US20050205465A1 - NOx reduction compositions for use in FCC processes - Google Patents

NOx reduction compositions for use in FCC processes Download PDF

Info

Publication number
US20050205465A1
US20050205465A1 US11/015,912 US1591204A US2005205465A1 US 20050205465 A1 US20050205465 A1 US 20050205465A1 US 1591204 A US1591204 A US 1591204A US 2005205465 A1 US2005205465 A1 US 2005205465A1
Authority
US
United States
Prior art keywords
composition
component
oxide
cracking
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/015,912
Inventor
Alan Peters
John Rudesill
Gordon Weatherbee
Edward Rakiewicz
Mary Jane Barbato-Grauso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/084,141 external-priority patent/US20020092795A1/en
Application filed by Individual filed Critical Individual
Priority to US11/015,912 priority Critical patent/US20050205465A1/en
Publication of US20050205465A1 publication Critical patent/US20050205465A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/187Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • FCC fluid catalytic cracking
  • catalyst particles inventory
  • catalyst regeneration zone In regeneration, coke deposits (from the cracking reaction) on the catalyst particles are removed at elevated temperatures by oxidation. The removal of coke deposits restores the activity of the catalyst particles to the point where they can be reused in the cracking reaction.
  • gases such as SO x , CO, and NO x .
  • additives have been used either as an integral part of the FCC catalyst particles themselves or as separate admixture particles in the FCC catalyst inventory in attempts to deal with these problematic gases.
  • magnesium aluminate spinel additives are often used to prevent or mini m emission of SO x from the regenerator.
  • Various noble metal catalysts have been used to minimize the emission of CO from the regenerator.
  • compositions suitable for use in FCC processes which are capable of providing superior NO x control performance.
  • the invention provides compositions for reducing NO x emissions in FCC processes, the compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups lb and/or IIb of the Periodic Table.
  • the acidic oxide support preferably contains silica alumina.
  • Ceria is the preferred oxygen-storage oxide.
  • Cu and Ag are preferred Group I/IIb transition metals.
  • the invention encompasses FCC processes using the NO x reduction compositions of the invention either as an integral part of the FCC catalyst particles themselves or as separate admixture particles in the FCC catalyst inventory.
  • the invention encompasses the discovery that certain classes of compositions are very effective for the reduction of NO x gas emissions in FCC processes.
  • the NO x reduction compositions of the invention are characterized in that they comprise a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table.
  • the acidic oxide support should be of sufficient acidity for the composition to act as an effective NO x reduction additive.
  • the support preferably contains acidic silanol or bridged hydroxyl groups. These acid groups are preferably characterized by NMR shifts in the region of ⁇ 90 to ⁇ 100 ppm compared to a TMS (trimethyl silane) standard.
  • the support may be crystalline or amorphous.
  • the acidic oxide support contains at least some alumina. More preferably, the oxide support contains at least 50 wt. % alumina.
  • the oxide support is preferably an oxide selected from the group consisting of alumina, silica alumina, and lanthana alumina. Amorphous silica aluminas are most preferred. Where an amorphous silica alumina support is used, the support preferably has an alumina to silica molar ratio of about 3-50:1.
  • the acidic oxide support further preferably has sufficient surface area to promote the NO x reduction process.
  • the oxide support has a surface area of at least 50 m 2 /g, more preferably about 70-200 m 2 /g.
  • the alkali and/or alkaline earth metal may be any alkali metal, alkaline earth metal or combinations thereof.
  • the NO x reduction component preferably contains an alkali metal selected from sodium, potassium and mixtures thereof.
  • the amount of alkali/alkaline earth metal present in the NO x reduction component of the invention is preferably about 1-10 parts by weight (measured as alkali/alkaline earth metal oxide) per 100 parts by weight of the oxide support material. While the alkali/alkaline earth metal content is expressed as the amount of corresponding oxide, preferably the alkali/alkaline metal is present in cationic form rather than as discrete oxide.
  • the transition metal oxide having oxygen storage capability may be any transition metal oxide having oxygen storage capability similar to that of ceria.
  • at least a portion of the oxygen storage oxide is ceria. More preferably, the oxygen storage oxide consists essentially of ceria. Other non-stoichiometric metal oxides having known oxygen storage capability may also be used.
  • the oxygen storage oxide is preferably present as a microdispersed phase as opposed to large bulk oxide particles or ions located at exchange sites in the oxide support.
  • the amount of the oxygen storage oxide present in the NO x reduction component may be varied considerably relative to the amount of acidic oxide support.
  • the NO x reduction component contains at least about 1 part by weight of oxygen storage oxide per 100 parts by weight of the oxide support material, more preferably at least about 2-50 parts by weight per 100 parts of the oxide support material.
  • the Group Ib and/or IIb transition metal may be any metal or combination of metals selected from those groups of the Periodic Table.
  • the transition metal is selected from the group consisting of Cu, Ag and mixtures thereof.
  • the amount of transition metal present is preferably at least about 100 parts by weight (measured as metal oxide) per million parts of the oxide support material, more preferably about 0.1-5 parts by weight per 100 parts of the oxide support material.
  • the NO x reduction component may contain minor amounts of other materials which preferably do not adversely affect the NO x reduction function in a significant way. More preferably, however, the NO x reduction component consists essentially of items (i)-(iv) mentioned above.
  • the NO x reduction component may be combined with fillers (e.g. clay, silica, alumina or silica alumina particles) and/or binders (e.g. silica sol, alumina sol, silica alumina sol, etc.) to form particles suitable for use in an FCC process.
  • any added binders or fillers used do not significantly adversely affect the performance of the NO x reduction component.
  • the amount of NO x reduction component in the additive particles is preferably at least 50 wt. %, more preferably at least 75 wt. %. Most preferably, the additive particles consist entirely of the NO x reduction component.
  • the additive particles are preferably of a size suitable for circulation with the catalyst inventory in an FCC process.
  • the additive particles preferably have an average particle size of about 20-200 ⁇ m.
  • the additive particles preferably have a Davison attrition index (DI) value of about 0-45, more preferably about 0-15.
  • DI Davison attrition index
  • the NO x reduction composition of the invention may be integrated into the FCC catalyst particles themselves. In such case, any conventional FCC catalyst particle components may be used in combination with the NO x reduction composition of the invention. If integrated into the FCC catalyst particles, the NO x reduction composition of the invention is preferably represents at least about 0.02 wt % of the FCC catalyst particle, more preferably about 0.1-10 wt. %.
  • the NO x reduction component of the invention is preferably made by the following procedure:
  • the sources of alkali/alkaline earth metal oxide and oxygen storage oxide are preferably slurries, sols and/or solutions of the metal oxides themselves or salts of the respective metals which decompose to oxides on calcination or combinations of oxides and salts.
  • the individual constituents may be separately added to the support particles with a calcination step in between each addition.
  • the impregnated particles are spray dried before the calcination of step (d).
  • the calcination steps are preferably performed at about 450-750° C.
  • the NO x reduction component may be used as a separate additive particle or as an integral part of an FCC catalyst particle. If used as an additive, the NO x reduction component may itself be formed into particles suitable for use in an FCC process. Alternatively, the NO x reduction component may be combined with binders, fillers, etc. by any conventional technique. See for example, the process described in U.S. Pat. No. 5,194,413, the disclosure of which is incorporated herein by reference.
  • the component of the invention is integrated into an FCC catalyst particle, preferably the component is first formed and then combined with the other constituents which make up the FCC catalyst particle.
  • Incorporation of the NO x reduction component directly into FCC catalyst particles may be accomplished by an known technique. Example of suitable techniques for this purpose are disclosed in U.S. Pat. Nos. 3,957,689; 4,499,197; 4,542,188 and 4,458,623, the disclosures of which are incorporated herein by reference.
  • compositions of the invention may be used in any conventional FCC process. Typical FCC processes are conducted reaction temperatures of 450 to 650° C. with catalyst regeneration temperatures of 600 to 850° C.
  • the compositions of the invention may be used in FCC processing of any typical hydrocarbon feedstock.
  • the compositions of the invention are used in FCC processes involving the cracking of hydrocarbon feedstocks which contain above average amounts of nitrogen, especially residual feedstocks or feedstocks having a nitrogen content of at least 0.1 wt. %.
  • the amount of the NO x reduction component of the invention used may vary depending on the specific FCC process.
  • the amount of NO x reduction component used (in the circulating inventory) is about 0.1-15 wt. % based on the weight of the FCC catalyst in the circulating catalyst inventory.
  • An amorphous silica alumina particulate support containing 6 wt. % silica was impregnated with a sodium carbonate solution, dried and calcined to achieve a 3.6 wt. % Na content measured as Na 2 O based on the weight of the silica alumina
  • the Na-containing silica alumina particles were then impregnated with a solution of cerium nitrate and then dried to achieve a ceria content of about 1 wt. % based on the weight of the silica alumina particles.
  • the Ce-containing composition was then impregnated with a silver nitrate solution to achieve a silver content of about 5 wt. % (oxide basis) based on the weight of the silica alumina particles.
  • the impregnated particles were then dried and calcined at about 704° C. to form a particulate composition in accordance with the invention.
  • An amorphous silica alumina particulate support containing 6 wt. % silica was impregnated with a sodium carbonate solution, dried and calcined to achieve a 6 wt. % Na content measured as Na 2 O based on the weight of the silica alumina.
  • the Na-containing silica alumina particles were then impregnated with a solution of cerium nitrate and then dried to achieve a ceria content of about 22 wt. % based on the weight of the silica alumina particles.
  • the Ce-containing composition was then impregnated with a copper nitrate solution to achieve a copper content of about 2 wt. % (oxide basis) based on the weight of the silica alumina particles.
  • the impregnated particles were then dried and calcined at about 704° C. to form a particulate composition in accordance with the invention.
  • the 152 g of the composition of example 1 was admixed with 2908 grams of a commercial FCC catalyst (Grace Davison Orion® 842 equilibrium catalyst (ECAT)) and 10 g of a combustion promoter (Grace Davison CP-5). The admixture was then used to crack a hydrocarbon feedstock containing 0.3 wt. % nitrogen in a DCR pilot plant FCC unit. The cracking was performed at a 75% conversion rate and 1000 g/hr catalyst feed rate. As a control example, the same catalyst admixture was run without the composition of example 1. The NO x emission measured from the FCC unit regenerator was 65% less when the composition of example 1 was used compared to the control example.
  • ECAT equilibrium catalyst
  • the 10 g of the composition of example 2 was admixed with 2000 grams of a commercial FCC catalyst (Grace Davison Orion® 922G ECAT) and 5 g of a combustion promoter (Grace Davison CP-5). The admixture was then used to crack a Countrymark hydrocarbon feedstock (0.13 wt. % N) in an FCC pilot plant (DCR) unit. The cracking was performed at a 75% conversion rate and 1000 g/hr catalyst feed rate. As a control example, the same catalyst admixture was run without the composition of example 2. The NO x emission measured from the FCC unit regenerator was 46% less when the composition of example 2 was used compared to the control example.

Abstract

Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.

Description

    BACKGROUND OF THE INVENTION
  • Public policy and cost/benefit pressures have created an increasing desire to reduce the amount of polluting gases released by industrial processes. As a result, there has been a drive to find ways of decreasing pollution by modifying industrial processes.
  • In the petroleum refining industry, fluid catalytic cracking (FCC) of hydrocarbons is a commonly used petroleum refining method. In an FCC process, catalyst particles (inventory) are repeatedly circulated between a catalytic cracking zone and a catalyst regeneration zone. In regeneration, coke deposits (from the cracking reaction) on the catalyst particles are removed at elevated temperatures by oxidation. The removal of coke deposits restores the activity of the catalyst particles to the point where they can be reused in the cracking reaction.
  • While FCC processes are efficient from the point of catalyst use, the regeneration step typically results in the evolution of undesirable gases such as SOx, CO, and NOx. Various attempts have been made to limit the amounts of these gases created during the FCC regeneration step or otherwise to deal with the gases after their formation. Most typically, additives have been used either as an integral part of the FCC catalyst particles themselves or as separate admixture particles in the FCC catalyst inventory in attempts to deal with these problematic gases. For example, magnesium aluminate spinel additives are often used to prevent or mini m emission of SOx from the regenerator. Various noble metal catalysts have been used to minimize the emission of CO from the regenerator.
  • Unfortunately, the additives used to control CO emissions typically cause a dramatic increase (e.g., 300%) in NOx evolution from the regenerator. Some of the spinel-based (SOx reduction) additives act to lessen the amount of NOx emission, but with limited success. Thus, there remains a need for more effective NOx control additives suitable for use in FCC processes.
  • SUMMARY OF THE INVENTION
  • The invention provides compositions suitable for use in FCC processes which are capable of providing superior NOx control performance.
  • In one aspect, the invention provides compositions for reducing NOx emissions in FCC processes, the compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups lb and/or IIb of the Periodic Table. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen-storage oxide. Cu and Ag are preferred Group I/IIb transition metals.
  • In another aspect, the invention encompasses FCC processes using the NOx reduction compositions of the invention either as an integral part of the FCC catalyst particles themselves or as separate admixture particles in the FCC catalyst inventory.
  • These and other aspects of the invention are described in further detail below.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention encompasses the discovery that certain classes of compositions are very effective for the reduction of NOx gas emissions in FCC processes. The NOx reduction compositions of the invention are characterized in that they comprise a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table.
  • The acidic oxide support should be of sufficient acidity for the composition to act as an effective NOx reduction additive. The support preferably contains acidic silanol or bridged hydroxyl groups. These acid groups are preferably characterized by NMR shifts in the region of −90 to −100 ppm compared to a TMS (trimethyl silane) standard. The support may be crystalline or amorphous. Preferably, the acidic oxide support contains at least some alumina. More preferably, the oxide support contains at least 50 wt. % alumina. The oxide support is preferably an oxide selected from the group consisting of alumina, silica alumina, and lanthana alumina. Amorphous silica aluminas are most preferred. Where an amorphous silica alumina support is used, the support preferably has an alumina to silica molar ratio of about 3-50:1.
  • The acidic oxide support further preferably has sufficient surface area to promote the NOx reduction process. Preferably, the oxide support has a surface area of at least 50 m2/g, more preferably about 70-200 m2/g.
  • The alkali and/or alkaline earth metal may be any alkali metal, alkaline earth metal or combinations thereof. The NOx reduction component preferably contains an alkali metal selected from sodium, potassium and mixtures thereof. The amount of alkali/alkaline earth metal present in the NOx reduction component of the invention is preferably about 1-10 parts by weight (measured as alkali/alkaline earth metal oxide) per 100 parts by weight of the oxide support material. While the alkali/alkaline earth metal content is expressed as the amount of corresponding oxide, preferably the alkali/alkaline metal is present in cationic form rather than as discrete oxide.
  • The transition metal oxide having oxygen storage capability may be any transition metal oxide having oxygen storage capability similar to that of ceria. Preferably, at least a portion of the oxygen storage oxide is ceria. More preferably, the oxygen storage oxide consists essentially of ceria. Other non-stoichiometric metal oxides having known oxygen storage capability may also be used. The oxygen storage oxide is preferably present as a microdispersed phase as opposed to large bulk oxide particles or ions located at exchange sites in the oxide support. The amount of the oxygen storage oxide present in the NOx reduction component may be varied considerably relative to the amount of acidic oxide support. Preferably, the NOx reduction component contains at least about 1 part by weight of oxygen storage oxide per 100 parts by weight of the oxide support material, more preferably at least about 2-50 parts by weight per 100 parts of the oxide support material.
  • The Group Ib and/or IIb transition metal may be any metal or combination of metals selected from those groups of the Periodic Table. Preferably, the transition metal is selected from the group consisting of Cu, Ag and mixtures thereof. The amount of transition metal present is preferably at least about 100 parts by weight (measured as metal oxide) per million parts of the oxide support material, more preferably about 0.1-5 parts by weight per 100 parts of the oxide support material.
  • The NOx reduction component may contain minor amounts of other materials which preferably do not adversely affect the NOx reduction function in a significant way. More preferably, however, the NOx reduction component consists essentially of items (i)-(iv) mentioned above. Where the composition of the invention is used as an additive particle for an FCC process, the NOx reduction component may be combined with fillers (e.g. clay, silica, alumina or silica alumina particles) and/or binders (e.g. silica sol, alumina sol, silica alumina sol, etc.) to form particles suitable for use in an FCC process. Preferably, any added binders or fillers used do not significantly adversely affect the performance of the NOx reduction component.
  • Where the NOx reduction composition is used as an additive particulate (as opposed to being integrated into the FCC catalyst particles themselves), the amount of NOx reduction component in the additive particles is preferably at least 50 wt. %, more preferably at least 75 wt. %. Most preferably, the additive particles consist entirely of the NOx reduction component. The additive particles are preferably of a size suitable for circulation with the catalyst inventory in an FCC process. The additive particles preferably have an average particle size of about 20-200 μm. The additive particles preferably have a Davison attrition index (DI) value of about 0-45, more preferably about 0-15.
  • If desired, the NOx reduction composition of the invention may be integrated into the FCC catalyst particles themselves. In such case, any conventional FCC catalyst particle components may be used in combination with the NOx reduction composition of the invention. If integrated into the FCC catalyst particles, the NOx reduction composition of the invention is preferably represents at least about 0.02 wt % of the FCC catalyst particle, more preferably about 0.1-10 wt. %.
  • While the invention is not limited to any particular method of manufacture, the NOx reduction component of the invention is preferably made by the following procedure:
      • (a) impregnate the acidic oxide porous support particles with an alkali/alkaline earth metal oxide source and an oxygen storage oxide source to achieve the desired alkali/alkaline earth metal and oxygen storage oxide content,
      • (b) calcine the impregnated support of step (a),
      • (c) impregnate the calcined support from step (b) with a source of Group Ib and/or IIb metal, and
      • (d) calcine the impregnated support from step (c).
  • The sources of alkali/alkaline earth metal oxide and oxygen storage oxide are preferably slurries, sols and/or solutions of the metal oxides themselves or salts of the respective metals which decompose to oxides on calcination or combinations of oxides and salts. If desired, the individual constituents may be separately added to the support particles with a calcination step in between each addition. If desired, the impregnated particles are spray dried before the calcination of step (d). The calcination steps are preferably performed at about 450-750° C.
  • The NOx reduction component may be used as a separate additive particle or as an integral part of an FCC catalyst particle. If used as an additive, the NOx reduction component may itself be formed into particles suitable for use in an FCC process. Alternatively, the NOx reduction component may be combined with binders, fillers, etc. by any conventional technique. See for example, the process described in U.S. Pat. No. 5,194,413, the disclosure of which is incorporated herein by reference.
  • Where the NOx reduction component of the invention is integrated into an FCC catalyst particle, preferably the component is first formed and then combined with the other constituents which make up the FCC catalyst particle. Incorporation of the NOx reduction component directly into FCC catalyst particles may be accomplished by an known technique. Example of suitable techniques for this purpose are disclosed in U.S. Pat. Nos. 3,957,689; 4,499,197; 4,542,188 and 4,458,623, the disclosures of which are incorporated herein by reference.
  • The compositions of the invention may be used in any conventional FCC process. Typical FCC processes are conducted reaction temperatures of 450 to 650° C. with catalyst regeneration temperatures of 600 to 850° C. The compositions of the invention may be used in FCC processing of any typical hydrocarbon feedstock. Preferably, the compositions of the invention are used in FCC processes involving the cracking of hydrocarbon feedstocks which contain above average amounts of nitrogen, especially residual feedstocks or feedstocks having a nitrogen content of at least 0.1 wt. %. The amount of the NOx reduction component of the invention used may vary depending on the specific FCC process. Preferably, the amount of NOx reduction component used (in the circulating inventory) is about 0.1-15 wt. % based on the weight of the FCC catalyst in the circulating catalyst inventory. The presence of the compositions of the invention during the FCC process catalyst regeneration step dramatically reduces the level of NOx emitted during regeneration.
  • EXAMPLE 1
  • An amorphous silica alumina particulate support containing 6 wt. % silica was impregnated with a sodium carbonate solution, dried and calcined to achieve a 3.6 wt. % Na content measured as Na2O based on the weight of the silica alumina The Na-containing silica alumina particles were then impregnated with a solution of cerium nitrate and then dried to achieve a ceria content of about 1 wt. % based on the weight of the silica alumina particles. The Ce-containing composition was then impregnated with a silver nitrate solution to achieve a silver content of about 5 wt. % (oxide basis) based on the weight of the silica alumina particles. The impregnated particles were then dried and calcined at about 704° C. to form a particulate composition in accordance with the invention.
  • EXAMPLE 2
  • An amorphous silica alumina particulate support containing 6 wt. % silica was impregnated with a sodium carbonate solution, dried and calcined to achieve a 6 wt. % Na content measured as Na2O based on the weight of the silica alumina. The Na-containing silica alumina particles were then impregnated with a solution of cerium nitrate and then dried to achieve a ceria content of about 22 wt. % based on the weight of the silica alumina particles. The Ce-containing composition was then impregnated with a copper nitrate solution to achieve a copper content of about 2 wt. % (oxide basis) based on the weight of the silica alumina particles. The impregnated particles were then dried and calcined at about 704° C. to form a particulate composition in accordance with the invention.
  • EXAMPLE 3
  • The 152 g of the composition of example 1 was admixed with 2908 grams of a commercial FCC catalyst (Grace Davison Orion® 842 equilibrium catalyst (ECAT)) and 10 g of a combustion promoter (Grace Davison CP-5). The admixture was then used to crack a hydrocarbon feedstock containing 0.3 wt. % nitrogen in a DCR pilot plant FCC unit. The cracking was performed at a 75% conversion rate and 1000 g/hr catalyst feed rate. As a control example, the same catalyst admixture was run without the composition of example 1. The NOx emission measured from the FCC unit regenerator was 65% less when the composition of example 1 was used compared to the control example.
  • EXAMPLE 4
  • The 10 g of the composition of example 2 was admixed with 2000 grams of a commercial FCC catalyst (Grace Davison Orion® 922G ECAT) and 5 g of a combustion promoter (Grace Davison CP-5). The admixture was then used to crack a Countrymark hydrocarbon feedstock (0.13 wt. % N) in an FCC pilot plant (DCR) unit. The cracking was performed at a 75% conversion rate and 1000 g/hr catalyst feed rate. As a control example, the same catalyst admixture was run without the composition of example 2. The NOx emission measured from the FCC unit regenerator was 46% less when the composition of example 2 was used compared to the control example.

Claims (20)

1. A NOx control composition suitable for use in a fluidized catalytic cracking process, said composition comprising a component which contains (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table.
2. The composition of claim 1 wherein said acidic oxide support contains alumina.
3. The composition of claim 2 wherein said acidic oxide support is selected from the group consisting of alumina, silica alumina, and lanthana alumina.
4. The composition of claim 3 wherein said oxide support is a silica alumina.
5. The composition of claim 4 wherein said silica alumina has an alumina:silica mole ratio of about 3-50:1.
6. The composition of claim 1 wherein said oxygen storage oxide contains ceria.
7. The composition of claim 1 wherein said component contains an alkali metal selected from the group consisting of sodium, potassium, and mixtures thereof.
8. The composition of claim 1 wherein said component contains Group lb transition metal selected from the group consisting of copper, silver, and mixtures thereof.
9. The composition of claim 1 wherein said component contains about 1-10 parts by weight (measured as alkali/alkaline earth metal oxide) of said alkali/alkaline earth metal per 100 parts by weight of said acidic oxide support material.
10. The composition of claim 1 wherein said component contains at least about 1 part by weight of said oxygen storage oxide per 100 parts by weight of said acidic oxide support material.
11. The composition of claim 10 wherein said component contains about 2 to 50 parts by weight of said oxygen storage oxide per 100 parts by weight of said acidic oxide support material.
12. The composition of claim 1 wherein said component contains about 0.01-5 parts by weight total of said Group Ib and/or IIb metal (measured as metal oxide) per 100 parts by weight of said acidic oxide support material.
13. The composition of claim 1 wherein said component consists essentially of constituents (i)-(iv).
14. The composition of claim 13 wherein said composition consists essentially of said component and said composition is in the form of particles.
15. A fluid cracking catalyst comprising (a) a cracking component suitable for use in cracking hydrocarbons, and (b) a component which contains (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table.
16. The cracking catalyst of claim 15 wherein said cracking catalyst comprises an admixture of component (a) in particulate form and component (b) in particulate form.
17. The cracking catalyst of claim 15 wherein said cracking catalyst is a particulate composition comprising integral particles which contain both components (a) and (b).
18. A method of cracking a hydrocarbon feedstock into lower molecular weight components, said method comprising contacting said hydrocarbons with a cracking catalyst comprising (a) a cracking component suitable for use in cracking hydrocarbons, and (b) a component which contains (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table, at elevated temperature whereby said lower molecular weight components are formed.
19. The method of claim 18 wherein said catalyst is fluidized during said contacting and said method further comprises recovering used cracking catalyst from said contacting step and treating said used catalyst under conditions suitable to regenerate said catalyst.
20. The method of claim 18 wherein said hydrocarbon feedstock contains at least 0.1 wt. % nitrogen.
US11/015,912 2002-02-22 2004-12-17 NOx reduction compositions for use in FCC processes Abandoned US20050205465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/015,912 US20050205465A1 (en) 2002-02-22 2004-12-17 NOx reduction compositions for use in FCC processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/084,141 US20020092795A1 (en) 1995-05-05 2002-02-22 NOx reduction compositions for use in FCC processes
US11/015,912 US20050205465A1 (en) 2002-02-22 2004-12-17 NOx reduction compositions for use in FCC processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/084,141 Continuation US20020092795A1 (en) 1995-05-05 2002-02-22 NOx reduction compositions for use in FCC processes

Publications (1)

Publication Number Publication Date
US20050205465A1 true US20050205465A1 (en) 2005-09-22

Family

ID=34985067

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/015,912 Abandoned US20050205465A1 (en) 2002-02-22 2004-12-17 NOx reduction compositions for use in FCC processes

Country Status (1)

Country Link
US (1) US20050205465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016127054A3 (en) * 2015-02-06 2016-11-03 Wisconsin Alumni Research Foundation Catalysts with enhanced dispersion of two-dimensional metal oxide surface species on silica using an alkali promoter

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284370A (en) * 1962-12-31 1966-11-08 Monsanto Co Alumina supported copper oxide-rare earth oxide catalyst compositions
US3459494A (en) * 1966-12-14 1969-08-05 Standard Oil Co Process for decomposition of oxides of nitrogen
US3819535A (en) * 1972-04-13 1974-06-25 Diamond Shamrock Corp Catalyst for oxidation of hydrocarbons and carbon monoxide
US3825503A (en) * 1968-10-22 1974-07-23 Ashland Oil Inc Hydrogen transfer catalyst
US3894140A (en) * 1973-05-09 1975-07-08 Chemical Construction Corp Stabilization of alumina catalyst supports
US3992572A (en) * 1973-08-31 1976-11-16 Kokusai Denshin Denwa Kabushiki Kaisha System for coding two-dimensional information
US4124536A (en) * 1975-07-17 1978-11-07 Toa Nenryo Kogyo Kabushiki Kaisha Catalyst for reducing nitrogen oxides
US4146463A (en) * 1976-10-12 1979-03-27 Standard Oil Company (Indiana) Removal of carbon monoxide and sulfur oxides from refinery flue gases
US4153534A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4153535A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4171288A (en) * 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
US4195855A (en) * 1975-01-20 1980-04-01 Ultra Centrifuge Nederland N.V. Seal for sealing flanges and other objects
US4218344A (en) * 1975-12-19 1980-08-19 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4221677A (en) * 1979-03-19 1980-09-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4238317A (en) * 1979-08-20 1980-12-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4300997A (en) * 1979-10-12 1981-11-17 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gas
US4405443A (en) * 1982-03-29 1983-09-20 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4448895A (en) * 1981-11-11 1984-05-15 Nippon Shokubai Kagaku Kogyo Co. Ltd. Process for preparation of catalyst for cleaning exhaust gases and catalyst prepared by the process
US4626419A (en) * 1985-07-01 1986-12-02 Texaco Inc. Control of SOx emission
US4657885A (en) * 1985-07-11 1987-04-14 Exxon Research And Engineering Company Cerium promoted Fischer-Tropsch catalysts
US4675308A (en) * 1984-06-14 1987-06-23 Engelhard Corporation Three-way catalyst for lean operating engines
US4678770A (en) * 1985-01-31 1987-07-07 Engelhard Corporation Three-way catalyst for lean exhaust systems
US4692318A (en) * 1984-08-13 1987-09-08 Amoco Corporation Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US4708946A (en) * 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
US4714694A (en) * 1986-06-30 1987-12-22 Engelhard Corporation Aluminum-stabilized ceria catalyst compositions, and methods of making the same
US4727052A (en) * 1986-06-27 1988-02-23 Engelhard Corporation Catalyst compositions and methods of making the same
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4738947A (en) * 1985-01-31 1988-04-19 Engelhard Corporation Three-way catalysts of improved efficiency
US4780447A (en) * 1987-07-10 1988-10-25 W. R. Grace & Co.-Conn. Catalysts for controlling auto exhaust emissions including hydrocarbon, carbon monoxide, nitrogen oxides and hydrogen sulfide and method of making the catalysts
US4839146A (en) * 1987-04-15 1989-06-13 General Motors Corporation Catalyst for simultaneous NO decomposition and CO oxidation under cycled operating conditions
US4849398A (en) * 1986-09-17 1989-07-18 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
US4940569A (en) * 1984-10-12 1990-07-10 Noxso Corporation Sorbent and processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4965243A (en) * 1987-08-28 1990-10-23 Engelhard Corporation Process for producing a catalyst for purifying exhaust gases from internal combustion engines
US4973399A (en) * 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4996180A (en) * 1987-12-11 1991-02-26 Johnson Matthey Public Limited Company Catalyst of copper oxide and ceria
US5001103A (en) * 1987-10-30 1991-03-19 Degussa Aktiengesellschaft Rhodium-free three-way catalyst
US5059575A (en) * 1989-06-17 1991-10-22 United Kingdom Atomic Energy Authority Catalyst for the oxidation of carbonaceous particulates and method of making the catalyst
US5064803A (en) * 1990-08-31 1991-11-12 Allied-Signal Inc. Preparation of three-way catalysts with highly dispersed ceria
US5075275A (en) * 1989-07-06 1991-12-24 Mazda Motor Corporation Catalyst for purification of exhaust gases
US5081095A (en) * 1990-09-10 1992-01-14 General Motors Corporation Method of making a support containing an alumina-ceria washcoat for a noble metal catalyst
US5137703A (en) * 1989-06-26 1992-08-11 Trustees Of Boston University Thermal catalytic methods for converting oxides of nitrogen into environmentally compatible products
US5192733A (en) * 1989-12-15 1993-03-09 Vulcan Materials Company Oxychlorination catalysts comprising copper chloride supported on rare-earth-modified alumina, process for making such catalysts, and oxychlorination processes using them
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US5462907A (en) * 1991-11-26 1995-10-31 Engelhard Corporation Ceria-alumina oxidation catalyst
US5491120A (en) * 1991-11-26 1996-02-13 Engelhard Corporation Oxidation catalyst with bulk ceria, a second bulk metal oxide, and platinum
US5492878A (en) * 1992-03-31 1996-02-20 Mitsui Mining & Smelting Co., Ltd. Catalyst for cleaning exhaust gas with alumina, ceria, zirconia, nickel oxide, alkaline earth oxide, and noble metal catalyst, and method for preparing
US5591417A (en) * 1992-04-15 1997-01-07 Mobil Oil Corporation Removing SOx, CO and NOx from flue gases
US6129834A (en) * 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284370A (en) * 1962-12-31 1966-11-08 Monsanto Co Alumina supported copper oxide-rare earth oxide catalyst compositions
US3459494A (en) * 1966-12-14 1969-08-05 Standard Oil Co Process for decomposition of oxides of nitrogen
US3825503A (en) * 1968-10-22 1974-07-23 Ashland Oil Inc Hydrogen transfer catalyst
US3819535A (en) * 1972-04-13 1974-06-25 Diamond Shamrock Corp Catalyst for oxidation of hydrocarbons and carbon monoxide
US3894140A (en) * 1973-05-09 1975-07-08 Chemical Construction Corp Stabilization of alumina catalyst supports
US3992572A (en) * 1973-08-31 1976-11-16 Kokusai Denshin Denwa Kabushiki Kaisha System for coding two-dimensional information
US4195855A (en) * 1975-01-20 1980-04-01 Ultra Centrifuge Nederland N.V. Seal for sealing flanges and other objects
US4124536A (en) * 1975-07-17 1978-11-07 Toa Nenryo Kogyo Kabushiki Kaisha Catalyst for reducing nitrogen oxides
US4218344A (en) * 1975-12-19 1980-08-19 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4153535A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4153534A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4146463A (en) * 1976-10-12 1979-03-27 Standard Oil Company (Indiana) Removal of carbon monoxide and sulfur oxides from refinery flue gases
US4171288A (en) * 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
US4221677A (en) * 1979-03-19 1980-09-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4238317A (en) * 1979-08-20 1980-12-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4300997A (en) * 1979-10-12 1981-11-17 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gas
US4448895A (en) * 1981-11-11 1984-05-15 Nippon Shokubai Kagaku Kogyo Co. Ltd. Process for preparation of catalyst for cleaning exhaust gases and catalyst prepared by the process
US4405443A (en) * 1982-03-29 1983-09-20 Standard Oil Company (Indiana) Process for removing sulfur oxides from a gas
US4675308A (en) * 1984-06-14 1987-06-23 Engelhard Corporation Three-way catalyst for lean operating engines
US4692318A (en) * 1984-08-13 1987-09-08 Amoco Corporation Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US4940569A (en) * 1984-10-12 1990-07-10 Noxso Corporation Sorbent and processes for removing nitrogen oxides, sulfur oxides and hydrogen sulfide from gas streams
US4678770A (en) * 1985-01-31 1987-07-07 Engelhard Corporation Three-way catalyst for lean exhaust systems
US4738947A (en) * 1985-01-31 1988-04-19 Engelhard Corporation Three-way catalysts of improved efficiency
US4708946A (en) * 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
US4626419A (en) * 1985-07-01 1986-12-02 Texaco Inc. Control of SOx emission
US4657885A (en) * 1985-07-11 1987-04-14 Exxon Research And Engineering Company Cerium promoted Fischer-Tropsch catalysts
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4727052A (en) * 1986-06-27 1988-02-23 Engelhard Corporation Catalyst compositions and methods of making the same
US4714694A (en) * 1986-06-30 1987-12-22 Engelhard Corporation Aluminum-stabilized ceria catalyst compositions, and methods of making the same
US4849398A (en) * 1986-09-17 1989-07-18 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
US4839146A (en) * 1987-04-15 1989-06-13 General Motors Corporation Catalyst for simultaneous NO decomposition and CO oxidation under cycled operating conditions
US4780447A (en) * 1987-07-10 1988-10-25 W. R. Grace & Co.-Conn. Catalysts for controlling auto exhaust emissions including hydrocarbon, carbon monoxide, nitrogen oxides and hydrogen sulfide and method of making the catalysts
US4965243A (en) * 1987-08-28 1990-10-23 Engelhard Corporation Process for producing a catalyst for purifying exhaust gases from internal combustion engines
US5001103A (en) * 1987-10-30 1991-03-19 Degussa Aktiengesellschaft Rhodium-free three-way catalyst
US4996180A (en) * 1987-12-11 1991-02-26 Johnson Matthey Public Limited Company Catalyst of copper oxide and ceria
US5059575A (en) * 1989-06-17 1991-10-22 United Kingdom Atomic Energy Authority Catalyst for the oxidation of carbonaceous particulates and method of making the catalyst
US5137703A (en) * 1989-06-26 1992-08-11 Trustees Of Boston University Thermal catalytic methods for converting oxides of nitrogen into environmentally compatible products
US5075275A (en) * 1989-07-06 1991-12-24 Mazda Motor Corporation Catalyst for purification of exhaust gases
US4973399A (en) * 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US5192733A (en) * 1989-12-15 1993-03-09 Vulcan Materials Company Oxychlorination catalysts comprising copper chloride supported on rare-earth-modified alumina, process for making such catalysts, and oxychlorination processes using them
US5064803A (en) * 1990-08-31 1991-11-12 Allied-Signal Inc. Preparation of three-way catalysts with highly dispersed ceria
US5081095A (en) * 1990-09-10 1992-01-14 General Motors Corporation Method of making a support containing an alumina-ceria washcoat for a noble metal catalyst
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US5462907A (en) * 1991-11-26 1995-10-31 Engelhard Corporation Ceria-alumina oxidation catalyst
US5491120A (en) * 1991-11-26 1996-02-13 Engelhard Corporation Oxidation catalyst with bulk ceria, a second bulk metal oxide, and platinum
US5492878A (en) * 1992-03-31 1996-02-20 Mitsui Mining & Smelting Co., Ltd. Catalyst for cleaning exhaust gas with alumina, ceria, zirconia, nickel oxide, alkaline earth oxide, and noble metal catalyst, and method for preparing
US5591417A (en) * 1992-04-15 1997-01-07 Mobil Oil Corporation Removing SOx, CO and NOx from flue gases
US6129834A (en) * 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US6143167A (en) * 1995-05-05 2000-11-07 W. R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US6280607B1 (en) * 1995-05-05 2001-08-28 W R Grace & Co.-Conn. NOx reduction compositions for use in FCC processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016127054A3 (en) * 2015-02-06 2016-11-03 Wisconsin Alumni Research Foundation Catalysts with enhanced dispersion of two-dimensional metal oxide surface species on silica using an alkali promoter
US10130935B2 (en) 2015-02-06 2018-11-20 Wisconsin Alumni Research Foundation Enhanced dispersion of two-dimensional metal oxide surface species on silica using an alkali promoter

Similar Documents

Publication Publication Date Title
US6280607B1 (en) NOx reduction compositions for use in FCC processes
US6902665B2 (en) Reduced NOx combustion promoter for use in FCC processes
JP4942536B2 (en) Composition, catalyst and FCC method for promoting combustion by reducing NOx amount by FCC
CA2468152C (en) Nox reduction composition for use in fcc processes
US7045056B2 (en) CO oxidation promoters for use in FCC processes
WO2005072864A1 (en) Nox reduction composition for use in fcc processes
US6129833A (en) Catalytic cracking with reduced emission of sulfur oxides
US20020092795A1 (en) NOx reduction compositions for use in FCC processes
US20050205465A1 (en) NOx reduction compositions for use in FCC processes
EP0354525A1 (en) Carbon monoxide oxidation catalyst
Peters et al. NO x reduction compositions for use in FCC processes
RU2352609C2 (en) NOx REMOVING COMPOUND

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION