US20050192309A1 - Method of preventing abuse of opioid dosage forms - Google Patents

Method of preventing abuse of opioid dosage forms Download PDF

Info

Publication number
US20050192309A1
US20050192309A1 US10/665,735 US66573503A US2005192309A1 US 20050192309 A1 US20050192309 A1 US 20050192309A1 US 66573503 A US66573503 A US 66573503A US 2005192309 A1 US2005192309 A1 US 2005192309A1
Authority
US
United States
Prior art keywords
opioid
naltrexone
dosage form
oral dosage
opioid agonist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/665,735
Inventor
Philip Palermo
Robert Colucci
Robert Kaiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22082844&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050192309(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
US case filed in Virginia Western District Court litigation https://portal.unifiedpatents.com/litigation/Virginia%20Western%20District%20Court/case/1%3A08-cv-00050 Source: District Court Jurisdiction: Virginia Western District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/665,735 priority Critical patent/US20050192309A1/en
Publication of US20050192309A1 publication Critical patent/US20050192309A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse

Definitions

  • Opioids also known as opioid agonists, are a group of drugs that exhibit opium or morphine-like properties.
  • the opioids are employed primarily as moderate to strong analgesics, but have many other pharmacological effects as well, including drowsiness, respiratory depression, changes in mood and mental clouding without a resulting loss of consciousness.
  • Opioids act as agonists, interacting with stereospecific and saturable binding sites in the brain and other tissues.
  • Endogenous opioid-like peptides are present particularly in areas of the central nervous system that are presumed to be related to the perception of pain; to movement, mood and behavior, and to the regulation of neuroendocrinological functions.
  • Opium contains more than twenty distinct alkaloids. Morphine, codeine and papaverine are included in this group.
  • opioids The potential for the development of tolerance and physical dependence with repeated opioid use is a characteristic feature of all the opioid drugs, and the possibility of developing psychological dependence (i.e., addiction) is one of the major concerns in the use of the treatment of pain with opioids, even though iatrogenic addiction is rare.
  • Another major concern associated with the use of opioids is the diversion of these drugs from the patient in pain to another (non-patient) for recreational purposes, e.g., to an addict.
  • the overall abuse potential of an opioid is not established by any one single factor. Instead, there is a composite of factors, including, the capacity of the drug to produce the kind of physical dependence in which drug withdrawal causes sufficient distress to bring about drug-seeking behavior; the ability to suppress withdrawal symptoms caused by withdrawal from other agents; the degree to which it induces euphoria similar to that produced by morphine and other opioids; the patterns of toxicity that occur when the drug is dosed above its normal therapeutic range; and physical characteristics of the drugs such as water solubility. Such physical characteristics may determine whether the drug is likely to be abused by the parenteral route.
  • the effort to control the compulsive drug user includes efforts to control drug availability by placing restrictions on the use of opioids in the treatment of pain of compulsive drug users.
  • the physician is often faced with a choice of administering potent opioid analgesics even to persons who seem predisposed to develop psychological dependence, i.e., addiction, on such drugs.
  • potent opioid analgesics even to persons who seem predisposed to develop psychological dependence, i.e., addiction, on such drugs.
  • At least three basic patterns of opioid use and dependence have been identified. The first involves individuals whose drug use begins in the context of medical treatment and who obtain their initial supplies through, e.g., physicians. Another pattern begins with experimental or “recreational” drug use and progresses to more intensive use. A third pattern involves users who begin in one or another of the preceding ways but later switch to oral opioids such as methadone, obtained from organized addiction treatment programs.
  • Tolerance refers to the need to increase the dose of opioid over a period of time in order to achieve the same level of analgesia or euphoria, or the observation that repeated administration of the same dose results in decreased analgesia, euphoria, or other opioid effects. It has been found that a remarkable degree of tolerance develops to the respiratory depressant, analgesic, sedative, emetic and euphorigenic effects of opioids. However, the rate at which this tolerance may develop in either an addict or in a patient requiring treatment of pain, depends on the pattern of use. If the opioid is used frequently, it may be necessary to increase the dose.
  • Tolerance does not develop equally or at the same rate to all the effects of opioids, and even users who are highly tolerant to respiratory depressant effects continue to exhibit miosis and constipation. Tolerance to opioids largely disappears when the withdrawal syndrome has been completed.
  • Physical dependence may develop upon repeated administrations or extended use of opioids. Physical dependence is gradually manifested after stopping opioid use or is precipitously manifested (e.g., within 20 minutes) after administration of a narcotic antagonist (referred to “precipitated withdrawal”). Depending upon the drug to which dependence has been established and the duration of use and dose, symptoms of withdrawal vary in number and kind, duration and severity. The most common symptoms of the withdrawal syndrome include anorexia, weight loss, pupillary dilation, chills alternating with excessive sweating, abdominal cramps, nausea, vomiting, muscle spasms, hyperirritability, lachrymation, rinorrhea, goose flesh and increased heart rate. Abstinence syndrome typically begins to occur 24-48 hours after the last dose, and the syndrome reaches its maximum intensity about the third day and may not begin to decrease until the third week.
  • Psychological dependence i.e., addiction
  • opioids are characterized by drug-seeking behavior directed toward achieving euphoria and escape from, e.g., psychosocioeconomic pressures.
  • An addict will continue to administer opioids for non-medicinal purposes and in the face of self-harm.
  • opioid antagonists typically block or reverse all of the effect of opioid agonists.
  • opioid antagonists are as a once-a-day treatment of naltrexone to block euphoric effects that might be otherwise obtained upon administration of opioids to addicts.
  • Small doses of opioid antagonists have been used to determine whether individuals are physically dependent on opioids.
  • opioid antagonists are used to reverse the effects of opoids on individuals who have overdosed on opioid agonist drugs.
  • opioid analgesics There have previously been attempts in the art to control the abuse potential associated with opioid analgesics. Typically, a particular dose of an opioid analgesic is more potent when administered parenterally as compared to the same dose administered orally. Therefore, one popular mode of abuse of oral medications involves the extraction of the opioid from the dosage form, and the subsequent injection of the opioid (using any “suitable” vehicle for injection) in order to achieve a “high.” Attempts to curtail abuse have therefore typically centered around the inclusion in the oral dosage form of an opioid antagonist which is not orally active but which will substantially block the analgesic effects of the opioid if one attempts to dissolve the opioid and administer it parenterally.
  • the combination of pentazocine and naloxone has been utilized in tablets available in the United States, commercially available as Talwin®Nx from Sanofi-Winthrop.
  • Talwin®Nx contains pentazocine hydrochloride equivalent to 50 mg base and naloxone hydrochloride equivalent to 0.5 mg base.
  • Talwin®Nx is indicated for the relief of moderate to severe pain.
  • the amount of naloxone present in this combination has no action when taken orally, and will not interfere with the pharmacologic action of pentazocine.
  • this amount of naloxone given by injection has profound antagonistic action to narcotic analgesics.
  • naloxone is intended to curb a form of misuse of oral pentazocine which occurs when the dosage form is solubilized and injected. Therefore, this dosage has lower potential for parenteral misuse than previous oral pentazocine formulations. However, it is still subject to patient misuse and abuse by the oral route, for example, by the patient taking multiple doses at once.
  • a fixed combination of buprenorphine and naloxone was introduced in 1991 in New Zealand (Temgesic®Nx, Reckitt & Colman) for the treatment of pain.
  • a fixed combination therapy comprising tilidine (50 mg) and naloxone (4 mg) has been available in Germany for the management of severe pain since 1978 (Valoron®N, Goedecke).
  • the rationale for the combination of these drugs is effective pain relief and the prevention of tilidine addiction through naloxone-induced antagonisms at the morphine receptor.
  • U.S. Pat. No. 4,457,933 (Gordon, et al.) described a method for decreasing both the oral and parenteral abuse potential of strong analgetic agents such as oxycodone, propoxyphene and pentazocine, by combining an analgesic dose of the opioid with naloxone in a specific, relatively narrow range.
  • Oxycodone-naloxone compositions having a ratio of 2.5-5:1 parts by weight and pentazocine-naloxone compositions having a ratio of 16-50:1 parts by weight were preferred.
  • the dose of naloxone which was to be combined with the opioid is stated to substantially eliminate the possibility of either oral or parenteral abuse of the opioid without substantially affecting the oral analgesic activity thereof.
  • U.S. Pat. No. 4,582,835 (Lewis) describes a method of treating pain by administering a sublingually effective dose of buprenorphine with naloxone.
  • Lewis describes dosage ratios of naloxone to buprenorphine from 1:3 to 1:1 for parenteral administration, and from 1:2 to 2:1 for sublingual administration.
  • the present invention is directed in part to a method of reducing the abuse potential of an oral dosage form of an opioid analgesic, comprising combining an analgesically effective amount of an opioid agonist together with an opioid antagonist into an oral dosage form which would require at least a two-step extraction process to be separated from the opioid agonist, the amount of opioid antagonist including being sufficient to counteract opioid effects if extracted together with the opioid agonist and administered parenterally.
  • the combination of the opioid agonist and the opioid antagonist are only extractable from the dosage form together, and thereafter must be separated from each other in a separate extraction step.
  • both the opioid agonist and the opioid antagonist may be soluble in acid, and must be separated utilizing a high pH solution.
  • the opioid agonist is hydrocodone bitartrate and the opioid antagonist is naltrexone hydrochloride, wherein both the hydrocodone and naltrexone dissolve at a pH less than 8 and about 80% of said hydrocodone and about 10% of said naltrexone are extractable at a high pH, e.g., substantially greater than pH 10, and preferably above pH 11.
  • the opioid agonist is hydromorphone hydrochloride and the opioid antagonist is naltrexone hydrochloride, or opioid agonist is oxycodone hydrochloride and the opioid antagonist is naltrexone hydrochloride; or the opioid agonist is morphine sulfate and the opioid antagonist is naltrexone hydrochloride.
  • the method further comprises incorporating into the dosage form a further ingredient which makes separation of the opioid agonist from the opioid antagonist more difficult.
  • further ingredients include gelling agents, waxes, or other pharmaceutically acceptable excipients.
  • the method further comprises incorporating into the preparation of the dosage form one or more processing steps which further impede the separation of the opioid agonist from the opioid antagonist.
  • the opioid is hydrocodone, hydromorphone, oxycodone, morphine, or pharmaceutically acceptable salts thereof.
  • the opioid agonist and the opioid antagonist are combined in a ratio of opioid antagonist to opioid agonist (analgesic) which is analgesically effective when the combination is administered orally, but which is aversive in a physically dependent subject.
  • opioid agonist analgesic
  • the combination product could in essence be therapeutic to one population (patients in pain), while being unacceptable (aversive) in a different population (e.g., physically dependent subjects) when orally administered at the same dose or at a higher dose than the usually prescribed dosage, e.g., about 2-3 times the usually prescribed dose of the opioid.
  • the oral dosage form would have less potential for parenteral as well as oral abuse.
  • the ratio of naltrexone to hydrocodone is preferably from about 0.03-0.27:1 by weight, and more preferably from about 0.05-0.20:1 by weight.
  • the opioid antagonist is naltrexone and the opioid agonist is hydromorphone
  • the ratio of naltrexone to hydromorphone preferably is from about 0.148:1 to about 1.185:1, and more preferably from about 0.222:1 to about 0.889:1.
  • the ratio of naltrexone to morphine is preferably from about 0.018:1 to about 0.148:1, and more preferably from about 0.028:1 to about 0.111:1.
  • the ratio of naltrexone to oxycodone is preferably from about 0.037:1 to about 0.296:1, and more preferably from about 0.056:1 to about 0.222:1.
  • the dosage forms of the present invention may be liquids, tablets, or multiparticulate formulations, utilizing any desired pharmaceutically acceptable excipients known to those skilled in the art.
  • the opioid agonist and opioid antagonist are incorporated into the oral dosage form in a manner which deters the easy separation of the two drugs.
  • the oral dosage forms of the present invention are sustained release formulations. This may be accomplished, e.g., via the incorporation of a sustained release carrier into a matrix containing the opioid agonist and opioid antagonist; or via a sustained release coating of a matrix containing the opioid agonist and opioid antagonist, where the sustained release coating contains at least a portion of the sustained release carrier included in the dosage form.
  • the sustained release preparation be prepared in such a manner that the opioid agonist and the opioid antagonist are combined in a matrix or interdispersed so as to force an addict to utilize extraction methodology to separate these drugs.
  • the present invention is also directed to a method of treating pain in human patients in a manner which minimizes the likelihood of oral abuse of opioid analgesics, comprising administering to a human patient an oral dosage form the inventive combinations of opioid agonist/opioid antagonist which must be extracted in at least two separate extraction steps.
  • the opioid antagonist is included in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent subjects (e.g., precipitated abstinence syndrome) when the subjects attempt to take at least twice the usually prescribed dose at a time (and often 2-3 times that dose or more), as compared to a comparable dose of the opioid without the opioid antagonist present.
  • the amount of naltrexone included in the oral dosage form is less positively reinforcing (e.g., less “liked”) to a non-physically dependent opioid addict than a comparable oral dosage form without the antagonist included.
  • the formulation provides effective analgesia when orally administered.
  • the method further comprises incorporating the opioid agonist and opioid antagonist into a dosage form that includes a sustained release carrier, either included in the matrix or as a sustained release coating, such that the oral dosage form can be administered on a twice-a-day or a once-a-day basis.
  • a sustained release carrier either included in the matrix or as a sustained release coating
  • the oral pharmaceutical compositions used in the methods of the present invention may be in the form of tablets, troches, lozenges, aqueous or oily suspensions, dispersable powders or granules, emulsions, hard or soft capsules or syrups or elixirs, microparticles (e.g., microcapsules, microspheres and the like), buccal tablets, etc.
  • parenterally includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.
  • analgesia is defined for purposes of the present invention as a satisfactory reduction in or elimination of pain, along with a tolerable level of side effects, as determined by the human patient. It is recognized that the ratio of opioid antagonist to opioid agonist included in certain embodiments of the invention (e.g., where the opioid antagonist is included in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent subjects when a large amount of the opioid, e.g., about 2-3 times the usually prescribed dose, is taken by or administered orally to a physically dependent subject) may decrease analgesia somewhat when the dosage form is orally administered as assessed by direct measurement in patients or by the use of one or more surrogate measures of opioid analgesic efficacy in human subjects such as a Visual Analogue Scale (“VAS”) for “drug effect”.
  • VAS Visual Analogue Scal
  • the patient in pain may or may not appreciably notice the difference between the formulation administered in accordance with such embodiments of the invention, and a similar formulation which includes the same dose of opioid agonist without the opioid antagonist, but will obtain an analgesic effect from the combination.
  • Surrogate measures of opioid efficacy include sedation, respiratory rate and/or pupil size (via pupillometry), and visual analogue scale (“VAS”) for “drug effect”.
  • such surrogate measures are affected in a direction which indicates reduced opioid effect, as compared to the same dose of opioid without the concommitant dose of opioid antagonist.
  • analgesia The pharmacodynamic effect (analgesia) of the formulations administered in accordance with the invention can be described by means of, for example, scores from an analgesic questionnaire reported by the patients at serial times following administration of the dosage form.
  • Summary measures of analgesia include the sum of pain intensity difference (SPID) and total pain relief (TOTPAR).
  • sustained release is defined for purposes of the present invention as the release of the drug (opioid analgesic) from the transdermal formulation at such a rate that blood (e.g., plasma) concentrations (levels) are maintained within the therapeutic range (above the minimum effective analgesic concentration or “MEAC”) but below toxic levels over a period of time indicative of a twice-a-day or a once-a-day formulation.
  • blood e.g., plasma
  • concentrations levels
  • MEAC minimum effective analgesic concentration
  • opioid agonist is interchangeable with the term “opioid” or “opioid analgesic” and shall include the base of the opioid, pharmaceutically acceptable salts thereof, stereoisomers thereof, ethers and esters thereof, mixed agonist-antagonists, and partial agonists.
  • opioid antagonist shall include the base, pharmaceutically acceptable salts thereof, stereoisomers thereof, ethers and esters thereof, and mixtures thereof.
  • mu mu
  • kappa a subspecies of opioid receptors
  • delta the mu receptor is considered to be involved in the production of superspinal analgesia, respiratory depression, euphoria, and physical dependence.
  • the kappa receptor is considered to be involved in inducing spinal analgesia, miosis and sedation.
  • Activation of the gamma receptors causes dysphoria and hallucinations, as well as respiratory and vasomotor stimulatory effects.
  • a receptor distinct from the mu receptor and designated gamma has been described in the mouse vas deferens, Lord, et al. Nature, 1977, 267, 495-99.
  • Opioid agonists are thought to exert their agonist actions primarily at the mu receptor and to a lesser degree at the kappa receptor.
  • drugs that appear to act as partial agonists at one receptor type or another. Such drugs exhibit a ceiling effect.
  • drugs include nalorphine, propiram, and buprenorphine.
  • Still other drugs act as competitive antagonists at the mu receptor and block the effects of morphine-like drugs, by exerting agonist actions at the kappa and omega receptors.
  • the term “agonist-antagonist” has evolved to describe such mechanism of actions. The concept of antagonism to the actions of opioids is considered to be complex.
  • Naloxone is an opioid antagonist which is almost void of agonist effects. Subcutaneous doses of up to 12 mg of naloxone produce no discernable subjective effects, and 24 mg naloxone causes only slight drowsiness. Small doses (0.4-0.8 mg) of naloxone given intramuscularly or intravenously in man prevent or promptly reverse the effects of morphine-like opioid agonist. One mg of naloxone intravenously has been reported to completely block the effect of 25 mg of heroin. The effects of naloxone are seen almost immediately after intravenous administration.
  • the drug is absorbed after oral administration, but has been reported to be metabolized into an inactive form rapidly in its first passage through the liver such that it has been reported to be only one fiftieth as potent as when parenterally administered. Oral dosage of more than 1 g have been reported to be almost completely metabolized in less than 24 hours.
  • opioid antagonists for example, cyclazocine and naltrexone, both of which have cyclopropylmethyl substitutions on the nitrogen, retain much of their efficacy by the oral route and their durations of action are much longer, approaching 24 hours after oral doses.
  • a most preferred opioid antagonist is naltrexone.
  • equiantagonistic oral doses of other opioid antagonists including but not limited to naloxone, nalmephene, cyclazocine, and levallorphan can be utilized in accordance with the present invention.
  • ratio of such other antagonists to a particular opioid agonist can be readily determined without undue experimentation by one skilled in art who desires to utilize a different opioid antagonist than naltrexone, the ratio of which to opioid agonists is exemplified and discussed in detail herein. Those skilled in the art may determine such ratios of other antagonists to opioid agonists, e.g., by conducting the same or similar clinical studies set forth in the examples appended herein. Thus, combinations of opioid antagonists/opioid agonists which are orally administered in ratios which are equivalent to the ratio of, e.g., naltrexone to hydrocodone set forth herein are considered to be within the scope of the present invention and within the scope of the appended claims.
  • naloxone is utilized as the opioid antagonist, the amount of naloxone included in the dosage form being large enough to provide an equiantagonistic effect as if naltrexone were included in the combination.
  • naltrexone In the treatment of patients previously addicted to opioids, naltrexone has been used in large oral doses (over 100 mg) to prevent euphorigenic effects of opioid agonists. Naltrexone has been reported to exert strong preferential blocking action against mu over delta sites. Naltrexone is known as a synthetic congener of oxymorphone with no opioid agonist properties, and differs in structure from oxymorphone by the replacement of the methyl group located on the nitrogen atom of oxymorphone with a cyclopropylmethyl group. The hydrochloride salt of naltrexone is soluble in water up to about 100 mg/cc. The pharmacological and pharmacokinetic properties of naltrexone have been evaluated in multiple animal and clinical studies.
  • naltrexone is rapidly absorbed (within 1 hour) and has an oral bioavailability ranging from 5-40%.
  • Naltrexone's protein binding is approximately 21% and the volume of distribution following single-dose administration is 16.1 L/kg.
  • Naltrexone is commercially available in tablet form (Revia®, DuPont) for the treatment of alcohol dependence and for the blockade of exogenously administered opioids. See, e.g., Revia (naltrexone hydrochloride tablets). Physician's Desk Reference 51 st ed., Montvale, N.J. Medical Economics 1997; 51:957-959. A dosage of 50 mg ReVia® blocks the pharmacological effects of 25 mg IV administered heroin for up to 24 hours.
  • naltrexone blocks the development of physical dependence to opioids. It is believed that the method by which naltrexone blocks the effects of heroin is by competitively binding at the opioid receptors. Naltrexone has been used to treat narcotic addiction by complete blockade of the effects of opioids. It has been found that the most successful use of naltrexone for a narcotic addiction is with good prognosis narcotic addicts as part of a comprehensive occupational or rehabilitative program involving behavioral control or other compliance enhancing methods.
  • naltrexone For treatment of narcotic dependence with naltrexone, it is desirable that the patient be opioid-free for at least 7-10 days.
  • the initial dosage of naltrexone for such purposes has typically been about 25 mg, and if no withdrawal signs occur, the dosage may be increased to 50 mg per day. A daily dosage of 50 mg is considered to produce adequate clinical blockade of the actions of parenterally administered opioids.
  • Naltrexone has also been used for the treatment of alcoholism as an adjunct with social and psychotherapeutic methods.
  • the amount of naltrexone included is significantly less than the dosages previously commercially available. This is in part because the use of naltrexone is different in the present invention: the goal is not to block opioid effects, but rather to provide a negative, “aversive” experience when a large amount of the combination product, e.g., about 2-3 times the usually prescribed dose, is taken by or administered to a physically dependent subject.
  • the amount of naltrexone hydrochloride included in the formulation is from about 0.5 mg to about 4 mg, and preferably from about 0.75 mg to about 3 mg naltrexone per 15 mg hydrocodone.
  • Opioid analgesics which are useful in the present invention include all opioid agonists or mixed agonist-antagonists, partial agonists, including but not limited to alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomet
  • the opioid agonist or analgesic is selected from the group consisting of hydrocodone, morphine, hydromorphone, oxycodone, codeine, levorphanol, meperidine, methadone, or salts thereof, or mixtures thereof.
  • the opioid agonist is hydrocodone.
  • naltrexone Based on the preferred ratio of naltrexone in an amount from about 0.5 to about 4 mg per 15 mg of hydrocodone, the approximate ratio of naltrexone to 1 mg of each opioid is set forth in Table 2: TABLE 2 Weight Ratio of Naltrexone per Dose Opioid Weight Ratio Naltrexone per Opioid 1 mg Opioid Oxycodone 0.037 to 0.296 Codeine 0.005 to 0.044 Hydrocodone 0.033 to 0.267 Hydromorphone 0.148 to 1.185 Levorphanol 0.278 to 2.222 Meperidine 0.0037 to 0.0296 Methadone 0.056 to 0.444 Morphine 0.018 to 0.148
  • hydrocodone is effective in the management of pain, there has been an increase in its abuse by individuals who are psychologically dependent on opioids or who misuse opioids for non-therapeutic reasons.
  • Previous experience with other opioids has demonstrated a decreased abuse potential when opioids are administered in combination with a narcotic antagonist especially in patients who are ex-addicts.
  • Weinhold L L, et al. Buprenorphine Alone and in Combination with Naltrexone in Non-Dependent Humans, Drug and Alcohol Dependence 1992; 30:263-274; Mendelson J., et. al., Buprenorphine and Naloxone Interactions in Opiate-Dependent Volunteers, Clin Pharm Ther 1996; 60:105-114; both of which are hereby incorporated by reference.
  • Hydrocodone is a semisynthetic narcotic analgesic and antitussive with multiple central nervous system and gastrointestinal actions. Chemically, hydrocodone is 4,5-epoxy-3-methoxy-17-methylmorphinan-6-one, and is also known as dihydrocodeinone. Like other opioids, hydrocodone may be habit forming and may produce drug dependence of the morphine type. In excess doses hydrocodone, like other opium derivatives, will depress respiration.
  • hydrocodone bitartrate is commercially available in the United States only as a fixed combination with non-opiate drugs (i.e., ibuprofen, acetaminophen, aspirin, etc.) for relief of moderate or moderately severe pain.
  • non-opiate drugs i.e., ibuprofen, acetaminophen, aspirin, etc.
  • a common dosage form of hydrocodone is in combination with acetaminophen, and is commercially available, e.g., as Lortab® in the U.S. from UCB Pharma, Inc. as 2.5/500 mg, 5/500 mg, 7.5/500 mg and 10/500 mg hydrocodone/acetaminophen tablets. Tablets are also available in the ratio of 7.5 mg hydrocodone bitartrate and 650 mg acetaminophen; and 7.5 mg hydrocodone bitartrate and 750 mg acetaminophen. Hydrocodone in combination with aspirin is given in an oral dosage form to adults generally in 1-2 tablets every 4-6 hours as needed to alleviate pain.
  • the tablet form is 5 mg hydrocodone bitartrate and 224 mg aspirin with 32 mg caffeine; or 5 mg hydrocodone bitartrate and 500 mg aspirin.
  • a relatively new formulation comprises hydrocodone bitartrate and ibuprofen.
  • Vicoprofen® commercially available in the U.S. from Knoll Laboratories, is a tablet containing 7.5 mg hydrocodone bitartrate and 200 mg ibuprofen.
  • the present invention is contemplated to encompass all such formulations, with the inclusion of the orally active opioid antagonist within the inventive amounts set forth herein.
  • opioid analgesics such as hydrocodone
  • inventive combinations of the present invention More particularly, it has been discovered that it is possible to combine in a single oral dosage form an opioid analgesic together with a small amount of opioid antagonist, to achieve a product which still provides analgesia but which substantially negates the possibility that a physically dependent human subject will continue to abuse the drug by taking more than one tablet at a time, e.g., 2-3 times more than the usually prescribed dose.
  • the oral dosage forms of the invention comprise an orally therapeutically effective amount of an opioid agonist, together with an opioid antagonist such as naltrexone in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent human subjects, for example, physically dependent addicts (e.g., precipitated abstinence syndrome) when taking more than the usually prescribed dose at a time.
  • an opioid antagonist such as naltrexone
  • the amount of antagonist included in the oral dosage form is (iii) less positively reinforcing (e.g., less “liked”) by a non-physically dependent human subject, e.g., opioid addict, than a comparable oral dosage form without the antagonist included.
  • the amount of antagonist which is useful to achieve parameters (i)-(iii) set forth in the preceding paragraph may be determined at least in part, for example, through the use of “surrogate” tests, such as a VAS scale (where the subject grades his/her perception of the effect of the dosage form) and/or via a measurement such as pupil size (measured by pupillometry).
  • surrogate tests such as a VAS scale (where the subject grades his/her perception of the effect of the dosage form) and/or via a measurement such as pupil size (measured by pupillometry).
  • Such measurements allow one skilled in the art to determine the dose of antagonist relative to the dose of agonist which causes a diminution in the opiate effects of the agonist.
  • one skilled in the art can determine the level of opioid antagonist that causes aversive effects in physically dependent subjects as well as the level of opioid antagonist that minimizes “liking scores” or opioid reinforcing properties in non-physically dependent addicts. Once these levels of opioid antagonist are determined, it is then possible to determine
  • Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelate, carbohydrates such as lactose, amylose or starch, magnesium stearate talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc.
  • the pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like. They can also be combined where desired with other active agents, e.g., other analgesic agents.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like.
  • other active agents e.g., other analgesic agents.
  • particularly suitable are tablets, drag
  • the compositons intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically excipients which are suitable for the manufacture of tablets.
  • excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate.
  • the tablets may be uncoated or they may be coated by known techniques for elegance or to delay release of the active ingredients.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert diluent.
  • Aqueous suspensions contain the above-identified combination of drugs and that mixture has one or more excipients suitable as suspending agents, for example pharmaceutically acceptable synthetic gums such as hydroxypropylmethylcellulose or natural gums.
  • Oily suspensions may be formulated by suspending the above-identified combination of drugs in a vegetable oil or mineral oil.
  • the oily suspensions may contain a thickening agent such as beeswax or cetyl alcohol.
  • a syrup, elixir, or the like can be used wherein a sweetened vehicle is employed.
  • injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • the method of treatment and pharmaceutical formulations of the present invention may further include one or more drugs in addition to the opioid analgesic and opioid antagonist, which additional drug(s) may or may not act synergistically therewith.
  • additional drug(s) may or may not act synergistically therewith.
  • a combination of two opioid analgesics may be included in the formulation, in addition to the opioid antagonist.
  • the dosage form may include two opioid analgesics having different properties, such as half-life, solubility, potency, and a combination of any of the foregoing.
  • one or more opioid analgesics is included and a further non-opioid drug is also included, in addition to the opioid antagonist.
  • non-opioid drugs would preferably provide additional analgesia, and include, for example, aspirin; acetaminophen; non-sterioidal antiinflammatory drugs (“NSAIDS”), e.g., ibuprofen, ketoprofen, etc.; N-methyl-D-aspartate (NMDA) receptor antagonists, e.g., a morphinan such as dextromethorphan or dextrorphan, or ketamine; cycooxygenase-II inhibitors (“COX-1 inhibitors”); and/or glycine receptor antagonists.
  • NSAIDS non-sterioidal antiinflammatory drugs
  • NMDA N-methyl-D-aspartate
  • COX-1 inhibitors cycooxygenase-II inhibitors
  • the invention allows for the use of lower doses of the opioid analgesic by virtue of the inclusion of an additional non-opioid agonist, such as an NSAID or a COX-2 inhibitor.
  • an additional non-opioid agonist such as an NSAID or a COX-2 inhibitor.
  • Suitable non-steroidal anti-inflammatory agents including ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid, tolfenamic acid, diflurisal, flufenisal, piroxi
  • N-methyl-D-aspartate (NMDA) receptor antagonists are well known in the art, and encompass, for example, morphinans such as dextromethorphan or dextrorphan, ketamine, d-methadone or pharmaceutically acceptable salts thereof.
  • NMDA antagonist is also deemed to encompass drugs that block a major intracellular consequence of NMDA-receptor activation, e.g. a ganglioside such as GM 1 or GT 1b a phenothiazine such as trifluoperazine or a naphthalenesulfonamide such as N-(6-aminothexyl)-5-chloro-1-naphthalenesulfonamide.
  • narcotic analgesics such as morphine, codeine, etc. in U.S. Pat. Nos. 5,321,012 and 5,556,838 (both to Mayer, et. al.), and to treat chronic pain in U.S. Pat. No. 5,502,058 (Mayer, et. al.), all of which are hereby incorporated by reference.
  • the NMDA antagonist may be included alone, or in combination with a local anesthetic such as lidocaine, as described in these Mayer, et. al. patents.
  • COX-2 inhibitors have been reported in the art and many chemical structures are known to produce inhibition of cyclooxygenase-2. COX-2 inhibitors are described, for example, in U.S. Pat. Nos. 5,616,601; 5,604,260; 5,593,994; 5,550,142; 5,536,752; 5,521,213; 5,475,995; 5,639,780; 5,604,253; 5,552,422; 5,510,368; 5,436,265; 5,409,944; and 5,130,311, all of which are hereby incorporated by reference.
  • COX-2 inhibitors include celecoxib (SC-58635), DUP-697, flosulide (CGP-28238), meloxicam, 6-methoxy-2 naphthylacetic acid (6-MNA), MK-966, nabumetone (prodrug for 6-MNA), nimesulide, NS-398, SC-5766, SC-58215, T-614; or combinations thereof.
  • Dosage levels of COX-2 inhibitor on the order of from about 0.005 mg to about 140 mg per kilogram of body weight per day are therapeutically effective in combination with an opioid analgesic.
  • about 0.25 mg to about 7 g per patient per day of a COX-2 inhibitor is administered in combination with an opioid analgesic.
  • a non-opioid drug can be included which provides a desired effect other than analgesia, e.g., antitussive, expectorant, decongestant, antihistamine drugs, local anesthetics, and the like.
  • An oral dosage form according to the invention may be provided as, for example, granules, spheroids, beads, pellets (hereinafter collectively referred to as “multiparticulates”).
  • An amount of the multiparticulates which is effective to provide the desired dose of opioid over time may be placed in a capsule or may be incorporated in any other suitable oral solid form.
  • the oral dosage form may be in the form of a tablet.
  • the opioid agonist/opioid antagonist combination can be formulated as a controlled or sustained release oral formulation in any suitable tablet, coated tablet or multiparticulate formulation known to those skilled in the art.
  • the sustained release dosage form may optionally include a sustained release carrier which is incorporated into a matrix along with the opioid agonist and opioid antagonist, or may be applied as a sustained release coating.
  • the sustained release oral dosage forms may include analgesic doses from about 8 mg to about 50 mg of hydrocodone per dosage unit.
  • hydromorphone is the therapeutically active opioid
  • it is included in an amount from about 2 mg to about 64 mg hydromorphone hydrochloride.
  • the opioid analgesic comprises morphine
  • the sustained release oral dosage forms of the present invention include from about 2.5 mg to about 800 mg morphine, by weight.
  • the opioid analgesic comprises oxycodone and the sustained release oral dosage forms include from about 2.5 mg to about 800 mg oxycodone.
  • the opioid analgesic may comprise tramadol and the sustained release oral dosage forms may include from about 25 mg to 800 mg tramadol per dosage unit.
  • the dosage form may contain more than one opioid analgesic to provide a substantially equivalent therapeutic effect.
  • the dosage form may contain molar equivalent amounts of other salts of the opioids useful in the present invention.
  • the sustained release dosage form comprises such particles containing or comprising the active ingredient, wherein the particles have diameter from about 0.1 mm to about 2.5 mm, preferably from about 0.5 mm to about 2 mm.
  • the particles are preferably film coated with a material that permits release of the opioid agonist/antagonist combination at a sustained rate in an aqueous medium.
  • the film coat is chosen so as to achieve, in combination with the other stated properties, a desired in-vitro release rate.
  • the sustained release coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
  • the particles comprise normal release matrixes containing the opioid analgesic with the opioid antagonist.
  • the dosage forms of the present invention may optionally be coated with one or more materials suitable for the regulation of release or for the protection of the formulation.
  • coatings are provided to permit either pH-dependent or pH-independent release, e.g., when exposed to gastrointestinal fluid.
  • a pH-dependent coating serves to release the opioid in desired areas of the gastro-intestinal (GI) tract, e.g., the stomach or small intestine, such that an absorption profile is provided which is capable of providing at least about eight hours and preferably about twelve hours to up to about twenty-four hours of analgesia to a patient.
  • the coating is designed to achieve optimal release regardless of pH-changes in the environmental fluid, e.g., the GI tract. It is also possible to formulate compositions which release a portion of the dose in one desired area of the GI tract, e.g., the stomach, and release the remainder of the dose in another area of the GI tract, e.g., the small intestine.
  • Formulations according to the invention that utilize pH-dependent coatings to obtain formulations may also impart a repeat-action effect whereby unprotected drug is coated over the enteric coat and is released in the stomach, while the remainder, being protected by the enteric coating, is released further down the gastrointestinal tract.
  • Coatings which are pH-dependent may be used in accordance with the present invention include shellac, cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), hydroxypropylmethylcellulose phthalate, and methacrylic acid ester copolymers, zein, and the like.
  • the substrate e.g., tablet core bead, matrix particle
  • the opioid analgesic with or without the COX-2 inhibitor
  • a hydrophobic material selected from (i) an alkylcellulose; (ii) an acrylic polymer; or (iii) mixtures thereof.
  • the coating may be applied in the form of an organic or aqueous solution or dispersion.
  • the coating may be applied to obtain a weight gain from about 2 to about 25% of the substrate in order to obtain a desired sustained release profile.
  • sustained release formulations and coatings which may be used in accordance with the present invention include Assignee's U.S. Pat. Nos. 5,324,351; 5,356,467, and 5,472,712, hereby incorporated by reference in their entirety.
  • Cellulosic materials and polymers including alkylcelluloses, provide hydrophobic materials well suited for coating the beads according to the invention.
  • one preferred alkylcellulosic polymer is ethylcellulose, although the artisan will appreciate that other cellulose and/or alkylcellulose polymers may be readily employed, singly or in any combination, as all or part of a hydrophobic coating according to the invention.
  • Aquacoat® One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pa., U.S.A.). Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use.
  • aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pa., U.S.A.). This product is prepared by incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
  • Surelease® Colorcon, Inc., West Point, Pa., U.S.A.
  • the hydrophobic material comprising the controlled release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • acrylic acid and methacrylic acid copolymers including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic
  • the acrylic polymer is comprised of one or more ammonio methacrylate copolymers.
  • Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • methacrylic acid ester-type polymers are useful for preparing pH-dependent coatings which may be used in accordance with the present invention.
  • methacrylic acid copolymer or polymeric methacrylates commercially available as Eudragit® from Rohm Tech, Inc.
  • Eudragit® E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media.
  • Eudragit® L is a methacrylic acid copolymer which does not swell at about pH ⁇ 5.7 and is soluble at about pH >6.
  • Eudragit® S does not swell at about pH ⁇ 6.5 and is soluble at about pH >7.
  • Eudragit® RL and Eudragit® RS are water swellable, and the amount of water absorbed by these polymers is pH-dependent, however, dosage forms coated with Eudragit® RL and RS are pH-independent.
  • the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively.
  • Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D.
  • the mean molecular weight is about 150,000.
  • the code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents.
  • Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
  • the Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained release formulation having a desirable dissolution profile. Desirable sustained release formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic material will further improve the physical properties of the sustained release coating.
  • a plasticizer into an ethylcellulose coating containing sustained release coating before using the same as a coating material.
  • the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Concentration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
  • plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used.
  • Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol.
  • Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit® RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin.
  • Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • a plurality of the resultant solid controlled release beads may thereafter be placed in a gelatin capsule in an amount sufficient to provide an effective controlled release dose when ingested and contacted by an environmental fluid, e.g., gastric fluid or dissolution media.
  • an environmental fluid e.g., gastric fluid or dissolution media.
  • the controlled release bead formulations of the present invention slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids.
  • the controlled release profile of the formulations of the invention can be altered, for example, by varying the amount of overcoating with the hydrophobic material, altering the manner in which the plasticizer is added to the hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
  • the dissolution profile of the ultimate product may also be modified, for example, by increasing or decreasing the thickness of the retardant coating.
  • Spheroids or beads coated with a therapeutically active agent are prepared, e.g., by dissolving the therapeutically active agent in water and then spraying the solution onto a substrate, for example, nu pariel 18/20 beads, using a Wuster insert.
  • additional ingredients are also added prior to coating the beads in order to assist the binding of the opioid to the beads, and/or to color the solution, etc.
  • a product which includes hydroxypropylmethylcellulose, etc. with or without colorant e.g., Opadry®, commercially available from Colorcon, Inc.
  • the resultant coated substrate in this example beads, may then be optionally overcoated with a barrier agent, to separate the therapeutically active agent from the hydrophobic controlled release coating.
  • a barrier agent is one which comprises hydroxypropylmethylcellulose.
  • any film-former known in the art may be used. It is preferred that the barrier agent does not affect the dissolution rate of the final product.
  • the beads may then be overcoated with an aqueous dispersion of the hydrophobic material.
  • the aqueous dispersion of hydrophobic material preferably further includes an effective amount of plasticizer, e.g. triethyl citrate.
  • plasticizer e.g. triethyl citrate.
  • pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used.
  • the coating solutions of the present invention preferably contain, in addition to the film-former, plasticizer, and solvent system (i.e., water), a colorant to provide elegance and product distinction.
  • Color may be added to the solution of the therapeutically active agent instead, or in addition to the aqueous dispersion of hydrophobic material.
  • color may be added to AquacoatTM via the use of alcohol or propylene glycol based color dispersions, milled aluminum lakes and opacifiers such as titanium dioxide by adding color with shear to water soluble polymer solution and then using low shear to the plasticized Aquacoat®.
  • any suitable method of providing color to the formulations of the present invention may be used.
  • Suitable ingredients for providing color to the formulation when an aqueous dispersion of an acrylic polymer is used include titanium dioxide and color pigments, such as iron oxide pigments. The incorporation of pigments, may, however, increase the retard effect of the coating.
  • Plasticized hydrophobic material may be applied onto the substrate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art.
  • a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the core material and effects drying while the acrylic polymer coating is sprayed on.
  • a further overcoat of a film-former such as Opadry®, is optionally applied to the beads. This overcoat is provided, if at all, in order to substantially reduce agglomeration of the beads.
  • the release of the therapeutically active agent from the controlled release formulation of the present invention can be further influenced, i.e., adjusted to a desired rate, by the addition of one or more release-modifying agents, or by providing one or more passageways through the coating.
  • the ratio of hydrophobic material to water soluble material is determined by, among other factors, the release rate required and the solubility characteristics of the materials selected.
  • the release-modifying agents which function as pore-formers may be organic or inorganic, and include materials that can be dissolved, extracted or leached from the coating in the environment of use.
  • the pore-formers may comprise one or more hydrophilic materials such as hydroxypropylmethylcellulose.
  • the sustained release coatings of the present invention can also include erosion-promoting agents such as starch and gums.
  • the sustained release coatings of the present invention can also include materials useful for making microporous lamina in the environment of use, such as polycarbonates comprised of linear polyesters of carbonic acid in which carbonate groups reoccur in the polymer chain.
  • the release-modifying agent may also comprise a semi-permeable polymer.
  • the release-modifying agent is selected from hydroxypropylmethylcellulose, lactose, metal stearates, and mixtures of any of the foregoing.
  • the sustained release coatings of the present invention may also include an exit means comprising at least one passageway, orifice, or the like.
  • the passageway may be formed by such methods as those disclosed in U.S. Pat. Nos. 3,845,770; 3,916,889; 4,063,064; and 4,088,864 (all of which are hereby incorporated by reference).
  • the passageway can have any shape such as round, triangular, square, elliptical, irregular, etc.
  • the controlled release formulation is achieved via a matrix having a controlled release coating as set forth above.
  • the present invention may also utilize a controlled release matrix that affords in-vitro dissolution rates of the opioid within the preferred ranges and that releases the opioid in a pH-dependent or pH-independent manner.
  • the materials suitable for inclusion in a controlled release matrix will depend on the method used to form the matrix.
  • a matrix in addition to the opioid analgesic and (optionally) COX-2 may include:
  • Hydrophilic and/or hydrophobic materials such as gums, cellulose ethers, acrylic resins, protein derived materials; the list is not meant to be exclusive, and any pharmaceutically acceptable hydrophobic material or hydrophilic material which is capable of imparting controlled release of the active agent and which melts (or softens to the extent necessary to be extruded) may be used in accordance with the present invention.
  • the oral dosage form may contain between 1% and 80% (by weight) of at least one hydrophilic or hydrophobic material.
  • the hydrophobic material is a hydrocarbon
  • the hydrocarbon preferably has a melting point of between 25° and 90° C.
  • fatty (aliphatic) alcohols are preferred.
  • the oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
  • the oral dosage form contains up to 60% (by weight) of at least one polyalkylene glycol.
  • the hydrophobic material is preferably selected from the group consisting of alkylcelluloses, acrylic and methacrylic acid polymers and copolymers, shellac, zein, hydrogenated castor oil, hydrogenated vegetable oil, or mixtures thereof.
  • the hydrophobic material is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyano ethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer, poly(methyl methacrylate), poly(methacrylic acid)(anhydride), polymethacrylate, polyacrylamide, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • the hydrophobic material is preferably selected from the group consisting
  • hydrophobic materials are water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends.
  • the hydrophobic materials useful in the invention have a melting point from about 30° to about 200° C., preferably from about 45° C. to about 90° C.
  • the hydrophobic material may comprise natural or synthetic waxes, fatty alcohols (such as lauryl, myristyl, stearyl, cetyl or preferably cetostearyl alcohol), fatty acids, including but not limited to fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic aid, stearyl alcohol and hydrophobic and hydrophilic materials having hydrocarbon backbones.
  • Suitable waxes include, for example, beeswax, glycowax, castor wax and carnauba wax.
  • a wax-like substance is defined as any material which is normally solid at room temperature and has a melting point of from about 30° to about 100° C.
  • Suitable hydrophobic materials which may be used in accordance with the present invention include digestible, long chain (C 8 -C 50 , especially C 12 -C 40 ), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and natural and synthetic waxes. Hydrocarbons having a melting point of between 25° and 90° C. are preferred. Of the long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred in certain embodiments.
  • the oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
  • hydrophobic materials are included in the matrix formulations.
  • an additional hydrophobic material is included, it is preferably selected from natural and synthetic waxes, fatty acids, fatty alcohols, and mixtures of the same. Examples include beeswax, carnauba wax, stearic acid and stearyl alcohol. This list is not meant to be exclusive.
  • One particular suitable matrix comprises at least one water soluble hydroxyalkyl cellulose, at least one C 12 -C 36 , preferably C 14 -C 22 , aliphatic alcohol and, optionally, at least one polyalkylene glycol.
  • the at least one hydroxyalkyl cellulose is preferably a hydroxy (C 1 to C 6 ) alkyl cellulose, such as hydroxypropylcellulose, hydroxypropylmethylcellulose and, especially, hydroxyethylcellulose.
  • the amount of the at least one hydroxyalkyl cellulose in the present oral dosage form will be determined, inter alia, by the precise rate of opioid release required.
  • the at least one aliphatic alcohol may be, for example, lauryl alcohol, myristyl alcohol or stearyl alcohol.
  • the at least one aliphatic alcohol is cetyl alcohol or cetostearyl alcohol.
  • the amount of the at least one aliphatic alcohol in the present oral dosage form will be determined, as above, by the precise rate of opioid release required. It will also depend on whether at least one polyalkylene glycol is present in or absent from the oral dosage form. In the absence of at least one polyalkylene glycol, the oral dosage form preferably contains between 20% and 50% (by wt) of the at least one aliphatic alcohol. When at least one polyalkylene glycol is present in the oral dosage form, then the combined weight of the at least one aliphatic alcohol and the at least one polyalkylene glycol preferably constitutes between 20% and 50% (by wt) of the total dosage.
  • the ratio of, e.g., the at least one hydroxyalkyl cellulose or acrylic resin to the at least one aliphatic alcohol/polyalkylene glycol determines, to a considerable extent, the release rate of the opioid from the formulation.
  • a ratio of the at least one hydroxyalkyl cellulose to the at least one aliphatic alcohol/polyalkylene glycol of between 1:2 and 1:4 is preferred, with a ratio of between 1:3 and 1:4 being particularly preferred.
  • the at least one polyalkylene glycol may be, for example, polypropylene glycol or, which is preferred, polyethylene glycol.
  • the number average molecular weight of the at least one polyalkylene glycol is preferred between 1,000 and 15,000 especially between 1,500 and 12,000.
  • Another suitable controlled release matrix would comprise an alkylcellulose (especially ethyl cellulose), a C 12 to C 36 aliphatic alcohol and, optionally, a polyalkylene glycol.
  • the matrix includes a pharmaceutically acceptable combination of at least two hydrophobic materials.
  • a controlled release matrix may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art.
  • any method of preparing a matrix formulation known to those skilled in the art may be used.
  • incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose and opioid or an opioid salt; (b) mixing the hydroxyalkyl cellulose containing granules with at least one C 12 -C 36 aliphatic alcohol; and (c) optionally, compressing and shaping the granules.
  • the granules are formed by wet granulating the hydroxyalkyl cellulose/opioid with water.
  • the amount of water added during the wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the opioid.
  • a spheronizing agent together with the active ingredient can be spheronized to form spheroids.
  • Microcrystalline cellulose is preferred.
  • a suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation).
  • the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxypropylcellulose, are preferred.
  • the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose.
  • the sustained release coating will generally include a hydrophobic material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein.
  • Sustained release matrices can also be prepared via melt-granulation or melt-extrusion techniques.
  • melt-granulation techniques involve melting a normally solid hydrophobic material, e.g. a wax, and incorporating a powdered drug therein.
  • an additional hydrophobic substance e.g. ethylcellulose or a water-insoluble acrylic polymer, into the molten wax hydrophobic material.
  • sustained release formulations prepared via melt-granulation techniques are found in U.S. Pat. No. 4,861,598, assigned to the Assignee of the present invention and hereby incorporated by reference in its entirety.
  • the additional hydrophobic material may comprise one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances.
  • the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
  • Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • a sustained release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation.
  • a sustained release matrix incorporating melt-extruded multiparticulates may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • the preparation of a suitable melt-extruded matrix according to the present invention may, for example, include the steps of blending the opioid analgesic, together with at least one hydrophobic material and preferably the additional hydrophobic material to obtain a homogeneous mixture.
  • the homogeneous mixture is then heated to a temperature sufficient to at least soften the mixture sufficiently to extrude the same.
  • the resulting homogeneous mixture is then extruded to form strands.
  • the extrudate is preferably cooled and cut into multiparticulates by any means known in the art.
  • the strands are cooled and cut into multiparticulates.
  • the multiparticulates are then divided into unit doses.
  • the extrudate preferably has a diameter of from about 0.1 to about 5 mm and provides sustained release of the therapeutically active agent for a time period of from about 8 to about 24 hours.
  • An optional process for preparing the melt extrusions of the present invention includes directly metering into an extruder a hydrophobic material, a therapeutically active agent, and an optional binder; heating the homogenous mixture; extruding the homogenous mixture to thereby form strands; cooling the strands containing the homogeneous mixture; cutting the strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses.
  • a relatively continuous manufacturing procedure is realized.
  • the diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands.
  • the exit part of the extruder need not be round; it can be oblong, rectangular, etc.
  • the exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
  • melt extruded multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice.
  • melt-extruded multiparticulate(s)” and “melt-extruded multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a hydrophobic material as described herein.
  • melt-extruded multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm.
  • melt-extruded multiparticulates can be any geometrical shape within this size range.
  • the extrudate may simply be cut into desired lengths and divided into unit doses of the therapeutically active agent without the need of a spheronization step.
  • oral dosage forms are prepared to include an effective amount of melt-extruded multiparticulates within a capsule.
  • a plurality of the melt-extruded multiparticulates may be placed in a gelatin capsule in an amount sufficient to provide an effective sustained release dose when ingested and contacted by gastric fluid.
  • a suitable amount of the multiparticulate extrudate is compressed into an oral tablet using conventional tableting equipment using standard techniques.
  • Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences , (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
  • the extrudate can be shaped into tablets as set forth in U.S. Pat. No. 4,957,681 (Klimesch, et. al.), described in additional detail above and hereby incorporated by reference.
  • the sustained release melt-extruded multiparticulate systems or tablets can be coated, or the gelatin capsule can be further coated, with a sustained release coating such as the sustained release coatings described above.
  • a sustained release coating such as the sustained release coatings described above.
  • Such coatings preferably include a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things.
  • the melt-extruded unit dosage forms of the present invention may further include combinations of melt-extruded multiparticulates containing one or more of the therapeutically active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release therapeutically active agent for prompt therapeutic effect.
  • the immediate release therapeutically active agent may be incorporated, e.g., as separate pellets within a gelatin capsule, or may be coated on the surface of the multiparticulates after preparation of the dosage forms (e.g., controlled release coating or matrix-based).
  • the unit dosage forms of the present invention may also contain a combination of controlled release beads and matrix multiparticulates to achieve a desired effect.
  • the sustained release formulations of the present invention preferably slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids.
  • the sustained release profile of the melt-extruded formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
  • the melt extruded material is prepared without the inclusion of the therapeutically active agent, which is added thereafter to the extrudate.
  • Such formulations typically will have the therapeutically active agent blended together with the extruded matrix material, and then the mixture would be tableted in order to provide a slow release formulation.
  • Such formulations may be advantageous, for example, when the therapeutically active agent included in the formulation is sensitive to temperatures needed for softening the hydrophobic material and/or the retardant material.
  • Step 2.1.3 Step 2.1.1 of the procedure was repeated to prepare sample stock solutions in ethanol, methanol and acetone instead of water.
  • FIG. 1 provides structures and pKa Values of Hydrocodone and Naltrexone Base.
  • Table 1 shows that about 80% of Hydrocodone Bitartrate and 10% of Naltrexone Hydrochloride might be extractable from the tablets at the higher pH's.

Abstract

The invention relates in part to a method of reducing the abuse potential of an oral dosage form of an opioid analgesic, wherein an analgesically effective amount of an orally active opioid agonist is combined with an opioid antagonist into an oral dosage form which would require at least a two-step extraction process to be separated from the opioid agonist, the amount of opioid antagonist including being sufficient to counteract opioid effects if extracted together with the opioid agonist and administered parenterally.

Description

  • This application is a continuation application of U.S. Provisional Application Ser. No. 60/068,479 filed Dec. 22, 1997, hereby incorporated by reference.
  • Opioids, also known as opioid agonists, are a group of drugs that exhibit opium or morphine-like properties. The opioids are employed primarily as moderate to strong analgesics, but have many other pharmacological effects as well, including drowsiness, respiratory depression, changes in mood and mental clouding without a resulting loss of consciousness. Opioids act as agonists, interacting with stereospecific and saturable binding sites in the brain and other tissues. Endogenous opioid-like peptides are present particularly in areas of the central nervous system that are presumed to be related to the perception of pain; to movement, mood and behavior, and to the regulation of neuroendocrinological functions. Opium contains more than twenty distinct alkaloids. Morphine, codeine and papaverine are included in this group.
  • By the middle of the nineteenth century, the use of pure alkaloids such as morphine rather than crude opium preparations began to spread throughout the medical world. Parenteral use of morphine tended to produce a more severe variety of compulsive drug use. The problem of addiction to opioids stimulated a search for potent analgesics that would be free of the potential to produce addiction. By 1967, researchers had concluded that the complex interactions among morphine-like drugs, antagonists, and what was then called “mixed agonist-antagonist” could best be explained by postulating the existence of more than one type of receptor for opioids and related drugs. With the advent of new totally synthetic entities with morphine-like actions, the term “opioid” was generally retained as a generic designation for all exogenous substances that bind stereo-specifically to any of several subspecies of opioid receptors and produce agonist actions.
  • The potential for the development of tolerance and physical dependence with repeated opioid use is a characteristic feature of all the opioid drugs, and the possibility of developing psychological dependence (i.e., addiction) is one of the major concerns in the use of the treatment of pain with opioids, even though iatrogenic addiction is rare. Another major concern associated with the use of opioids is the diversion of these drugs from the patient in pain to another (non-patient) for recreational purposes, e.g., to an addict.
  • The overall abuse potential of an opioid is not established by any one single factor. Instead, there is a composite of factors, including, the capacity of the drug to produce the kind of physical dependence in which drug withdrawal causes sufficient distress to bring about drug-seeking behavior; the ability to suppress withdrawal symptoms caused by withdrawal from other agents; the degree to which it induces euphoria similar to that produced by morphine and other opioids; the patterns of toxicity that occur when the drug is dosed above its normal therapeutic range; and physical characteristics of the drugs such as water solubility. Such physical characteristics may determine whether the drug is likely to be abused by the parenteral route.
  • In the United States, the effort to control the compulsive drug user includes efforts to control drug availability by placing restrictions on the use of opioids in the treatment of pain of compulsive drug users. In practice, the physician is often faced with a choice of administering potent opioid analgesics even to persons who seem predisposed to develop psychological dependence, i.e., addiction, on such drugs. In view of this problem, it has been recommended that these patients should not be given an opioid when another drug without a potential for abuse will suffice; and further that these patients should not be permitted to self-administer such drugs parenterally and should only be given a few days' supply at a time.
  • At least three basic patterns of opioid use and dependence have been identified. The first involves individuals whose drug use begins in the context of medical treatment and who obtain their initial supplies through, e.g., physicians. Another pattern begins with experimental or “recreational” drug use and progresses to more intensive use. A third pattern involves users who begin in one or another of the preceding ways but later switch to oral opioids such as methadone, obtained from organized addiction treatment programs.
  • Tolerance refers to the need to increase the dose of opioid over a period of time in order to achieve the same level of analgesia or euphoria, or the observation that repeated administration of the same dose results in decreased analgesia, euphoria, or other opioid effects. It has been found that a remarkable degree of tolerance develops to the respiratory depressant, analgesic, sedative, emetic and euphorigenic effects of opioids. However, the rate at which this tolerance may develop in either an addict or in a patient requiring treatment of pain, depends on the pattern of use. If the opioid is used frequently, it may be necessary to increase the dose. Tolerance does not develop equally or at the same rate to all the effects of opioids, and even users who are highly tolerant to respiratory depressant effects continue to exhibit miosis and constipation. Tolerance to opioids largely disappears when the withdrawal syndrome has been completed.
  • Physical dependence may develop upon repeated administrations or extended use of opioids. Physical dependence is gradually manifested after stopping opioid use or is precipitously manifested (e.g., within 20 minutes) after administration of a narcotic antagonist (referred to “precipitated withdrawal”). Depending upon the drug to which dependence has been established and the duration of use and dose, symptoms of withdrawal vary in number and kind, duration and severity. The most common symptoms of the withdrawal syndrome include anorexia, weight loss, pupillary dilation, chills alternating with excessive sweating, abdominal cramps, nausea, vomiting, muscle spasms, hyperirritability, lachrymation, rinorrhea, goose flesh and increased heart rate. Abstinence syndrome typically begins to occur 24-48 hours after the last dose, and the syndrome reaches its maximum intensity about the third day and may not begin to decrease until the third week.
  • Psychological dependence (i.e., addiction) on opioids is characterized by drug-seeking behavior directed toward achieving euphoria and escape from, e.g., psychosocioeconomic pressures. An addict will continue to administer opioids for non-medicinal purposes and in the face of self-harm.
  • Pharmacologically, opioid antagonists typically block or reverse all of the effect of opioid agonists. One use of opioid antagonists is as a once-a-day treatment of naltrexone to block euphoric effects that might be otherwise obtained upon administration of opioids to addicts. Small doses of opioid antagonists have been used to determine whether individuals are physically dependent on opioids. Most commonly, opioid antagonists are used to reverse the effects of opoids on individuals who have overdosed on opioid agonist drugs.
  • There have previously been attempts in the art to control the abuse potential associated with opioid analgesics. Typically, a particular dose of an opioid analgesic is more potent when administered parenterally as compared to the same dose administered orally. Therefore, one popular mode of abuse of oral medications involves the extraction of the opioid from the dosage form, and the subsequent injection of the opioid (using any “suitable” vehicle for injection) in order to achieve a “high.” Attempts to curtail abuse have therefore typically centered around the inclusion in the oral dosage form of an opioid antagonist which is not orally active but which will substantially block the analgesic effects of the opioid if one attempts to dissolve the opioid and administer it parenterally.
  • For example, the combination of pentazocine and naloxone has been utilized in tablets available in the United States, commercially available as Talwin®Nx from Sanofi-Winthrop. Talwin®Nx contains pentazocine hydrochloride equivalent to 50 mg base and naloxone hydrochloride equivalent to 0.5 mg base. Talwin®Nx is indicated for the relief of moderate to severe pain. The amount of naloxone present in this combination has no action when taken orally, and will not interfere with the pharmacologic action of pentazocine. However, this amount of naloxone given by injection has profound antagonistic action to narcotic analgesics. Thus, the inclusion of naloxone is intended to curb a form of misuse of oral pentazocine which occurs when the dosage form is solubilized and injected. Therefore, this dosage has lower potential for parenteral misuse than previous oral pentazocine formulations. However, it is still subject to patient misuse and abuse by the oral route, for example, by the patient taking multiple doses at once.
  • Sunshine, et al. “Analgesic Efficacy of Pentazocine Versus a Pentazocine-Naloxone Combination Following Oral Administration”, Clin. J. Pain, 1988:4:35-40, reported on the effect of the addition of 0.5 mg naloxone on the analgesic efficacy of pentazocine 50 mg. The combination was found to be significantly less efficacious than pentazocine for the sum of the pain intensity difference (SPID), and for relief and pain intensity difference (PID) at the fourth hour. For patients with moderate baseline pain, the combination produced significantly less pain relief than pentazocine for SPIED and for relief and PID at hours 3 and 4. In patients with severe baseline pain, there was no significant difference found between pentazocine and the combination of pentazocine plus naloxone.
  • Wang, et al. “Crossover and Parallel Study of Oral Analgesics”, J. Clin Pharmacol 1981; 21:162-8, studied the combination of naloxone 0.25 mg and Percodan® (composed of 4.5 mg oxycodone HCl, oxycodone terephthalate 0.28 mg, aspirin 224 mg, phenacetin 160 mg, and caffeine 32 mg) compared to Percodan® alone, and placebo in a crossover study of patients with chronic pain. The combination had lower mean scores than Percodan® alone for most of the analgesic hourly parameters in the later hours of the trial. However, for the summary variables, the combination showed no significant difference from either placebo or Percodan®.
  • A fixed combination of buprenorphine and naloxone was introduced in 1991 in New Zealand (Temgesic®Nx, Reckitt & Colman) for the treatment of pain.
  • A fixed combination therapy comprising tilidine (50 mg) and naloxone (4 mg) has been available in Germany for the management of severe pain since 1978 (Valoron®N, Goedecke). The rationale for the combination of these drugs is effective pain relief and the prevention of tilidine addiction through naloxone-induced antagonisms at the morphine receptor.
  • U.S. Pat. No. 3,773,955 (Pachter, et al.) described orally effective analgetic compositions which upon parenteral administration do not produce analgesia, euphoria, or physical dependence, and thereby prevent parenteral abuse of the analgetic agents. Such compositions contained from about 0.1 mg to about 10 mg naloxone per analgetic oral dose. This reference was not concerned with oral abuse of opioids.
  • U.S. Pat. No. 3,493,657 (Lewenstein, et al.) described compositions comprising naloxone and morphine or oxymorphone, which compositions were said to provide a strong analgesic effect without the occurrence of undesired side effects such as hallucinations.
  • U.S. Pat. No. 4,457,933 (Gordon, et al.) described a method for decreasing both the oral and parenteral abuse potential of strong analgetic agents such as oxycodone, propoxyphene and pentazocine, by combining an analgesic dose of the opioid with naloxone in a specific, relatively narrow range. Oxycodone-naloxone compositions having a ratio of 2.5-5:1 parts by weight and pentazocine-naloxone compositions having a ratio of 16-50:1 parts by weight were preferred. The dose of naloxone which was to be combined with the opioid is stated to substantially eliminate the possibility of either oral or parenteral abuse of the opioid without substantially affecting the oral analgesic activity thereof.
  • U.S. Pat. No. 4,582,835 (Lewis) describes a method of treating pain by administering a sublingually effective dose of buprenorphine with naloxone. Lewis describes dosage ratios of naloxone to buprenorphine from 1:3 to 1:1 for parenteral administration, and from 1:2 to 2:1 for sublingual administration.
  • It has been increasing recognized in the art that oral opioid formulations are not only being abused by the parenteral route, but also via the oral route when the patient or addict orally self-administers more than the prescribed oral dose during any dosage interval.
  • OBJECTS AND SUMMARY OF THE INVENTION
  • It is an object of the invention to provide an oral dosage form of an opioid analgesic which is subject to less abuse potential via the parenteral route of administration than prior commercially available dosage forms.
  • It is a further object of the invention to provide a method of treating pain in human patients with an oral dosage form of an opioid analgesic while reducing the parenteral abuse potential of dosage form.
  • It is a further object of the invention to provide a method of manufacturing an oral dosage form of an opioid analgesic such that it has less parenteral and/or oral abuse potential.
  • These objects and others are achieved by the present invention, which is directed in part to a method of reducing the abuse potential of an oral dosage form of an opioid analgesic, comprising combining an analgesically effective amount of an opioid agonist together with an opioid antagonist into an oral dosage form which would require at least a two-step extraction process to be separated from the opioid agonist, the amount of opioid antagonist including being sufficient to counteract opioid effects if extracted together with the opioid agonist and administered parenterally. Preferably, the combination of the opioid agonist and the opioid antagonist are only extractable from the dosage form together, and thereafter must be separated from each other in a separate extraction step. For example, both the opioid agonist and the opioid antagonist may be soluble in acid, and must be separated utilizing a high pH solution. In one preferred embodiment, the opioid agonist is hydrocodone bitartrate and the opioid antagonist is naltrexone hydrochloride, wherein both the hydrocodone and naltrexone dissolve at a pH less than 8 and about 80% of said hydrocodone and about 10% of said naltrexone are extractable at a high pH, e.g., substantially greater than pH 10, and preferably above pH 11.
  • In other embodiments, the opioid agonist is hydromorphone hydrochloride and the opioid antagonist is naltrexone hydrochloride, or opioid agonist is oxycodone hydrochloride and the opioid antagonist is naltrexone hydrochloride; or the opioid agonist is morphine sulfate and the opioid antagonist is naltrexone hydrochloride.
  • In further embodiments, the method further comprises incorporating into the dosage form a further ingredient which makes separation of the opioid agonist from the opioid antagonist more difficult. Such further ingredients include gelling agents, waxes, or other pharmaceutically acceptable excipients.
  • In further embodiments, the method further comprises incorporating into the preparation of the dosage form one or more processing steps which further impede the separation of the opioid agonist from the opioid antagonist.
  • In certain preferred embodiments of the method, the opioid is hydrocodone, hydromorphone, oxycodone, morphine, or pharmaceutically acceptable salts thereof.
  • In certain preferred embodiments of the method, the opioid agonist and the opioid antagonist are combined in a ratio of opioid antagonist to opioid agonist (analgesic) which is analgesically effective when the combination is administered orally, but which is aversive in a physically dependent subject. In this manner, the combination product (antagonist/agonist) could in essence be therapeutic to one population (patients in pain), while being unacceptable (aversive) in a different population (e.g., physically dependent subjects) when orally administered at the same dose or at a higher dose than the usually prescribed dosage, e.g., about 2-3 times the usually prescribed dose of the opioid. Thus, the oral dosage form would have less potential for parenteral as well as oral abuse. In such embodiments where the opioid is hydrocodone and the antagonist is naltrexone, the ratio of naltrexone to hydrocodone is preferably from about 0.03-0.27:1 by weight, and more preferably from about 0.05-0.20:1 by weight. In such embodiments where the opioid antagonist is naltrexone and the opioid agonist is hydromorphone, the ratio of naltrexone to hydromorphone preferably is from about 0.148:1 to about 1.185:1, and more preferably from about 0.222:1 to about 0.889:1. In such embodiments where the opioid antagonist is naltrexone and the opioid agonist is morphine, the ratio of naltrexone to morphine is preferably from about 0.018:1 to about 0.148:1, and more preferably from about 0.028:1 to about 0.111:1. In such embodiments where the opioid antagonist is naltrexone and the opioid agonist is oxycodone, the ratio of naltrexone to oxycodone is preferably from about 0.037:1 to about 0.296:1, and more preferably from about 0.056:1 to about 0.222:1.
  • The dosage forms of the present invention may be liquids, tablets, or multiparticulate formulations, utilizing any desired pharmaceutically acceptable excipients known to those skilled in the art. However, it is preferred that the opioid agonist and opioid antagonist are incorporated into the oral dosage form in a manner which deters the easy separation of the two drugs.
  • In certain embodiments, the oral dosage forms of the present invention are sustained release formulations. This may be accomplished, e.g., via the incorporation of a sustained release carrier into a matrix containing the opioid agonist and opioid antagonist; or via a sustained release coating of a matrix containing the opioid agonist and opioid antagonist, where the sustained release coating contains at least a portion of the sustained release carrier included in the dosage form. In any event, it is preferred that the sustained release preparation be prepared in such a manner that the opioid agonist and the opioid antagonist are combined in a matrix or interdispersed so as to force an addict to utilize extraction methodology to separate these drugs.
  • The present invention is also directed to a method of treating pain in human patients in a manner which minimizes the likelihood of oral abuse of opioid analgesics, comprising administering to a human patient an oral dosage form the inventive combinations of opioid agonist/opioid antagonist which must be extracted in at least two separate extraction steps.
  • In certain embodiments, the opioid antagonist is included in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent subjects (e.g., precipitated abstinence syndrome) when the subjects attempt to take at least twice the usually prescribed dose at a time (and often 2-3 times that dose or more), as compared to a comparable dose of the opioid without the opioid antagonist present. In certain preferred embodiments, the amount of naltrexone included in the oral dosage form is less positively reinforcing (e.g., less “liked”) to a non-physically dependent opioid addict than a comparable oral dosage form without the antagonist included. Preferably, the formulation provides effective analgesia when orally administered.
  • In certain preferred embodiments, the method further comprises incorporating the opioid agonist and opioid antagonist into a dosage form that includes a sustained release carrier, either included in the matrix or as a sustained release coating, such that the oral dosage form can be administered on a twice-a-day or a once-a-day basis.
  • The oral pharmaceutical compositions used in the methods of the present invention may be in the form of tablets, troches, lozenges, aqueous or oily suspensions, dispersable powders or granules, emulsions, hard or soft capsules or syrups or elixirs, microparticles (e.g., microcapsules, microspheres and the like), buccal tablets, etc.
  • The term “parenterally” as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.
  • The term “effective analgesia” is defined for purposes of the present invention as a satisfactory reduction in or elimination of pain, along with a tolerable level of side effects, as determined by the human patient. It is recognized that the ratio of opioid antagonist to opioid agonist included in certain embodiments of the invention (e.g., where the opioid antagonist is included in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent subjects when a large amount of the opioid, e.g., about 2-3 times the usually prescribed dose, is taken by or administered orally to a physically dependent subject) may decrease analgesia somewhat when the dosage form is orally administered as assessed by direct measurement in patients or by the use of one or more surrogate measures of opioid analgesic efficacy in human subjects such as a Visual Analogue Scale (“VAS”) for “drug effect”. The patient in pain may or may not appreciably notice the difference between the formulation administered in accordance with such embodiments of the invention, and a similar formulation which includes the same dose of opioid agonist without the opioid antagonist, but will obtain an analgesic effect from the combination. Surrogate measures of opioid efficacy (analgesia) include sedation, respiratory rate and/or pupil size (via pupillometry), and visual analogue scale (“VAS”) for “drug effect”. In such embodiments, such surrogate measures are affected in a direction which indicates reduced opioid effect, as compared to the same dose of opioid without the concommitant dose of opioid antagonist. The pharmacodynamic effect (analgesia) of the formulations administered in accordance with the invention can be described by means of, for example, scores from an analgesic questionnaire reported by the patients at serial times following administration of the dosage form. Summary measures of analgesia include the sum of pain intensity difference (SPID) and total pain relief (TOTPAR).
  • The term “sustained release” is defined for purposes of the present invention as the release of the drug (opioid analgesic) from the transdermal formulation at such a rate that blood (e.g., plasma) concentrations (levels) are maintained within the therapeutic range (above the minimum effective analgesic concentration or “MEAC”) but below toxic levels over a period of time indicative of a twice-a-day or a once-a-day formulation.
  • For purposes of the present invention, the term “opioid agonist” is interchangeable with the term “opioid” or “opioid analgesic” and shall include the base of the opioid, pharmaceutically acceptable salts thereof, stereoisomers thereof, ethers and esters thereof, mixed agonist-antagonists, and partial agonists.
  • For purposes of the present invention, the term “opioid antagonist” shall include the base, pharmaceutically acceptable salts thereof, stereoisomers thereof, ethers and esters thereof, and mixtures thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It has been postulated that there exists at least three subspecies of opioid receptors, designated mu, kappa, and delta. Within this framework, the mu receptor is considered to be involved in the production of superspinal analgesia, respiratory depression, euphoria, and physical dependence. The kappa receptor is considered to be involved in inducing spinal analgesia, miosis and sedation. Activation of the gamma receptors causes dysphoria and hallucinations, as well as respiratory and vasomotor stimulatory effects. A receptor distinct from the mu receptor and designated gamma has been described in the mouse vas deferens, Lord, et al. Nature, 1977, 267, 495-99. Opioid agonists are thought to exert their agonist actions primarily at the mu receptor and to a lesser degree at the kappa receptor. There are a few drugs that appear to act as partial agonists at one receptor type or another. Such drugs exhibit a ceiling effect. Such drugs include nalorphine, propiram, and buprenorphine. Still other drugs act as competitive antagonists at the mu receptor and block the effects of morphine-like drugs, by exerting agonist actions at the kappa and omega receptors. The term “agonist-antagonist” has evolved to describe such mechanism of actions. The concept of antagonism to the actions of opioids is considered to be complex.
  • It has been found with the administration of opioid agonist-antagonists and partial agonists that tolerance develops to the agonist effects but not to the antagonist effects of the drugs. Even after prolonged administration of high doses, discontinuance of naloxone is not characterized by any recognizable withdrawal syndrome, and withdrawal of naltrexone, another relatively pure opioid antagonist, produces very few signs and symptoms. However, after prolonged administration of high dosage, abrupt discontinuation of opioid agonist-antagonists nalorphine or cyclazocine causes a characteristic withdrawal syndrome that is similar for both drugs.
  • Naloxone is an opioid antagonist which is almost void of agonist effects. Subcutaneous doses of up to 12 mg of naloxone produce no discernable subjective effects, and 24 mg naloxone causes only slight drowsiness. Small doses (0.4-0.8 mg) of naloxone given intramuscularly or intravenously in man prevent or promptly reverse the effects of morphine-like opioid agonist. One mg of naloxone intravenously has been reported to completely block the effect of 25 mg of heroin. The effects of naloxone are seen almost immediately after intravenous administration. The drug is absorbed after oral administration, but has been reported to be metabolized into an inactive form rapidly in its first passage through the liver such that it has been reported to be only one fiftieth as potent as when parenterally administered. Oral dosage of more than 1 g have been reported to be almost completely metabolized in less than 24 hours.
  • Other opioid antagonists, for example, cyclazocine and naltrexone, both of which have cyclopropylmethyl substitutions on the nitrogen, retain much of their efficacy by the oral route and their durations of action are much longer, approaching 24 hours after oral doses. A most preferred opioid antagonist is naltrexone. However, equiantagonistic oral doses of other opioid antagonists, including but not limited to naloxone, nalmephene, cyclazocine, and levallorphan can be utilized in accordance with the present invention. The ratio of such other antagonists to a particular opioid agonist can be readily determined without undue experimentation by one skilled in art who desires to utilize a different opioid antagonist than naltrexone, the ratio of which to opioid agonists is exemplified and discussed in detail herein. Those skilled in the art may determine such ratios of other antagonists to opioid agonists, e.g., by conducting the same or similar clinical studies set forth in the examples appended herein. Thus, combinations of opioid antagonists/opioid agonists which are orally administered in ratios which are equivalent to the ratio of, e.g., naltrexone to hydrocodone set forth herein are considered to be within the scope of the present invention and within the scope of the appended claims. For example, in certain embodiments of the invention, naloxone is utilized as the opioid antagonist, the amount of naloxone included in the dosage form being large enough to provide an equiantagonistic effect as if naltrexone were included in the combination.
  • In the treatment of patients previously addicted to opioids, naltrexone has been used in large oral doses (over 100 mg) to prevent euphorigenic effects of opioid agonists. Naltrexone has been reported to exert strong preferential blocking action against mu over delta sites. Naltrexone is known as a synthetic congener of oxymorphone with no opioid agonist properties, and differs in structure from oxymorphone by the replacement of the methyl group located on the nitrogen atom of oxymorphone with a cyclopropylmethyl group. The hydrochloride salt of naltrexone is soluble in water up to about 100 mg/cc. The pharmacological and pharmacokinetic properties of naltrexone have been evaluated in multiple animal and clinical studies. See, e.g., Gonzalez J P, et al. Naltrexone: A review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Efficacy in the Management of Opioid Dependence. Drugs 1988; 35:192-213, hereby incorporated by reference. Following oral administration, naltrexone is rapidly absorbed (within 1 hour) and has an oral bioavailability ranging from 5-40%. Naltrexone's protein binding is approximately 21% and the volume of distribution following single-dose administration is 16.1 L/kg.
  • Naltrexone is commercially available in tablet form (Revia®, DuPont) for the treatment of alcohol dependence and for the blockade of exogenously administered opioids. See, e.g., Revia (naltrexone hydrochloride tablets). Physician's Desk Reference 51st ed., Montvale, N.J. Medical Economics 1997; 51:957-959. A dosage of 50 mg ReVia® blocks the pharmacological effects of 25 mg IV administered heroin for up to 24 hours.
  • It is known that when coadministered with morphine, heroin or other opioids on a chronic basis, naltrexone blocks the development of physical dependence to opioids. It is believed that the method by which naltrexone blocks the effects of heroin is by competitively binding at the opioid receptors. Naltrexone has been used to treat narcotic addiction by complete blockade of the effects of opioids. It has been found that the most successful use of naltrexone for a narcotic addiction is with good prognosis narcotic addicts as part of a comprehensive occupational or rehabilitative program involving behavioral control or other compliance enhancing methods. For treatment of narcotic dependence with naltrexone, it is desirable that the patient be opioid-free for at least 7-10 days. The initial dosage of naltrexone for such purposes has typically been about 25 mg, and if no withdrawal signs occur, the dosage may be increased to 50 mg per day. A daily dosage of 50 mg is considered to produce adequate clinical blockade of the actions of parenterally administered opioids. Naltrexone has also been used for the treatment of alcoholism as an adjunct with social and psychotherapeutic methods.
  • In the dosage forms and methods of the invention, the amount of naltrexone included is significantly less than the dosages previously commercially available. This is in part because the use of naltrexone is different in the present invention: the goal is not to block opioid effects, but rather to provide a negative, “aversive” experience when a large amount of the combination product, e.g., about 2-3 times the usually prescribed dose, is taken by or administered to a physically dependent subject.
  • Thus, for example, in formulations of the present invention in which the opioid is hydrocodone bitartrate 15 mg, the amount of naltrexone hydrochloride included in the formulation is from about 0.5 mg to about 4 mg, and preferably from about 0.75 mg to about 3 mg naltrexone per 15 mg hydrocodone.
  • Opioid analgesics which are useful in the present invention include all opioid agonists or mixed agonist-antagonists, partial agonists, including but not limited to alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, levophenacylmorphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, narceine, nicomorphine, norlevorphanol, nornethadone, nalorphine, nalbuphene, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propoxyphene, sufentanil, tilidine, tramadol, mixtures of any of the foregoing, salts of any of the foregoing, and the like.
  • In certain preferred embodiments, the opioid agonist or analgesic is selected from the group consisting of hydrocodone, morphine, hydromorphone, oxycodone, codeine, levorphanol, meperidine, methadone, or salts thereof, or mixtures thereof. In certain preferred embodiments, the opioid agonist is hydrocodone. Equianalgesic doses of these opioids, in comparision to a 15 mg dose of hydrocodone, are set forth in Table 1 below:
    TABLE 1
    Equianalgesic Doses of Opioids
    Opioid Calculated Dose (mg)
    Oxycodone 13.5
    Codeine 90.0
    Hydrocodone 15.0
    Hydromorphone 3.375
    Levorphanol 1.8
    Meperidine 135.0
    Methadone 9.0
    Morphine 27.0
  • Based on the preferred ratio of naltrexone in an amount from about 0.5 to about 4 mg per 15 mg of hydrocodone, the approximate ratio of naltrexone to 1 mg of each opioid is set forth in Table 2:
    TABLE 2
    Weight Ratio of Naltrexone per Dose Opioid
    Weight Ratio Naltrexone per
    Opioid 1 mg Opioid
    Oxycodone 0.037 to 0.296
    Codeine 0.005 to 0.044
    Hydrocodone 0.033 to 0.267
    Hydromorphone 0.148 to 1.185
    Levorphanol 0.278 to 2.222
    Meperidine 0.0037 to 0.0296
    Methadone 0.056 to 0.444
    Morphine 0.018 to 0.148
  • Based on the more preferred ratio of about 0.75 mg to about 3 mg naltrexone per 15 mg hydrocodone of naltrexone, the approximate ratio of naltrexone to 1 mg of each opioid is set forth in Table 3:
    TABLE 3
    Weight Ratio of Naltrexone per Dose Opioid
    Opioid Weight Ratio Naltrexone
    Oxycodone 0.056 to 0.222
    Codeine 0.0083 to 0.033 
    Hydrocodone 0.050 to 0.200
    Hydromorphone 0.222 to 0.889
    Levorphanol 0.417 to 1.667
    Meperidine 0.0056 to 0.022 
    Methadone 0.083 to 0.333
    Morphine 0.028 to 0.111
  • Although hydrocodone is effective in the management of pain, there has been an increase in its abuse by individuals who are psychologically dependent on opioids or who misuse opioids for non-therapeutic reasons. Previous experience with other opioids has demonstrated a decreased abuse potential when opioids are administered in combination with a narcotic antagonist especially in patients who are ex-addicts. Weinhold L L, et al. Buprenorphine Alone and in Combination with Naltrexone in Non-Dependent Humans, Drug and Alcohol Dependence 1992; 30:263-274; Mendelson J., et. al., Buprenorphine and Naloxone Interactions in Opiate-Dependent Volunteers, Clin Pharm Ther 1996; 60:105-114; both of which are hereby incorporated by reference.
  • Hydrocodone is a semisynthetic narcotic analgesic and antitussive with multiple central nervous system and gastrointestinal actions. Chemically, hydrocodone is 4,5-epoxy-3-methoxy-17-methylmorphinan-6-one, and is also known as dihydrocodeinone. Like other opioids, hydrocodone may be habit forming and may produce drug dependence of the morphine type. In excess doses hydrocodone, like other opium derivatives, will depress respiration.
  • Oral hydrocodone is also available in Europe (Belgium, Germany, Greece, Italy, Luxembourg, Norway and Switzerland) as an antitussive agent. A parenteral formulation is also available in Germany as an antitussive agent. For use as an analgesic, hydrocodone bitartrate is commercially available in the United States only as a fixed combination with non-opiate drugs (i.e., ibuprofen, acetaminophen, aspirin, etc.) for relief of moderate or moderately severe pain.
  • A common dosage form of hydrocodone is in combination with acetaminophen, and is commercially available, e.g., as Lortab® in the U.S. from UCB Pharma, Inc. as 2.5/500 mg, 5/500 mg, 7.5/500 mg and 10/500 mg hydrocodone/acetaminophen tablets. Tablets are also available in the ratio of 7.5 mg hydrocodone bitartrate and 650 mg acetaminophen; and 7.5 mg hydrocodone bitartrate and 750 mg acetaminophen. Hydrocodone in combination with aspirin is given in an oral dosage form to adults generally in 1-2 tablets every 4-6 hours as needed to alleviate pain. The tablet form is 5 mg hydrocodone bitartrate and 224 mg aspirin with 32 mg caffeine; or 5 mg hydrocodone bitartrate and 500 mg aspirin. A relatively new formulation comprises hydrocodone bitartrate and ibuprofen. Vicoprofen®, commercially available in the U.S. from Knoll Laboratories, is a tablet containing 7.5 mg hydrocodone bitartrate and 200 mg ibuprofen. The present invention is contemplated to encompass all such formulations, with the inclusion of the orally active opioid antagonist within the inventive amounts set forth herein.
  • The abuse potential of opioid analgesics such as hydrocodone is surprisingly curtailed by the inventive combinations of the present invention. More particularly, it has been discovered that it is possible to combine in a single oral dosage form an opioid analgesic together with a small amount of opioid antagonist, to achieve a product which still provides analgesia but which substantially negates the possibility that a physically dependent human subject will continue to abuse the drug by taking more than one tablet at a time, e.g., 2-3 times more than the usually prescribed dose.
  • The oral dosage forms of the invention comprise an orally therapeutically effective amount of an opioid agonist, together with an opioid antagonist such as naltrexone in an amount (i) which does not cause a reduction in the level of analgesia elicited from the dosage form upon oral administration to a non-therapeutic level and (ii) which provides at least a mildly negative, “aversive” experience in physically dependent human subjects, for example, physically dependent addicts (e.g., precipitated abstinence syndrome) when taking more than the usually prescribed dose at a time. Preferably, the amount of antagonist included in the oral dosage form is (iii) less positively reinforcing (e.g., less “liked”) by a non-physically dependent human subject, e.g., opioid addict, than a comparable oral dosage form without the antagonist included.
  • The amount of antagonist which is useful to achieve parameters (i)-(iii) set forth in the preceding paragraph may be determined at least in part, for example, through the use of “surrogate” tests, such as a VAS scale (where the subject grades his/her perception of the effect of the dosage form) and/or via a measurement such as pupil size (measured by pupillometry). Such measurements allow one skilled in the art to determine the dose of antagonist relative to the dose of agonist which causes a diminution in the opiate effects of the agonist. Subsequently, one skilled in the art can determine the level of opioid antagonist that causes aversive effects in physically dependent subjects as well as the level of opioid antagonist that minimizes “liking scores” or opioid reinforcing properties in non-physically dependent addicts. Once these levels of opioid antagonist are determined, it is then possible to determine the range of antagonist dosages at or below this level which would be useful in achieving parameters (i)-(iii) set forth in the preceding paragraph.
  • The combination of opioid agonist and opioid antagonist can be employed in admixtures with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral administration, known to the art. Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelate, carbohydrates such as lactose, amylose or starch, magnesium stearate talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc. The pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like. They can also be combined where desired with other active agents, e.g., other analgesic agents. For oral administration, particularly suitable are tablets, dragees, liquids, drops, suppositories, or capsules, caplets and gelcaps. The compositons intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically excipients which are suitable for the manufacture of tablets. Such excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate. The tablets may be uncoated or they may be coated by known techniques for elegance or to delay release of the active ingredients. Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert diluent.
  • Aqueous suspensions contain the above-identified combination of drugs and that mixture has one or more excipients suitable as suspending agents, for example pharmaceutically acceptable synthetic gums such as hydroxypropylmethylcellulose or natural gums. Oily suspensions may be formulated by suspending the above-identified combination of drugs in a vegetable oil or mineral oil. The oily suspensions may contain a thickening agent such as beeswax or cetyl alcohol. A syrup, elixir, or the like can be used wherein a sweetened vehicle is employed. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • The method of treatment and pharmaceutical formulations of the present invention may further include one or more drugs in addition to the opioid analgesic and opioid antagonist, which additional drug(s) may or may not act synergistically therewith. Thus, in certain embodiments, a combination of two opioid analgesics may be included in the formulation, in addition to the opioid antagonist. For example, the dosage form may include two opioid analgesics having different properties, such as half-life, solubility, potency, and a combination of any of the foregoing. In yet further embodiments, one or more opioid analgesics is included and a further non-opioid drug is also included, in addition to the opioid antagonist. Such non-opioid drugs would preferably provide additional analgesia, and include, for example, aspirin; acetaminophen; non-sterioidal antiinflammatory drugs (“NSAIDS”), e.g., ibuprofen, ketoprofen, etc.; N-methyl-D-aspartate (NMDA) receptor antagonists, e.g., a morphinan such as dextromethorphan or dextrorphan, or ketamine; cycooxygenase-II inhibitors (“COX-1 inhibitors”); and/or glycine receptor antagonists.
  • In certain preferred embodiments of the present invention, the invention allows for the use of lower doses of the opioid analgesic by virtue of the inclusion of an additional non-opioid agonist, such as an NSAID or a COX-2 inhibitor. By using lower amounts of either or both drugs, the side effects associated with effective pain management in humans are reduced.
  • Suitable non-steroidal anti-inflammatory agents, including ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid, tolfenamic acid, diflurisal, flufenisal, piroxicam, sudoxicam or isoxicam, and the like. Useful dosages of these drugs are well known to those skilled in the art.
  • N-methyl-D-aspartate (NMDA) receptor antagonists are well known in the art, and encompass, for example, morphinans such as dextromethorphan or dextrorphan, ketamine, d-methadone or pharmaceutically acceptable salts thereof. For purposes of the present invention, the term “NMDA antagonist” is also deemed to encompass drugs that block a major intracellular consequence of NMDA-receptor activation, e.g. a ganglioside such as GM1 or GT1b a phenothiazine such as trifluoperazine or a naphthalenesulfonamide such as N-(6-aminothexyl)-5-chloro-1-naphthalenesulfonamide. These drugs are stated to inhibit the development of tolerance to and/or dependence on addictive drugs, e.g., narcotic analgesics such as morphine, codeine, etc. in U.S. Pat. Nos. 5,321,012 and 5,556,838 (both to Mayer, et. al.), and to treat chronic pain in U.S. Pat. No. 5,502,058 (Mayer, et. al.), all of which are hereby incorporated by reference. The NMDA antagonist may be included alone, or in combination with a local anesthetic such as lidocaine, as described in these Mayer, et. al. patents.
  • The treatment of chronic pain via the use of glycine receptor antagonists and the identification of such drugs is described in U.S. Pat. No. 5,514,680 (Weber, et al.), hereby incorporated by reference.
  • COX-2 inhibitors have been reported in the art and many chemical structures are known to produce inhibition of cyclooxygenase-2. COX-2 inhibitors are described, for example, in U.S. Pat. Nos. 5,616,601; 5,604,260; 5,593,994; 5,550,142; 5,536,752; 5,521,213; 5,475,995; 5,639,780; 5,604,253; 5,552,422; 5,510,368; 5,436,265; 5,409,944; and 5,130,311, all of which are hereby incorporated by reference. Certain preferred COX-2 inhibitors include celecoxib (SC-58635), DUP-697, flosulide (CGP-28238), meloxicam, 6-methoxy-2 naphthylacetic acid (6-MNA), MK-966, nabumetone (prodrug for 6-MNA), nimesulide, NS-398, SC-5766, SC-58215, T-614; or combinations thereof. Dosage levels of COX-2 inhibitor on the order of from about 0.005 mg to about 140 mg per kilogram of body weight per day are therapeutically effective in combination with an opioid analgesic. Alternatively, about 0.25 mg to about 7 g per patient per day of a COX-2 inhibitor is administered in combination with an opioid analgesic.
  • In yet further embodiments, a non-opioid drug can be included which provides a desired effect other than analgesia, e.g., antitussive, expectorant, decongestant, antihistamine drugs, local anesthetics, and the like.
  • An oral dosage form according to the invention may be provided as, for example, granules, spheroids, beads, pellets (hereinafter collectively referred to as “multiparticulates”). An amount of the multiparticulates which is effective to provide the desired dose of opioid over time may be placed in a capsule or may be incorporated in any other suitable oral solid form. Alternatively, the oral dosage form may be in the form of a tablet.
  • Controlled Release Dosage Forms
  • The opioid agonist/opioid antagonist combination can be formulated as a controlled or sustained release oral formulation in any suitable tablet, coated tablet or multiparticulate formulation known to those skilled in the art. The sustained release dosage form may optionally include a sustained release carrier which is incorporated into a matrix along with the opioid agonist and opioid antagonist, or may be applied as a sustained release coating.
  • In embodiments in which the opioid analgesic comprises hydrocodone, the sustained release oral dosage forms may include analgesic doses from about 8 mg to about 50 mg of hydrocodone per dosage unit. In sustained release oral dosage forms where hydromorphone is the therapeutically active opioid, it is included in an amount from about 2 mg to about 64 mg hydromorphone hydrochloride. In another embodiment, the opioid analgesic comprises morphine, and the sustained release oral dosage forms of the present invention include from about 2.5 mg to about 800 mg morphine, by weight. In yet another embodiment, the opioid analgesic comprises oxycodone and the sustained release oral dosage forms include from about 2.5 mg to about 800 mg oxycodone. The opioid analgesic may comprise tramadol and the sustained release oral dosage forms may include from about 25 mg to 800 mg tramadol per dosage unit. The dosage form may contain more than one opioid analgesic to provide a substantially equivalent therapeutic effect. Alternatively, the dosage form may contain molar equivalent amounts of other salts of the opioids useful in the present invention.
  • In one preferred embodiment of the present invention, the sustained release dosage form comprises such particles containing or comprising the active ingredient, wherein the particles have diameter from about 0.1 mm to about 2.5 mm, preferably from about 0.5 mm to about 2 mm.
  • The particles are preferably film coated with a material that permits release of the opioid agonist/antagonist combination at a sustained rate in an aqueous medium. The film coat is chosen so as to achieve, in combination with the other stated properties, a desired in-vitro release rate. The sustained release coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
  • In certain embodiments, the particles comprise normal release matrixes containing the opioid analgesic with the opioid antagonist.
  • Coatings
  • The dosage forms of the present invention may optionally be coated with one or more materials suitable for the regulation of release or for the protection of the formulation. In one embodiment, coatings are provided to permit either pH-dependent or pH-independent release, e.g., when exposed to gastrointestinal fluid. A pH-dependent coating serves to release the opioid in desired areas of the gastro-intestinal (GI) tract, e.g., the stomach or small intestine, such that an absorption profile is provided which is capable of providing at least about eight hours and preferably about twelve hours to up to about twenty-four hours of analgesia to a patient. When a pH-independent coating is desired, the coating is designed to achieve optimal release regardless of pH-changes in the environmental fluid, e.g., the GI tract. It is also possible to formulate compositions which release a portion of the dose in one desired area of the GI tract, e.g., the stomach, and release the remainder of the dose in another area of the GI tract, e.g., the small intestine.
  • Formulations according to the invention that utilize pH-dependent coatings to obtain formulations may also impart a repeat-action effect whereby unprotected drug is coated over the enteric coat and is released in the stomach, while the remainder, being protected by the enteric coating, is released further down the gastrointestinal tract. Coatings which are pH-dependent may be used in accordance with the present invention include shellac, cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), hydroxypropylmethylcellulose phthalate, and methacrylic acid ester copolymers, zein, and the like.
  • In certain preferred embodiments, the substrate (e.g., tablet core bead, matrix particle) containing the opioid analgesic (with or without the COX-2 inhibitor) is coated with a hydrophobic material selected from (i) an alkylcellulose; (ii) an acrylic polymer; or (iii) mixtures thereof. The coating may be applied in the form of an organic or aqueous solution or dispersion. The coating may be applied to obtain a weight gain from about 2 to about 25% of the substrate in order to obtain a desired sustained release profile. Coatings derived from aqueous dispersions—are described, e.g., in detail in U.S. Pat. Nos. 5,273,760 and 5,286,493, assigned to the Assignee of the present invention and hereby incorporated by reference.
  • Other examples of sustained release formulations and coatings which may be used in accordance with the present invention include Assignee's U.S. Pat. Nos. 5,324,351; 5,356,467, and 5,472,712, hereby incorporated by reference in their entirety.
  • Alkylcellulose Polymers
  • Cellulosic materials and polymers, including alkylcelluloses, provide hydrophobic materials well suited for coating the beads according to the invention. Simply by way of example, one preferred alkylcellulosic polymer is ethylcellulose, although the artisan will appreciate that other cellulose and/or alkylcellulose polymers may be readily employed, singly or in any combination, as all or part of a hydrophobic coating according to the invention.
  • One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pa., U.S.A.). Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use.
  • Another aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pa., U.S.A.). This product is prepared by incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
  • Acrylic Polymers
  • In other preferred embodiments of the present invention, the hydrophobic material comprising the controlled release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • In order to obtain a desirable dissolution profile, it may be necessary to incorporate two or more ammonio methacrylate copolymers having differing physical properties, such as different molar ratios of the quaternary ammonium groups to the neutral (meth)acrylic esters.
  • Certain methacrylic acid ester-type polymers are useful for preparing pH-dependent coatings which may be used in accordance with the present invention. For example, there are a family of copolymers synthesized from diethylaminoethyl methacrylate and other neutral methacrylic esters, also known as methacrylic acid copolymer or polymeric methacrylates, commercially available as Eudragit® from Rohm Tech, Inc. There are several different types of Eudragit®. For example, Eudragit® E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media. Eudragit® L is a methacrylic acid copolymer which does not swell at about pH <5.7 and is soluble at about pH >6. Eudragit® S does not swell at about pH <6.5 and is soluble at about pH >7. Eudragit® RL and Eudragit® RS are water swellable, and the amount of water absorbed by these polymers is pH-dependent, however, dosage forms coated with Eudragit® RL and RS are pH-independent.
  • In certain preferred embodiments, the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively. Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
  • The Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained release formulation having a desirable dissolution profile. Desirable sustained release formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • Plasticizers
  • In embodiments of the present invention where the coating comprises an aqueous dispersion of a hydrophobic material, the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic material will further improve the physical properties of the sustained release coating. For example, because ethylcellulose has a relatively high glass transition temperature and does not form flexible films under normal coating conditions, it is preferable to incorporate a plasticizer into an ethylcellulose coating containing sustained release coating before using the same as a coating material. Generally, the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Concentration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
  • Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • Examples of suitable plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol. Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit® RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin. Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • It has further been found that the addition of a small amount of talc reduces the tendency of the aqueous dispersion to stick during processing, and acts as a polishing agent.
  • Processes for Preparing Coated Beads
  • When a hydrophobic material is used to coat inert pharmaceutical beads such as nu pariel 18/20 beads, a plurality of the resultant solid controlled release beads may thereafter be placed in a gelatin capsule in an amount sufficient to provide an effective controlled release dose when ingested and contacted by an environmental fluid, e.g., gastric fluid or dissolution media.
  • The controlled release bead formulations of the present invention slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The controlled release profile of the formulations of the invention can be altered, for example, by varying the amount of overcoating with the hydrophobic material, altering the manner in which the plasticizer is added to the hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc. The dissolution profile of the ultimate product may also be modified, for example, by increasing or decreasing the thickness of the retardant coating.
  • Spheroids or beads coated with a therapeutically active agent are prepared, e.g., by dissolving the therapeutically active agent in water and then spraying the solution onto a substrate, for example, nu pariel 18/20 beads, using a Wuster insert. Optionally, additional ingredients are also added prior to coating the beads in order to assist the binding of the opioid to the beads, and/or to color the solution, etc. For example, a product which includes hydroxypropylmethylcellulose, etc. with or without colorant (e.g., Opadry®, commercially available from Colorcon, Inc.) may be added to the solution and the solution mixed (e.g., for about 1 hour) prior to application of the same onto the beads. The resultant coated substrate, in this example beads, may then be optionally overcoated with a barrier agent, to separate the therapeutically active agent from the hydrophobic controlled release coating. An example of a suitable barrier agent is one which comprises hydroxypropylmethylcellulose. However, any film-former known in the art may be used. It is preferred that the barrier agent does not affect the dissolution rate of the final product.
  • The beads may then be overcoated with an aqueous dispersion of the hydrophobic material. The aqueous dispersion of hydrophobic material preferably further includes an effective amount of plasticizer, e.g. triethyl citrate. Pre-formulated aqueous dispersions of ethylcellulose, such as Aquacoat® or Surelease®, may be used. If Surelease® is used, it is not necessary to separately add a plasticizer. Alternatively, pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used.
  • The coating solutions of the present invention preferably contain, in addition to the film-former, plasticizer, and solvent system (i.e., water), a colorant to provide elegance and product distinction. Color may be added to the solution of the therapeutically active agent instead, or in addition to the aqueous dispersion of hydrophobic material. For example, color may be added to Aquacoat™ via the use of alcohol or propylene glycol based color dispersions, milled aluminum lakes and opacifiers such as titanium dioxide by adding color with shear to water soluble polymer solution and then using low shear to the plasticized Aquacoat®. Alternatively, any suitable method of providing color to the formulations of the present invention may be used. Suitable ingredients for providing color to the formulation when an aqueous dispersion of an acrylic polymer is used include titanium dioxide and color pigments, such as iron oxide pigments. The incorporation of pigments, may, however, increase the retard effect of the coating.
  • Plasticized hydrophobic material may be applied onto the substrate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the core material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the hydrophobic material to obtain a predetermined controlled release of said therapeutically active agent when the coated substrate is exposed to aqueous solutions, e.g. gastric fluid, is preferably applied, taking into account the physical characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc. After coating with the hydrophobic material, a further overcoat of a film-former, such as Opadry®, is optionally applied to the beads. This overcoat is provided, if at all, in order to substantially reduce agglomeration of the beads.
  • The release of the therapeutically active agent from the controlled release formulation of the present invention can be further influenced, i.e., adjusted to a desired rate, by the addition of one or more release-modifying agents, or by providing one or more passageways through the coating. The ratio of hydrophobic material to water soluble material is determined by, among other factors, the release rate required and the solubility characteristics of the materials selected.
  • The release-modifying agents which function as pore-formers may be organic or inorganic, and include materials that can be dissolved, extracted or leached from the coating in the environment of use. The pore-formers may comprise one or more hydrophilic materials such as hydroxypropylmethylcellulose.
  • The sustained release coatings of the present invention can also include erosion-promoting agents such as starch and gums.
  • The sustained release coatings of the present invention can also include materials useful for making microporous lamina in the environment of use, such as polycarbonates comprised of linear polyesters of carbonic acid in which carbonate groups reoccur in the polymer chain.
  • The release-modifying agent may also comprise a semi-permeable polymer.
  • In certain preferred embodiments, the release-modifying agent is selected from hydroxypropylmethylcellulose, lactose, metal stearates, and mixtures of any of the foregoing.
  • The sustained release coatings of the present invention may also include an exit means comprising at least one passageway, orifice, or the like. The passageway may be formed by such methods as those disclosed in U.S. Pat. Nos. 3,845,770; 3,916,889; 4,063,064; and 4,088,864 (all of which are hereby incorporated by reference). The passageway can have any shape such as round, triangular, square, elliptical, irregular, etc.
  • Matrix Bead Formulations
  • In other embodiments of the present invention, the controlled release formulation is achieved via a matrix having a controlled release coating as set forth above. The present invention may also utilize a controlled release matrix that affords in-vitro dissolution rates of the opioid within the preferred ranges and that releases the opioid in a pH-dependent or pH-independent manner. The materials suitable for inclusion in a controlled release matrix will depend on the method used to form the matrix.
  • For example, a matrix in addition to the opioid analgesic and (optionally) COX-2 may include:
  • Hydrophilic and/or hydrophobic materials, such as gums, cellulose ethers, acrylic resins, protein derived materials; the list is not meant to be exclusive, and any pharmaceutically acceptable hydrophobic material or hydrophilic material which is capable of imparting controlled release of the active agent and which melts (or softens to the extent necessary to be extruded) may be used in accordance with the present invention.
  • Digestible, long chain (C8-C50, especially C12-C40), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and waxes, and stearyl alcohol; and polyalkylene glycols.
  • Of these polymers, acrylic polymers, especially Eudragit® RSPO—the cellulose ethers, especially hydroxyalkylcelluloses and carboxyalkylcelluloses, are preferred. The oral dosage form may contain between 1% and 80% (by weight) of at least one hydrophilic or hydrophobic material.
  • When the hydrophobic material is a hydrocarbon, the hydrocarbon preferably has a melting point of between 25° and 90° C. Of the long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
  • Preferably, the oral dosage form contains up to 60% (by weight) of at least one polyalkylene glycol.
  • The hydrophobic material is preferably selected from the group consisting of alkylcelluloses, acrylic and methacrylic acid polymers and copolymers, shellac, zein, hydrogenated castor oil, hydrogenated vegetable oil, or mixtures thereof. In certain preferred embodiments of the present invention, the hydrophobic material is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyano ethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer, poly(methyl methacrylate), poly(methacrylic acid)(anhydride), polymethacrylate, polyacrylamide, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers. In other embodiments, the hydrophobic material is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
  • Preferred hydrophobic materials are water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends. Preferably, the hydrophobic materials useful in the invention have a melting point from about 30° to about 200° C., preferably from about 45° C. to about 90° C. Specifically, the hydrophobic material may comprise natural or synthetic waxes, fatty alcohols (such as lauryl, myristyl, stearyl, cetyl or preferably cetostearyl alcohol), fatty acids, including but not limited to fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic aid, stearyl alcohol and hydrophobic and hydrophilic materials having hydrocarbon backbones. Suitable waxes include, for example, beeswax, glycowax, castor wax and carnauba wax. For purposes of the present invention, a wax-like substance is defined as any material which is normally solid at room temperature and has a melting point of from about 30° to about 100° C.
  • Suitable hydrophobic materials which may be used in accordance with the present invention include digestible, long chain (C8-C50, especially C12-C40), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and natural and synthetic waxes. Hydrocarbons having a melting point of between 25° and 90° C. are preferred. Of the long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred in certain embodiments. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
  • Preferably, a combination of two or more hydrophobic materials are included in the matrix formulations. If an additional hydrophobic material is included, it is preferably selected from natural and synthetic waxes, fatty acids, fatty alcohols, and mixtures of the same. Examples include beeswax, carnauba wax, stearic acid and stearyl alcohol. This list is not meant to be exclusive.
  • One particular suitable matrix comprises at least one water soluble hydroxyalkyl cellulose, at least one C12-C36, preferably C14-C22, aliphatic alcohol and, optionally, at least one polyalkylene glycol. The at least one hydroxyalkyl cellulose is preferably a hydroxy (C1 to C6) alkyl cellulose, such as hydroxypropylcellulose, hydroxypropylmethylcellulose and, especially, hydroxyethylcellulose. The amount of the at least one hydroxyalkyl cellulose in the present oral dosage form will be determined, inter alia, by the precise rate of opioid release required. The at least one aliphatic alcohol may be, for example, lauryl alcohol, myristyl alcohol or stearyl alcohol. In particularly preferred embodiments of the present oral dosage form, however, the at least one aliphatic alcohol is cetyl alcohol or cetostearyl alcohol. The amount of the at least one aliphatic alcohol in the present oral dosage form will be determined, as above, by the precise rate of opioid release required. It will also depend on whether at least one polyalkylene glycol is present in or absent from the oral dosage form. In the absence of at least one polyalkylene glycol, the oral dosage form preferably contains between 20% and 50% (by wt) of the at least one aliphatic alcohol. When at least one polyalkylene glycol is present in the oral dosage form, then the combined weight of the at least one aliphatic alcohol and the at least one polyalkylene glycol preferably constitutes between 20% and 50% (by wt) of the total dosage.
  • In one embodiment, the ratio of, e.g., the at least one hydroxyalkyl cellulose or acrylic resin to the at least one aliphatic alcohol/polyalkylene glycol determines, to a considerable extent, the release rate of the opioid from the formulation. A ratio of the at least one hydroxyalkyl cellulose to the at least one aliphatic alcohol/polyalkylene glycol of between 1:2 and 1:4 is preferred, with a ratio of between 1:3 and 1:4 being particularly preferred.
  • The at least one polyalkylene glycol may be, for example, polypropylene glycol or, which is preferred, polyethylene glycol. The number average molecular weight of the at least one polyalkylene glycol is preferred between 1,000 and 15,000 especially between 1,500 and 12,000.
  • Another suitable controlled release matrix would comprise an alkylcellulose (especially ethyl cellulose), a C12 to C36 aliphatic alcohol and, optionally, a polyalkylene glycol.
  • In another preferred embodiment, the matrix includes a pharmaceutically acceptable combination of at least two hydrophobic materials.
  • In addition to the above ingredients, a controlled release matrix may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art.
  • Process for Preparing Matrix-Based Beads
  • In order to facilitate the preparation of a solid, controlled release, oral dosage form according to this invention, any method of preparing a matrix formulation known to those skilled in the art may be used. For example incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose and opioid or an opioid salt; (b) mixing the hydroxyalkyl cellulose containing granules with at least one C12-C36 aliphatic alcohol; and (c) optionally, compressing and shaping the granules. Preferably, the granules are formed by wet granulating the hydroxyalkyl cellulose/opioid with water. In a particularly preferred embodiment of this process, the amount of water added during the wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the opioid.
  • In yet other alternative embodiments, a spheronizing agent, together with the active ingredient can be spheronized to form spheroids. Microcrystalline cellulose is preferred. A suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation). In such embodiments, in addition to the active ingredient and spheronizing agent, the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxypropylcellulose, are preferred. Additionally (or alternatively) the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose. In such embodiments, the sustained release coating will generally include a hydrophobic material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein.
  • Melt Extrusion Matrix
  • Sustained release matrices can also be prepared via melt-granulation or melt-extrusion techniques. Generally, melt-granulation techniques involve melting a normally solid hydrophobic material, e.g. a wax, and incorporating a powdered drug therein. To obtain a sustained release dosage form, it may be necessary to incorporate an additional hydrophobic substance, e.g. ethylcellulose or a water-insoluble acrylic polymer, into the molten wax hydrophobic material. Examples of sustained release formulations prepared via melt-granulation techniques are found in U.S. Pat. No. 4,861,598, assigned to the Assignee of the present invention and hereby incorporated by reference in its entirety.
  • The additional hydrophobic material may comprise one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases. Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • In addition to the above ingredients, a sustained release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation. In addition to the above ingredients, a sustained release matrix incorporating melt-extruded multiparticulates may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association, (1986), incorporated by reference herein.
  • Melt Extrusion Multiparticulates
  • The preparation of a suitable melt-extruded matrix according to the present invention may, for example, include the steps of blending the opioid analgesic, together with at least one hydrophobic material and preferably the additional hydrophobic material to obtain a homogeneous mixture. The homogeneous mixture is then heated to a temperature sufficient to at least soften the mixture sufficiently to extrude the same. The resulting homogeneous mixture is then extruded to form strands. The extrudate is preferably cooled and cut into multiparticulates by any means known in the art. The strands are cooled and cut into multiparticulates. The multiparticulates are then divided into unit doses. The extrudate preferably has a diameter of from about 0.1 to about 5 mm and provides sustained release of the therapeutically active agent for a time period of from about 8 to about 24 hours.
  • An optional process for preparing the melt extrusions of the present invention includes directly metering into an extruder a hydrophobic material, a therapeutically active agent, and an optional binder; heating the homogenous mixture; extruding the homogenous mixture to thereby form strands; cooling the strands containing the homogeneous mixture; cutting the strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.
  • The diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
  • The melt extruded multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms “melt-extruded multiparticulate(s)” and “melt-extruded multiparticulate system(s)” and “melt-extruded particles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a hydrophobic material as described herein. In this regard, the melt-extruded multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm. In addition, it is to be understood that the melt-extruded multiparticulates can be any geometrical shape within this size range. Alternatively, the extrudate may simply be cut into desired lengths and divided into unit doses of the therapeutically active agent without the need of a spheronization step.
  • In one preferred embodiment, oral dosage forms are prepared to include an effective amount of melt-extruded multiparticulates within a capsule. For example, a plurality of the melt-extruded multiparticulates may be placed in a gelatin capsule in an amount sufficient to provide an effective sustained release dose when ingested and contacted by gastric fluid.
  • In another preferred embodiment, a suitable amount of the multiparticulate extrudate is compressed into an oral tablet using conventional tableting equipment using standard techniques. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
  • In yet another preferred embodiment, the extrudate can be shaped into tablets as set forth in U.S. Pat. No. 4,957,681 (Klimesch, et. al.), described in additional detail above and hereby incorporated by reference.
  • Optionally, the sustained release melt-extruded multiparticulate systems or tablets can be coated, or the gelatin capsule can be further coated, with a sustained release coating such as the sustained release coatings described above. Such coatings preferably include a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things.
  • The melt-extruded unit dosage forms of the present invention may further include combinations of melt-extruded multiparticulates containing one or more of the therapeutically active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release therapeutically active agent for prompt therapeutic effect. The immediate release therapeutically active agent may be incorporated, e.g., as separate pellets within a gelatin capsule, or may be coated on the surface of the multiparticulates after preparation of the dosage forms (e.g., controlled release coating or matrix-based). The unit dosage forms of the present invention may also contain a combination of controlled release beads and matrix multiparticulates to achieve a desired effect.
  • The sustained release formulations of the present invention preferably slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The sustained release profile of the melt-extruded formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic material, by varying the amount of plasticizer relative to hydrophobic material, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
  • In other embodiments of the invention, the melt extruded material is prepared without the inclusion of the therapeutically active agent, which is added thereafter to the extrudate. Such formulations typically will have the therapeutically active agent blended together with the extruded matrix material, and then the mixture would be tableted in order to provide a slow release formulation. Such formulations may be advantageous, for example, when the therapeutically active agent included in the formulation is sensitive to temperatures needed for softening the hydrophobic material and/or the retardant material.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.
  • EXAMPLE 1
  • The separability of Naltrexone Hydrochloride from Hydrocodone Bitartrate using an extraction procedure mimicking that of a drug abuser is examined. Inspection of the structures and consideration of the pKa's (FIG. 1) would suggest that both compounds would be soluble in acid. However, Naltrexone should also be very soluble at high pH's with a minimum solubility between pH 8.4 and 10.3. We wanted to test the hypothesis that both compounds could be extracted from a tablet in acid and then the Hydrocodone could be precipitated out by high pH.
  • Since Hydrocodone controlled release tablets (HYCR) and Naltrexone tablets were not available for this study, simulated samples were prepared by adding known amounts of Hydrocodone Bitartrate and Naltrexone Hydrochloride drug substances to HYCR AcroContin 15 mg tablets placebo (“Acrocontin” refers to a proprietary controlled release base comprising an ammonio methacrylate polymer together with a higher aliphatic alcohol, as described for example in U.S. Pat. No. 4,861,598, hereby incorporated by reference) Different solvents of varying pH's were used to extract Hydrocodone Bitartrate and/or Naltrexone HCl at concentrations of 4 tablets/25 mL (section 2.1) and 5 tablets/5 mL (section 2.2) of solvent. The recoveries were quantitated using HPLC.
  • 2.1 Extraction at Concentrations of 4 Tablets in 25 mL of Solvent
  • 2.1.1 About 60 mg of Hydrocodone bitartrate, 25 mg of Naltrexone hydrochloride and 400 mg of HYCR 15 mg AcroContin tablets placebo (equivalent to 4 tablets) were added to a 25 mL volumetric flask. About 15 mL of water was added into the volumetric flask and the solution was sonicated for 10 minutes. The solution was diluted to volume with water and mixed well. This was the sample stock solution. Thirteen sample stock solutions were prepared in this manner.
  • 2.1.2 The pH of the solutions were then adjusted with either glacial acetic acid or 0.2N NaOH to pH 2.0, 4.0, 5.1, 6.0, 6.5, 7.0, 7.4, 8.0, 8,5, 9.0, 9,4, and 10.0. However, in preparing the pH 1.1 solution, hydrochloric acid was used. Then step 2.1.4. was followed.
  • 2.1.3 Step 2.1.1 of the procedure was repeated to prepare sample stock solutions in ethanol, methanol and acetone instead of water.
  • 2.1.4 Each solution was filtered using a 5 mL disposable syringe and a Millex-HV 0.45 μm filter unit. 1.0 mL of the clear filtrate was pipetted into a 25 mL volumetric flask, diluted to volume with water and mixed well. The sample solutions were then injected onto the HPLC system and the results are presented in Table 1.
  • 2.2 Extraction at Concentrations of 5 Tablets in 5 mL of Solvent
  • 2.2.1 About 75 mg of Hydrocodone bitartrate and 32 mg of Naltrexone hydrochloride were added to a scintillation vial which contained 475 mg of HYCR 15 mg AcroContin tablets placebo (equivalent to 5 tablets). 5.0 mL of water was added into the scintillation via and the solution was sonicated for 10 minutes. This was the sample stock solution.
  • 2.2.2 The solution's pH was then adjusted with 50% w/w NaOH to pH 7.1. After the solution settled for one hour, the entire solution was filtered using a 5 mL disposable syringe and a Millex-HV 0.45 μm filter unit. 1.0 mL of this clear filtrate was pipetted into a 25 mL volumetric flask, diluted to volume with water, and mixed well. This was the pH 7.1 sample stock solution.
  • 2.2.3 Steps 2.2.1 and 2.2.2 of the procedure was repeated to prepare the sample solutions at pH 8.0, 9.0, 10.0, 11.0, 12.0 and 12.7. The samples solutions were then injected onto the HPLC system and the results are present in Table 2.
  • RESULTS
  • The results are presented in Table 1 and 2. In Table 2, it is noted that both Hydrocodone and Naltrexone dissolved completely in all of the solvents except acetone. In Table 2, it is noted that the amount of Naltrexone retained in the solution decreased at pH 8 and increased again at pH 10 and the Hydrocodone retained in the solution decreased at higher pH.
    TABLE 1
    Simulated Extractability of Naltrexone Hydrochloride
    from Hydrocodone Bitartrate CR 15 mg AcroContin Tablets
    at Concentration of 4 Tablets in 25 mL of Solvent.
    % Recovery
    Sample # Diluent Naltrexone Hydrocodone
    1 pH 1.1 101 101
    2 pH 3.0 102 101
    3 pH 4.0 100 100
    4 pH 5.1 102 100
    5 pH 6.0 102 100
    6 pH 6.5 99 99
    7 pH 7.0 100 100
    8 pH 7.4 100 101
    9 pH 8.0 102 99
    10 pH 8.5 99 100
    11 pH 9.0 99 99
    12 pH 9.4 100 100
    13 pH 10.0 97 99
    14 Ethanol 116 89
    15 Methanol 106 102
    16 Acetone 35 21
  • TABLE 2
    Simulated Extractability of Naltrexone Hydrochloride
    from Hydrocodone Bitartrate CR 15 mg AcroContin Tablets
    at Concentration of 5 Tablets in 5 mL of Solvent.
    % Recovery % Precipitated
    Sample # Diluent Naltrexone Hydrocodone Hydrocodone
    1 pH 7.1 92 92 8
    2 pH 8.0 84 88 12
    3 pH 9.0 46 73 27
    4 pH 10.0 49 72 28
    5 pH 11.0 70 79 21
    6 pH 12.0 88 17 83
    7 pH 12.7 87 19 81
  • FIG. 1 provides structures and pKa Values of Hydrocodone and Naltrexone Base.
  • CONCLUSIONS
  • In Table 1, it can be observed that the concentrations of Hydrocodone and Naltrexone were too low in 25 mL of solvents and they dissolved almost completely in varying pH's as well as in ethanol and methanol. In acetone, Hydrocodone and Naltrexone are less soluble and poor recoveries were obtained.
  • In Table 2, the results can be explained by examining the pKa's of the drug substances. The pKa values of Naltrexone Hydrochloride which were obtained in PRC, Yonkers are 8.4 (at amine functional group) and 10.3 (at phenol functional group) and the pKa value of Hydrocodone Bitartrate (at amine functional group) is 9.2. The chemical structures and pKa values of Hydrocodone and Naltrexone base are shown in FIG. 1.
  • For Naltrexone Hydrochloride: As the pH reaches 8.4, the Naltrexone becomes the free base form and starts precipitating out of the solution and when the pH reaches 10.3, the phenolic OH functional group deionizes and the compound dissolves again into the solution. For Hydrocodone Bitartrate: The Hydrocodone becomes free base at pH higher than 9.2 and starts to precipitate out of the solution.
  • Table 1 shows that about 80% of Hydrocodone Bitartrate and 10% of Naltrexone Hydrochloride might be extractable from the tablets at the higher pH's.
  • This procedure would probably not be that easy on the street. Both strong acid and strong base would be required plus grinding and filtering steps. Moreover, the recovered hydrocodone is soaked with strong caustic, any attempt to wash off the caustic would result in some loss of hydrocodone.
  • However, it is important to note that in this wet recovery experiment, neither drug was incorporated into the tablet matrix through the manufacturing procedure (hot wax). It is most likely that from an actual tablet the recoveries could be worse. Additionally, the addition of a gelling agent or other excipients could make it even more difficult.
  • EXAMPLE 2
  • Extractability of Nalterexone Hydrochloride (1.5 mg) from Hydromorphone Hydrochoride (15 mg) at a concentration of 5 tablets/5 mL of solvent is studied, using the same techniques set forth in Example 1. The results are provided in Table 3 below:
    TABLE 3
    % Recovery
    Hydro- % Precipitated
    Sample # Diluent Naltrexone morphone Hydromorphone
    1 pH 7.2 95 95 5
    2 pH 7.9 88 91 9
    3 pH 9.0 79 90 10
    4 pH 9.9 79 90 10
    5 pH 11.0 79 89 11
    6 pH 11.9 84 88 12
    7 pH 12.9 69 73 27
    8 Methanol 96 66 34
    9 Ethanol 97 32 68
    10 IPA 90 1 99
  • EXAMPLE 3
  • The extractability of Nalterexone Hydrochloride (1.5 mg) from Oxycodone Hydrochoride (15 mg) at a concentration of 5 tablets/5 mL of solvent is studied, using the same techniques set forth in Example 1. The results are provided in Table 4 below:
    TABLE 4
    % Recovery % Precipitated
    Sample # Diluent Naltrexone Oxycodone Oxycodone
    1 pH 6.9 101 94 6
    2 pH 8.1 80 13 87
    3 pH 9.4 62 2 98
    4 pH 10.2 58 2 98
    5 pH 11.0 78 2 98
    6 pH 11.9 68 2 98
    7 pH 12.8 76 2 98
    8 Methanol 78 87 13
    9 Ethanol 74 87 13
    10 IPA 70 14 86
  • While the invention has been described and illustrated with reference to certain preferred embodiments thereof, those skilled in the art will appreciate that obvious modifications can be made herein without departing from the spirit and scope of the invention. Such variations are contemplated to be within the scope of the appended claims.

Claims (13)

1-11. (canceled)
12. An oral dosage form comprising:
(i) an analgesically effective amount of an orally active opioid agonist; and
(ii) naltrexone or a pharmaceutically acceptable salt thereof;
said opioid agonist and naltrexone or pharmaceutically acceptable salt thereof being chosen such that the opioid agonist and the naltrexone or pharmaceutically acceptable salt thereof are only extractable from the dosage form together, and at least a two-step extraction process is required to separate the opioid antagonist from the naltrexone or pharmaceutically acceptable salt thereof, the amount of naltrexone or pharmaceutically acceptable salt thereof included being sufficient to counteract opioid effects if extracted from the oral dosage form together with the opioid agonist and administered parenterally.
13. The oral dosage form of claim 12, wherein the opioid agonist is hydromorphone hydrochloride and the naltrexone or pharmaceutically acceptable salt thereof is naltrexone hydrochloride.
14. The oral dosage form of claim 12, wherein the opioid agonist is oxycodone hydrochloride and the naltrexone or pharmaceutically acceptable salt thereof is naltrexone hydrochloride.
15. The oral dosage form of claim 12, wherein the opioid agonist is morphine sulfate and the naltrexone or pharmaceutically acceptable salt thereof is naltrexone hydrochloride.
16. The oral dosage form of claim 12, wherein the opioid agonist is hydrocodone bitartrate and the naltrexone or pharmaceutically acceptable salt thereof is naltrexone hydrochloride.
17. The oral dosage form of claim 12, wherein the opioid agonist is hydromorphone hydrochloride and the ratio of said naltrexone to said hydromorphone is from about 0.148:1 to about 1.185:1 by weight.
18. The oral dosage form of claim 12, wherein the opioid agonist is hydromorphone hydrochloride and the ratio of said naltrexone to said hydromorphone is from about 0.222:1 to about 0.111:1 by weight.
19. The oral dosage form of claim 12, wherein the opioid agonist is morphine sulfate and the ratio of said naltrexone to said morphine is from about 0.018:1 to about 1.148:1 by weight.
20. The oral dosage form of claim 12, wherein the opioid agonist is oxycodone hydrochloride and the ratio of said naltrexone to said oxycodone is from about 0.037:1 to about 0.296:1 by weight.
21. The oral dosage form of claim 12, wherein the opioid agonist is oxycodone hydrochloride and the ratio of said naltrexone to said oxycodone is from about 0.056:1 to about 0.222:1 by weight.
22. The oral dosage form of claim 12, wherein the opioid agonist is hydrocodone bitartrate and the ratio of said naltrexone to said hydrocodone is from about 0.03:1 to about 0.27:1 by weight.
23. The oral dosage form of claim 12, further comprising a sustained release carrier, wherein the sustained release carrier provides for a release of said opioid agonist such that the dosage form is suitable for administration on a twice-a-day or a once-a-day basis.
US10/665,735 1997-12-22 2003-09-18 Method of preventing abuse of opioid dosage forms Abandoned US20050192309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/665,735 US20050192309A1 (en) 1997-12-22 2003-09-18 Method of preventing abuse of opioid dosage forms

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US6847997P 1997-12-22 1997-12-22
US09/218,663 US6228863B1 (en) 1997-12-22 1998-12-22 Method of preventing abuse of opioid dosage forms
US09/815,162 US6627635B2 (en) 1997-12-22 2001-03-22 Method of preventing abuse of opioid dosage forms
US10/665,735 US20050192309A1 (en) 1997-12-22 2003-09-18 Method of preventing abuse of opioid dosage forms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/815,162 Continuation US6627635B2 (en) 1997-12-22 2001-03-22 Method of preventing abuse of opioid dosage forms

Publications (1)

Publication Number Publication Date
US20050192309A1 true US20050192309A1 (en) 2005-09-01

Family

ID=22082844

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/218,663 Expired - Lifetime US6228863B1 (en) 1997-12-22 1998-12-22 Method of preventing abuse of opioid dosage forms
US09/815,162 Expired - Fee Related US6627635B2 (en) 1997-12-22 2001-03-22 Method of preventing abuse of opioid dosage forms
US10/665,735 Abandoned US20050192309A1 (en) 1997-12-22 2003-09-18 Method of preventing abuse of opioid dosage forms

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/218,663 Expired - Lifetime US6228863B1 (en) 1997-12-22 1998-12-22 Method of preventing abuse of opioid dosage forms
US09/815,162 Expired - Fee Related US6627635B2 (en) 1997-12-22 2001-03-22 Method of preventing abuse of opioid dosage forms

Country Status (18)

Country Link
US (3) US6228863B1 (en)
EP (1) EP1041988A4 (en)
JP (1) JP2001526229A (en)
KR (1) KR100417490B1 (en)
CN (1) CN1204890C (en)
AU (1) AU755790B2 (en)
BR (1) BR9813826A (en)
CA (1) CA2314896C (en)
HU (1) HUP0100310A3 (en)
IL (1) IL136805A0 (en)
NO (1) NO20003278L (en)
NZ (1) NZ505192A (en)
PL (1) PL341309A1 (en)
RU (1) RU2228180C2 (en)
TR (1) TR200001828T2 (en)
UA (1) UA53774C2 (en)
WO (1) WO1999032120A1 (en)
YU (1) YU39500A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104909A1 (en) * 2002-09-23 2006-05-18 Farid Vaghefi Abuse-resistant pharmaceutical compositions
WO2008104737A1 (en) * 2007-03-01 2008-09-04 Reckitt Benckiser Healthcare (Uk) Limited Improved medicinal compositions comprising buprenorphine and naloxone
WO2008104735A1 (en) * 2007-03-01 2008-09-04 Reckitt Benckiser Healthcare (Uk) Limited Improved medicinal compositions comprising buprenorphine and naltrexone
US20080261991A1 (en) * 2007-02-12 2008-10-23 Dmi Biosciences, Inc. Reducing Side Effects of Tramadol
US20080262094A1 (en) * 2007-02-12 2008-10-23 Dmi Biosciences, Inc. Treatment of Comorbid Premature Ejaculation and Erectile Dysfunction
US20090175937A1 (en) * 2007-12-17 2009-07-09 Labopharm, Inc. Misuse Preventative, Controlled Release Formulation
US7682634B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical compositions
US20100239662A1 (en) * 2008-12-16 2010-09-23 Miloud Rahmouni Misuse preventative, controlled release formulation
US20110033542A1 (en) * 2009-08-07 2011-02-10 Monosol Rx, Llc Sublingual and buccal film compositions
US20110033541A1 (en) * 2009-08-07 2011-02-10 Monosol Rx, Llc Sublingual and buccal film compositions
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US8652378B1 (en) 2001-10-12 2014-02-18 Monosol Rx Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US8663687B2 (en) 2001-10-12 2014-03-04 Monosol Rx, Llc Film compositions for delivery of actives
US8685444B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US8765167B2 (en) 2001-10-12 2014-07-01 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US8900498B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for manufacturing a resulting multi-layer pharmaceutical film
US8900497B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for making a film having a substantially uniform distribution of components
US8906277B2 (en) 2001-10-12 2014-12-09 Monosol Rx, Llc Process for manufacturing a resulting pharmaceutical film
US8974826B2 (en) 2010-06-10 2015-03-10 Monosol Rx, Llc Nanoparticle film delivery systems
US9108340B2 (en) 2001-10-12 2015-08-18 Monosol Rx, Llc Process for manufacturing a resulting multi-layer pharmaceutical film
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10272607B2 (en) 2010-10-22 2019-04-30 Aquestive Therapeutics, Inc. Manufacturing of small film strips
US10285910B2 (en) 2001-10-12 2019-05-14 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US11077068B2 (en) 2001-10-12 2021-08-03 Aquestive Therapeutics, Inc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US11191737B2 (en) 2016-05-05 2021-12-07 Aquestive Therapeutics, Inc. Enhanced delivery epinephrine compositions
US11207805B2 (en) 2001-10-12 2021-12-28 Aquestive Therapeutics, Inc. Process for manufacturing a resulting pharmaceutical film
US11273131B2 (en) 2016-05-05 2022-03-15 Aquestive Therapeutics, Inc. Pharmaceutical compositions with enhanced permeation

Families Citing this family (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL119660A (en) 1993-05-10 2002-09-12 Euro Celtique Sa Controlled release formulation comprising tramadol
US5968547A (en) 1997-02-24 1999-10-19 Euro-Celtique, S.A. Method of providing sustained analgesia with buprenorphine
AU755790B2 (en) * 1997-12-22 2002-12-19 Euro-Celtique S.A. A method of preventing abuse of opioid dosage forms
US6375957B1 (en) 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
ATE323491T1 (en) * 1997-12-22 2006-05-15 Euro Celtique Sa PERORALLY ADMINISTERED MEDICINAL FORM CONTAINING A COMBINATION OF AN OPIOID AGONIST AND NALTREXONE
US8173164B2 (en) * 1999-06-17 2012-05-08 Gruenenthal Gmbh Oral administration forms for administering a fixed tramadol and diclofenac combination
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
HU230828B1 (en) 1999-10-29 2018-08-28 Euro Celtique Sa Controlled release hydrocodone formulations
US20020034534A1 (en) * 1999-12-16 2002-03-21 Barr Deborah P. System and method for delivering a therapeutic agent over an extended period of time in conjuction with a receptor loading dose of the therapeutic agent
EP2517710B1 (en) 2000-02-08 2015-03-25 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
US6716449B2 (en) 2000-02-08 2004-04-06 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist
ES2312413T3 (en) * 2000-02-08 2009-03-01 Euro-Celtique S.A. CONTROLLED RELEASE COMPOSITIONS CONTAINING AN OPIOID AGONIST AND ANTAGONIST.
WO2001085150A2 (en) * 2000-05-05 2001-11-15 Pain Therapeutics, Inc. Opioid antagonist containing composition for enchaching the potency or reducing adverse side effects ofopioid agonists
CA2408106A1 (en) * 2000-05-05 2001-11-15 Pain Therapeutics, Inc. Opioid antagonist compositions and dosage forms
FR2809310B1 (en) * 2000-05-26 2004-02-13 Centre Nat Rech Scient USE OF BIGUANIDE DERIVATIVES FOR MANUFACTURING A MEDICINAL PRODUCT HAVING A HEALING EFFECT
WO2002041884A2 (en) * 2000-10-30 2002-05-30 Pain Therapeutics, Inc. Inhibitors of abc drug transporters at the blood-brain barrier
US7034036B2 (en) * 2000-10-30 2006-04-25 Pain Therapeutics, Inc. Inhibitors of ABC drug transporters at the blood-brain barrier
EP2283829A1 (en) * 2000-10-30 2011-02-16 Euro-Celtique S.A. Controlled release hydrocodone formulations
US8394813B2 (en) 2000-11-14 2013-03-12 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
DK1397095T3 (en) * 2001-05-01 2009-03-09 Euro Celtique Sa Abuse-resistant, opioid-containing transdermal systems
CN1525851A (en) 2001-05-11 2004-09-01 ������ҩ�����޹�˾ Abuse-resistant controlled-release opioid dosage form
AU2002303718B2 (en) * 2001-05-11 2008-02-28 Endo Pharmaceuticals, Inc. Abuse-resistant opioid dosage form
AU2002339378A1 (en) 2001-05-22 2002-12-03 Euro-Celtique Compartmentalized dosage form
WO2003002100A1 (en) * 2001-06-26 2003-01-09 Farrell John J Tamper-proof narcotic delivery system
EP2311460A1 (en) * 2001-07-06 2011-04-20 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
ES2292775T3 (en) * 2001-07-06 2008-03-16 Penwest Pharmaceuticals Co. FORMULATIONS OF PROLONGED RELEASE OF OXIMORPHONE.
ATE419039T1 (en) * 2001-07-18 2009-01-15 Euro Celtique Sa PHARMACEUTICAL COMBINATIONS OF OXYCODONE AND NALOXONE
AU2002321879A1 (en) * 2001-08-06 2003-03-03 Thomas Gruber Pharmaceutical formulation containing dye
RS12104A (en) 2001-08-06 2007-04-10 Euroceltique S.A., Opioid agonist formulations with releasable and sequestered antagonist
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US7157103B2 (en) 2001-08-06 2007-01-02 Euro-Celtique S.A. Pharmaceutical formulation containing irritant
US7842307B2 (en) 2001-08-06 2010-11-30 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20150031718A1 (en) * 2001-08-06 2015-01-29 Purdue Pharma L.P. Pharmaceutical Formulation Containing Opioid Agonist, Opioid Antagonist and Gelling Agent
US7332182B2 (en) 2001-08-06 2008-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
WO2003013433A2 (en) * 2001-08-06 2003-02-20 Euro-Celtique S.A. Sequestered antagonist formulations
HUP0401022A3 (en) * 2001-08-14 2006-11-28 Biotie Therapies Corp Method for the preparation of pharmaceutical compositions containing opioid antagonist for treating alcoholism or alcohol abuse
US20030049317A1 (en) * 2001-08-30 2003-03-13 Lindsay David R. Method and composition for reducing the danger and preventing the abuse of controlled release pharmaceutical formulations
US20030068276A1 (en) * 2001-09-17 2003-04-10 Lyn Hughes Dosage forms
JP2005523876A (en) * 2001-09-26 2005-08-11 ペンウェスト ファーマシューティカルズ カンパニー Opioid formulations with reduced potential for abuse
US8101209B2 (en) 2001-10-09 2012-01-24 Flamel Technologies Microparticulate oral galenical form for the delayed and controlled release of pharmaceutical active principles
US20040126428A1 (en) * 2001-11-02 2004-07-01 Lyn Hughes Pharmaceutical formulation including a resinate and an aversive agent
US20040033253A1 (en) * 2002-02-19 2004-02-19 Ihor Shevchuk Acyl opioid antagonists
ES2500117T3 (en) * 2002-02-22 2014-09-30 Shire Llc Novel sustained release pharmaceutical compounds to prevent the abuse of controlled substances
LT2425821T (en) 2002-04-05 2017-07-25 Euro-Celtique S.A. Pharmaceutical preparation containing oxycodone and naloxone
IL164221A0 (en) * 2002-04-09 2005-12-18 Flamel Tech Sa Oral pharmaceutical formulation in the form of aqueous suspension of microcapsules for modified release of amoxicillim
KR101061351B1 (en) 2002-04-09 2011-08-31 플라멜 테크놀로지스 Oral Suspension of Active Ingredient Microcapsules
US20030199496A1 (en) * 2002-04-22 2003-10-23 Simon David Lew Pharmaceutical compositions containing alpha3beta4 nicotinic receptor antagonists and methods of their use
US20030199439A1 (en) * 2002-04-22 2003-10-23 Simon David Lew Compositions of alpha3beta4 receptor antagonists and opioid agonist analgesics
WO2004041154A2 (en) * 2002-05-13 2004-05-21 Endo Pharmaceuticals Inc. Abuse-resistant opioid dosage form
AU2003234395B2 (en) * 2002-05-13 2008-01-24 Endo Pharmaceuticals Inc. Abuse-resistant opioid solid dosage form
ES2665999T3 (en) 2002-05-31 2018-04-30 Titan Pharmaceuticals, Inc. Implantable polymeric device for sustained release of buprenorphine
DE10250083A1 (en) * 2002-06-17 2003-12-24 Gruenenthal Gmbh Dosage form protected against abuse
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
US8840928B2 (en) * 2002-07-05 2014-09-23 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
DE60326354D1 (en) * 2002-08-20 2009-04-09 Euro Celtique Sa TRANSDERMAL DOSAGE FORM CONTAINING AN ACTIVE SUBSTANCE AND AN ANTAGONIST IN FREE BASE AND SALT FORM
US20040109886A1 (en) * 2002-08-27 2004-06-10 Larry Rigby Methods and apparatus for transdermal delivery of abusable drugs with a deterrent agent
AU2003272601B2 (en) * 2002-09-20 2009-05-07 Alpharma Pharmaceuticals, Llc Sustained-release opioid formulations and methods of use
DE10250084A1 (en) * 2002-10-25 2004-05-06 Grünenthal GmbH Dosage form protected against abuse
US7524515B2 (en) * 2003-01-10 2009-04-28 Mutual Pharmaceuticals, Inc. Pharmaceutical safety dosage forms
ATE454169T1 (en) * 2003-03-13 2010-01-15 Controlled Chemicals Inc OXYCODONE CONJUGATES WITH LOWER ABUSE POTENTIAL AND EXTENDED DURATION
WO2004089375A1 (en) * 2003-03-31 2004-10-21 Titan Pharmaceuticals, Inc. Implantable polymeric device for sustained release of dopamine agonist
US20040202717A1 (en) 2003-04-08 2004-10-14 Mehta Atul M. Abuse-resistant oral dosage forms and method of use thereof
TWI347201B (en) * 2003-04-21 2011-08-21 Euro Celtique Sa Pharmaceutical products,uses thereof and methods for preparing the same
WO2004093819A2 (en) 2003-04-21 2004-11-04 Euro-Celtique, S.A. Tamper resistant dosage form comprising co-extruded, adverse agent particles and process of making same
US8778382B2 (en) * 2003-04-30 2014-07-15 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US8790689B2 (en) * 2003-04-30 2014-07-29 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US8906413B2 (en) * 2003-05-12 2014-12-09 Supernus Pharmaceuticals, Inc. Drug formulations having reduced abuse potential
EP1479381A1 (en) * 2003-05-19 2004-11-24 Euro-Celtique S.A. Pharmaceutical dosage form comprising a solid solution
WO2004108084A2 (en) * 2003-06-04 2004-12-16 Alkermes Controlled Therapeutics, Ii Polymorphic forms of naltrexone
WO2004108092A2 (en) * 2003-06-05 2004-12-16 P3 Laboratories, Inc. Tannate compositions and methods of use
US8802139B2 (en) 2003-06-26 2014-08-12 Intellipharmaceutics Corp. Proton pump-inhibitor-containing capsules which comprise subunits differently structured for a delayed release of the active ingredient
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE102004032051A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
DE102005005446A1 (en) * 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
US8075872B2 (en) * 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE10361596A1 (en) * 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
PT1663229E (en) * 2003-09-25 2010-07-13 Euro Celtique Sa Pharmaceutical combinations of hydrocodone and naltrexone
CA2540059C (en) * 2003-09-26 2013-08-06 Alza Corporation Controlled release formulations exhibiting an ascending rate of release
JP5670609B2 (en) * 2003-09-26 2015-02-18 アルザ・コーポレーシヨン OROS push-stick for controlled delivery of active ingredients
CA2540308C (en) 2003-09-26 2013-08-06 Alza Corporation Drug coating providing high drug loading and methods for providing the same
JP5563731B2 (en) * 2003-09-26 2014-07-30 アルザ・コーポレーシヨン Controlled release formulation of opioid and non-opioid analgesics
US7201920B2 (en) 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US8883204B2 (en) 2003-12-09 2014-11-11 Purdue Pharma L.P. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
WO2005055981A2 (en) * 2003-12-09 2005-06-23 Euro-Celtique S.A. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
ES2321012T3 (en) 2004-03-30 2009-06-01 Euro-Celtique S.A. DOSAGE FORM RESISTANT TO INDEBITED HANDLING, INCLUDING AN ADSORBENT AND AN ADVERSE AGENT.
DE102004019916A1 (en) * 2004-04-21 2005-11-17 Grünenthal GmbH Anti-abuse drug-containing patch
US20050251442A1 (en) * 2004-05-07 2005-11-10 Joseph Ficalora Consumer incentive system and business method
WO2005110412A1 (en) * 2004-05-14 2005-11-24 Green Cross Corp. Neuroprotective properties of dextrorotatory morphinans
EP1604667A1 (en) * 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the restless leg syndrome
EP1604666A1 (en) * 2004-06-08 2005-12-14 Euro-Celtique S.A. Opioids for the treatment of the Chronic Obstructive Pulmonary Disease (COPD)
CA2916869A1 (en) 2004-06-12 2005-12-29 Jane C. Hirsh Abuse-deterrent drug formulations
US8394409B2 (en) 2004-07-01 2013-03-12 Intellipharmaceutics Corp. Controlled extended drug release technology
DE102004032049A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
EP1765298B1 (en) * 2004-07-01 2012-10-24 Gruenenthal Gmbh Method for producing a solid dosage form, which is safeguarded against abuse, while using a planetary gear extruder
US20060018837A1 (en) * 2004-07-26 2006-01-26 Victory Pharma, Inc. Pharmaceutical compositions and methods for the prevention of drug misuse
US20060039865A1 (en) * 2004-07-26 2006-02-23 Preston David M Pharmaceutical compositions and methods for the prevention of drug misuse
US10624858B2 (en) 2004-08-23 2020-04-21 Intellipharmaceutics Corp Controlled release composition using transition coating, and method of preparing same
US8541026B2 (en) 2004-09-24 2013-09-24 Abbvie Inc. Sustained release formulations of opioid and nonopioid analgesics
JP5046946B2 (en) * 2004-10-15 2012-10-10 スパーナス ファーマシューティカルズ インコーポレイテッド Low abuse drug product
KR20070086334A (en) * 2004-11-16 2007-08-27 리머릭 뉴로사이언스즈, 인크. Methods and compositions for treating pain
US20070087977A1 (en) * 2004-11-16 2007-04-19 Wendye Robbins Methods and compositions for treating pain
US20060110327A1 (en) * 2004-11-24 2006-05-25 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20070231268A1 (en) * 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060177380A1 (en) * 2004-11-24 2006-08-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20080152595A1 (en) * 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US7827983B2 (en) * 2004-12-20 2010-11-09 Hewlett-Packard Development Company, L.P. Method for making a pharmaceutically active ingredient abuse-prevention device
EP2319499A1 (en) * 2005-01-28 2011-05-11 Euro-Celtique S.A. Alcohol resistant dosage forms
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
FR2881652B1 (en) * 2005-02-08 2007-05-25 Flamel Technologies Sa MICROPARTICULAR ORAL PHARMACEUTICAL FORM ANTI-MEASURING
FR2889810A1 (en) * 2005-05-24 2007-02-23 Flamel Technologies Sa ORAL MEDICINAL FORM, MICROPARTICULAR, ANTI-MEASUREMENT
EP1702558A1 (en) 2005-02-28 2006-09-20 Euro-Celtique S.A. Method and device for the assessment of bowel function
EP1695700A1 (en) * 2005-02-28 2006-08-30 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
DE102005033543A1 (en) * 2005-07-14 2007-01-18 Grünenthal GmbH A fragrance-containing transdermal therapeutic system
CN101287462A (en) * 2005-09-02 2008-10-15 塞拉维达公司 Therapy for the treatment of disease
CN1957909B (en) * 2005-10-31 2013-09-11 阿尔扎公司 Methods of reducing alcohol-induced dose dumping for opioid sustained release oral dosage forms
PL116330U1 (en) * 2005-10-31 2007-04-02 Alza Corp Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation
WO2007056142A2 (en) * 2005-11-02 2007-05-18 Theraquest Biosciences, Llc Methods of preventing the serotonin syndrome and compositions for use therefor
US9125833B2 (en) * 2005-11-02 2015-09-08 Relmada Therapeutics, Inc. Multimodal abuse resistant and extended release opioid formulations
US20090082466A1 (en) * 2006-01-27 2009-03-26 Najib Babul Abuse Resistant and Extended Release Formulations and Method of Use Thereof
US8329744B2 (en) * 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
AU2006326377B2 (en) * 2005-12-13 2010-10-07 Biodelivery Sciences International, Inc. Abuse resistant transmucosal drug delivery device
US10064828B1 (en) 2005-12-23 2018-09-04 Intellipharmaceutics Corp. Pulsed extended-pulsed and extended-pulsed pulsed drug delivery systems
EP1810678A1 (en) * 2006-01-19 2007-07-25 Holger Lars Hermann Use of morphine and naloxone for drug substitution
US20090022798A1 (en) * 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
US20100172989A1 (en) * 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
US20090317355A1 (en) * 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
EP1813276A1 (en) * 2006-01-27 2007-08-01 Euro-Celtique S.A. Tamper resistant dosage forms
AU2011202866B2 (en) * 2006-01-27 2012-06-14 Mundipharma Pty Limited Tamper resistant dosage forms
US20070212307A1 (en) * 2006-02-10 2007-09-13 Daniel Wermeling Pharmaceutical Compositions Comprising an Opioid Receptor Antagonist and Methods of Using Same
US20070212414A1 (en) * 2006-03-08 2007-09-13 Penwest Pharmaceuticals Co. Ethanol-resistant sustained release formulations
CN102488652B (en) * 2006-03-16 2014-06-18 特瑞斯制药股份有限公司 Modified release formulations containing drug-ion exchange resin complexes
CN101453993A (en) 2006-04-03 2009-06-10 伊萨·奥迪迪 Controlled release delivery device comprising an organosol coat
US10960077B2 (en) * 2006-05-12 2021-03-30 Intellipharmaceutics Corp. Abuse and alcohol resistant drug composition
SI2054031T1 (en) * 2006-07-21 2016-09-30 Biodelivery Sciences International, Inc. Transmucosal delivery devices with enhanced uptake
EP2049087A2 (en) * 2006-07-21 2009-04-22 LAB International SRL Hydrophilic abuse deterrent delivery system
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
EP1897543A1 (en) 2006-08-30 2008-03-12 Euro-Celtique S.A. Buprenorphine- wafer for drug substitution therapy
EP1897544A1 (en) * 2006-09-05 2008-03-12 Holger Lars Hermann Opioid agonist and antagonist combinations
WO2008033351A2 (en) * 2006-09-11 2008-03-20 Theraquest Biosciences, Inc. Multimodal abuse resistant and extended release formulations
CA2665841C (en) * 2006-10-09 2016-04-05 Charleston Laboratories, Inc. Pharmaceutical compositions
GB2447013A (en) * 2007-03-01 2008-09-03 Reckitt Benckiser Healthcare Analgesic composition containing buprenorphone and nalmefene
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
US20090124650A1 (en) * 2007-06-21 2009-05-14 Endo Pharmaceuticals, Inc. Method of Treating Pain Utilizing Controlled Release Oxymorphone Pharmaceutical Compositions and Instructions on Effects of Alcohol
EP2197429B9 (en) * 2007-09-03 2016-10-26 Nanotherapeutics, Inc. Particulate compositions for delivery of poorly soluble drugs
KR101424653B1 (en) * 2007-09-21 2014-08-06 에보니크 룀 게엠베하 Ph-dependent controlled release pharmaceutical opioid composition with resistance against the influence of ethanol
US8748448B2 (en) 2007-10-18 2014-06-10 Aiko Biotechnology Combination analgesic employing opioid agonist and neutral antagonist
US8883817B2 (en) * 2007-10-18 2014-11-11 Aiko Biotechnology Combination analgesic employing opioid and neutral antagonist
CA2905541C (en) 2008-01-09 2020-02-11 Charleston Laboratories, Inc. Pharmaceutical compositions comprising an antiemetic and an opioid analgesic
CA2713128C (en) * 2008-01-25 2016-04-05 Gruenenthal Gmbh Pharmaceutical dosage form
EP2116539A1 (en) * 2008-04-25 2009-11-11 Laboratorios Del. Dr. Esteve, S.A. 1-aryl-3-aminoalkoxy-pyrazoles as sigma ligands enhancing analgesic effects of opioids and attenuating the dependency thereof
WO2009135680A1 (en) 2008-05-09 2009-11-12 Grünenthal GmbH Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
ES2663777T3 (en) * 2008-06-23 2018-04-17 Biodelivery Sciences International, Inc. Multidirectional mucosal administration devices and methods of use
WO2010003963A1 (en) * 2008-07-07 2010-01-14 Euro-Celtique S.A. Use of opioid antagonists for treating urinary retention
EP2352494B1 (en) 2008-10-30 2019-10-09 Grünenthal GmbH Novel and potent tapentadol dosage forms
HUE042105T2 (en) 2009-03-10 2019-06-28 Euro Celtique Sa Immediate release pharmaceutical compositions comprising oxycodone and naloxone
WO2010141505A1 (en) * 2009-06-01 2010-12-09 Protect Pharmaceutical Corporation Abuse-resistant delivery systems
EP3311667A1 (en) 2009-07-08 2018-04-25 Charleston Laboratories, Inc. Pharmaceutical compositions
CN102573806B (en) 2009-07-22 2015-02-25 格吕伦塔尔有限公司 Tamper-resistant dosage form for oxidation-sensitive opioids
CN102573805A (en) 2009-07-22 2012-07-11 格吕伦塔尔有限公司 Hot-melt extruded controlled release dosage form
EP2488029B1 (en) * 2009-09-30 2016-03-23 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
SG174658A1 (en) 2010-04-01 2011-10-28 Theravida Inc Pharmaceutical formulations for the treatment of overactive bladder
EP2611425B1 (en) 2010-09-02 2014-07-02 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polymer
WO2012028319A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US8623409B1 (en) 2010-10-20 2014-01-07 Tris Pharma Inc. Clonidine formulation
EP2826467B1 (en) 2010-12-22 2017-08-02 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
AU2011346758C1 (en) 2010-12-23 2015-09-03 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
US8940763B2 (en) 2011-05-10 2015-01-27 Theravida, Inc. Combinations of solifenacin and salivary stimulants for the treatment of overactive bladder
CN103841964A (en) 2011-07-29 2014-06-04 格吕伦塔尔有限公司 Tamper-resistant tablet providing immediate drug release
WO2013017242A1 (en) 2011-07-29 2013-02-07 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
JP6158810B2 (en) 2011-08-18 2017-07-05 バイオデリバリー サイエンシズ インターナショナル,インコーポレーテッド Abuse-resistant mucoadhesive delivery device for buprenorphine
JP6210988B2 (en) 2011-09-19 2017-10-11 オレクソ・アクチエボラゲット Novel abuse-resistant pharmaceutical composition for treating opioid dependence
RU2460515C1 (en) * 2011-10-17 2012-09-10 Тагир Рафаилович Гизатуллин Method for detoxification infusion therapy of patients in desomorphine consumption
US9901539B2 (en) 2011-12-21 2018-02-27 Biodelivery Sciences International, Inc. Transmucosal drug delivery devices for use in chronic pain relief
US20130225697A1 (en) 2012-02-28 2013-08-29 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
ES2716570T3 (en) 2012-04-17 2019-06-13 Purdue Pharma Lp Systems and methods for treating or preventing an adverse pharmacodynamic response induced by opioids
TR201815502T4 (en) 2012-04-18 2018-11-21 Gruenenthal Gmbh Tamper or pharmaceutical dosage form that is resistant and resistant to dose discharge.
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
ES2691982T3 (en) 2012-11-30 2018-11-29 Acura Pharmaceuticals, Inc. Self-regulated release of an active pharmaceutical ingredient
EP2953618B1 (en) 2013-02-05 2020-11-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
WO2014191396A1 (en) 2013-05-29 2014-12-04 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
MX371432B (en) 2013-05-29 2020-01-30 Gruenenthal Gmbh Tamper-resistant dosage form containing one or more particles.
KR20160031526A (en) 2013-07-12 2016-03-22 그뤼넨탈 게엠베하 Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
KR20180037074A (en) 2013-07-23 2018-04-10 유로-셀티큐 에스.에이. A combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US10195153B2 (en) 2013-08-12 2019-02-05 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
MX371372B (en) 2013-11-26 2020-01-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling.
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
WO2015095391A1 (en) 2013-12-17 2015-06-25 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
WO2015145461A1 (en) 2014-03-26 2015-10-01 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release biphasic matrix solid dosage form
EP3142646A1 (en) 2014-05-12 2017-03-22 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
WO2015181059A1 (en) 2014-05-26 2015-12-03 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
CA2910865C (en) 2014-07-15 2016-11-29 Isa Odidi Compositions and methods for reducing overdose
DK3169315T3 (en) 2014-07-17 2020-08-10 Pharmaceutical Manufacturing Res Services In Liquid-filled dosage form to prevent immediate release abuse
US9132096B1 (en) 2014-09-12 2015-09-15 Alkermes Pharma Ireland Limited Abuse resistant pharmaceutical compositions
US9849124B2 (en) 2014-10-17 2017-12-26 Purdue Pharma L.P. Systems and methods for treating an opioid-induced adverse pharmacodynamic response
WO2016064914A1 (en) 2014-10-20 2016-04-28 Elysium Therapeutics, Inc. Diversion-resistant opioid formulations
US20160106737A1 (en) 2014-10-20 2016-04-21 Pharmaceutical Manufacturing Research Services, Inc. Extended Release Abuse Deterrent Liquid Fill Dosage Form
EA035434B1 (en) 2015-04-24 2020-06-15 Грюненталь Гмбх Tamper-resistant dosage form with immediate release and resistance against solvent extraction
WO2017040607A1 (en) 2015-08-31 2017-03-09 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
US11590228B1 (en) 2015-09-08 2023-02-28 Tris Pharma, Inc Extended release amphetamine compositions
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
EP3405191A4 (en) 2016-01-20 2019-09-04 TheraVida, Inc. Methods and compositions for treating hyperhidrosis
US10179109B2 (en) 2016-03-04 2019-01-15 Charleston Laboratories, Inc. Pharmaceutical compositions comprising 5HT receptor agonist and antiemetic particulates
WO2017222575A1 (en) 2016-06-23 2017-12-28 Collegium Pharmaceutical, Inc. Process of making more stable abuse-deterrent oral formulations
WO2018075481A1 (en) * 2016-10-17 2018-04-26 Yale University Compounds, compositions and methods for treating or preventing depression and other diseases
US11590081B1 (en) 2017-09-24 2023-02-28 Tris Pharma, Inc Extended release amphetamine tablets
US10624856B2 (en) 2018-01-31 2020-04-21 Dharma Laboratories LLC Non-extractable oral solid dosage forms
WO2019152002A1 (en) * 2018-01-31 2019-08-08 Dharma Laboratories LLC Non-extractable oral solid dosage forms

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133132A (en) * 1960-11-29 1964-05-12 Univ California High flow porous membranes for separating water from saline solutions
US3173876A (en) * 1960-05-27 1965-03-16 John C Zobrist Cleaning methods and compositions
US3173877A (en) * 1957-09-09 1965-03-16 Wyandotte Chemicals Corp Detergent compositions comprising inorganic esters of epoxyhydrocarbon polymers
US3332950A (en) * 1963-03-23 1967-07-25 Endo Lab 14-hydroxydihydronormorphinone derivatives
US3493657A (en) * 1961-03-14 1970-02-03 Mozes Juda Lewenstein Therapeutic compositions of n-allyl-14-hydroxy - dihydronormorphinane and morphine
US3676557A (en) * 1971-03-02 1972-07-11 Endo Lab Long-acting narcotic antagonist formulations
US3879555A (en) * 1970-11-16 1975-04-22 Bristol Myers Co Method of treating drug addicts
US3965256A (en) * 1972-05-16 1976-06-22 Synergistics Slow release pharmaceutical compositions
US3966940A (en) * 1973-11-09 1976-06-29 Bristol-Myers Company Analgetic compositions
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US4160020A (en) * 1975-11-24 1979-07-03 Alza Corporation Therapeutic device for osmotically dosing at controlled rate
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4443428A (en) * 1982-06-21 1984-04-17 Euroceltique, S.A. Extended action controlled release compositions
US4451470A (en) * 1982-07-06 1984-05-29 E. I. Du Pont De Nemours And Company Analgesic, antagonist, and/or anorectic 14-fluoromorphinans
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
US4573995A (en) * 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
US4582835A (en) * 1983-12-06 1986-04-15 Reckitt & Colman Products Limited Analgesic compositions
US4587118A (en) * 1981-07-15 1986-05-06 Key Pharmaceuticals, Inc. Dry sustained release theophylline oral formulation
US4661492A (en) * 1984-11-30 1987-04-28 Reckitt & Colman Products Limited Analgesic compositions
US4719215A (en) * 1986-03-07 1988-01-12 University Of Chicago Quaternary derivatives of noroxymorphone which relieve nausea and emesis
US4730048A (en) * 1985-12-12 1988-03-08 Regents Of The University Of Minnesota Gut-selective opiates
US4760069A (en) * 1985-09-23 1988-07-26 Nova Pharmaceutical Corporation Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists
US4803208A (en) * 1982-09-30 1989-02-07 Sloan-Kettering Institute For Cancer Research Opiate agonists and antagonists
US4806558A (en) * 1984-09-22 1989-02-21 Basf Aktiengesellschaft Diarylacetylenes and their use in treating acne
US4806543A (en) * 1986-11-25 1989-02-21 Board Of Trustees Of The Leland Stanford Junior University Method and compositions for reducing neurotoxic injury
US4806341A (en) * 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4828836A (en) * 1986-06-05 1989-05-09 Euroceltique S.A. Controlled release pharmaceutical composition
US4834985A (en) * 1986-06-05 1989-05-30 Euroceltique S.A. Controlled release pharmaceutical composition
US4834984A (en) * 1986-06-10 1989-05-30 Euroceltique S.A. Controlled release dihydrocodeine composition
US4834965A (en) * 1985-07-26 1989-05-30 Euroceltique, S.A. Controlled release pharmaceutical composition
US4844910A (en) * 1986-12-02 1989-07-04 Euroceltique, S.A. Spheroids
US4844907A (en) * 1985-08-28 1989-07-04 Euroceltique, S.A. Pharmaceutical composition comprising analgesic and anti-inflammatory agent
US4844909A (en) * 1986-10-31 1989-07-04 Euroceltique, S.A. Controlled release hydromorphone composition
US4935428A (en) * 1987-12-03 1990-06-19 Reckitt & Colman Products Limited Treating opiate dependence
US4940587A (en) * 1985-06-11 1990-07-10 Euroceltique, S.A. Oral pharmaceutical composition through mucosa
US4987136A (en) * 1982-03-16 1991-01-22 The Rockefeller University Method for controlling gastrointestinal dysmotility
US5086058A (en) * 1990-06-04 1992-02-04 Alko Ltd. Method for treating alcoholism with nalmefene
US5091189A (en) * 1988-06-02 1992-02-25 Euroceltique S.A. Controlled release dosage forms having a defined water content
US5096715A (en) * 1989-11-20 1992-03-17 Alko Ltd. Method and means for treating alcoholism by extinguishing the alcohol-drinking response using a transdermally administered opiate antagonist
US5102887A (en) * 1989-02-17 1992-04-07 Arch Development Corporation Method for reducing emesis and nausea induced by the administration of an emesis causing agent
US5130311A (en) * 1990-11-20 1992-07-14 Adir Et Compagnie Oxazolopyridine compounds, compositions and use
US5215758A (en) * 1991-09-11 1993-06-01 Euroceltique, S.A. Controlled release matrix suppository for pharmaceuticals
US5225440A (en) * 1991-09-13 1993-07-06 The United States Of America As Represented By The Department Of Health And Human Services Attenuation of the opioid withdrawal syndrome by inhibitors of nitric oxide synthase
US5286493A (en) * 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
US5316759A (en) * 1986-03-17 1994-05-31 Robert J. Schaap Agonist-antagonist combination to reduce the use of nicotine and other drugs
US5317022A (en) * 1991-02-04 1994-05-31 Alkaloida Chemical Company Ltd. Pharmaceutical composition and use
US5321012A (en) * 1993-01-28 1994-06-14 Virginia Commonwealth University Medical College Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance
US5324351A (en) * 1992-08-13 1994-06-28 Euroceltique Aqueous dispersions of zein and preparation thereof
US5409944A (en) * 1993-03-12 1995-04-25 Merck Frosst Canada, Inc. Alkanesulfonamido-1-indanone derivatives as inhibitors of cyclooxygenase
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US5426112A (en) * 1984-04-09 1995-06-20 Scully, Scott, Murphy & Presser, P.C. Growth regulation and related applications of opioid antagonists
US5486362A (en) * 1991-05-07 1996-01-23 Dynagen, Inc. Controlled, sustained release delivery system for treating drug dependency
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US5502058A (en) * 1993-03-05 1996-03-26 Virginia Commonwealth University Method for the treatment of pain
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US5510368A (en) * 1995-05-22 1996-04-23 Merck Frosst Canada, Inc. N-benzyl-3-indoleacetic acids as antiinflammatory drugs
US5512578A (en) * 1992-09-21 1996-04-30 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by exogenous and endogenous opiod agonists
US5514680A (en) * 1992-06-22 1996-05-07 The State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Glycine receptor antagonists and the use thereof
US5521213A (en) * 1994-08-29 1996-05-28 Merck Frosst Canada, Inc. Diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2
US5591452A (en) * 1993-05-10 1997-01-07 Euro-Celtique, S.A. Controlled release formulation
US5593994A (en) * 1994-09-29 1997-01-14 The Dupont Merck Pharmaceutical Company Prostaglandin synthase inhibitors
US5601845A (en) * 1991-08-12 1997-02-11 Euro-Celtique, S.A. Pharmaceutical spheroid formulation
US5604260A (en) * 1992-12-11 1997-02-18 Merck Frosst Canada Inc. 5-methanesulfonamido-1-indanones as an inhibitor of cyclooxygenase-2
US5604253A (en) * 1995-05-22 1997-02-18 Merck Frosst Canada, Inc. N-benzylindol-3-yl propanoic acid derivatives as cyclooxygenase inhibitors
US5616601A (en) * 1994-07-28 1997-04-01 Gd Searle & Co 1,2-aryl and heteroaryl substituted imidazolyl compounds for the treatment of inflammation
US5622722A (en) * 1992-02-20 1997-04-22 Euro-Celtique, S.A. Spheroid formulation
US5624932A (en) * 1992-09-21 1997-04-29 United Biomedical, Inc. Method for identification of low/non-addictive opioid analgesics and the use of said analgesics for treatment of opioid addiction
US5639476A (en) * 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5639780A (en) * 1995-05-22 1997-06-17 Merck Frosst Canada, Inc. N-benzyl indol-3-yl butanoic acid derivatives as cyclooxygenase inhibitors
US5763452A (en) * 1993-09-22 1998-06-09 Euro-Celtique, S.A. Pharmaceutical compositions and usages
US5767125A (en) * 1992-09-21 1998-06-16 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
US5858017A (en) * 1994-12-12 1999-01-12 Omeros Medical Systems, Inc. Urologic irrigation solution and method for inhibition of pain, inflammation and spasm
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US5869097A (en) * 1992-11-02 1999-02-09 Alza Corporation Method of therapy comprising an osmotic caplet
US5880132A (en) * 1994-12-23 1999-03-09 Merck Sharp & Dohme Limited Tachykinin antagonist and an opioid analgesic effective at treating pain or nociception
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
US5891471A (en) * 1993-11-23 1999-04-06 Euro-Celtique, S.A. Pharmaceutical multiparticulates
US6068855A (en) * 1994-11-03 2000-05-30 Euro-Celtique S. A. Pharmaceutical composition containing a fusible carrier and method for producing the same
US6077533A (en) * 1994-05-25 2000-06-20 Purdue Pharma L.P. Powder-layered oral dosage forms
US6077532A (en) * 1995-09-01 2000-06-20 Euro-Celtique, S.A. Pharmaceutical ion exchange resin composition
US6194382B1 (en) * 1999-03-03 2001-02-27 Albert Einstein College Of Medicine Of Yeshiva University Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists
US6210714B1 (en) * 1993-11-23 2001-04-03 Euro-Celtique S.A. Immediate release tablet cores of acetaminophen having sustained-release coating
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US6335033B2 (en) * 1994-11-04 2002-01-01 Euro-Celtique, S.A. Melt-extrusion multiparticulates
US6362194B1 (en) * 1992-09-21 2002-03-26 Albert Einstein College Of Medicine Of Yeshiva University Method and simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US6399096B1 (en) * 1995-09-22 2002-06-04 Euro-Celtique S.A. Pharmaceutical formulation
US6696088B2 (en) * 2000-02-08 2004-02-24 Euro-Celtique, S.A. Tamper-resistant oral opioid agonist formulations
US6696066B2 (en) * 1997-12-22 2004-02-24 Euro-Celtique S.A. Opioid agonist/antagonist combinations
US6711325B2 (en) * 2002-01-24 2004-03-23 Browave Corporation Zigzag wavelength division multiplexer
US6716449B2 (en) * 2000-02-08 2004-04-06 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770569A (en) 1952-08-01 1956-11-13 Hoffmann La Roche Analgesic compositions
US3773955A (en) 1970-08-03 1973-11-20 Bristol Myers Co Analgetic compositions
GB1390772A (en) 1971-05-07 1975-04-16 Endo Lab Oral narcotic composition
US4176186A (en) 1978-07-28 1979-11-27 Boehringer Ingelheim Gmbh Quaternary derivatives of noroxymorphone which relieve intestinal immobility
US4464378A (en) 1981-04-28 1984-08-07 University Of Kentucky Research Foundation Method of administering narcotic antagonists and analgesics and novel dosage forms containing same
US4401672A (en) 1981-10-13 1983-08-30 Regents Of The University Of Minnesota Non-addictive narcotic antitussive preparation
US4608376A (en) 1981-10-16 1986-08-26 Carolyn McGinnis Opiate agonists and antagonists
EP0103636B1 (en) 1982-03-16 1990-09-12 Rockefeller University Use of opium antagonists for the manufacture of medicaments for controlling gastrointestinal dysmotility
US4889860A (en) 1985-09-23 1989-12-26 Nova Pharmaceutical Corporation Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists
US4861781A (en) 1986-03-07 1989-08-29 The University Of Chicago Quaternary derivatives of noroxymorphone which relieve nausea and emesis
US4769372A (en) 1986-06-18 1988-09-06 The Rockefeller University Method of treating patients suffering from chronic pain or chronic cough
US4785000A (en) 1986-06-18 1988-11-15 The Rockefeller University Method of treating patients suffering from chronic pain or chronic cough
US5356900A (en) 1986-10-07 1994-10-18 Bernard Bihari Method of treating chronic herpes virus infections using an opiate receptor antagonist
US4873076A (en) 1988-04-29 1989-10-10 Baker Cummins Pharmaceuticals, Inc. Method of safely providing anesthesia or conscious sedation
US4882335A (en) 1988-06-13 1989-11-21 Alko Limited Method for treating alcohol-drinking response
EP0352361A1 (en) 1988-07-29 1990-01-31 The Rockefeller University Method of treating patients suffering from chronic pain or chronic cough
US5236714A (en) 1988-11-01 1993-08-17 Alza Corporation Abusable substance dosage form having reduced abuse potential
US5075341A (en) 1989-12-01 1991-12-24 The Mclean Hospital Corporation Treatment for cocaine abuse
US5149538A (en) 1991-06-14 1992-09-22 Warner-Lambert Company Misuse-resistive transdermal opioid dosage form
GB9204354D0 (en) 1992-02-28 1992-04-08 Biokine Tech Ltd Compounds for medicinal use
US5352680A (en) 1992-07-15 1994-10-04 Regents Of The University Of Minnesota Delta opioid receptor antagonists to block opioid agonist tolerance and dependence
US5256669A (en) 1992-08-07 1993-10-26 Aminotek Sciences, Inc. Methods and compositions for treating acute or chronic pain and drug addiction
WO1994006426A1 (en) 1992-09-21 1994-03-31 Qin Bo Yi Methods for identifying and using low/non-addictive opioid analgesics
US5472943A (en) 1992-09-21 1995-12-05 Albert Einstein College Of Medicine Of Yeshiva University, Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other opioid agonists
US5585348A (en) 1993-02-10 1996-12-17 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Use of excitatory opioid receptor antagonists to prevent growth factor-induced hyperalgesia
US5352683A (en) 1993-03-05 1994-10-04 Virginia Commonwealth University Medical College Of Virginia Method for the treatment of chronic pain
US5457208A (en) 1993-06-21 1995-10-10 Regents Of The University Of Minnesota Kappa opioid receptor antagonists
DE4325465B4 (en) 1993-07-29 2004-03-04 Zenz, Michael, Prof. Dr.med. Oral pharmaceutical preparation for pain therapy
US5376662A (en) 1993-12-08 1994-12-27 Ockert; David M. Method of attenuating nerve injury induced pain
US5578725A (en) 1995-01-30 1996-11-26 Regents Of The University Of Minnesota Delta opioid receptor antagonists
DE19651551C2 (en) 1996-12-11 2000-02-03 Klinge Co Chem Pharm Fab Opioid antagonist-containing galenic formulation
PL190293B1 (en) 1997-02-14 2005-11-30 Goedecke Ag Stabilisation of naloxone hydrochloride
DE29719704U1 (en) 1997-02-14 1998-01-22 Goedecke Ag Stable preparations of naloxone hydrochloride
ATE210983T1 (en) 1997-11-03 2002-01-15 Stada Arzneimittel Ag STABILIZED COMBINATION MEDICINAL PRODUCT CONTAINING NALOXONE AND AN OPIATE ANALGESIC
US5972954A (en) 1997-11-03 1999-10-26 Arch Development Corporation Use of methylnaltrexone and related compounds

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173877A (en) * 1957-09-09 1965-03-16 Wyandotte Chemicals Corp Detergent compositions comprising inorganic esters of epoxyhydrocarbon polymers
US3173876A (en) * 1960-05-27 1965-03-16 John C Zobrist Cleaning methods and compositions
US3133132A (en) * 1960-11-29 1964-05-12 Univ California High flow porous membranes for separating water from saline solutions
US3493657A (en) * 1961-03-14 1970-02-03 Mozes Juda Lewenstein Therapeutic compositions of n-allyl-14-hydroxy - dihydronormorphinane and morphine
US3332950A (en) * 1963-03-23 1967-07-25 Endo Lab 14-hydroxydihydronormorphinone derivatives
US3879555A (en) * 1970-11-16 1975-04-22 Bristol Myers Co Method of treating drug addicts
US3676557A (en) * 1971-03-02 1972-07-11 Endo Lab Long-acting narcotic antagonist formulations
US3965256A (en) * 1972-05-16 1976-06-22 Synergistics Slow release pharmaceutical compositions
US3966940A (en) * 1973-11-09 1976-06-29 Bristol-Myers Company Analgetic compositions
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US4160020A (en) * 1975-11-24 1979-07-03 Alza Corporation Therapeutic device for osmotically dosing at controlled rate
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4457933A (en) * 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
US4587118A (en) * 1981-07-15 1986-05-06 Key Pharmaceuticals, Inc. Dry sustained release theophylline oral formulation
US4987136A (en) * 1982-03-16 1991-01-22 The Rockefeller University Method for controlling gastrointestinal dysmotility
US4443428A (en) * 1982-06-21 1984-04-17 Euroceltique, S.A. Extended action controlled release compositions
US4451470A (en) * 1982-07-06 1984-05-29 E. I. Du Pont De Nemours And Company Analgesic, antagonist, and/or anorectic 14-fluoromorphinans
US4803208A (en) * 1982-09-30 1989-02-07 Sloan-Kettering Institute For Cancer Research Opiate agonists and antagonists
US4582835A (en) * 1983-12-06 1986-04-15 Reckitt & Colman Products Limited Analgesic compositions
US5426112A (en) * 1984-04-09 1995-06-20 Scully, Scott, Murphy & Presser, P.C. Growth regulation and related applications of opioid antagonists
US4806558A (en) * 1984-09-22 1989-02-21 Basf Aktiengesellschaft Diarylacetylenes and their use in treating acne
US4573995A (en) * 1984-10-09 1986-03-04 Alza Corporation Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine
US4661492A (en) * 1984-11-30 1987-04-28 Reckitt & Colman Products Limited Analgesic compositions
US4806341A (en) * 1985-02-25 1989-02-21 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for narcotic analgesics and antagonists and process for administration
US4940587A (en) * 1985-06-11 1990-07-10 Euroceltique, S.A. Oral pharmaceutical composition through mucosa
US4834965A (en) * 1985-07-26 1989-05-30 Euroceltique, S.A. Controlled release pharmaceutical composition
US4844907A (en) * 1985-08-28 1989-07-04 Euroceltique, S.A. Pharmaceutical composition comprising analgesic and anti-inflammatory agent
US4760069A (en) * 1985-09-23 1988-07-26 Nova Pharmaceutical Corporation Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists
US4730048A (en) * 1985-12-12 1988-03-08 Regents Of The University Of Minnesota Gut-selective opiates
US4719215A (en) * 1986-03-07 1988-01-12 University Of Chicago Quaternary derivatives of noroxymorphone which relieve nausea and emesis
US5316759A (en) * 1986-03-17 1994-05-31 Robert J. Schaap Agonist-antagonist combination to reduce the use of nicotine and other drugs
US4828836A (en) * 1986-06-05 1989-05-09 Euroceltique S.A. Controlled release pharmaceutical composition
US4834985A (en) * 1986-06-05 1989-05-30 Euroceltique S.A. Controlled release pharmaceutical composition
US4834984A (en) * 1986-06-10 1989-05-30 Euroceltique S.A. Controlled release dihydrocodeine composition
US4990341A (en) * 1986-10-31 1991-02-05 Euroceltique, S.A. Controlled release hydromorphone composition
US4844909A (en) * 1986-10-31 1989-07-04 Euroceltique, S.A. Controlled release hydromorphone composition
US4806543A (en) * 1986-11-25 1989-02-21 Board Of Trustees Of The Leland Stanford Junior University Method and compositions for reducing neurotoxic injury
US4844910A (en) * 1986-12-02 1989-07-04 Euroceltique, S.A. Spheroids
US4935428A (en) * 1987-12-03 1990-06-19 Reckitt & Colman Products Limited Treating opiate dependence
US5091189A (en) * 1988-06-02 1992-02-25 Euroceltique S.A. Controlled release dosage forms having a defined water content
US5102887A (en) * 1989-02-17 1992-04-07 Arch Development Corporation Method for reducing emesis and nausea induced by the administration of an emesis causing agent
US5096715A (en) * 1989-11-20 1992-03-17 Alko Ltd. Method and means for treating alcoholism by extinguishing the alcohol-drinking response using a transdermally administered opiate antagonist
US5086058A (en) * 1990-06-04 1992-02-04 Alko Ltd. Method for treating alcoholism with nalmefene
US5130311A (en) * 1990-11-20 1992-07-14 Adir Et Compagnie Oxazolopyridine compounds, compositions and use
US5317022A (en) * 1991-02-04 1994-05-31 Alkaloida Chemical Company Ltd. Pharmaceutical composition and use
US5486362A (en) * 1991-05-07 1996-01-23 Dynagen, Inc. Controlled, sustained release delivery system for treating drug dependency
US5601845A (en) * 1991-08-12 1997-02-11 Euro-Celtique, S.A. Pharmaceutical spheroid formulation
US5508043A (en) * 1991-09-11 1996-04-16 Euro- Celtique, S.A. Controlled release matrix for pharmaceuticals
US5215758A (en) * 1991-09-11 1993-06-01 Euroceltique, S.A. Controlled release matrix suppository for pharmaceuticals
US5225440A (en) * 1991-09-13 1993-07-06 The United States Of America As Represented By The Department Of Health And Human Services Attenuation of the opioid withdrawal syndrome by inhibitors of nitric oxide synthase
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US5639476A (en) * 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5286493A (en) * 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
US5622722A (en) * 1992-02-20 1997-04-22 Euro-Celtique, S.A. Spheroid formulation
US5514680A (en) * 1992-06-22 1996-05-07 The State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Glycine receptor antagonists and the use thereof
US5324351A (en) * 1992-08-13 1994-06-28 Euroceltique Aqueous dispersions of zein and preparation thereof
US5767125A (en) * 1992-09-21 1998-06-16 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
US6362194B1 (en) * 1992-09-21 2002-03-26 Albert Einstein College Of Medicine Of Yeshiva University Method and simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
US5633259A (en) * 1992-09-21 1997-05-27 United Biomedical, Inc. Method for identification of low/non-addictive opioid analgesics and the use of said analgesics for treatment of opioid addiction
US5512578A (en) * 1992-09-21 1996-04-30 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by exogenous and endogenous opiod agonists
US5624932A (en) * 1992-09-21 1997-04-29 United Biomedical, Inc. Method for identification of low/non-addictive opioid analgesics and the use of said analgesics for treatment of opioid addiction
US5869097A (en) * 1992-11-02 1999-02-09 Alza Corporation Method of therapy comprising an osmotic caplet
US5604260A (en) * 1992-12-11 1997-02-18 Merck Frosst Canada Inc. 5-methanesulfonamido-1-indanones as an inhibitor of cyclooxygenase-2
US5321012A (en) * 1993-01-28 1994-06-14 Virginia Commonwealth University Medical College Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance
US5502058A (en) * 1993-03-05 1996-03-26 Virginia Commonwealth University Method for the treatment of pain
US5409944A (en) * 1993-03-12 1995-04-25 Merck Frosst Canada, Inc. Alkanesulfonamido-1-indanone derivatives as inhibitors of cyclooxygenase
US5591452A (en) * 1993-05-10 1997-01-07 Euro-Celtique, S.A. Controlled release formulation
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
US5908848A (en) * 1993-09-22 1999-06-01 Euro-Celtique, S.A. Synergistic composition of codine and ibuprofen to treat arthritis
US5763452A (en) * 1993-09-22 1998-06-09 Euro-Celtique, S.A. Pharmaceutical compositions and usages
US5891471A (en) * 1993-11-23 1999-04-06 Euro-Celtique, S.A. Pharmaceutical multiparticulates
US6387404B2 (en) * 1993-11-23 2002-05-14 Euro-Celtique S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US6024982A (en) * 1993-11-23 2000-02-15 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US6210714B1 (en) * 1993-11-23 2001-04-03 Euro-Celtique S.A. Immediate release tablet cores of acetaminophen having sustained-release coating
US6077533A (en) * 1994-05-25 2000-06-20 Purdue Pharma L.P. Powder-layered oral dosage forms
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US5616601A (en) * 1994-07-28 1997-04-01 Gd Searle & Co 1,2-aryl and heteroaryl substituted imidazolyl compounds for the treatment of inflammation
US5521213A (en) * 1994-08-29 1996-05-28 Merck Frosst Canada, Inc. Diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2
US5593994A (en) * 1994-09-29 1997-01-14 The Dupont Merck Pharmaceutical Company Prostaglandin synthase inhibitors
US6068855A (en) * 1994-11-03 2000-05-30 Euro-Celtique S. A. Pharmaceutical composition containing a fusible carrier and method for producing the same
US6335033B2 (en) * 1994-11-04 2002-01-01 Euro-Celtique, S.A. Melt-extrusion multiparticulates
US5860950A (en) * 1994-12-12 1999-01-19 Omeros Medical Systems, Inc. Arthroscopic irrigation solution and method for inhibition of pain and inflammation
US5858017A (en) * 1994-12-12 1999-01-12 Omeros Medical Systems, Inc. Urologic irrigation solution and method for inhibition of pain, inflammation and spasm
US5880132A (en) * 1994-12-23 1999-03-09 Merck Sharp & Dohme Limited Tachykinin antagonist and an opioid analgesic effective at treating pain or nociception
US5510368A (en) * 1995-05-22 1996-04-23 Merck Frosst Canada, Inc. N-benzyl-3-indoleacetic acids as antiinflammatory drugs
US5639780A (en) * 1995-05-22 1997-06-17 Merck Frosst Canada, Inc. N-benzyl indol-3-yl butanoic acid derivatives as cyclooxygenase inhibitors
US5604253A (en) * 1995-05-22 1997-02-18 Merck Frosst Canada, Inc. N-benzylindol-3-yl propanoic acid derivatives as cyclooxygenase inhibitors
US6077532A (en) * 1995-09-01 2000-06-20 Euro-Celtique, S.A. Pharmaceutical ion exchange resin composition
US6399096B1 (en) * 1995-09-22 2002-06-04 Euro-Celtique S.A. Pharmaceutical formulation
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US6696066B2 (en) * 1997-12-22 2004-02-24 Euro-Celtique S.A. Opioid agonist/antagonist combinations
US6395705B2 (en) * 1999-03-03 2002-05-28 Albert Einstein College Of Medicine Of Yeshiva University Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists
US6194382B1 (en) * 1999-03-03 2001-02-27 Albert Einstein College Of Medicine Of Yeshiva University Method and composition for treating irritable bowel syndrome using low doses of opioid receptor antagonists
US6696088B2 (en) * 2000-02-08 2004-02-24 Euro-Celtique, S.A. Tamper-resistant oral opioid agonist formulations
US6716449B2 (en) * 2000-02-08 2004-04-06 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist
US6711325B2 (en) * 2002-01-24 2004-03-23 Browave Corporation Zigzag wavelength division multiplexer

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931305B2 (en) 2001-10-12 2018-04-03 Monosol Rx, Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US8906277B2 (en) 2001-10-12 2014-12-09 Monosol Rx, Llc Process for manufacturing a resulting pharmaceutical film
US8900497B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for making a film having a substantially uniform distribution of components
US8900498B2 (en) 2001-10-12 2014-12-02 Monosol Rx, Llc Process for manufacturing a resulting multi-layer pharmaceutical film
US8765167B2 (en) 2001-10-12 2014-07-01 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US8663687B2 (en) 2001-10-12 2014-03-04 Monosol Rx, Llc Film compositions for delivery of actives
US8652378B1 (en) 2001-10-12 2014-02-18 Monosol Rx Llc Uniform films for rapid dissolve dosage form incorporating taste-masking compositions
US9108340B2 (en) 2001-10-12 2015-08-18 Monosol Rx, Llc Process for manufacturing a resulting multi-layer pharmaceutical film
US9855221B2 (en) 2001-10-12 2018-01-02 Monosol Rx, Llc Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US11207805B2 (en) 2001-10-12 2021-12-28 Aquestive Therapeutics, Inc. Process for manufacturing a resulting pharmaceutical film
US11077068B2 (en) 2001-10-12 2021-08-03 Aquestive Therapeutics, Inc. Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions
US10888499B2 (en) 2001-10-12 2021-01-12 Aquestive Therapeutics, Inc. Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US10285910B2 (en) 2001-10-12 2019-05-14 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US10111810B2 (en) 2002-04-11 2018-10-30 Aquestive Therapeutics, Inc. Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom
US8685443B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US8685444B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US8623412B2 (en) 2002-09-23 2014-01-07 Elan Pharma International Limited Abuse-resistant pharmaceutical compositions
US20060104909A1 (en) * 2002-09-23 2006-05-18 Farid Vaghefi Abuse-resistant pharmaceutical compositions
US7682633B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US8877247B2 (en) 2006-06-19 2014-11-04 Alpharma Pharmaceuticals Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US8158156B2 (en) 2006-06-19 2012-04-17 Alpharma Pharmaceuticals, Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US8846104B2 (en) 2006-06-19 2014-09-30 Alpharma Pharmaceuticals Llc Pharmaceutical compositions for the deterrence and/or prevention of abuse
US7682634B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical compositions
US20080261991A1 (en) * 2007-02-12 2008-10-23 Dmi Biosciences, Inc. Reducing Side Effects of Tramadol
US20080262094A1 (en) * 2007-02-12 2008-10-23 Dmi Biosciences, Inc. Treatment of Comorbid Premature Ejaculation and Erectile Dysfunction
US20100168147A1 (en) * 2007-03-01 2010-07-01 Reckitt Benckiser Healthcare (Uk) Limited Medicinal Compositions Comprising Buprenorphine And Naloxone
WO2008104735A1 (en) * 2007-03-01 2008-09-04 Reckitt Benckiser Healthcare (Uk) Limited Improved medicinal compositions comprising buprenorphine and naltrexone
WO2008104737A1 (en) * 2007-03-01 2008-09-04 Reckitt Benckiser Healthcare (Uk) Limited Improved medicinal compositions comprising buprenorphine and naloxone
US8912211B2 (en) 2007-03-01 2014-12-16 Rb Pharmaceuticals Limited Medicinal compositions comprising buprenorphine and naltrexone
US20090175937A1 (en) * 2007-12-17 2009-07-09 Labopharm, Inc. Misuse Preventative, Controlled Release Formulation
US8920833B2 (en) 2007-12-17 2014-12-30 Paladin Labs Inc. Misuse preventative, controlled release formulation
US8920834B2 (en) 2007-12-17 2014-12-30 Paladin Labs Inc. Misuse preventative, controlled release formulation
US8691270B2 (en) 2007-12-17 2014-04-08 Paladin Labs Inc. Misuse preventative, controlled release formulation
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US8486448B2 (en) 2007-12-17 2013-07-16 Paladin Labs Inc. Misuse preventative, controlled release formulation
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
US8460640B2 (en) 2008-12-12 2013-06-11 Paladin Labs, Inc. Narcotic drug formulations with decreased abuse potential
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
US8927013B2 (en) 2008-12-16 2015-01-06 Paladin Labs Inc. Misuse preventative, controlled release formulation
US8927014B2 (en) 2008-12-16 2015-01-06 Paladin Labs Inc. Misuse preventative, controlled release formulation
US20100239662A1 (en) * 2008-12-16 2010-09-23 Miloud Rahmouni Misuse preventative, controlled release formulation
US8486449B2 (en) 2008-12-16 2013-07-16 Paladin Labs Inc. Misuse preventative, controlled release formulation
US8685447B2 (en) 2008-12-16 2014-04-01 Paladin Labs Inc. Misuse preventative, controlled release formulation
WO2011017483A3 (en) * 2009-08-07 2011-06-03 Reckitt Benckiser Healthcare (Uk) Limited Sublingual and buccal film compositions
US10821074B2 (en) 2009-08-07 2020-11-03 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
CN102548535A (en) * 2009-08-07 2012-07-04 雷克特本克斯尔保健(英国)有限公司 Sublingual and buccal film compositions
EP3031445A1 (en) * 2009-08-07 2016-06-15 Indivior UK Limited Sublingual and buccal film compositions
US11135216B2 (en) 2009-08-07 2021-10-05 Indivior Uk Limited Sublingual and buccal film compositions
EP3326612A1 (en) * 2009-08-07 2018-05-30 MonoSol RX LLC Sublingual and buccal film compositions
US10034833B2 (en) 2009-08-07 2018-07-31 Aquestive Therapeutics, Inc. Sublingual and buccal film compositions
US8475832B2 (en) 2009-08-07 2013-07-02 Rb Pharmaceuticals Limited Sublingual and buccal film compositions
US20110033542A1 (en) * 2009-08-07 2011-02-10 Monosol Rx, Llc Sublingual and buccal film compositions
WO2011017484A3 (en) * 2009-08-07 2011-05-05 Monosol Rx, Llc Sublingual and buccal film compositions
US9687454B2 (en) 2009-08-07 2017-06-27 Indivior Uk Limited Sublingual and buccal film compositions
US20110033541A1 (en) * 2009-08-07 2011-02-10 Monosol Rx, Llc Sublingual and buccal film compositions
US8974826B2 (en) 2010-06-10 2015-03-10 Monosol Rx, Llc Nanoparticle film delivery systems
US10940626B2 (en) 2010-10-22 2021-03-09 Aquestive Therapeutics, Inc. Manufacturing of small film strips
US10272607B2 (en) 2010-10-22 2019-04-30 Aquestive Therapeutics, Inc. Manufacturing of small film strips
US10478429B2 (en) 2015-10-07 2019-11-19 Patheon Softgels, Inc. Abuse deterrent dosage forms
US9943513B1 (en) 2015-10-07 2018-04-17 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US11191737B2 (en) 2016-05-05 2021-12-07 Aquestive Therapeutics, Inc. Enhanced delivery epinephrine compositions
US11273131B2 (en) 2016-05-05 2022-03-15 Aquestive Therapeutics, Inc. Pharmaceutical compositions with enhanced permeation
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions

Also Published As

Publication number Publication date
NO20003278D0 (en) 2000-06-22
HUP0100310A3 (en) 2002-11-28
CN1284879A (en) 2001-02-21
JP2001526229A (en) 2001-12-18
NO20003278L (en) 2000-08-22
KR100417490B1 (en) 2004-02-05
CA2314896A1 (en) 1999-07-01
CN1204890C (en) 2005-06-08
BR9813826A (en) 2000-10-10
US6228863B1 (en) 2001-05-08
PL341309A1 (en) 2001-04-09
UA53774C2 (en) 2003-02-17
IL136805A0 (en) 2001-11-25
HUP0100310A2 (en) 2001-06-28
EP1041988A4 (en) 2002-03-13
YU39500A (en) 2003-02-28
WO1999032120A1 (en) 1999-07-01
TR200001828T2 (en) 2000-11-21
NZ505192A (en) 2003-05-30
EP1041988A1 (en) 2000-10-11
US20020004509A1 (en) 2002-01-10
CA2314896C (en) 2005-09-13
AU755790B2 (en) 2002-12-19
AU2089999A (en) 1999-07-12
RU2228180C2 (en) 2004-05-10
US6627635B2 (en) 2003-09-30
KR20010033422A (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US6228863B1 (en) Method of preventing abuse of opioid dosage forms
US8932630B1 (en) Opioid agonist/antagonist combinations
AU2003200858B2 (en) A Method of Preventing Abuse of Opioid Dosage Forms
AU2004205244B2 (en) Opioid Agonist/Antagonist Combinations
NZ523964A (en) Opioid dosage forms that prevent abuse of the opioid active
MXPA00006261A (en) A method of preventing abuse of opioid dosage forms

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION