feature
US6133068A (en) * 1997-10-06 2000-10-17 Micron Technology, Inc. Increasing the gap between a lead frame and a semiconductor die
US5891797A (en) * 1997-10-20 1999-04-06 Micron Technology, Inc. Method of forming a support structure for air bridge wiring of an integrated circuit
US6111205A (en) * 1997-10-28 2000-08-29 Intel Corporation Via pad geometry supporting uniform transmission line structures
US6097087A (en) * 1997-10-31 2000-08-01 Micron Technology, Inc. Semiconductor package including flex circuit, interconnects and dense array external contacts
US6018249A (en) * 1997-12-11 2000-01-25 Micron Technolgoy, Inc. Test system with mechanical alignment for semiconductor chip scale packages and dice
US6410990B2 (en) * 1997-12-12 2002-06-25 Intel Corporation Integrated circuit device having C4 and wire bond connections
US6297547B1 (en) * 1998-02-13 2001-10-02 Micron Technology Inc. Mounting multiple semiconductor dies in a package
US6153924A (en) * 1998-02-23 2000-11-28 Micron Technology, Inc. Multilayered lead frame for semiconductor package
US6228548B1 (en) * 1998-02-27 2001-05-08 Micron Technology, Inc. Method of making a multichip semiconductor package
US6429528B1 (en) * 1998-02-27 2002-08-06 Micron Technology, Inc. Multichip semiconductor package
US5936844A (en) * 1998-03-31 1999-08-10 Emc Corporation Memory system printed circuit board
US6331221B1 (en) * 1998-04-15 2001-12-18 Micron Technology, Inc. Process for providing electrical connection between a semiconductor die and a semiconductor die receiving member
US6108210A (en) * 1998-04-24 2000-08-22 Amerasia International Technology, Inc. Flip chip devices with flexible conductive adhesive
US6089920A (en) * 1998-05-04 2000-07-18 Micron Technology, Inc. Modular die sockets with flexible interconnects for packaging bare semiconductor die
US6072233A (en) * 1998-05-04 2000-06-06 Micron Technology, Inc. Stackable ball grid array package
US6329705B1 (en) * 1998-05-20 2001-12-11 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and method of designing and fabricating such leadframes
US6331448B1 (en) * 1998-05-20 2001-12-18 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and methods of designing and fabricating such leadframes
US5990566A (en) * 1998-05-20 1999-11-23 Micron Technology, Inc. High density semiconductor package
US6246110B1 (en) * 1998-07-06 2001-06-12 Micron Technology, Inc. Downset lead frame for semiconductor packages
US6259153B1 (en) * 1998-08-20 2001-07-10 Micron Technology, Inc. Transverse hybrid LOC package
US6150710A (en) * 1998-08-20 2000-11-21 Micron Technology, Inc. Transverse hybrid LOC package
US6225689B1 (en) * 1998-08-21 2001-05-01 Micron Technology, Inc. Low profile multi-IC chip package connector
US6258623B1 (en) * 1998-08-21 2001-07-10 Micron Technology, Inc. Low profile multi-IC chip package connector
US6281042B1 (en) * 1998-08-31 2001-08-28 Micron Technology, Inc. Structure and method for a high performance electronic packaging assembly
US6291894B1 (en) * 1998-08-31 2001-09-18 Micron Technology, Inc. Method and apparatus for a semiconductor package for vertical surface mounting
US6214716B1 (en) * 1998-09-30 2001-04-10 Micron Technology, Inc. Semiconductor substrate-based BGA interconnection and methods of farication same
US6261865B1 (en) * 1998-10-06 2001-07-17 Micron Technology, Inc. Multi chip semiconductor package and method of construction
US6221750B1 (en) * 1998-10-28 2001-04-24 Tessera, Inc. Fabrication of deformable leads of microelectronic elements
US6048755A (en) * 1998-11-12 2000-04-11 Micron Technology, Inc. Method for fabricating BGA package using substrate with patterned solder mask open in die attach area
US6303985B1 (en) * 1998-11-12 2001-10-16 Micron Technology, Inc. Semiconductor lead frame and package with stiffened mounting paddle
US6329222B1 (en) * 1998-12-04 2001-12-11 Micron Technology, Inc. Interconnect for packaging semiconductor dice and fabricating BGA packages
US6310390B1 (en) * 1999-04-08 2001-10-30 Micron Technology, Inc. BGA package and method of fabrication
US6300782B1 (en) * 1999-05-03 2001-10-09 Micron Technology, Inc. System for testing semiconductor components having flexible interconnect
US6407459B2 (en) * 1999-07-09 2002-06-18 Samsung Electronics Co., Ltd. Chip scale package
US6235552B1 (en) * 1999-07-09 2001-05-22 Samsung Electronics Co., Ltd. Chip scale package and method for manufacturing the same using a redistribution substrate
US20020017711A1 (en) * 1999-07-12 2002-02-14 Kwon Yong Hwan Semiconductor package
US6180504B1 (en) * 1999-08-27 2001-01-30 Micron Technology, Inc. Method for fabricating a semiconductor component with external polymer support layer
US6118179A (en) * 1999-08-27 2000-09-12 Micron Technology, Inc. Semiconductor component with external contact polymer support member and method of fabrication
US6303981B1 (en) * 1999-09-01 2001-10-16 Micron Technology, Inc. Semiconductor package having stacked dice and leadframes and method of fabrication
US6455408B1 (en) * 1999-09-30 2002-09-24 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor devices having redistribution patterns with a concave pattern in a bump pad area
US20020195345A1 (en) * 1999-11-18 2002-12-26 3M Innovative Properties Company Film based addressable programmable electronic matrix articles and methods of manufacturing and using the same
US6380555B1 (en) * 1999-12-24 2002-04-30 Micron Technology, Inc. Bumped semiconductor component having test pads, and method and system for testing bumped semiconductor components
US6258624B1 (en) * 2000-01-10 2001-07-10 Micron Technology, Inc. Semiconductor package having downset leadframe for reducing package bow
US6362087B1 (en) * 2000-05-05 2002-03-26 Aptos Corporation Method for fabricating a microelectronic fabrication having formed therein a redistribution structure
US6740983B2 (en) * 2000-05-16 2004-05-25 Micron Technology, Inc. Method for ball grind array chip packages having improved testing and stacking characteristics
US6606235B2 (en) * 2000-05-17 2003-08-12 Christopher L. Chua Photolithographically-patterned variable capacitor structures and method of making
US6326698B1 (en) * 2000-06-08 2001-12-04 Micron Technology, Inc. Semiconductor devices having protective layers thereon through which contact pads are exposed and stereolithographic methods of fabricating such semiconductor devices
US6201305B1 (en) * 2000-06-09 2001-03-13 Amkor Technology, Inc. Making solder ball mounting pads on substrates
US6682948B2 (en) * 2000-06-27 2004-01-27 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6391681B1 (en) * 2001-03-16 2002-05-21 Micron Technology, Inc. Semiconductor component having selected terminal contacts with multiple electrical paths
US20020139578A1 (en) * 2001-03-28 2002-10-03 International Business Machines Corporation Hyperbga buildup laminate
US20040159921A1 (en) * 2001-12-26 2004-08-19 Stephen Moxham Methods for coupling a flowable conductive material to microelectronic substrates
US20040159946A1 (en) * 2001-12-26 2004-08-19 Stephen Moxham Microelectronic assemblies, electronic devices, and apparatuses for supporting microelectronic substrates
US6870276B1 (en) * 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
US20050242437A1 (en) * 2001-12-26 2005-11-03 Micron Technology, Inc. Method and apparatus for supporting microelectronic substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004827A1 (en) * 2006-03-31 2009-01-01 Nec Electronics Corporation Lead cutter and method of fabricating semiconductor device
US7795060B2 (en) * 2006-03-31 2010-09-14 Nec Electronics Corporation Lead cutter and method of fabricating semiconductor device

Also Published As

Publication number Publication date
US6429528B1 (en) 2002-08-06
US6906409B2 (en) 2005-06-14
WO1999044235A1 (en) 1999-09-02
US20020140077A1 (en) 2002-10-03
US20020053743A1 (en) 2002-05-09
US6228548B1 (en) 2001-05-08
AU2686199A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
US6906409B2 (en) Multichip semiconductor package
US6531338B2 (en) Method of manufacturing a semiconductor structure having stacked semiconductor devices
US5942795A (en) Leaded substrate carrier for integrated circuit device and leaded substrate carrier device assembly
US6414391B1 (en) Module assembly for stacked BGA packages with a common bus bar in the assembly
US6072233A (en) Stackable ball grid array package
US6236109B1 (en) Multi-chip chip scale package
US5994166A (en) Method of constructing stacked packages
US6028358A (en) Package for a semiconductor device and a semiconductor device
US6735859B2 (en) Method of manufacturing chip scale package
US20110171780A1 (en) Semiconductor device and manufacturing method thereof
US20050248038A1 (en) Chip scale package with heat spreader
EP0170022B1 (en) Semiconductor power device package for surface mounting
EP0646963A1 (en) Multi-chip module and manufacturing method thereof
JPH11354713A (en) Semiconductor device and mounting method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION