US20050196481A1 - Tool bodies having heated tool faces - Google Patents

Tool bodies having heated tool faces Download PDF

Info

Publication number
US20050196481A1
US20050196481A1 US11/073,119 US7311905A US2005196481A1 US 20050196481 A1 US20050196481 A1 US 20050196481A1 US 7311905 A US7311905 A US 7311905A US 2005196481 A1 US2005196481 A1 US 2005196481A1
Authority
US
United States
Prior art keywords
tool
carbon foam
foam material
fluid
tool face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/073,119
Inventor
Drew Spradling
Douglas Merriman
Thomas Matviya
Rick Lucas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/073,119 priority Critical patent/US20050196481A1/en
Publication of US20050196481A1 publication Critical patent/US20050196481A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0211Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2907/00Use of elements other than metals as mould material
    • B29K2907/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption

Definitions

  • This invention relates to composite tooling and methods for using the same, more specifically to a reusable tool body that can be heated to effect a curing of the composite forming materials shaped by the tool.
  • the invention may include a tool comprising a tool body defining a tool face and comprising an electrically conductive carbon foam material. Electrical connections may be connected to one portion of the electrically conductive carbon foam material and a second portion of the electrically conductive carbon foam material. A power source may be connected to the electrically conductive carbon foam material through the electrical connections to produce a current flow resulting in the heating of the electrically conductive carbon foam material.
  • the tool body may be entirely or partially made from the electrically conductive carbon foam material.
  • the electrically conductive carbon foam material may provide substantially even heating of the surface of the tool face.
  • the tool face may include a tool face material.
  • a thermostat may be placed in communication with the tool face and the power source, where the thermostat monitors the temperature of the tool face and adjusts the power of the power source.
  • the invention may include a tool comprising a tool body defining a tool face and comprising a fluid permeable carbon foam material.
  • a fluid inlet port may be connected to one portion of the fluid permeable carbon foam material. Heated fluid is passed through the fluid permeable carbon foam material to result in heating of the fluid permeable carbon foam material.
  • the fluid permeable carbon foam material may provide substantially even heating of the surface of the tool face when heated fluid is passed through the fluid permeable carbon foam.
  • a surface of the fluid permeable carbon foam material may optionally define the tool face.
  • the tool face may comprise a tool face material.
  • the tool may also include a fluid exhaust port connected to a second portion of the permeable material.
  • the invention may include a pump adapted to be in fluid communication with the fluid inlet port. Still further, the invention may include a pump adapted to be in fluid communication with fluid inlet port and a heated fluid supply in fluid communication with the pump, where the pump moves fluid from the heated fluid supply to the fluid inlet port.
  • the fluid supply may be a reservoir and the fluid exhaust port may be connected to the reservoir to return the fluid from the fluid permeable carbon foam material.
  • the tool may include a thermostat in communication with the tool face and the heated fluid supply, where the thermostat monitors the temperature of the tool face and adjusts the temperature of the heated fluid supply.
  • the invention may include a tool comprising a tool body defining a tool face, where the tool face is substantially uniformly heated by the tool body.
  • the tool body may comprise an electrically conductive carbon foam material.
  • the electrically conductive carbon foam material may provide substantially uniform heating across the tool face when current is applied to the electrically conductive carbon foam material.
  • tool body may comprise a fluid permeable carbon foam material.
  • the fluid permeable carbon foam material may provide a substantially uniform heating of the tool face when a heated fluid is passed through the fluid permeable carbon foam material.
  • FIG. 1 is an illustration of a self-heated tool in accordance with an embodiment of the invention.
  • FIG. 2 is an illustration of a self-heated tool in accordance with another embodiment of the invention.
  • composite materials are prepared by imbedding a reinforcing material within a matrix material.
  • Composite materials having high degrees of utility typically exhibit mechanical, or other, properties superior to those of the individual materials from which the composite was formed.
  • a common example of a composite material is fiberglass.
  • Fiberglass is produced by infusing glass fibers, which are the reinforcing material, with a resin, which constitutes the matrix material.
  • Reinforcing materials known in the art have included, but are not limited to, for example, fiberglass, carbon fibers, quartz fibers, ceramic fibers, Kevlar® fibers, Aramid® fibers, and particulates of glass, ceramic, carbides, carbon, chopped fibers, and the like.
  • Matrix materials known in the art have included, but are not limited to, thermoplastic and thermosetting resins, including phenolics and epoxies, and the like. Such matrix materials will be collectively referred to as resins.
  • Composite materials have been found to have a high degree of utility when used as parts of structures, components, sub-assemblies, and the like, herein after collectively referred to as parts, of assemblages such as, for example, aircraft, missiles, vehicles, medical equipment, and sporting goods.
  • the utility of such composites is typically related to their high strength-to-weight ratio and their fatigue and corrosion resistance. In most instances, these beneficial properties exceed those of the metals or other materials supplanted by the use of the composites.
  • Composites materials are typically formed to required dimensions by the use of mold-like devices commonly referred to as tools. These tools encompass one or more surfaces, referred to as tool-faces, upon which the composite is formed, shaped, molded, or otherwise produced into parts of predetermined sizes and shapes. Such parts can include structures, sub-assemblies, and the like.
  • the tool face is a surface, typically formed such that the shape of its surface produces the predetermined size and shape of the desired composite part.
  • a tool is also includes a tool body and may include a support structure.
  • the tool body defines, includes, or otherwise comprises, the tool face. That is, the tool face, upon which the composite is formed, may be a surface of the tool body.
  • the support structure is connected to the tool body and may serve a number of purposes, including but not limited to, such purposes as support, orientation, and transportation of the tool body and tool face along with protection of the tool body and face from damage.
  • mixed matrix material and reinforcing material are placed upon the tool face by any of a number of procedures know to those skilled in the art, and brought into essentially intimate contact with the tool face.
  • the dimensions of the tool face are such that this contact effectively molds a surface of the resin and reinforcing material mixture into the desired shape and dimensions.
  • the reinforcing material containing matrix material for example carbon fibers in a resin, is subsequently cured, typically by the application of heat, to yield a solid composite part having the shape and dimensions imparted by the tool face.
  • the application of heat is typically required to cure the composite forming materials to result in a composite part and is a result of the chemical nature of many matrix materials.
  • many resins such as thermosetting resins, require the application of heat to effect the chemical reactions that converts the fluid or semi-fluid resin to a solid polymeric material.
  • Other matrix materials such as epoxies, may convert from a fluid or semi-fluid material to a solid polymeric material over an extended period of time without the application of heat.
  • epoxies may convert from a fluid or semi-fluid material to a solid polymeric material over an extended period of time without the application of heat.
  • Such materials will generally solidify in a much shorter time period, and may have higher glass transition temperatures, if heated. Greater rates of matrix material solidification can result in more rapid and increased part production. This benefit may then result in greater tool utilization with corresponding reductions in part production costs. Greater tool utilization can also be achieved by partially curing the composite forming materials in the tool, followed by complete curing of the
  • Heating of the composite forming materials has previously been accomplished by placing the tool with an autoclave, oven, or similar heating device.
  • Such oven-like devices can be very large, and correspondingly expensive, as some tools may be of considerable size.
  • large oven-like heating devices may be required as multiple tools, all requiring the use of an oven-like heating device, may be in use simultaneously. It may also be possible that simultaneous use of multiple tools may require that the composite formed on each tool be heated at a different temperature. Such a situation would then require the use of multiple ovens. Therefore, due to the scale involved, oven-like heating devices can be expensive and thus contribute to increased composite part cost. Additionally, the use of such oven-like heating devices typically requires the transport of the tool with the composite forming materials in place. Such transport may not be desirable as it may possibly have a detrimental effect on the quality of the resultant composite part.
  • the heat applied by these methods is typically localized to the general area of the heating devices. Therefore it can be difficult to uniformly heat a tool face by use of these methods. Therefore, as a result of the previously described limitations, improved methods for the heating of composite forming materials on a tool face are desired.
  • the tools of the present invention have a tool face that can be heated by the application of an electrical current or heating fluid to the tool body.
  • These self-heating tools differ from previous tools as the heating of the tool faces of the tools of the present invention do not require the addition of specific heating devices, such an oven, heating tape, resistance heaters, steam tracing, and the like.
  • the capability of the self-heating tools of the present invention to be heated is derived from the materials of construction of the tools rather than from the addition of some additional heating device.
  • the present invention uses electrically conductive or fluid permeable carbon foam material in the construction of the tool.
  • the heating of the tools of the present invention can result in the partial or total curing of a composite part formed thereon.
  • the tools of the present invention may be comprised, at least in part, from carbon foam materials that are electrically conductive or permeable to the passage of fluids. These carbon foam materials can be both electrically conductive and permeable to the passage of fluids.
  • the carbon foam materials are an intrinsic part of the construction of these tool bodies and are not add-on devices. By intrinsic part it is meant that the body of a tool of the present invention would not be substantive without the inclusion of such electrically conductive or permeable carbon foam materials.
  • Carbon foam is typically a strong, electrically conductive, open-cell, durable, stable, easily machined, resin-bondable, and relatively unreactive lightweight material. Carbon foams can also exhibit very low coefficients of thermal expansion (CTE) which can be essentially equivalent to that of carbon fiber composites. Such CTE equivalency makes the carbon foam especially useful for incorporation into tool bodies for the production of carbon fiber composites.
  • CTE of carbon foam can be modified by control of the maximum temperature to which the carbon foam is exposed during preparation.
  • the electrical conductivity of carbon foam can be modified by control of the maximum temperature to which the carbon foam is exposed during preparation.
  • the electrical conductivity of carbon foam can be modified by adding various materials, such as non-electrically conductive particulates, such as glass or sand, to the carbon foam forming materials prior to foam formation to reduce the electrical conductivity of the resultant foam.
  • the electrical conductivity of carbon foam may be modified by adding various materials, such as electrically conductive particulates, such as metal particles, to the carbon foam forming materials prior to foam formation to increase the electrical conductivity of the resultant foam.
  • Carbon foams are materials of very high carbon content that have appreciable void volume. In appearance, excepting color, carbon foams can resemble readily available commercial plastic foams. As with plastic foams, the void volume of carbon foams is located within numerous empty cells. The boundaries of these cells are defined by the carbon structure. These cells typically approximate spheres or ovoids of regular, but not necessarily uniform, size, shape, distribution, and orientation. The void volumes in these cells typically connect directly to neighboring void volumes. Such an arrangement is referred to as an open-cell foam. The carbon in these foams forms a structure that is continuous in three dimensions across the material. Typically, the cells in carbon foams are of a size that is readily visible to the unaided human eye.
  • carbon foams have been prepared from a variety of feedstocks using a variety of processes.
  • feedstocks for carbon foam production have included, but are not limited to, pitches, coals, and coal derivatives.
  • processes for the production of carbon foams from each of these feedstocks have been identified. Most of these processes include exposure of the carbon foam to an elevated temperature, sometimes a great as about 3000° C., after preparation of the foam.
  • Carbon foam can be incorporated in the tools of the present invention such that a surface of the carbon defines a tool face.
  • the carbon foam defining the tool face can be filled with a cell-filling material such as a resin or pitch to result in a sealed or otherwise impermeable surface.
  • Other outer surfaces of the carbon foam can also be sealed in a similar manner.
  • the other outer surfaces of the carbon foam can also be sealed by laminating an impervious material to the carbon surface.
  • a surface of the carbon foam can support another material, a tool-face material, which then defines the tool face.
  • the self-heating tool 10 includes a tool body 12 having a tool face 14 .
  • the tool body 12 comprises an electrically conductive carbon foam material 16 .
  • the electrical resistance of the electrically conductive carbon foam material 16 is such that excessive electrical power is not required for heating.
  • the self heating tool 10 is constructed such that passage of an electrical current through the electrically conductive carbon foam material 16 heats the tool face 14 of the tool body 12 .
  • An electrical power source 18 is connected to the electrically conductive carbon foam material 16 through electrical connections 18 a and 18 b . Multiple electrical connections may be used.
  • connections can include any connector that provides for the transfer of electrical current from the power source to the electrically conductive carbon foam material.
  • Such connectors may include, but are not limited to, wires, cables, combinations of wire and cables, commonly known terminal connectors, bus bars, and other similar connectors.
  • Such connections may be located advantageously to produce the desired electrical current flow through the electrically conductive carbon foam material.
  • the electrically conductive carbon foam material is distributed in the tool body such that it uniformly heats the entire tool face 12 .
  • the electrically conductive carbon foam material should be distributed and arranged such that heat being transferred to the tool face results in substantially even curing or heating of the composite forming materials on the tool face.
  • the configuration of the electrically conductive carbon foam material can vary widely depending upon such factors as the size, shape, and thickness of the resulting composite part. Thicker areas of the composite part may require the application of greater heat in that area of the tool face as compared to other areas of the tool face in order for all areas of the part to effectively cure at the same temperature and rate.
  • the wattage density across the tool face is relatively equal.
  • a relatively uniform wattage density may be obtained by providing a relatively uniform current density across the tool face. Additionally, a relatively uniform wattage density across the tool face may be obtained by applying electrical currents of differing magnitudes to volumes of carbon foam having differing resistances.
  • One or more thermostats 20 may be used to monitor and control the temperature of the tool face 12 by monitoring the temperature of the tool face 12 and adjusting the electrical power applied to the electrically conductive carbon foam material 16 .
  • the electrically conductive carbon foam material 16 may define the tool face 14 . That is, a surface of the electrically conductive carbon foam material 16 of the tool body 12 may comprise the tool face 14 . Alternatively, the electrically conductive carbon foam material 16 may support another material which defines the tool face 14 .
  • the tool body 12 may be composed of an electrically conductive carbon foam material 16 in the form of a sheet, plate, block, or layer deposited on a support material 17 .
  • the carbon foam may consist of pieces of carbon foam that are bonded together with conductive or nonconductive resins or high temperature adhesives such that the desired electrically conductive pathways are present.
  • the electrical resistance of the material is such that excessive electrical power is not required for heating.
  • This conductive material may be shaped or formed to define a tool face 14 . Alternatively, this material may support a relatively thin layer of another material, a tool face material, which defines the tool face 14 .
  • the electrically conductive carbon foam material 16 comprises or underlies the entire tool face.
  • this electrically conductive carbon foam material 16 will produce uniform heating of the entire tool face 14 .
  • Such uniform heating may be provided by varying the conductive material thickness across the tool face such that the electrical current density is uniform across the tool face.
  • Thermostats 20 may be used to monitor and control the heating of the electrically conductive carbon foam material 16 .
  • a mixture of composite forming materials is positioned, as desired, on the tool face 14 .
  • Electrical connections 18 a and 18 b are made to the electrically conductive carbon foam material 16 , from an electrical power source 18 , such that an electrical current flows though the electrically conductive carbon foam material and across the tool face. Heat generated in this electrically conductive carbon foam material 16 transfers across any tool face material and to the composite forming materials. This transferred heat increases the temperature of the composite forming materials such that a cured composite is formed. During this process, temperature may be monitored and controlled by the thermostat 20 such that over-heating of the composite and/or composite forming materials does not occur.
  • the self-heating tool 100 includes a tool body 120 having a tool face 140 .
  • the tool body 120 comprises a fluid permeable carbon foam material 160 .
  • the fluid permeable carbon foam material 160 has a porosity such that heated fluids or gases may pass through the fluid permeable carbon foam material and the fluid permeable carbon foam material transfers heat from the heated fluids or gases to the tool face 140 which in turn transfers heat to the composite part.
  • the porosity of the fluid permeable carbon foam material 160 is such that excessive pressures are not required to obtain adequate and/or desired volumes of fluid flow.
  • Holes may be formed in the fluid permeable carbon foam material 160 such that fluid flow pressure drop across the fluid permeable carbon foam material is decreased.
  • the fluid permeable carbon foam material 160 is positioned in the tool body 120 such that the entire tool face 140 is uniformly heated.
  • the fluid permeable carbon foam material 160 of the present invention may define the tool face 140 . That is, a surface of the fluid permeable carbon foam material 160 of the tool body 120 may comprise the tool face 140 .
  • the fluid permeable carbon foam material 160 may support another material which defines the tool face 140 .
  • the self heating tool 100 is constructed such that passage of a heated fluid or gas through the fluid permeable carbon foam material 160 heats the tool face 140 of the tool body 120 .
  • a pump 180 may supply hot or heated fluid or gases from a heated fluid supply 200 to the tool body 120 through a fluid inlet port 220 connected to one portion of the fluid permeable carbon foam material 160 .
  • the heated fluid supply 200 may include heaters 210 for heating the fluid.
  • a fluid exhaust port 240 is connect to a second portion of the fluid permeable carbon foam material 160 and allows for the fluid or gas to exit the permeable material 160 .
  • the fluid inlet port 220 and fluid exhaust port 240 are connected to the fluid permeable carbon foam material 160 such that the hot or heated fluid or gases pass through the fluid permeable carbon foam material 160 of the tool body 120 to result in heating of the tool face 140 .
  • Multiple fluid inlet ports and outlet ports may be used.
  • the fluid exhaust port 240 returns the fluid to the heated fluid supply 200 for reheating.
  • Edges and surfaces of the fluid permeable carbon foam material 160 are preferably sealed such that the fluid is not admitted or discharged except through the ports 220 and 240 . Such sealing may be accomplished by coating the surfaces with materials that eliminate the surface porosity of the fluid permeable carbon foam material. Such materials can include, but are not limited to, cured resins and the like.
  • thermostats 260 may be used to monitor and control the temperature of the tool face 140 by communicating with heaters 210 to adjust the temperature of the fluid.
  • Heated fluids may include, but are not limited to, gases and/or liquids such as steam and heated gases, including air and/or process exhausts, and liquids, including water and/or oil.
  • the tool body 120 may be composed of a fluid permeable carbon foam material 160 in the form of a plate or block.
  • the carbon foam may consist of pieces of carbon foam that are bonded together with resins or high temperature adhesives such that the desired fluid transport pathways are present.
  • a surface of this fluid permeable carbon foam material 160 may be shaped or formed to define a tool face 140 .
  • this material may support a relatively thin layer of another material, a tool face material, which defines the tool face.
  • the permeable material 160 comprises or underlies the entire tool face 140 .
  • Opposite sides or edges of the fluid permeable carbon foam material may be equipped with fluid inlet and exhaust ports.
  • the flow of heated fluid through the fluid permeable carbon foam material will produce uniform heating of the entire tool face.
  • uniform heating may be provided by varying the flow pressure drop in the permeable material across specific areas of the tool face such that heated fluid flow is uniform across the tool face.
  • the fluid flow pressure drop in the permeable material will vary with the permeable material thickness. Thermostats may be used to monitor and control the heating/temperature of the tool face and/or fluid.
  • a mixture of composite forming materials is positioned, as desired, on the tool face 140 .
  • the tool face 140 may include a surface of a relatively thin carbon fiber composite, in this example a tool face material, supported by a permeable material 160 made from a carbon foam block. Connections are made to the fluid inlet 220 and exhaust ports 240 positioned on the carbon foam block such that a heated fluid flows though the carbon foam block and thus across the carbon foam block volume underlying the tool face.
  • the heated fluid is supplied from a source of heated fluid such as, but not limited to, a reservoir, process stream, or the like.
  • the heated fluid may be forced through the carbon foam block by use of a pump, gravity, or the like.
  • Holes may have been previously formed in the carbon foam block to lower the fluid flow pressure drop.
  • the heat contained in the heated fluid transfers across the tool face material and to the composite forming materials. This transferred heat increases the temperature of the composite forming materials such that a cured composite is formed.
  • the temperature of the heated fluid is monitored and controlled such that over-heating of the composite and/or composite forming materials does not occur.
  • Tooling may be used to fabricate composite parts of various types, shapes, sizes and materials with a high dimensional accuracy.
  • the design of the tooling typically is dependent on the desired shape of the composite part to be formed, the materials used to form the composite part, the amount of strength and rigidity which the tooling must have to support the materials necessary for forming the composite part, and/or the method used to provide the materials for forming the composite part.
  • materials comprising the composite are placed upon the tool face by any of a number of procedures known to those skilled in the art.
  • the composites utilize a resin(s) as the matrix material and fiber as the reinforcing material.
  • a resin(s) and a particulate(s) can also be used, respectively, as the matrix and reinforcing material.
  • fiber placement is closely controlled such that the resulting composite part exhibits a preferred fiber spacing and/or orientation.
  • the fiber and resin may be mixed or otherwise combined prior to placement on the tool face.
  • the fiber may be placed on the tool face and the resin subsequently infused into the fiber by any of a number of procedures.
  • the tool face may be covered with a thin sheet of material, sometimes referred to as a parting sheet or release film, which forms closely to the tool face.
  • a thin sheet of material sometimes referred to as a parting sheet or release film, which forms closely to the tool face.
  • Such sheets can be considered to be a temporary coating on the tool face. The surface of this sheet that is not in contact with the tool face, that is, the outside surface of the sheet, then effectively becomes the tool face.
  • Such sheets may be used to protect the tool face and/or to provide for easier removal, or release, of the formed composite part.
  • the materials comprising the composite may be prevented from bonding to the tool face by coating the tool face with a release agent.
  • Release agents can include various polymers, including PVA, and waxes, among other materials. Release films are composed of any of a number of polymeric materials that do not bond with any of the materials comprising the composite. Many types of release materials, compounds, and agents are known in the associated arts and may be used with the present invention.
  • the dimensions of the tool face are such that a surface of the materials comprising the composite, typically a fiber containing resin, is effectively molded into the desired shape and dimensions.
  • the resin(s) included in the materials comprising the composite is subsequently cured, typically by the application of heat, to yield a solid composite part having a surface of the shape and dimensions imparted by the tool face.

Abstract

Self-heated tools for the production of composite parts are described. The tools include a tool body which, at least in part, includes carbon foam materials that are electrically conductive or permeable to the passage of fluids. These materials can be both electrically conductive and permeable to the passage of fluids. The electrically conductive or fluid permeable carbon foam materials are an intrinsic part of the construction of these tool bodies and are not add-on devices. Electricity may be used to heat the electrically conductive carbon foam material and transfer heat to the tool face. In other embodiments, heated fluid may be passed through and used to heat the fluid permeable carbon foam material and transfer heat to tool body. The electrically conductive or permeable carbon foam materials may define the tool face of the tool body. The tool bodies may comprise carbon foam, which is both electrically conductive and permeable. The electrically conductive carbon foam material and the fluid permeable carbon foam material may be constructed and/or configured to apply relatively uniform heating across the surface of the tool face or in certain circumstances non-uniform heating across the surface of the tool face.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to U.S. Provisional Patent Application No. 60/549,563, filed Mar. 4, 2004, herein incorporated by reference in its entirety.
  • FIELD OF INVENTION
  • This invention relates to composite tooling and methods for using the same, more specifically to a reusable tool body that can be heated to effect a curing of the composite forming materials shaped by the tool.
  • SUMMARY OF THE INVENTION
  • The invention may include a tool comprising a tool body defining a tool face and comprising an electrically conductive carbon foam material. Electrical connections may be connected to one portion of the electrically conductive carbon foam material and a second portion of the electrically conductive carbon foam material. A power source may be connected to the electrically conductive carbon foam material through the electrical connections to produce a current flow resulting in the heating of the electrically conductive carbon foam material. In some embodiments, the tool body may be entirely or partially made from the electrically conductive carbon foam material. In some embodiments, the electrically conductive carbon foam material may provide substantially even heating of the surface of the tool face. In certain embodiments, the tool face may include a tool face material. In other embodiments, a thermostat may be placed in communication with the tool face and the power source, where the thermostat monitors the temperature of the tool face and adjusts the power of the power source.
  • In yet another embodiment, the invention may include a tool comprising a tool body defining a tool face and comprising a fluid permeable carbon foam material. A fluid inlet port may be connected to one portion of the fluid permeable carbon foam material. Heated fluid is passed through the fluid permeable carbon foam material to result in heating of the fluid permeable carbon foam material. In some embodiments, the fluid permeable carbon foam material may provide substantially even heating of the surface of the tool face when heated fluid is passed through the fluid permeable carbon foam. Further, a surface of the fluid permeable carbon foam material may optionally define the tool face. In certain embodiments, the tool face may comprise a tool face material. In yet further embodiments the tool may also include a fluid exhaust port connected to a second portion of the permeable material. Further, the invention may include a pump adapted to be in fluid communication with the fluid inlet port. Still further, the invention may include a pump adapted to be in fluid communication with fluid inlet port and a heated fluid supply in fluid communication with the pump, where the pump moves fluid from the heated fluid supply to the fluid inlet port. The fluid supply may be a reservoir and the fluid exhaust port may be connected to the reservoir to return the fluid from the fluid permeable carbon foam material. Still further, the tool may include a thermostat in communication with the tool face and the heated fluid supply, where the thermostat monitors the temperature of the tool face and adjusts the temperature of the heated fluid supply.
  • In yet another embodiment, the invention may include a tool comprising a tool body defining a tool face, where the tool face is substantially uniformly heated by the tool body. The tool body may comprise an electrically conductive carbon foam material. The electrically conductive carbon foam material may provide substantially uniform heating across the tool face when current is applied to the electrically conductive carbon foam material. Further, tool body may comprise a fluid permeable carbon foam material. The fluid permeable carbon foam material may provide a substantially uniform heating of the tool face when a heated fluid is passed through the fluid permeable carbon foam material.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an illustration of a self-heated tool in accordance with an embodiment of the invention.
  • FIG. 2 is an illustration of a self-heated tool in accordance with another embodiment of the invention.
  • DESCRIPTION OF THE INVENTION
  • Generally, composite materials are prepared by imbedding a reinforcing material within a matrix material. Composite materials having high degrees of utility typically exhibit mechanical, or other, properties superior to those of the individual materials from which the composite was formed. A common example of a composite material is fiberglass. Fiberglass is produced by infusing glass fibers, which are the reinforcing material, with a resin, which constitutes the matrix material. Reinforcing materials known in the art have included, but are not limited to, for example, fiberglass, carbon fibers, quartz fibers, ceramic fibers, Kevlar® fibers, Aramid® fibers, and particulates of glass, ceramic, carbides, carbon, chopped fibers, and the like. Matrix materials known in the art have included, but are not limited to, thermoplastic and thermosetting resins, including phenolics and epoxies, and the like. Such matrix materials will be collectively referred to as resins.
  • Composite materials have been found to have a high degree of utility when used as parts of structures, components, sub-assemblies, and the like, herein after collectively referred to as parts, of assemblages such as, for example, aircraft, missiles, vehicles, medical equipment, and sporting goods. The utility of such composites is typically related to their high strength-to-weight ratio and their fatigue and corrosion resistance. In most instances, these beneficial properties exceed those of the metals or other materials supplanted by the use of the composites.
  • Composites materials are typically formed to required dimensions by the use of mold-like devices commonly referred to as tools. These tools encompass one or more surfaces, referred to as tool-faces, upon which the composite is formed, shaped, molded, or otherwise produced into parts of predetermined sizes and shapes. Such parts can include structures, sub-assemblies, and the like. The tool face is a surface, typically formed such that the shape of its surface produces the predetermined size and shape of the desired composite part.
  • In addition to the tool face, a tool is also includes a tool body and may include a support structure. The tool body defines, includes, or otherwise comprises, the tool face. That is, the tool face, upon which the composite is formed, may be a surface of the tool body. The support structure is connected to the tool body and may serve a number of purposes, including but not limited to, such purposes as support, orientation, and transportation of the tool body and tool face along with protection of the tool body and face from damage.
  • In forming the composite part, mixed matrix material and reinforcing material are placed upon the tool face by any of a number of procedures know to those skilled in the art, and brought into essentially intimate contact with the tool face. The dimensions of the tool face are such that this contact effectively molds a surface of the resin and reinforcing material mixture into the desired shape and dimensions. The reinforcing material containing matrix material, for example carbon fibers in a resin, is subsequently cured, typically by the application of heat, to yield a solid composite part having the shape and dimensions imparted by the tool face.
  • The application of heat is typically required to cure the composite forming materials to result in a composite part and is a result of the chemical nature of many matrix materials. For example, many resins, such as thermosetting resins, require the application of heat to effect the chemical reactions that converts the fluid or semi-fluid resin to a solid polymeric material. Other matrix materials, such as epoxies, may convert from a fluid or semi-fluid material to a solid polymeric material over an extended period of time without the application of heat. However, such materials will generally solidify in a much shorter time period, and may have higher glass transition temperatures, if heated. Greater rates of matrix material solidification can result in more rapid and increased part production. This benefit may then result in greater tool utilization with corresponding reductions in part production costs. Greater tool utilization can also be achieved by partially curing the composite forming materials in the tool, followed by complete curing of the resulting partially cured composite outside of the tool.
  • Heating of the composite forming materials has previously been accomplished by placing the tool with an autoclave, oven, or similar heating device. Such oven-like devices can be very large, and correspondingly expensive, as some tools may be of considerable size. Also, large oven-like heating devices may be required as multiple tools, all requiring the use of an oven-like heating device, may be in use simultaneously. It may also be possible that simultaneous use of multiple tools may require that the composite formed on each tool be heated at a different temperature. Such a situation would then require the use of multiple ovens. Therefore, due to the scale involved, oven-like heating devices can be expensive and thus contribute to increased composite part cost. Additionally, the use of such oven-like heating devices typically requires the transport of the tool with the composite forming materials in place. Such transport may not be desirable as it may possibly have a detrimental effect on the quality of the resultant composite part.
  • Other tools have been previously designed that can heat cure tool-formed composite forming materials without the use of oven-like devices. These tools have been designed where heating devices, such as heating tapes, steam tracing, heating elements, and the like, have been incorporated into or on the tool body to result in a heating of the tool. In operation, the heating devices would be activated once the composite forming material had been adequately positioned and shaped on the tool face. The activation of the heating devices would then heat the tool body, tool face, and the shaped composite forming materials on the tool face. Such heating would then cure, or accelerate the curing of, the composite forming materials without the use of an autoclave, oven, or similar heating device. The incorporation of such heating devices into the tools can add complexity to the tool body and increase tool cost. Additionally, the heat applied by these methods is typically localized to the general area of the heating devices. Therefore it can be difficult to uniformly heat a tool face by use of these methods. Therefore, as a result of the previously described limitations, improved methods for the heating of composite forming materials on a tool face are desired.
  • The tools of the present invention have a tool face that can be heated by the application of an electrical current or heating fluid to the tool body. These self-heating tools differ from previous tools as the heating of the tool faces of the tools of the present invention do not require the addition of specific heating devices, such an oven, heating tape, resistance heaters, steam tracing, and the like. The capability of the self-heating tools of the present invention to be heated is derived from the materials of construction of the tools rather than from the addition of some additional heating device. In particular, the present invention uses electrically conductive or fluid permeable carbon foam material in the construction of the tool. The heating of the tools of the present invention can result in the partial or total curing of a composite part formed thereon.
  • The tools of the present invention may be comprised, at least in part, from carbon foam materials that are electrically conductive or permeable to the passage of fluids. These carbon foam materials can be both electrically conductive and permeable to the passage of fluids. The carbon foam materials are an intrinsic part of the construction of these tool bodies and are not add-on devices. By intrinsic part it is meant that the body of a tool of the present invention would not be substantive without the inclusion of such electrically conductive or permeable carbon foam materials.
  • Carbon foam is typically a strong, electrically conductive, open-cell, durable, stable, easily machined, resin-bondable, and relatively unreactive lightweight material. Carbon foams can also exhibit very low coefficients of thermal expansion (CTE) which can be essentially equivalent to that of carbon fiber composites. Such CTE equivalency makes the carbon foam especially useful for incorporation into tool bodies for the production of carbon fiber composites. The CTE of carbon foam can be modified by control of the maximum temperature to which the carbon foam is exposed during preparation. Likewise, the electrical conductivity of carbon foam can be modified by control of the maximum temperature to which the carbon foam is exposed during preparation. Also, it is believed that the electrical conductivity of carbon foam can be modified by adding various materials, such as non-electrically conductive particulates, such as glass or sand, to the carbon foam forming materials prior to foam formation to reduce the electrical conductivity of the resultant foam. Alternatively, the electrical conductivity of carbon foam may be modified by adding various materials, such as electrically conductive particulates, such as metal particles, to the carbon foam forming materials prior to foam formation to increase the electrical conductivity of the resultant foam.
  • Carbon foams are materials of very high carbon content that have appreciable void volume. In appearance, excepting color, carbon foams can resemble readily available commercial plastic foams. As with plastic foams, the void volume of carbon foams is located within numerous empty cells. The boundaries of these cells are defined by the carbon structure. These cells typically approximate spheres or ovoids of regular, but not necessarily uniform, size, shape, distribution, and orientation. The void volumes in these cells typically connect directly to neighboring void volumes. Such an arrangement is referred to as an open-cell foam. The carbon in these foams forms a structure that is continuous in three dimensions across the material. Typically, the cells in carbon foams are of a size that is readily visible to the unaided human eye. Also, the void volume of carbon foams is such that it typically occupies much greater than one-half of the carbon foam volume. The regular size, shape, distribution, and orientation of the cells within carbon foam readily distinguishes this material from other materials such as metallurgical cokes. Carbon foams have been prepared from a variety of feedstocks using a variety of processes. For example, feedstocks for carbon foam production have included, but are not limited to, pitches, coals, and coal derivatives. Likewise, processes for the production of carbon foams from each of these feedstocks have been identified. Most of these processes include exposure of the carbon foam to an elevated temperature, sometimes a great as about 3000° C., after preparation of the foam.
  • Carbon foam can be incorporated in the tools of the present invention such that a surface of the carbon defines a tool face. The carbon foam defining the tool face can be filled with a cell-filling material such as a resin or pitch to result in a sealed or otherwise impermeable surface. Other outer surfaces of the carbon foam can also be sealed in a similar manner. The other outer surfaces of the carbon foam can also be sealed by laminating an impervious material to the carbon surface. Alternatively, a surface of the carbon foam can support another material, a tool-face material, which then defines the tool face.
  • With reference now to FIG. 1, there is shown a self-heating tool in accordance with an embodiment of the invention and designated generally by the reference numeral 10. The self-heating tool 10 includes a tool body 12 having a tool face 14. The tool body 12 comprises an electrically conductive carbon foam material 16. Preferably, the electrical resistance of the electrically conductive carbon foam material 16 is such that excessive electrical power is not required for heating. The self heating tool 10 is constructed such that passage of an electrical current through the electrically conductive carbon foam material 16 heats the tool face 14 of the tool body 12. An electrical power source 18 is connected to the electrically conductive carbon foam material 16 through electrical connections 18 a and 18 b. Multiple electrical connections may be used. These connections can include any connector that provides for the transfer of electrical current from the power source to the electrically conductive carbon foam material. Such connectors may include, but are not limited to, wires, cables, combinations of wire and cables, commonly known terminal connectors, bus bars, and other similar connectors. Such connections may be located advantageously to produce the desired electrical current flow through the electrically conductive carbon foam material. As electrical current passes through the electrically conductive carbon foam material 16, heat is generated and transferred to the tool face 14. The heating of the tool face 14 then results in a heat transfer to, and a heating of, the composite forming materials on the tool face.
  • Preferably, the electrically conductive carbon foam material is distributed in the tool body such that it uniformly heats the entire tool face 12. In certain embodiments the electrically conductive carbon foam material should be distributed and arranged such that heat being transferred to the tool face results in substantially even curing or heating of the composite forming materials on the tool face. The configuration of the electrically conductive carbon foam material can vary widely depending upon such factors as the size, shape, and thickness of the resulting composite part. Thicker areas of the composite part may require the application of greater heat in that area of the tool face as compared to other areas of the tool face in order for all areas of the part to effectively cure at the same temperature and rate. In some embodiments, the wattage density across the tool face is relatively equal. Further, in some instances a relatively uniform wattage density may be obtained by providing a relatively uniform current density across the tool face. Additionally, a relatively uniform wattage density across the tool face may be obtained by applying electrical currents of differing magnitudes to volumes of carbon foam having differing resistances.
  • One or more thermostats 20 may be used to monitor and control the temperature of the tool face 12 by monitoring the temperature of the tool face 12 and adjusting the electrical power applied to the electrically conductive carbon foam material 16. The electrically conductive carbon foam material 16 may define the tool face 14. That is, a surface of the electrically conductive carbon foam material 16 of the tool body 12 may comprise the tool face 14. Alternatively, the electrically conductive carbon foam material 16 may support another material which defines the tool face 14.
  • The tool body 12 may be composed of an electrically conductive carbon foam material 16 in the form of a sheet, plate, block, or layer deposited on a support material 17. The carbon foam may consist of pieces of carbon foam that are bonded together with conductive or nonconductive resins or high temperature adhesives such that the desired electrically conductive pathways are present. Preferably, the electrical resistance of the material is such that excessive electrical power is not required for heating. This conductive material may be shaped or formed to define a tool face 14. Alternatively, this material may support a relatively thin layer of another material, a tool face material, which defines the tool face 14. In either configuration, the electrically conductive carbon foam material 16 comprises or underlies the entire tool face. Preferably, this electrically conductive carbon foam material 16 will produce uniform heating of the entire tool face 14.
  • For non-planer tool faces, such uniform heating may be provided by varying the conductive material thickness across the tool face such that the electrical current density is uniform across the tool face. Thermostats 20 may be used to monitor and control the heating of the electrically conductive carbon foam material 16.
  • In use, a mixture of composite forming materials is positioned, as desired, on the tool face 14. Electrical connections 18 a and 18 b are made to the electrically conductive carbon foam material 16, from an electrical power source 18, such that an electrical current flows though the electrically conductive carbon foam material and across the tool face. Heat generated in this electrically conductive carbon foam material 16 transfers across any tool face material and to the composite forming materials. This transferred heat increases the temperature of the composite forming materials such that a cured composite is formed. During this process, temperature may be monitored and controlled by the thermostat 20 such that over-heating of the composite and/or composite forming materials does not occur.
  • Turning now to FIG. 2, there is shown another embodiment of a self-heating tool and designated generally by the reference numeral 100. The self-heating tool 100 includes a tool body 120 having a tool face 140. The tool body 120 comprises a fluid permeable carbon foam material 160. Preferably, the fluid permeable carbon foam material 160 has a porosity such that heated fluids or gases may pass through the fluid permeable carbon foam material and the fluid permeable carbon foam material transfers heat from the heated fluids or gases to the tool face 140 which in turn transfers heat to the composite part. Preferably, the porosity of the fluid permeable carbon foam material 160 is such that excessive pressures are not required to obtain adequate and/or desired volumes of fluid flow. Holes may be formed in the fluid permeable carbon foam material 160 such that fluid flow pressure drop across the fluid permeable carbon foam material is decreased. Preferably, the fluid permeable carbon foam material 160 is positioned in the tool body 120 such that the entire tool face 140 is uniformly heated. The fluid permeable carbon foam material 160 of the present invention may define the tool face 140. That is, a surface of the fluid permeable carbon foam material 160 of the tool body 120 may comprise the tool face 140. Alternatively, the fluid permeable carbon foam material 160 may support another material which defines the tool face 140.
  • The self heating tool 100 is constructed such that passage of a heated fluid or gas through the fluid permeable carbon foam material 160 heats the tool face 140 of the tool body 120. A pump 180 may supply hot or heated fluid or gases from a heated fluid supply 200 to the tool body 120 through a fluid inlet port 220 connected to one portion of the fluid permeable carbon foam material 160. The heated fluid supply 200 may include heaters 210 for heating the fluid. A fluid exhaust port 240 is connect to a second portion of the fluid permeable carbon foam material 160 and allows for the fluid or gas to exit the permeable material 160. In certain embodiments, the fluid inlet port 220 and fluid exhaust port 240 are connected to the fluid permeable carbon foam material 160 such that the hot or heated fluid or gases pass through the fluid permeable carbon foam material 160 of the tool body 120 to result in heating of the tool face 140. Multiple fluid inlet ports and outlet ports may be used. In some embodiments the fluid exhaust port 240 returns the fluid to the heated fluid supply 200 for reheating. Edges and surfaces of the fluid permeable carbon foam material 160 are preferably sealed such that the fluid is not admitted or discharged except through the ports 220 and 240. Such sealing may be accomplished by coating the surfaces with materials that eliminate the surface porosity of the fluid permeable carbon foam material. Such materials can include, but are not limited to, cured resins and the like. One or more thermostats 260 may be used to monitor and control the temperature of the tool face 140 by communicating with heaters 210 to adjust the temperature of the fluid. Heated fluids may include, but are not limited to, gases and/or liquids such as steam and heated gases, including air and/or process exhausts, and liquids, including water and/or oil.
  • The tool body 120 may be composed of a fluid permeable carbon foam material 160 in the form of a plate or block. The carbon foam may consist of pieces of carbon foam that are bonded together with resins or high temperature adhesives such that the desired fluid transport pathways are present. A surface of this fluid permeable carbon foam material 160 may be shaped or formed to define a tool face 140. Alternatively, this material may support a relatively thin layer of another material, a tool face material, which defines the tool face. In either configuration, the permeable material 160 comprises or underlies the entire tool face 140. Opposite sides or edges of the fluid permeable carbon foam material may be equipped with fluid inlet and exhaust ports.
  • Preferably, the flow of heated fluid through the fluid permeable carbon foam material will produce uniform heating of the entire tool face. For non-planer tool faces, such uniform heating may be provided by varying the flow pressure drop in the permeable material across specific areas of the tool face such that heated fluid flow is uniform across the tool face. The fluid flow pressure drop in the permeable material will vary with the permeable material thickness. Thermostats may be used to monitor and control the heating/temperature of the tool face and/or fluid.
  • In use, a mixture of composite forming materials is positioned, as desired, on the tool face 140. The tool face 140 may include a surface of a relatively thin carbon fiber composite, in this example a tool face material, supported by a permeable material 160 made from a carbon foam block. Connections are made to the fluid inlet 220 and exhaust ports 240 positioned on the carbon foam block such that a heated fluid flows though the carbon foam block and thus across the carbon foam block volume underlying the tool face. The heated fluid is supplied from a source of heated fluid such as, but not limited to, a reservoir, process stream, or the like. The heated fluid may be forced through the carbon foam block by use of a pump, gravity, or the like. Holes may have been previously formed in the carbon foam block to lower the fluid flow pressure drop. The heat contained in the heated fluid transfers across the tool face material and to the composite forming materials. This transferred heat increases the temperature of the composite forming materials such that a cured composite is formed. During this process, the temperature of the heated fluid is monitored and controlled such that over-heating of the composite and/or composite forming materials does not occur.
  • Tooling may be used to fabricate composite parts of various types, shapes, sizes and materials with a high dimensional accuracy. The design of the tooling typically is dependent on the desired shape of the composite part to be formed, the materials used to form the composite part, the amount of strength and rigidity which the tooling must have to support the materials necessary for forming the composite part, and/or the method used to provide the materials for forming the composite part.
  • In practice, materials comprising the composite are placed upon the tool face by any of a number of procedures known to those skilled in the art. Typically the composites utilize a resin(s) as the matrix material and fiber as the reinforcing material. But, a resin(s) and a particulate(s) can also be used, respectively, as the matrix and reinforcing material. Sometimes fiber placement is closely controlled such that the resulting composite part exhibits a preferred fiber spacing and/or orientation. The fiber and resin may be mixed or otherwise combined prior to placement on the tool face. Alternatively, the fiber may be placed on the tool face and the resin subsequently infused into the fiber by any of a number of procedures. In some instances, prior to the placement of materials which comprise the composite, the tool face may be covered with a thin sheet of material, sometimes referred to as a parting sheet or release film, which forms closely to the tool face. Such sheets can be considered to be a temporary coating on the tool face. The surface of this sheet that is not in contact with the tool face, that is, the outside surface of the sheet, then effectively becomes the tool face. Such sheets may be used to protect the tool face and/or to provide for easier removal, or release, of the formed composite part. Alternatively, the materials comprising the composite may be prevented from bonding to the tool face by coating the tool face with a release agent. Release agents can include various polymers, including PVA, and waxes, among other materials. Release films are composed of any of a number of polymeric materials that do not bond with any of the materials comprising the composite. Many types of release materials, compounds, and agents are known in the associated arts and may be used with the present invention.
  • The dimensions of the tool face are such that a surface of the materials comprising the composite, typically a fiber containing resin, is effectively molded into the desired shape and dimensions. The resin(s) included in the materials comprising the composite is subsequently cured, typically by the application of heat, to yield a solid composite part having a surface of the shape and dimensions imparted by the tool face.
  • The above description is not to be considered limiting in any way and is only illustrative of certain embodiments of the invention. The present invention may be varied in may ways without departing from the scope of the invention and is only limited by the following claims.

Claims (21)

1. A tool comprising:
a tool body defining a tool face and comprising an electrically conductive carbon foam material; and
electrical connections connected to one portion of the electrically conductive carbon foam material and a second portion of the electrically conductive carbon foam material.
2. The tool of claim 1, further comprising a power source adapted to be connected to the electrical connections.
3. The tool of claim 1, wherein the electrically conductive carbon foam material provides substantially even heating of the tool face when current flow through the carbon foam is produced by the power source.
4. The tool of claim 1, wherein a surface of the electrically conductive carbon foam material defines the tool face.
5. The tool of claim 1, wherein the tool body consists essentially of carbon foam.
6. The tool of claim 1, wherein the tool face comprises a tool face material.
7. The tool of claim 1, further comprising a thermostat in communication with the tool face and the power source, wherein the thermostat monitors the temperature of the tool face and adjusts the power of the power source.
8. A tool comprising:
a tool body defining a tool face and comprising a fluid permeable carbon foam material; and
a fluid inlet port connected to one portion of the fluid permeable carbon foam material.
9. The tool of claim 8, wherein the fluid permeable carbon foam material provides substantially even heating of the surface of the tool face when heated fluid is passed through the fluid permeable carbon foam.
10. The tool of claim 8, wherein a surface of the fluid permeable carbon foam material defines the tool face.
11. The tool of claim 8, wherein the tool body consists essentially of carbon foam.
12. The tool of claim 8, wherein the tool face comprises a tool face material.
13. The tool of claim 8, further comprising a fluid exhaust port connected to a second portion of the fluid permeable carbon foam material.
14. The tool of claim 8, further comprising a pump adapted to be in fluid communication with the fluid inlet port.
15. The tool of claim 8, further comprising:
a pump adapted to be in fluid communication with fluid inlet port; and
a heated fluid supply in fluid communication with the pump.
16. The tool of claim 15, further comprising a thermostat in communication with the tool face and the heated fluid supply, wherein the thermostat monitors the temperature of the tool face and adjusts the temperature of the heated fluid supply.
17. A tool comprising:
a tool body defining a tool face, wherein the tool face is substantially uniformly heated by the tool body.
18. The tool of claim 17, wherein the tool body comprises electrically conductive carbon foam material.
19. The tool of claim 18, wherein the electrically conductive carbon foam material provides substantially uniform heating across the tool face when current is applied to the electrically conductive carbon foam material.
20. The tool of claim 17, wherein the tool body comprises fluid permeable carbon foam material.
21. The tool of claim 20, wherein the fluid permeable carbon foam material provides a substantially uniform heating of the tool face when a heated fluid is passed through the fluid permeable carbon foam material.
US11/073,119 2004-03-04 2005-03-04 Tool bodies having heated tool faces Abandoned US20050196481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/073,119 US20050196481A1 (en) 2004-03-04 2005-03-04 Tool bodies having heated tool faces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54956304P 2004-03-04 2004-03-04
US11/073,119 US20050196481A1 (en) 2004-03-04 2005-03-04 Tool bodies having heated tool faces

Publications (1)

Publication Number Publication Date
US20050196481A1 true US20050196481A1 (en) 2005-09-08

Family

ID=34964672

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/073,119 Abandoned US20050196481A1 (en) 2004-03-04 2005-03-04 Tool bodies having heated tool faces

Country Status (2)

Country Link
US (1) US20050196481A1 (en)
WO (1) WO2005089021A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063378A1 (en) * 2005-09-16 2007-03-22 O'donoghue Joseph Compound tooling system for molding applications
WO2009035909A1 (en) * 2007-09-11 2009-03-19 Graftech International Holdings Inc. Coated carbon foam article
US20100062099A1 (en) * 2006-12-07 2010-03-11 Fachhochschule Dortmund Molding tool for original shaping or reshaping of components composed of materials that can be thermally influenced
US20100104496A1 (en) * 2004-10-21 2010-04-29 Miller Douglas J High strength monolithic carbon foam
US20110183155A1 (en) * 2010-01-22 2011-07-28 Toyota Jidosha Kabushiki Kaisha Mold, solidified body, and methods of manufacture thereof
US20120319335A1 (en) * 2009-11-13 2012-12-20 Nilsson Bjoern Pulp Mould Comprising Heating Element with Sintered Necks
US8372510B2 (en) 2004-10-21 2013-02-12 Graftech International Holdings Inc. High strength monolithic carbon foam
US20130099089A1 (en) * 2011-10-19 2013-04-25 Kunshan Yurong Electronics Co., Ltd. Mould assembly with a heating device
DE102015115782A1 (en) * 2015-09-18 2017-03-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mold and method for the manufacture of a molded component
US20170238367A1 (en) * 2016-02-15 2017-08-17 General Electric Company Integrated Conductive Foam Core for Composite Processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20110117A1 (en) * 2011-04-14 2012-10-15 Univ Padova QUICK HEATING AND COOLING OF MOLDS FOR POLYMERIC MATERIALS

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2579898A (en) * 1949-05-03 1951-12-25 Brucker Milton Mold for heat curing thermosetting resins
US2903389A (en) * 1956-08-03 1959-09-08 Fujita Toshitsune Method of molding reinforced plastics
US3248758A (en) * 1964-05-15 1966-05-03 Gen Electric Mold for the manufacture of polyurethane foam articles
US3309437A (en) * 1961-08-28 1967-03-14 Great Lakes Carbon Corp Method of producing bodies from raw petroleum coke
US3387333A (en) * 1965-01-27 1968-06-11 Lockheed Aircraft Corp Electrically heated mold
US3387940A (en) * 1963-08-29 1968-06-11 Union Carbide Corp High-strength carbon foam
US3558344A (en) * 1968-04-19 1971-01-26 Atomic Energy Commission Carbonaceous coating for carbon foam
US3632385A (en) * 1970-03-17 1972-01-04 Atomic Energy Commission Carbon composite structures and method for making same
USRE28574E (en) * 1967-12-15 1975-10-21 Fiber reinforced hot pressing molds
US4134942A (en) * 1975-12-24 1979-01-16 Outboard Marine Corporation Method for producing foamed articles
US4190637A (en) * 1978-07-18 1980-02-26 The United States Of America As Represented By The United States Department Of Energy Graphite having improved thermal stress resistance and method of preparation
US4231901A (en) * 1978-06-23 1980-11-04 Charleswater Products, Inc. Electrically conductive foam and method of preparation and use
US4489913A (en) * 1984-03-19 1984-12-25 The Dow Chemical Company Electroconductive foams
US4496131A (en) * 1982-01-07 1985-01-29 Yang Wen Jei Apparatus for injection molding a foamed resin product having a smooth surface involving surface heating of the mold by applying high current low voltage electric power
US4496627A (en) * 1981-11-25 1985-01-29 Fujimori Kogyo Co., Ltd. Electrical conductive foam beads and molded electrical conductive foamed articles obtained therefrom
US4505973A (en) * 1983-12-08 1985-03-19 The United States Of America As Represented By The United States Department Of Energy Electrically conductive rigid polyurethane foam
US4586690A (en) * 1983-07-13 1986-05-06 Metzeler Kautschuk Gmbh Apparatus for the manufacture of molded parts from molding compounds
US4619796A (en) * 1983-12-08 1986-10-28 Oji Paper Company, Ltd. Process for preparation of porous carbon plates
US4681718A (en) * 1984-05-09 1987-07-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4824617A (en) * 1986-07-30 1989-04-25 Inoue Mtp Kabushiki Kaisha Method for manufacturing plastic foam
US4851280A (en) * 1988-04-01 1989-07-25 E. I. Du Pont De Nemours And Company Composite tooling for composites manufacture
US4879182A (en) * 1988-10-24 1989-11-07 Ethyl Corporation Method of coating carbon bodies
US4942013A (en) * 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
US4999385A (en) * 1989-07-13 1991-03-12 The Dow Chemical Company Carbonaceous foams
US5073589A (en) * 1989-12-21 1991-12-17 Dimitrije Milovich Composite backing structure for spray metal tooling
US5082436A (en) * 1989-07-14 1992-01-21 General Electric Company Apparatus for deforming thermoplastic material using RF heating
US5189781A (en) * 1990-08-03 1993-03-02 Carnegie Mellon University Rapid tool manufacturing
US5211786A (en) * 1990-12-21 1993-05-18 W. R. Grace & Co.-Conn. Use of permeable materials to improve hot pressing process
US5227180A (en) * 1991-10-07 1993-07-13 Tisack Michael D Apparatus for applying an electric field
US5282734A (en) * 1990-06-13 1994-02-01 Aerospatiale Societe Nationale Industrielle Mandrel for manufacturing a hollow composite material body
US5472639A (en) * 1993-08-13 1995-12-05 The Dow Chemical Company Electroconductive foams
US5648027A (en) * 1993-11-01 1997-07-15 Osaka Gas Company Ltd. Porous carbonaceous material and a method for producing the same
US5686038A (en) * 1995-06-06 1997-11-11 The Boeing Company Resin transfer molding of composite materials that emit volatiles during processing
US5709893A (en) * 1995-06-06 1998-01-20 The Boeing Company Breathable tooling for forming parts from volatile-emitting composite materials
US5730915A (en) * 1993-12-08 1998-03-24 Massachusetts Institute Of Technology Method for preparation of casting tooling
US5817267A (en) * 1995-11-13 1998-10-06 General Magnaplate Corporation Fabrication of tooling by thermal spraying
US5868974A (en) * 1997-11-27 1999-02-09 The United States Of America As Represented By The Secretary Of The Air Force Process for preparing pitch foams
US5984256A (en) * 1994-06-28 1999-11-16 Nichiha Corporation Mold and method for manufacturing an inorganic board
US5989492A (en) * 1994-12-19 1999-11-23 Aga Aktiebolag Process including heating and cooling for production of an injection-moulded body
US6024555A (en) * 1995-10-30 2000-02-15 The Boeing Company Tooling having compliant forming surface for forming resin composites
US6093245A (en) * 1996-12-17 2000-07-25 Saint-Gobain Industrial Ceramics, Inc. Method for growing crystal
US6099792A (en) * 1998-10-07 2000-08-08 Yazaki Corporation Sol-gel process using porous mold
US6174481B1 (en) * 1998-09-10 2001-01-16 Lear Automotive Dearborn, Inc. Method for forming cast tooling for polymer molding
US6183854B1 (en) * 1999-01-22 2001-02-06 West Virginia University Method of making a reinforced carbon foam material and related product
US6241957B1 (en) * 1995-05-31 2001-06-05 West Virginia University Method of making a carbon foam material and resultant product
US6258864B1 (en) * 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
US6387343B1 (en) * 1997-09-02 2002-05-14 Ut-Battelle, Llc Pitch-based carbon foam and composites
US20030000486A1 (en) * 1997-09-02 2003-01-02 Ott Ronald D. Carbon or graphite foam as a heating element and system thereof
US6547547B2 (en) * 2000-02-01 2003-04-15 Daisen Industry Co., Ltd. Apparatus for molding composite foam molding element
US6656238B1 (en) * 1999-12-02 2003-12-02 Touchstone Research Lab. Coal-based carbon foam
US6672125B2 (en) * 2000-03-20 2004-01-06 The Boeing Company Invar tooling
US20040258605A1 (en) * 1999-12-02 2004-12-23 Joseph Brian E. Composite tooling
US20050003195A1 (en) * 1999-12-02 2005-01-06 Joseph Brian E. Carbon foam composite tooling and methods for using the same
US20050008862A1 (en) * 1999-12-02 2005-01-13 Joseph Brian E. Carbon foam composite tooling and methods for using the same
US20060014908A1 (en) * 2002-09-17 2006-01-19 Basf Aktiengesellschaft Foam material consisting predominantly of carbon having a high inner surface and method for the production thereof
US20060279014A1 (en) * 2003-05-20 2006-12-14 Balchin Ian H Making foamed bodies
US20100136292A1 (en) * 1999-12-02 2010-06-03 Touchstone Research Laboratory, Ltd. Carbon Foam and Graphite Composite Tooling
US7776430B2 (en) * 2004-10-21 2010-08-17 Graftech International Holdings Inc. Carbon foam tooling with durable skin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143215A (en) * 1996-09-18 2000-11-07 Vec Technology, Inc. Method and apparatus for molding composite articles

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2579898A (en) * 1949-05-03 1951-12-25 Brucker Milton Mold for heat curing thermosetting resins
US2903389A (en) * 1956-08-03 1959-09-08 Fujita Toshitsune Method of molding reinforced plastics
US3309437A (en) * 1961-08-28 1967-03-14 Great Lakes Carbon Corp Method of producing bodies from raw petroleum coke
US3387940A (en) * 1963-08-29 1968-06-11 Union Carbide Corp High-strength carbon foam
US3248758A (en) * 1964-05-15 1966-05-03 Gen Electric Mold for the manufacture of polyurethane foam articles
US3387333A (en) * 1965-01-27 1968-06-11 Lockheed Aircraft Corp Electrically heated mold
USRE28574E (en) * 1967-12-15 1975-10-21 Fiber reinforced hot pressing molds
US3558344A (en) * 1968-04-19 1971-01-26 Atomic Energy Commission Carbonaceous coating for carbon foam
US3632385A (en) * 1970-03-17 1972-01-04 Atomic Energy Commission Carbon composite structures and method for making same
US4134942A (en) * 1975-12-24 1979-01-16 Outboard Marine Corporation Method for producing foamed articles
US4231901A (en) * 1978-06-23 1980-11-04 Charleswater Products, Inc. Electrically conductive foam and method of preparation and use
US4190637A (en) * 1978-07-18 1980-02-26 The United States Of America As Represented By The United States Department Of Energy Graphite having improved thermal stress resistance and method of preparation
US4496627A (en) * 1981-11-25 1985-01-29 Fujimori Kogyo Co., Ltd. Electrical conductive foam beads and molded electrical conductive foamed articles obtained therefrom
US4496131A (en) * 1982-01-07 1985-01-29 Yang Wen Jei Apparatus for injection molding a foamed resin product having a smooth surface involving surface heating of the mold by applying high current low voltage electric power
US4586690A (en) * 1983-07-13 1986-05-06 Metzeler Kautschuk Gmbh Apparatus for the manufacture of molded parts from molding compounds
US4505973A (en) * 1983-12-08 1985-03-19 The United States Of America As Represented By The United States Department Of Energy Electrically conductive rigid polyurethane foam
US4619796A (en) * 1983-12-08 1986-10-28 Oji Paper Company, Ltd. Process for preparation of porous carbon plates
US4489913A (en) * 1984-03-19 1984-12-25 The Dow Chemical Company Electroconductive foams
US4681718A (en) * 1984-05-09 1987-07-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4824617A (en) * 1986-07-30 1989-04-25 Inoue Mtp Kabushiki Kaisha Method for manufacturing plastic foam
US4851280A (en) * 1988-04-01 1989-07-25 E. I. Du Pont De Nemours And Company Composite tooling for composites manufacture
US4879182A (en) * 1988-10-24 1989-11-07 Ethyl Corporation Method of coating carbon bodies
US4942013A (en) * 1989-03-27 1990-07-17 Mcdonnell Douglas Corporation Vacuum resin impregnation process
US4999385A (en) * 1989-07-13 1991-03-12 The Dow Chemical Company Carbonaceous foams
US5082436A (en) * 1989-07-14 1992-01-21 General Electric Company Apparatus for deforming thermoplastic material using RF heating
US5073589A (en) * 1989-12-21 1991-12-17 Dimitrije Milovich Composite backing structure for spray metal tooling
US5282734A (en) * 1990-06-13 1994-02-01 Aerospatiale Societe Nationale Industrielle Mandrel for manufacturing a hollow composite material body
US5189781A (en) * 1990-08-03 1993-03-02 Carnegie Mellon University Rapid tool manufacturing
US5211786A (en) * 1990-12-21 1993-05-18 W. R. Grace & Co.-Conn. Use of permeable materials to improve hot pressing process
US5227180A (en) * 1991-10-07 1993-07-13 Tisack Michael D Apparatus for applying an electric field
US5472639A (en) * 1993-08-13 1995-12-05 The Dow Chemical Company Electroconductive foams
US5648027A (en) * 1993-11-01 1997-07-15 Osaka Gas Company Ltd. Porous carbonaceous material and a method for producing the same
US5937932A (en) * 1993-12-08 1999-08-17 Massachusetts Institute Of Technology Casting tooling
US5730915A (en) * 1993-12-08 1998-03-24 Massachusetts Institute Of Technology Method for preparation of casting tooling
US5984256A (en) * 1994-06-28 1999-11-16 Nichiha Corporation Mold and method for manufacturing an inorganic board
US5989492A (en) * 1994-12-19 1999-11-23 Aga Aktiebolag Process including heating and cooling for production of an injection-moulded body
US6241957B1 (en) * 1995-05-31 2001-06-05 West Virginia University Method of making a carbon foam material and resultant product
US6346226B1 (en) * 1995-05-31 2002-02-12 West Virginia University Method of making a carbon foam material and resultant product
US5709893A (en) * 1995-06-06 1998-01-20 The Boeing Company Breathable tooling for forming parts from volatile-emitting composite materials
US6861017B1 (en) * 1995-06-06 2005-03-01 The Boeing Company Method for forming composite parts from volatile-emitting materials using breathable tooling
US5686038A (en) * 1995-06-06 1997-11-11 The Boeing Company Resin transfer molding of composite materials that emit volatiles during processing
US6024555A (en) * 1995-10-30 2000-02-15 The Boeing Company Tooling having compliant forming surface for forming resin composites
US5817267A (en) * 1995-11-13 1998-10-06 General Magnaplate Corporation Fabrication of tooling by thermal spraying
US6093245A (en) * 1996-12-17 2000-07-25 Saint-Gobain Industrial Ceramics, Inc. Method for growing crystal
US20030000486A1 (en) * 1997-09-02 2003-01-02 Ott Ronald D. Carbon or graphite foam as a heating element and system thereof
US6387343B1 (en) * 1997-09-02 2002-05-14 Ut-Battelle, Llc Pitch-based carbon foam and composites
US5868974A (en) * 1997-11-27 1999-02-09 The United States Of America As Represented By The Secretary Of The Air Force Process for preparing pitch foams
US6174481B1 (en) * 1998-09-10 2001-01-16 Lear Automotive Dearborn, Inc. Method for forming cast tooling for polymer molding
US6099792A (en) * 1998-10-07 2000-08-08 Yazaki Corporation Sol-gel process using porous mold
US6258864B1 (en) * 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
US6183854B1 (en) * 1999-01-22 2001-02-06 West Virginia University Method of making a reinforced carbon foam material and related product
US6656238B1 (en) * 1999-12-02 2003-12-02 Touchstone Research Lab. Coal-based carbon foam
US20040258605A1 (en) * 1999-12-02 2004-12-23 Joseph Brian E. Composite tooling
US20050003195A1 (en) * 1999-12-02 2005-01-06 Joseph Brian E. Carbon foam composite tooling and methods for using the same
US20050008862A1 (en) * 1999-12-02 2005-01-13 Joseph Brian E. Carbon foam composite tooling and methods for using the same
US6849098B1 (en) * 1999-12-02 2005-02-01 Touchstone Research Laboratory, Ltd. Composite tooling
US20100136292A1 (en) * 1999-12-02 2010-06-03 Touchstone Research Laboratory, Ltd. Carbon Foam and Graphite Composite Tooling
US6547547B2 (en) * 2000-02-01 2003-04-15 Daisen Industry Co., Ltd. Apparatus for molding composite foam molding element
US6672125B2 (en) * 2000-03-20 2004-01-06 The Boeing Company Invar tooling
US20060014908A1 (en) * 2002-09-17 2006-01-19 Basf Aktiengesellschaft Foam material consisting predominantly of carbon having a high inner surface and method for the production thereof
US20060279014A1 (en) * 2003-05-20 2006-12-14 Balchin Ian H Making foamed bodies
US7776430B2 (en) * 2004-10-21 2010-08-17 Graftech International Holdings Inc. Carbon foam tooling with durable skin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AtoZ material, describing properties of nickel, October 29, 2003, Abstracted from Handbook of Engineering material, 5th edition. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104496A1 (en) * 2004-10-21 2010-04-29 Miller Douglas J High strength monolithic carbon foam
US8372510B2 (en) 2004-10-21 2013-02-12 Graftech International Holdings Inc. High strength monolithic carbon foam
US7972129B2 (en) * 2005-09-16 2011-07-05 O'donoghue Joseph Compound tooling system for molding applications
US20070063378A1 (en) * 2005-09-16 2007-03-22 O'donoghue Joseph Compound tooling system for molding applications
US20100062099A1 (en) * 2006-12-07 2010-03-11 Fachhochschule Dortmund Molding tool for original shaping or reshaping of components composed of materials that can be thermally influenced
US8931751B2 (en) * 2006-12-07 2015-01-13 Fibertemp GmbH & Co.KG Molding tool for original shaping or reshaping of components composed of materials that can be thermally influenced
EP2188119A4 (en) * 2007-09-11 2013-03-20 Graftech Int Holdings Inc Coated carbon foam article
WO2009035909A1 (en) * 2007-09-11 2009-03-19 Graftech International Holdings Inc. Coated carbon foam article
EP2188119A1 (en) * 2007-09-11 2010-05-26 GrafTech International Holdings Inc. Coated carbon foam article
US20110020631A1 (en) * 2007-09-11 2011-01-27 Douglas J Miller Coated Carbon Foam Article
US20120319335A1 (en) * 2009-11-13 2012-12-20 Nilsson Bjoern Pulp Mould Comprising Heating Element with Sintered Necks
US8646745B2 (en) * 2010-01-22 2014-02-11 Toyota Jidosha Kabushiki Kaisha Mold, solidified body, and methods of manufacture thereof
US20110183155A1 (en) * 2010-01-22 2011-07-28 Toyota Jidosha Kabushiki Kaisha Mold, solidified body, and methods of manufacture thereof
US20130099089A1 (en) * 2011-10-19 2013-04-25 Kunshan Yurong Electronics Co., Ltd. Mould assembly with a heating device
DE102015115782A1 (en) * 2015-09-18 2017-03-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mold and method for the manufacture of a molded component
DE102015115782B4 (en) 2015-09-18 2019-05-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mold and method for the manufacture of a molded component
US20170238367A1 (en) * 2016-02-15 2017-08-17 General Electric Company Integrated Conductive Foam Core for Composite Processing
CN107097371A (en) * 2016-02-15 2017-08-29 通用电气公司 Integrated electrically conducting foam core for Compound Machining

Also Published As

Publication number Publication date
WO2005089021A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US20050196481A1 (en) Tool bodies having heated tool faces
DK2099596T4 (en) Molding tools for the basic or transformative design of building elements of thermally inflatable materials
US5587231A (en) Syntactic foam core material and method of manufacture
US8511362B2 (en) Consolidating and curing of thermoset composite parts by pressing between a heated rigid mold and customized rubber-faced mold
KR100980530B1 (en) Bulk resin infusion system apparatus and method
US5773121A (en) Syntactic foam core incorporating honeycomb structure for composites
FI65522B (en) SKIKTAT SJAELVREGLERANDE UPPVAERMNINGSFOEREMAOL
US5009687A (en) Method of molding a composite article using softened glass as a pressure transmitting medium
AU2003303991B2 (en) Connection between members
CA2453411A1 (en) Apparatus for making composite structures and method of making same
KR930000656B1 (en) Plate heat exchanger
JP7182845B2 (en) Addition of polymer nanoparticles in the field of resin modification
US5902756A (en) Ceramic matrix composites with integrated topcoat layers
BR112018014052B1 (en) HYBRID CONTACT MOLD AND METHOD FOR MANUFACTURING A HYBRID CONTACT MOLD
CN105592996B (en) mould for wind turbine component
US4983341A (en) Method of using breather materials for high pressure molding
GB2172542A (en) Moulds
WO2010077551A2 (en) Sintered diamond heat exchanger apparatus
JP6779051B2 (en) Composite sandwich panels and related manufacturing methods
US4983345A (en) Method of high temperature molding using a thermal barrier
Gu et al. Temperature distribution and curing behaviour of carbon fibre/epoxy composite during vacuum assisted resin infusion moulding using rapid heating methods
CN106463800B (en) Method for the transmission equipment of energy storage device and for manufacturing energy storage device
US11065828B2 (en) Method and system for fabricating a composite structure
CN202902970U (en) Delanium graphite heat dissipation base plate
US6036464A (en) Heat blanket buffer assembly

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION