US20050187291A1 - Aminotetralin-derived urea modulators of vanilloid VR1 receptor - Google Patents

Aminotetralin-derived urea modulators of vanilloid VR1 receptor Download PDF

Info

Publication number
US20050187291A1
US20050187291A1 US11/045,956 US4595605A US2005187291A1 US 20050187291 A1 US20050187291 A1 US 20050187291A1 US 4595605 A US4595605 A US 4595605A US 2005187291 A1 US2005187291 A1 US 2005187291A1
Authority
US
United States
Prior art keywords
group
alkanyl
compound
isoquinolinyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/045,956
Inventor
Ellen Codd
Scott Dax
Michele Jetter
Mark McDonnell
James McNally
Mark Youngman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Pharmaceutica NV
Original Assignee
Janssen Pharmaceutica NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29550146&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050187291(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Janssen Pharmaceutica NV filed Critical Janssen Pharmaceutica NV
Priority to US11/045,956 priority Critical patent/US20050187291A1/en
Publication of US20050187291A1 publication Critical patent/US20050187291A1/en
Assigned to JANSSEN PHARMACEUTICA, N.V. reassignment JANSSEN PHARMACEUTICA, N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CODD, ELLEN, DAX, SCOTT L., JETTER, MICHELE, MCDONNELL, MARK, MCNALLY, JAMES J., YOUNGMAN, MARK
Priority to US11/877,220 priority patent/US7678812B2/en
Priority to US12/692,128 priority patent/US8569505B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/14Antitussive agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/26Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C335/00Thioureas, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C335/04Derivatives of thiourea
    • C07C335/14Derivatives of thiourea having nitrogen atoms of thiourea groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/08Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with a hetero atom directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/26Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings condensed with carbocyclic rings or ring systems
    • C07D237/28Cinnolines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/74Quinazolines; Hydrogenated quinazolines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/58Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Definitions

  • This invention is directed to novel vanilloid receptor VR1 ligands. More particularly, this invention relates to novel ⁇ -aminotetralin-derived ureas that are potent antagonists or agonists of VR1 and exhibit activity in animal models of hyperalgesia and colitis, and are useful for the treatment and prevention of pain conditions in humans including arthritis, and for the treatment of irritable-bowel syndrome and associated conditions.
  • Noxious chemical, thermal and mechanical stimuli excite peripheral nerve endings of small diameter sensory neurons (nociceptors) in sensory ganglia (e.g., dorsal root, nodose and trigeminal ganglIa) and initiate signals that are perceived as pain.
  • sensory ganglia e.g., dorsal root, nodose and trigeminal ganglIa
  • These neurons are crucial for the detection of harmful or potentially harmful stimuli (heat) and tissue damage (local tissue acidosis and/or stretch) that arise from changes in the extracellular space during inflammatory or ischaemic conditions (Wall, P. D., and Meizack, R., Textbook of Pain, 1994, New York: Churchill Livingstone).
  • Nociceptors transduce noxious stimuli into membrane depolarization that triggers action potential, conducts the action potential from the sensory sites to the synapses in the CNS, and conversion of action potentials invokes a perception of pain, discomfort, and appropriate mechanical/physical protective reflexes.
  • nociception is carried out by ion channels or receptors.
  • Plant derived vanilloid compounds (capsaicin and its ultrapotent analog, resiniferatoxin, etc.) are known to selectively depolarize nociceptors and elicit sensations of burning pain—the sensation that is typically obtained by hot chili peppers. Therefore, capsaicin mimics the action of physiological/endogenous stimuli that activates the “nociceptive pathway”.
  • Hutchinson and colleagues at Neurogen describe a diaryl piperazinyl ureas and related compounds as capsaicin receptor ligands in WO02082212A1 but aminotetralins are not covered.
  • Scientists at the Universidad Miguel Hernandez in Alicante, the Universidad de Valencia and the Consejo Superior de Investigaations Cientificas (CSIC) in Barcelona have used a combinatorial chemistry-based approach to discover compounds that modulate the vanilloid VR1 receptor and have disclosed two trialkylglycine-based compounds as noncompetitive VR1 channel blockers (Garcia-Martinez, C. et al. Proc Natl Acad Sci USA 2002, 99(4): 2374) but none are aminotetralin-derived.
  • U.S. Pat. No. 6,169,116 B1 by Swoboda describes ⁇ -aminotetralins and their pharmaceutical uses but does not describe the synthesis of ⁇ -substituted ⁇ -aminotetralins and does not describe the synthesis of ureido ⁇ -aminotetralins.
  • European patent application 0064964 by Arvidsson teaches the synthesis of N-alkylated ⁇ -alkyl- ⁇ -aminotetralins in which the alkyl substituent in the ⁇ -position is hydrogen or C 1-6 alkyl but does not describe the synthesis of ⁇ -aminotetralins substituted with groups other than hydrogen or C 1-6 alkyl in ⁇ -position nor describe the synthesis of ureido ⁇ -aminotetralins.
  • compositions comprising a compound of Formula (I):
  • R 1 is a substituent independently selected from the group consisting of hydrogen, hydroxy, fluoro, chloro, bromo, and C 1-8 alkanyloxy;
  • R 1 is a substituent independently selected from the group consisting of fluoro, chloro, bromo, C 1-8 alkanyloxy,
  • R 2 is independently selected from the group consisting of hydrogen, C 2-8 alkenyl, C 2-8 alkenyl, C 1-8 alkylidenyl, C 1-8 alkylidynyl, C 3-8 cycloalkanyl, phenyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C 1-8 alkanyl, C 1-8 alkanyloxy, phenyl(C 1-8 )alkanyloxy, and fluorinated alkanyl), naphthyl (optionally substituted with one to three substituents independently selected from the
  • the present invention is directed to pharamceutical compositions containing compounds of Formula (I), as well as to methods of treatment of diseases and conditions by administration of these compositions, and also to pharmaceutical kits containing them.
  • FIG. 1 shows the IC 50 values of the competitive vanilloid antagonist capsazepine for inhibition of calcium flux induced by a number of different stimuli known to activate VR1.
  • FIG. 2 shows the IC 50 values for inhibition by a compound of the invention of the calcium flux induced by a number of different stimuli known to activate VR1.
  • FIG. 3 shows inhibition by a compound of the invention of capsaicin-induced contraction of guinea pig bronchial rings in an isolated tissue assay.
  • FIG. 4 shows inhibition by another compound of the invention of capsaicin-induced contraction of guinea pig bronchial rings in an isolated tissue assay.
  • C a-b refers to a radical containing from a to b carbon atoms inclusive.
  • C 1-3 denotes a radical containing 1, 2 or 3 carbon atoms.
  • “Fluorinated alkyl” refers to a saturated branched or straight chain hydrocarbon radical derived by removal of 1 hydrogen atom from the parent alkane; the parent alkane contains from 1 to 6 carbon atoms with 1 or more hydrogen atoms substituted with fluorine atoms up to and including substitution of all hydrogen atoms with fluorine.
  • Preferred fluorinated alkyls include trifluoromethyl substituted alkyls and perfluorinated alkyls; more preferred fluorinated alkyls include trifluoromethyl, perfluoroethyl, 2,2,2-trifluoroethyl, perfluoropropyl, 3,3,3-trifluoroprop-1-yl, 3,3,3-trifluoroprop-2-yl, 1,1,1,3,3,3-hexafluoroprop-2-yl; a particularly preferred fluorinated alkyl is trifluoromethyl.
  • Fluorinated alkanyloxy refers to a radical derived from a fluorinated alkyl radical attached to an oxygen atom with the oxygen atom having one open valence for attachment to a parent structure.
  • Alkyl refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne.
  • Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-2-yl, buta-1,3-die
  • alkanyl alkenyl
  • alkynyl alkynyl
  • Alkanyl refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
  • Typical alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, etc.; butyanyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, etc.; and the like.
  • the alkanyl groups are (C 1-8 ) alkanyl, with (C 1-3 ) being particularly preferred.
  • Alkenyl refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
  • the radical may be in either the cis or trans conformation about the double bond(s).
  • alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, prop-2-en-2-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, etc.; and the like.
  • the alkenyl group is (C 2-8 ) alkenyl, with (C 2-3 )
  • Alkynyl refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
  • Typical alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like.
  • the alkynyl group is (C 2-8 ) alkynyl, with (C 2-3 ) being particularly preferred.
  • Alkyldiyl refers to a saturated or unsaturated, branched, straight-chain or cyclic divalent hydrocarbon radical derived by the removal of one hydrogen atom from each of two different carbon atoms of a parent alkane, alkene or alkyne, or by the removal of two hydrogen atoms from a single carbon atom of a parent alkane, alkene or alkyne.
  • the two monovalent radical centers can form bonds with the same or different atoms.
  • Typical alkyldiyls include, but are not limited to methandiyl; ethyldiyls such as ethan-1,1-diyl, ethan-1,2-diyl, ethen-1,1-diyl, ethen-1,2-diyl; propyldiyls such as propan-1,1-diyl, propan-1,2-diyl, propan-2,2-diyl, propan-1,3-diyl, cyclopropan-1,1-diyl, cyclopropan-1,2-diyl, prop-1-en-1,1-diyl, prop-1-en-1,2-diyl, prop-2-en-1,2-diyl, prop-1-en-1,3-diyl, cycloprop-1-en-1,2-diyl, cycloprop-2-en-1,2-diyl, cycloprop-2-en-1,2-di
  • alkandiyl alkendiyl and/or alkyndiyl
  • the alkyldiyl group is (C 1-8 ) alkyldiyl, with (C 1-8 ) being particularly preferred.
  • saturated acyclic alkandiyl radicals in which the radical centers are at the terminal carbons e.g., methandiyl; ethan-1,2-diyl; propan-1,3-diyl; butan-1,4-diyl; and the like (also referred to as alkylenos, as defined infra).
  • Vic Alkyldiyl refers to a saturated or unsaturated, branched, straight-chain or cyclic hydrocarbon radical having two adjacent monovalent radical centers derived by the removal of one hydrogen atom from each of two adjacent carbon atoms of a parent alkane, alkene or alkyne. The two monovalent radical centers can form bonds with the same or different atom(s).
  • Typical vic alkyldiyls include, but are not limited to vic ethyldiyls such as ethan-1,2-diyl, ethen-1,2-diyl; vic propyldiyls such as propan-1,2-diyl, cyclopropan-1,2-diyl, prop-1-en-1,2-diyl, prop-2-en-1,2-diyl, cycloprop-1-en-1,2-diyl, etc.; vic butyldiyls such as butan-1,2-diyl, 2-methyl-propan-1,2-diyl, cyclobutan-1,2-diyl, but-1-en-1,2-diyl, cyclobut-1-en-1,2-diyl, buta-1,3-dien-1,2-diyl, cyclobuta-1,3-dien-1,2-diyl, but-3-yn-1,2-diy
  • the nomenclature vic alkandiyl, vic alkendiyl and/or vic alkyndiyl is used.
  • the vic alkyldiyl group is (C 2-8 ) vic alkyldiyl, with (C 2-3 ) being particularly preferred.
  • “Gem Alkyldiyl:” refers to a saturated or unsaturated, branched, straight-chain or cyclic hydrocarbon radical having one divalent radical center derived by the removal of two hydrogen atoms from a single carbon atom of a parent alkane, alkene or alkyne. The divalent radical center forms bonds with two different atoms.
  • Typical gem alkyldiyls include, but are not limited to gem methanyldiyl; gem ethyldiyls such as ethan-1,1-diyl,ethen-1,I-diyl; gem propyldiyls such as propan-1,1-diyl, propan-2,2-diyl, cyclopropan-1,1-diyl, prop-1-en-1,1-diyl, cycloprop-2-en-1,1-diyl, prop-2-yn-1,1-diyl, etc.; butyldiyls such as butan-1,1-diyl, butan-2,2-diyl, 2-methyl-propan-1,2-diyl, cyclobutan-1,1-diyl, but-1-en-1,1-diyl, 2-methyl-prop-1-en-1,1-diyl, 2-methyl-prop-2-en-1,1
  • the nomenclature gem alkandiyl, gem alkendiyl and/or gem alkyndiyl is used.
  • the gem alkyldiyl group is (C 1-6 ) gem alkyldiyl, with (C 1-3 ) being particularly preferred.
  • Alkyleno refers to a saturated or unsaturated, straight-chain or branched acyclic bivalent hydrocarbon bridge radical derived by the removal of one hydrogen atom from each of the two terminal carbon atoms of an acyclic parent alkane, alkene or alkyne.
  • Typical alkyleno groups include, but are not limited to, methano; ethylenos such as ethano, etheno, ethyno; propylenos such as propano, propeno, prop-1,2-dieno, propyno, etc.; butylenos such as butano, 2-methyl-propano, but-1-eno, but-2-eno, 2-methyl-prop-1-eno, 2-methanylidene-propano, but-1,3-dieno, but-1-yno, but-2-yno, but-1,3-diyno, etc.; and the like.
  • alkano alkeno and/or alkyno
  • the alkyleno group is (C 1-8 ) alkyleno, with (C 1-3 ) being particularly preferred.
  • straight-chain saturated alkano radicals e.g., methano, ethano, propano, butano, and the like.
  • Alkylidene refers to a saturated or unsaturated, branched, straight-chain or cyclic divalent hydrocarbon radical derived by removal of two hydrogen atoms from the same carbon atom of a parent alkane, alkene or alkyne. The divalent radical center forms a double bond with a single atom.
  • Typical alkylidene radicals include, but are not limited to, methanylidene, ethylidenes such as ethanylidene, ethenylidene; propylidenes such as propan-1-ylidene, propan-2-ylidene, cyclopropan-1-ylidene, prop-1-en-1-ylidene, prop-2-en-1-ylidene, cycloprop-2-en-1-ylidene, etc.; butylidenes such as butan-1-ylidene, butan-2-ylidene, 2-methyl-propan-1-ylidene, cyclobutan-1-ylidene, but-1-en-1-ylidene, but-2-en-1-ylidene, but-3-en-1-ylidene, buta-1,3-dien-1-ylidene; cyclobut-2-en-1-ylidene, etc.; and the like.
  • alkanylidene alkenylidene and/or alkynylidene
  • the alkylidene group is (C 1-8 ) alkylidene, with (C 1-3 ) being particularly preferred.
  • acyclic saturated alkanylidene radicals in which the divalent radical is at a terminal carbon e.g., methanylidene, ethan-1-ylidene, propan-1-ylidene, butan-1-ylidene, 2-methyl-propan-1-ylidene, and the like.
  • Alkylidyne refers to a saturated or unsaturated, branched or straight-chain trivalent hydrocarbon radical derived by removal of three hydrogen atoms from the same carbon atom of a parent alkane, alkene or alkyne. The trivalent radical center forms a triple bond with a single atom.
  • Typical alkylidyne radicals include, but are not limited to, methanylidyne; ethanylidyne; propylidynes such as propan-1-ylidyne, prop-2-en-1-ylidyne, prop-2-yn-1-ylidyne; butylidynes such as butan-1-ylidyne, 2-methyl-propan-1-ylidyne, but-2-en-1-ylidyne, but-3-en-1-ylidyne, buta-2,3-dien-1-ylidyne, but-2-yn-1-ylidyne, but-3-yn-1-ylidyne, etc.; and the like.
  • alkanylidyne alkenylidyne and/or alkynylidyne
  • alkylidyne group is (C 1-8 ) alkylidyne, with (C 1-3 ) being particularly preferred.
  • saturated alkanylidyne radicals e.g., methanylidyne, ethanylidyne, propan-1-ylidyne, butan-1-ylidyne, 2-methyl-propan-1-ylidyne, and the like.
  • heteroalkyl, heteroalkanyl, heteroalkenyl, heteroalkynyl, heteroalkylidene, heteroalkylidyne, heteroalkyldiyl, vic heteroalkyldiyl, gem heteroalkyldiyl, heteroalkyleno and heteroalkyldiylidene radicals can contain one or more of the same or different heteroatomic groups, including, by way of example and not limitation, epoxy (—O—), epidioxy (—O—O—), thioether (—S—), epidithio (—SS—), epoxythio (—O—S—), epoxyimino (—O—NR′—), imino (—NR′—), biimmino (—NR′—NR′—), azino ( ⁇ N—N ⁇ ), azo (—O—O—), epoxy (—O—), epidioxy (—O—O—), thioether (—S—), epidithio (—SS—), epoxythio (—O
  • Parent aromatic ring system refers to an unsaturated cyclic or polycyclic ring system having a conjugated ff electron system. Specifically included within the definition of “parent aromatic ring system” are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, indane, indene, phenalene, etc.
  • Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like
  • Aryl refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • Typical aryl groups include, but are not limited to, radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene
  • Arylalkyl refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal carbon atom, is replaced with an aryl radical.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.
  • arylalkanyl arylakenyl and/or arylalkynyl
  • the arylalkyl group is (C 6-26 ) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1-6 ) and the aryl moiety is (C 5-20 ).
  • the arylalkyl group is (C 6-13 ), e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1-3 ) and the aryl moiety is (C 5-10 ). Even more preferred arylalkyl groups are phenylalkanyls.
  • alkanyloxy refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon alcohol radical derived by the removal of the hydrogen atom from the hydroxide oxygen of the alcohol.
  • Typical alkanyloxy groups include, but are not limited to, methanyl; ethanyloxy; propanyloxy groups such as propan-1-yloxy (CH 3 CH 2 CH 2 O—), propan-2-yloxy ((CH 3 ) 2 CHO—), cyclopropan-1-yloxy, etc.; butyanyloxy groups such as butan-1-yloxy, butan-2-yloxy, 2-methyl-propan-1-yloxy, 2-methyl-propan-2-yloxy, cyclobutan-1-yloxy, etc.; and the like.
  • the alkanyloxy groups are (C 1-8 ) alkanyloxy groups, with (C 1-3 ) being particularly preferred.
  • Parent Heteroaromatic Ring System refers to a parent aromatic ring system in which one or more carbon atoms are each independently replaced with a heteroatom. Typical heteratoms to replace the carbon atoms include, but are not limited to, N, P, O, S, Si etc. Specifically included within the definition of “parent heteroaromatic ring systems” are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, arsindole, chromane, chromene, indole, indoline, xanthene, etc.
  • Typical parent heteroaromatic ring systems include, but are not limited to, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thi
  • Heteroaryl refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system.
  • Typical heteroaryl groups include, but are not limited to, radicals derived from acridine, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyri
  • the heteroaryl group is a 5-20 membered heteroaryl, with 5-10 membered heteroaryl being particularly preferred.
  • Specific preferred heteroaryls for the present invention are quinoline, isoquinoline, pyridine, pyrimidine, furan, thiophene and imidazole.
  • “Substituted:” refers to a radical in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s).
  • Typical substituents include, but are not limited to, —X, —R, —O ⁇ , ⁇ O, —OR, —O—OR, —SR, —S ⁇ , ⁇ S, —NRR, ⁇ NR, —CX 3 , —CN, —OCN, —SCN, —NCO, —NCS, —NO, —NO 2 , ⁇ N 2 , —N 3 , —NHOH, —S(O) 2 O ⁇ , —S(O) 2 OH, —S(O) 2 R, —P(O)(O ⁇ ) 2 , —P(O)(OH) 2 , —C(O)R, —C(O)X, —C(S)R, —C(S)X,
  • Preferred substituents include hydroxy, halogen, C 1-8 alkyl, C 1-8 alkanyloxy, fluorinated alkanyloxy, fluorinated alkyl, C 1-8 alkylthio, C 3-8 cycloalkyl, C 3-8 cycloalkanyloxy, nitro, amino, C 1-8 alkylamino, C 1-8 dialkylamino, C 3-8 cycloalkylamino, cyano, carboxy, C 1-7 alkanyloxycarbonyl, C 1-7 alkylcarbonyloxy, formyl, carbamoyl, phenyl, aroyl, carbamoyl, amidino, (C 1-8 alkylamino)carbonyl, (arylamino)carbonyl and aryl(C 1-8 alkyl)carbonyl.
  • “Aroyl” refers to arylacyl substituents.
  • a “phenylC 1-6 alkanylaminocarbonylC 1-6 alkyl” substituent refers to a group of the formula
  • compositions comprising a compound of Formula (I): wherein R 1 independently may be absent or an optionally substituted substituent selected from alkyl, heteroalkyl, aryl (preferably 5-10 membered aryl), arylalkyl, halogen, nitro, amino, cyano, carboxy, carbamoyl, aroyl, amidino, and acyl; n is an integer from 1 to 3; m is an integer from 0 to 3; R 2 may be absent or an optionally substituted substituent selected from alkyl, heteroalkyl, aryl (preferably 5-10 membered aryl), heteroaryl (preferably 5-10 membered heteroaryl), alkylidenyl, heteroalkylidenyl, alkylidynyl, heteroalkylidynyl, arylalkyl, halogen, nitro, amino, and cyano; L is a direct bond, alkyldiyl or heteroalkyldiyl; R 3
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • R 1 is a substituent independently selected from the group consisting of hydrogen, hydroxy, fluoro, chloro, bromo, and C 1-8 alkanyloxy;
  • R 1 is a substituent independently selected from the group consisting of fluoro, chloro, bromo, C 1-8 alkanyloxy,
  • R 2 is independently selected from the group consisting of hydrogen, C 2-8 alkenyl, C 1-8 alkylidenyl, C 1-8 alkylidynyl, C 3-8 cycloalkanyl, phenyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C 1-8 alkanyl, C 1-8 alkanyloxy, phenyl(C 1-8 )alkanyloxy, and fluorinated alkanyl), naphthyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro,
  • compositions comprising a compound of Formula (I) wherein:
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • Still another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano;
  • L is a direct bond, C 1-8 alkandiyl, C 2-8 alkendiyl, C 2-8 alkyndiyl, or C 3-8 cycloalkandiyl;
  • compositions comprising a compound of Formula (I) wherein:
  • L is a direct bond, C 1-8 alkandiyl, C 2-8 alkendiyl, C 2-8 alkyndiyl, or C 3-8 cycloalkandiyl;
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of fluoro; chloro; C 1-8 alkanyloxy;
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • compositions comprising a compound of Formula (I) wherein:
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • compositions comprising a compound of Formula (I) wherein
  • compositions comprising a compound of Formula (I) wherein:
  • R is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally independently substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally independently substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyan
  • compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R 1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C 1-8 alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 1-8 alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C 1-8 alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C 1-8 alkanyloxy; C 3-8 cycloalkanyl; C 3-8 cycloalkanyloxy; nitro; amino; C 1-8 alkanylamino; C 1-8 dialkanylamino; C 3-8 cycloalkanylamino; cyano
  • compositions comprising a compound of Formula (I) wherein:
  • compositions comprising a compound of Formula (Ia): the compound selected from the group consisting of:
  • Preferred compounds of Formula (Ia) are selected from the group consisting of:
  • More preferred compounds of Formula (Ia) are selected from the group consisting of:
  • Still other more preferred compounds of Formula (Ia) are selected from the group consisting of:
  • the present invention includes within its scope prodrugs of the compounds of this invention.
  • prodrugs will be functional derivatives of the compounds which are readily convertible in vivo into the required compound.
  • the term “administering” shall encompass the treatment of the various disorders described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient.
  • Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs”, ed. H. Bundgaard, Elsevier, 1985.
  • the compounds according to this invention may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
  • the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
  • the compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as ( ⁇ )-di-p-toluoyl-d-tartaric acid and/or (+)-di-p-toluoyl-1-tartaric acid followed by fractional crystallization and regeneration of the free base.
  • the compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
  • any of the processes for preparation of the compounds of the present invention it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry , ed. J. F. W. McOmie, Plenum Press, 1973; and T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis , John Wiley & Sons, 1991.
  • the protecting groups may be removed at a convenient subsequent stage using methods known from the art.
  • the compounds of the present invention can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical or veterinary practice.
  • a pharmaceutical carrier excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical or veterinary practice.
  • the present invention is directed to pharmaceutical and veterinary compositions comprising compounds of Formula (I) and one or more pharmaceutically acceptable carriers, excipients or diluents.
  • the compounds of the present invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), and/or solubilising agent(s).
  • Tablets or capsules of the compounds may be administered singly or two or more at a time, as appropriate. It is also possible to administer the compounds in sustained release formulations.
  • the compounds of the general Formula (I) can be administered by inhalation or in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder.
  • An alternative means of transdermal administration is by use of a skin patch.
  • they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. They can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.
  • compositions are administered orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or coloring agents.
  • excipients such as starch or lactose
  • capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or coloring agents.
  • compositions can also be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously.
  • the compositions will comprise a suitable carrier or diluent.
  • compositions are best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood.
  • compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.
  • compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral).
  • suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like;
  • suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like.
  • Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate the major site of absorption.
  • the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation.
  • injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
  • compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily.
  • compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those skilled in that art.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • a therapeutically effective amount for use of the instant compounds or a pharmaceutical composition thereof comprises a dose range of from about 0.001 mg to about 1,000 mg, in particular from about 0.1 mg to about 500 mg or, more particularly from about 1 mg to about 250 mg of active ingredient per day for an average (70 kg) human.
  • a pharmaceutical composition is preferably provided in the form of tablets containing, 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250 and 500 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the subject to be treated.
  • the therapeutically effective dose for active compounds of the invention or a pharmaceutical composition thereof will vary according to the desired effect. Therefore, optimal dosages to be administered may be readily determined and will vary with the particular compound used, the mode of administration, the strength of the preparation, and the advancement of the disease condition. In addition, factors associated with the particular subject being treated, including subject age, weight, diet and time of administration, will result in the need to adjust the dose to an appropriate therapeutic level.
  • the above dosages are thus exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
  • Compounds of this invention may be administered in any of the foregoing compositions and dosage regimens or by means of those compositions and dosage regimens established in the art whenever use of the compounds of the invention as vanilloid receptor modulators is required for a subject in need thereof.
  • the invention also provides a pharmaceutical or veterinary pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical and veterinary compositions of the invention.
  • a pharmaceutical or veterinary pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical and veterinary compositions of the invention.
  • Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • the compounds of Formula (I) are useful in methods for treating or preventing a disease or condition in a mammal which disease or condition is affected by the modulation of one or more vanilloid receptors. Such methods comprises administering to a mammal in need of such treatment or prevention a therapeutically effective amount of a compound, salt or solvate of Formula (I).
  • the compounds of Formula (I) are useful for in methods for preventing or treating a chronic- or acute-pain causing diseases or conditions and pulmonary dysfunction, and more particulalry, in treating diseases or conditions that cause inflammatory pain, burning pain, itch or urinary incontinence, and chronic obstructive pulmonary disease.
  • the compounds of Formula (I) are useful for treating diseases and conditions selected from the group consisting of osteoarthritis, rheumatoid arthritis, fibromyalgia, migraine, headache, toothache, burn, sunburn, snake bite (in particular, venomous snake bite), spider bite, insect sting, neurogenic bladder, benign prostatic hypertrophy, interstitial cystitis, urinary tract infection, cough, asthma, chronic obstructive pulmonary disease, rhinitis, contact dermatitis/hypersensitivity, itch, eczema, anxiety, panic disorders, pharyngitis, mucositis, enteritis, cellulites, peripheral neuropathy, bilateral peripheral neuropathy, diabetic neuropathy, postherpetic neuralgia, trigeminal neuralgia, causalgia, sciatic neuritis, mandibular joint neuralgia, peripheral neuritis, polyneuritis, stump pain, phantom limb pain, bony fractures, post-operative
  • diseases and conditions selected
  • compositions comprising one or more of the compounds of Formula (I)
  • present invention also comprises compositoins comprising intermediates used in the manufacture of compounds of Formula (I).
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described below and are illustrated in the schemes that follows. Since the schemes are an illustration, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • ureas of formula (I) that comprise this invention are synthesized using several distinct chemical methods.
  • the general transformations for constructing (3-aminotetralin-derived ureas involve:
  • Tetralone starting materials were either purchased from commercial sources or were prepared using the method reported by Sims (Sims, J. J. et. al. Tetrahedron Lett. 1971, 951). Specifically, substituted phenylacetic acids were separately reacted with ethylene gas and a Lewis Acid such as aluminum trichloride to afford the desired corresponding ⁇ -tetralone.
  • ⁇ -tetralone (II) is reacted with an aryl or heteroaryl aldehyde in the presence of a base such as piperidine, in an inert halohydrocarbon, ethereal or hydrocarbon solvent, such as benzene, from ambient temperature to reflux, to afford the corresponding ⁇ -benzylidenyl- ⁇ -tetralone or ⁇ -heteroarylmethylidenyl- ⁇ -tetralone (II).
  • the ⁇ -tetralone (III) is dissolved in an inert hydrocarbon, ethereal, ester or alcohol solvent, such as methanol, and reacted with hydrogen gas at a pressure from ambient pressure to 100 p.s.i. in the presence of a suitable catalyst such as palladium on carbon. The reaction is performed at a temperature from ambient temperature to reflux, to yield the desired ⁇ -substituted- ⁇ -tetralone (IV) (Scheme 1).
  • An alternative method for the preparation of ⁇ -substituted- ⁇ -tetralones involves the reaction of an appropriately substituted ⁇ -tetralone (II) with a base such as pyrrolidine in an inert halohydrocarbon solvent such as dichloromethane or hydrocarbon solvent such as benzene, under Dean-Stark conditions (removal of water) or in an alcohol solvent such as methanol, from ambient temperature to reflux, to afford enamine (V).
  • a base such as pyrrolidine
  • an inert halohydrocarbon solvent such as dichloromethane or hydrocarbon solvent such as benzene
  • an alcohol solvent such as methanol
  • Alkylation of enamine (V) is accomplished by reaction with a benzylic, heterocyclicalkanyl or an allylic halide in an inert solvent such as acetonitrile, at a temperature from ambient temperature to reflux, to afford the ⁇ -substituted- ⁇ -iminium salt (VI).
  • Hydrolysis of the salt (VI) to produce the desired ⁇ -substituted- ⁇ -tetralone product (IV) is accomplished by reaction of (VI) with water and an inorganic or organic acid such as hydrochloric or glacial acetic acid in an inert hydrocarbon, ethereal, alcohol or halohydrocarbon solvent, or a mixture thereof, such as methanol and dichloromethane (Scheme 1).
  • the ⁇ -substituted- ⁇ -tetralones (IV) are converted to the corresponding aminotetralins via reaction with an ammonium salt such as ammonium acetate in the presence of a reducing agent such as sodium cyanoborohydride, for example, in an inert halohydrocarbon, hydrocarbon, ethereal or alcohol solvent such as methanol to produce the cis-aminotetralin (VII).
  • a reducing agent such as sodium cyanoborohydride
  • the trans-aminotetralin (VIII) is also formed as a minor product; both sets of diastereomers are part of this invention.
  • the aminotetralins (VII) can also be isolated as acid addition salts by treatment with an organic or an inorganic acid, such as trifluoroacetic acid or hydrochloric acid, for example (Scheme 2).
  • Aminotetralin (VII) can be used in subsequent reactions as the corresponding free base or as an acid addition salt.
  • the use of acid addition salts requires an additive, such as an organic base like triethylamine or an inorganic base such as hydroxide, to neutralize the acid and liberate the reactive nucleophilic amine center. This common practice is well known to those skilled in the art.
  • Aminotetralin VII is reacted with isocyanate or isothiocyanate, in an appropriate inert solvent, with or without an added base, to form ureas (IX) or thioureas (X), shown in Scheme 3.
  • carbamylating or thiocarbamylating agents may be used and this is well known to those skilled in the art.
  • an appropriate amine such as an aminoisoquinoline, aminonaphthol or aminoquinoline
  • a chloroformate such as phenyl chloroformate in an inert solvent, with or without added base, to afford the corresponding phenylcarbamates.
  • Isocyanates and isothiocyanates are also prepared by reacting an amine with phosgene or thiophosgene in the presence of a base.
  • Benzylamines such as 4-alkanyloxy-3-methoxybenzylamine is reacted with thiophosgene or a thiophosgene equivalent, in the presence of a base, such as an organic amine, to produce the corresponding thiocyanate.
  • a base such as an organic amine
  • Subsequent reaction with aminotetralin (VII) produces the corresponding aminotetralin-derived homovanillic thioureas (Scheme 5).
  • Protecting group manipulations may be used to mask and subsequently liberate the phenolic OH group and this practice is well known to those skilled in the art.
  • Aminonaphthalene is subjected to a Sandmeyer reaction, namely diazotization followed by reaction with copper cyanide at high temperature to produce the cyanonaphthalene. Reduction affords naphthalen-2-yl-methylamine which is subjected to carbamylation using aminotetralin (VII), as described above, to produce aminotetralin-derived urea in which L CH 2 (methylene) (Scheme 8).
  • Homologation of heteroaryl- and aryl-carboxylic acids is also accomplished using chemistry known as the Arndt-Eistert synthesis, a procedure that converts carboxylic acids to the next higher homolog using a three step synthesis.
  • the carboxylic acid starting material is converted to its acyl chloride, using thionyl chloride, oxalyl chloride or another appropriate chlorinating agent.
  • the acyl chloride is converted to a diazoketone via reaction with diazomethane or a suitable equivalent.
  • the diazoketone is oxidized to the homologous acid using an oxidant such as silver oxide.
  • the carboxylic acid group is then converted to an isocyanate through the intermediacy of the acyl azide (Curtius rearrangement) which is carried on to aminotetralin-derived ureas and thioureas using the chemistry described above.
  • the carboxylic acid is reacted with hydrazoic acid (or equivalent) under acid catalysis followed by thermal decomposition to the amine (Schmidt reaction), which is carried on to aminotetralin-derived ureas and thioureas using the chemistry described above.
  • Protecting group manipulations may be needed at various stages of the syntheses depending upon substituents and functional groups that are present on the reactants.
  • the respective product of each process step be separated from other components of the reaction mixture and subjected to purification before its use as a starting material in a subsequent step.
  • Separation techniques typically include evaporation, extraction, precipitation and filtration.
  • Purification techniques typically include column chromatography (Still, W. C. et. al., J. Org. Chem. 1978, 43, 2921), thin-layer chromatography, crystallization and distillation.
  • the structures of the final products, intermediates and starting materials are confirmed by spectroscopic, spectrometric and analytical methods including nuclear magnetic resonance (NMR), mass spectrometry (MS) and liquid chromatography (HPLC).
  • ethyl ether, tetrahydrofuran and dioxane are common examples of an ethereal solvent; benzene, toluene, hexanes and cyclohexane are typical hydrocarbon solvents and dichloromethane and dichloroethane are representative halogenhydrocarbon solvents.
  • the free base may be obtained by techniques known to those skilled in the art.
  • the salt may contain one or more equivalents of the acid.
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described above and are illustrated more particularly in the schemes that follow. Since the schemes are illustrations, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • Isoquinolin-5-yl-carbamic acid phenyl ester 1-1 (0.004 mole, 1.06 g) was dissolved in 15 mL of dimethylsulfoxide.
  • Diisopropylethyl amine (0.0044 mole, 0.57 g, 0.8 mL) was added followed by addition of 1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride 1-2 (0.0044 mole, 1.33 g).
  • the reaction mixture was stirred at room temperature for 16 hours.
  • the reaction mixture was then poured into 50 mL of water containing 10 mL of 1N sodium hydroxide. The precipitated solid was collected by filtration.
  • Isoquinolin-5-yl-carbamic acid phenyl ester 2-1 (0.005 mole, 1.32 g) was dissolved in 15 mL of DMSO (dimethylsulfoxide) followed by the addition of the aminotetralin 2-2,1-benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine (0.0044 mole, 1.12 g). The reaction mixture was then stirred at room temperature for 16 hours. The reaction mixture was poured into 50 mL of water containing 10 mL of 1N NaOH (sodium hydroxide). The precipitated solid was collected by filtration.
  • DMSO dimethylsulfoxide
  • the trifluoroacetamide 4-2 from step A (0.006 mole, 1.53 g) was dissolved in 50 mL of methanol.
  • Sodium borohydride (0.02 mole, 0.8 g) was then added and the reaction mixture was stirred at room temperature for 2 hours.
  • Thin layer chromatography (silica gel, 50/50 hexane/ethyl acetate) showed the reaction to be nearly complete.
  • An additional amount of sodium borohydride was added (0.01 mole, 0.4 g) and stirring was continued for another 1 hour. The reaction mixture was evaporated in vacuo.
  • the amine 4-3 from step B (0.005 mole, 0.79 g) was dissolved in 20 mL of tetrahydrofuran (THF). Pyridine (0.0055 mole, 0.44 g, 0.44 mL) was added followed by the careful addition of phenylchloroformate (0.0055 mole, 0.86 g, 0.69 mL). The reaction mixture immediately turned yellow and turbid. Stirring at room temperature was continued for 2 hours. The reaction mixture was evaporated in vacuo. The residue was taken up in 50 mL of dichloromethane, washed with 2 ⁇ 100 mL saturated sodium bicarbonate then 2 ⁇ 100 mL of water.
  • THF tetrahydrofuran
  • the carbamate hydrochloride 4-4 from step C (0.0005 mole, 0.139 g) was dissolved in 2 mL of dimethylsulfoxide.
  • Diisopropylethyl amine (0.0011 mole, 0.142 g, 0.19 mL) was added followed by addition of 1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride (0.00055 mole, 0.297 g).
  • the reaction mixture was stirred at room temperature for 4 hours.
  • the reaction mixture was then poured into 20 mL of water containing 5 mL of 1N sodium hydroxide and stirred at room temperature for 15 minutes. The precipitated solid was collected by filtration.
  • the aminotetralin urea 1 (0.150 g, 0.00035 mol) was dissolved in 5 mL of dichloromethane.
  • the solid m-chloroperbenzoic acid (0.066 g, 0.00039 mol) was added and the reaction mixture was stirred at room temperature for 16 hours.
  • Thin layer chromatography (silica gel, CH 2 Cl 2 /5% MeOH) indicated the presence of starting material.
  • An additional portion of MCPBA was added (0.050 g) and stirring at room temperature was continued for another 4 hours. At the end of this period, the reaction was complete was indicated by TLC. Saturated sodium bicarbonate (25 mL) was cautiously added to the reaction mixture and the organic layer was separated.
  • step B 1-Methyl-isoquinolin-5-yl-carbamic acid phenyl ester 1 obtained in step A (0.001 mole, 0.278 g) was dissolved in 5 mL of dimethylsulfoxide. Diisopropylethyl amine (0.0011 mole, 0.14 g, 0.2 mL) was added followed by the addition of 1-benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride 2 (0.0011 mole, 0.321 g). The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was then poured into 20 mL of water containing 5 mL of 1N sodium hydroxide.
  • the precipitated solid was collected by filtration. This solid was chromatographed on silica gel eluting with a gradient of methylene chloride/3-10% methanol. Subsequently the product was further purified by recrystallization from ethyl acetate. The title compound 3 was obtained as an off-white solid (0.272 g, 0.0006 mole).
  • step B The spirotetralone from step A (3.06 g, 11.5 mmol) was dissolved in 150 mL MeOH along with NH 4 OAc (13.57 g, 176.1 mmol) and NaCNBH 3 (3.7 g, 59 mmol). The mixture was kept under a nitrogen atmosphere and heated to reflux for 3 hours. The reaction was concentrated in vacuo, mixed with 100 mL water and basified with 25 mL 50% NaOH. The basified mixture was extracted three times with 50 mL methylene chloride. The combined organics were washed once with 50 ml brine, dried with Na 2 SO 4 , filtered and concentrated in vacuo to give the crude free base.
  • HEK293 cells were transfected with human VR1 vanilloid receptors and washed with Hank's Balanced Salt Solution, dissociated with cell dissociation buffer (Sigma), and then centrifuged at 1000 ⁇ g for 5 min.
  • Cell pellets were homogenized in cold 20 mM HEPES buffer, pH 7.4, containing 5.8 mM NaCl, 320 mM sucrose, 2 mM MgCl 2 , 0.75 CaCl 2 and 5 mM KCl and centrifuged at 1000 ⁇ g for 15 min. The resultant supernate was then centrifuged at 40000 ⁇ g for 15 min. The pelleted membranes were kept in an ⁇ 80° C. freezer.
  • Rat spinal cord was homogenized twice with a Polytron and centrifuged at 3000 rpm for 10 min in HEPES buffer containing 20 mM HEPES, pH 7.4, NaCl 5.8 mM, sucrose 320 mM, MgCl 2 2 mM, CaCl 2 0.75 mM and KCl 5 mM. The supernatant was then centrifuged at 18,000 rpm for 20 min. The pellet was saved in a tube and 10 ml assay buffer was added into the tube. The pellet and buffer were mixed with a Polytron.
  • the functional activity of the test compounds was determined by measuring changes in intracellular calcium concentration using a Ca ++ -sensitive fluorescent dye and FLIPRTM technology. Increases in Ca ++ concentration were readily detected upon challenge with capsaicin.
  • HEK293 Cells expressing human VR1 were grown on poly-D-lysine coated 96 well black-walled plates (BD 354640) and 2 days later loaded with Fluo-3/AM for 1 hour and subsequently tested for agonist-induced increases in intracellular Ca 2+ levels using FLIPR technology.
  • Cells were challenged with test compounds (at varying concentrations) and intracellular Ca ++ was measured for 3 min prior to the addition of capsaicin to all wells to achieve a final concentration of 0.015 ⁇ M eliciting 80% maximal response.
  • EC 50 or IC 50 values were determined from dose-response studies. TABLE 2 Vanilloid In vitro assay data Compound No.
  • VR1 receptors When nociceptors are exposed to tissue damaging stimuli, VR1 receptors are activated by a plethora of stimuli.
  • functional assays were developed using FLIPR to determine antagonist activity against endogenous activators and stimuli likely to be present in inflammation.
  • Cell lines were constructed that stably expressed recombinant rat VR1 (rVR1/HEK293). Cells were exposed to various stimuli at their EC 80 , with the exception of the low pH and DTT stimuli.
  • Phoshorylation by PKC Previous studies have suggested that phorbol esters activate VR1 via PKC phosphorylation [Premkumar, 2000 #697; Vellani, 2001 #739]. These studies were corroborated and further studies were performed to confirm that the phorbol ester effect was not due to direct effects on the channel.
  • the role of PKC was shown pharmacologically: phorbol-12-myristate-13-acetate (PMA) and other phorbol esters active at PKC (but not the inactive 4 ⁇ -phorbol) caused an increase in intracellular Ca 2+ that was mediated by VR1.
  • the rank order potency for the panel of phorbol esters was similar to their rank order potency to block PKC.
  • CPZ was more potent at the recombinant human compared to the rat receptor.
  • Anandamide is a brain-derived cannabinoid ligand that acts as a near full agonist at VR1 at low pM concentrations [Smart, 2000 #507].
  • the EC 50 of anandamide at recombinant rat and human receptors was 5 ⁇ M and 3 ⁇ M, respectively.
  • the IC 50 was determined near the EC 80 of anandamide (10 ⁇ M).
  • Reactive oxygen species Disturbances in the regulatory activities of free radicals may play a role in inflammation [Winrow, 1993].
  • Reactive oxygen species (ROS) such as H 2 O 2 are formed in inflamed joints.
  • H 2 O 2 directly activates VR1: the increase in intracellular Ca 2+ is in part blocked by VR1 antagonists and the response is dependent on extracellular Ca 2+ .
  • the influx of Ca 2+ through VR1 may contribute to the known effects of ROS on signal transduction (e.g., phosphorylation of proteins) and downstream regulation of gene transcription.
  • the EC 80 for H 2 O 2 -induced Ca + flux in VR1/HEK cells was 0.015% H 2 O 2 and this concentration was used to determine the IC 50 of VR1 antagonists.
  • Reducing agents The reducing agent DTT also directly activates VR1 [Vyticiany, 2002]. Cells were challenged with 5-10 mM DTT to stimulate VR1 after 3 min incubation in compound.
  • Compound 33 potently blocked the activation of human recombinant VR1 elicited by the agonists shown in Table 3.
  • the increase in intracellular Ca 2 + caused by acidic solutions, anandamide the PKC activator PMA, and H 2 O 2 was completely abolished by Compound 33 in a dose dependent manner after 3 min incubation in antagonist (Table 3).
  • the IC 50 values obtained in assays with low pH, anandamide and PMA stimuli were similar to the IC 50 values obtained against capsaicin-induced responses.
  • Compound 33 is a potent antagonist against a panel of activators at the recombinant human receptor, with a more favorable pharmacological profile than the two most well studied antagonists, capsazepine and ruthenium red.
  • the reference compounds used in these studies were the previously characterized VR1 antagonists capsazepine (CPZ) and ruthenium red.
  • CPZ previously the most potent antagonist at human VR1
  • FIG. 1 shows similar potency (100-300 nM) at the human recombinant receptor to inhibit Ca + activity induced by these stimuli ( FIG. 1 , left set of panels).
  • FIG. 1 human (left) and rat (right) vanilloid 1 receptor expressed in HEK 293 cells was stimulated by a number of different stimuli known to activate VR1.
  • FIG. 1 shows the IC 50 values of the competitive vanilloid antagonist capsazepine for inhibition of the calcium flux induced by each of these activators. Note the similar potency of the compound at the human receptor stimulated by various stimuli, but the lower potency of the compound as an inhibitor of rat VR1.
  • FIG. 2 the human (left) and rat (right) vanilloid 1 receptor expressed in HEK 293 cells was stimulated by a number of different stimuli known to activate VR1.
  • CPZ has been shown to have significantly lower potency at the rat receptor (recombinant and native receptors; [Mcintyre, 2001]). Since many of our animal models were in rat, we cloned the rat VR1 and expressed it stably in HEK293 cells. We performed assays similar to those described for the human recombinant receptor with the exception that a lower pH was required in the Ca 2+ influx assay at the rat recombinant receptor.
  • Compound 33 potently blocked the activation of rat recombinant VR1 elicited by the agonists shown in Table 4.
  • the increase in intracellular Ca 2+ caused by acidic solutions, anandamide the PKC activator PMA at low pH, and H 2 O 2 was completely abolished by Compound 33 in a dose dependent manner after 3 min incubation in antagonist (Table 4).
  • the IC 50 values obtained in assays with low pH, anandamide and PMA stimuli were similar to the IC 50 values obtained against capsaicin-induced responses with the possible exception of the blockade of the low pH response.
  • Compound 33 is a potent antagonist against a panel of activators at the recombinant rat receptor, with a more favorable pharmacological profile than the two most well studied antagonists, capsazepine and ruthenium red.
  • capsaicin produced similar current responses when 3 min recovery/washout periods were allowed.
  • a cell was responsive to 300 nM capsaicin (EC 20 )
  • compound was applied to the cell at 100 or 300 or 1000 nM to determine if the compound had intrinsic agonist activity and allow a 4-5 min incubation period prior to testing with capsaicin in the presence of compound.
  • 1 ⁇ M capsaicin was applied in the presence of the same concentration of compound and incubated another 2-3 min. This was followed by application of 10 ⁇ M CAP in the presence of compound.
  • Control cumulative capsaicin dose response curves were obtained from a cell (the approximate EC 50 in this cumulative dose response assay was 1 ⁇ M CAP; 10 ⁇ M causes a maximal response). Vehicle caused no shift in the capsaicin concentration dependence (not shown). The ability of 1 and 10 ⁇ M CAP to cause an increased current after exposure to a compound of the invention was compared to controls.
  • a nociceptor was challenged with 0.3 uM capsaicin while taking measurements of whole cell current using voltage ramp protocols. After washout of the capsaicin, cells were exposed to the compound for 4-5 min and subsequently challenged with 1 uM capsaicin (approximately the ED80 at the native receptor in this experiments) in the continued presence of compound. The current elicited near ⁇ 100 mV was measured during the first and second capsaicin exposure. The percent of the response elicited by 0.3 ⁇ capsaicin obtained during the exposure to 1 uM capsaicin/compound was calculated.
  • VR1 antagonists inhibit capsaicin-induced currents in dissociated rat DRG neurons % of the initial CAP % of the initial CAP Compound response in response in concentration presence of 1 uM presence of 10 uM Compound (uM) CAP CAP 42 0.3 0 95 0.03 78 1073 0.1 21 200 0.1 4 12 101 0.03 14 54 0.1 0 0 105 1 0 23 8 160 106 1 2 11 vehicle 330 115 180 171 204
  • Each rat was placed on a heated surface (51° C.) in order to measure the time necessary to elicit a response, and an initial (baseline) response time to a thermal stimuli was recorded for each animal.
  • a response is defined as any shaking, licking, or tucking of the treated paw or jumping.
  • Animals not treated with a test compound respond in approximately 20 seconds.
  • the maximal exposure time permitted is 60 seconds to prevent tissue damage.
  • Rats were injected with an irritant (e.g., 1% carrageenan solution in 0.9% saline) subcutaneously into the sub-plantar tissue of the left hind paw to stimulate an acute inflammatory reaction.
  • an irritant e.g., 1% carrageenan solution in 0.9% saline
  • % H percent hyperalgesia
  • % R percent reversal of hyperalgesia
  • Aminotetralin VR1 antagonists were tested for their potency to block capsaicin-induced guinea pig bronchial ring contraction in a standard in vitro organ bath assay [Tucker, 2001].
  • Two mm rings of bronchial tissue obtained from male guinea pigs (325 g) were suspended in normal Krebs solution between two wire hooks under an initial loading tension of 1 gram.
  • the saline was maintained in a 5% CO 2 and 95% O 2 atmosphere at 37° C. in the presence of indomethacin (5 ⁇ M).
  • a sub-maximal dose of 5-Methylfurmethide (5Mef, 1 ⁇ M) was added to each tissue to determine responsiveness using an isometric force transducer.
  • tissues were exposed to compounds or vehicle for 30 min, treated with thiorphan (10 ⁇ M, 5% Na 2 CO 3 ), and primed using KCl in increasing linear concentrations from 1 mM at 1 mM intervals until a slight increase in muscle tone was induced ( ⁇ 1% of 5Mef response).
  • a concentration-response curve was then constructed using capsaicin (10 nM-10 ⁇ M) increasing in 0.5 log unit increments. The dose response curve was calculated as % max of the 5-Mef response and estimated pA 2 were determined [Tucker, 2001]).
  • FIG. 3 inhibition of capsaicin-induced contraction of guinea pig bronchial rings is shown for an isolated tissue assay.
  • the closed symbols represent the capsaicin-only concentration-response relationship, whereas the open symbols represent the capsaicin plus example number 105 concentration-response.
  • the inhibition appears as a shift to the right of the concentration-response curve, resulting in a pA 2 ( ⁇ SEM) value of 6.2 ⁇ 0.11.
  • FIG. 4 inhibition of capsaicin-induced contraction of guinea pig bronchial rings is shown for an isolated tissue assay.
  • the closed symbols represent the capsaicin-only concentration-response relationship, whereas the open symbols represent the capsaicin plus example number 38a concentration-response.
  • the inhibition appears as a shift to the right of the concentration-response curve, resulting in a pA 2 (+SEM) value of 8.0 ⁇ 0.02.
  • TABLE 7 VR1 antagonist blocked capsaicin-induced guinea pig bronchial ring contraction in a competitive manner.
  • Compound Estimated pA 2 33 8.0 +/ ⁇ 0.02 105 (1000 nM) 6.2 +/ ⁇ 0.11
  • IP intraperitoneally
  • test compounds are assessed in a citric acid-induced cough model as compared to positive and vehicle controls.
  • Evaluation of a given compound in this paradigm is as follows: Six male Dunkin-Hartley guinea pigs (approximately 300-600 g) are randomly assigned to each treatment group. Guinea pigs are intra-peritoneally (IP) injected with vehicle, test compound, or positive control (codeine 25 mg/kg) 60 minutes prior to citric acid exposure. Individual guinea pigs are placed in an exposure chamber with an airflow of 3 L/min at ⁇ 10 min to acclimatize. At ⁇ 0 min, cough responses are induced by exposure to nebulized citric acid.
  • IP intra-peritoneally
  • Each animal is dosed daily in the morning and late afternoon for BID dosing. Treatment with vehicle or test compound begins on day 0, immediately after initial body weights are taken, and ends on day 6. Water bottles are removed and replaced by graduated water bottles containing 5% DSS in indicated groups. Tap water remains on control groups only. Sufficient DSS drinking water is placed in graduated water bottles and refilled each day to monitor daily output. Animals are weighed daily from day 0 to 7, and animal condition and the consistency of stools recorded. Following sacrifice of the animal on day 7, the colon is surgically removed from the distal rectum (anus) to the cecal-colonic juncture and the colon length and weight measured. Colon slices may be obtained for histological evaluation.
  • An active drug should decrease or eliminate disruption of the epithelium and colonic folds, dense inflammatory cell infiltrates, mucosal sloughing, etc.
  • life observations include monitoring for signs of gross toxicity and/or behavioral changes, gross evaluation of the skin and fur, motor activity and any behavioral patterns with special attention to tremors, convulsions and diarrhea.
  • Water consumption and body weights are measured daily. Scores include ratings for colon weight loss, stool consistency, colon damage, and colon shortening, and are used to assemble a Disease Activity Score. An increase in myeloperoxidase activity occurs in this model and is evaluated separately.
  • Rats Female adult virgin Sprague Dawley rats (190-290 g) are used. Rats are anesthetized with pentobarbital (50 mg/kg IP). One uterine horn is approached via a small ventral midline laparotomy and tightly ligated at its caudal end near the cervix with 3.0 silk suture to prevent leakage of mustard oil through the cervix and vagina. Using a 22 G needle 0.1-0.2 ml of 10% mustard oil (Aldrich Chemical Co., Milwaukee Wis. USA; dissolved in mineral oil) or an equivalent volume of saline in sham control rats, are injected into the uterine lumen. The abdominal incision is then closed and the rats allowed to recover from anesthesia.
  • 10% mustard oil Aldrich Chemical Co., Milwaukee Wis. USA; dissolved in mineral oil
  • Rats are then transferred to individual Plexiglas cages in a quiet environment (12/12 h light-dark cycle) with food and water ad libitum for nonstop videotape recording for the duration of the experiment.
  • Compounds or vehicle is administered by the intended route before (therapeutic) or after (prophylactic) acquisition of hyperalgesia.
  • the recording system consists of a camera connected to a videotape recorder with a wide range of recording and reading speeds to allow for detailed analysis of the movements of the rats.
  • an infrared light is used to permit continuous filming.
  • Animal behavior is analyzed post-hoc using a scoring system to count abnormal behaviors.
  • Vanilloid receptor modulators are tested in an animal model of contact dermatitis or itch, according to previously documented and validated methods, including but not limited to those described by Saint-Mezard et al. (2003), Gonzalez et al. (2001), Wille et al. (1998), Weisshaar et al. (1999) and Thomsen et al. (2002).
  • testing is conducted in mouse, guinea pig or human in response to a single (primary allergic dermatitis) or repeated (sensitized allergic dermatitis) topical or photomechanical exposure of the skin to one or more haptensselected from 12-myristate-13 acetate, picryl chloride, oxazolone, capsaicin, arachidonic acid, lactic acid, trans-retinoic acid or sodium lauryl sulfate.
  • haptenss selected from 12-myristate-13 acetate, picryl chloride, oxazolone, capsaicin, arachidonic acid, lactic acid, trans-retinoic acid or sodium lauryl sulfate.
  • animals are sensitized by pre-exposure to certain agents selected from dinitrochlorobenzene, para-phenylenediamine or oxazolone.
  • a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following hapten challenge.
  • Significant differences in skin inflammation (erythema, edema, hyperthermia, etc.) for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-allergy activity.
  • the following additional dependent measures are also collected and compared: skin and/or lymph node levels of CF8+ T cells, interleukin-1 alpha and beta, tumor necrosis factor alpha, interferon gamma, nitric oxide, inducible nitric oxide synthase and keratinocyte apoptosis, Fas expression and/or inflammatory mediator secretion.
  • testing is conducted in mouse, rat, guinea pig or human in response to the sub- or intra-dermal injection or iontophoresis of pruritogens select4ed from serotonin, compound 48/80, leukotriene B4, arachidonic acid, prostaglandin E2, histamine, substance P, neurokinin A, neurokinin B, trypsin, hydroxyethylstarch or platelet-activating factor singly or in combination with mosquito bite or injection of salivary gland extract therefrom.
  • animals are inflamed by pre-exposure to certain agents, including but not limited to sodium lauryl sulfate.
  • a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following pruritogen challenge. Cumulative scratching behavior and/or number of scratches per unit time are measured. Significant differences in scratching behavior for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-pruritic activity. The following additional dependent measures are collected and compared: skin inflammation (erythema, edema, hyperthermia, etc.), surface area of the wheal and flare, hyperalgesia, allodynia, plasma protein extravasation, inflammatory mediator release and serum immunoglobulin levels.
  • Vanilloid receptor modulators are tested in an animal model of rhinitis, according to previously documented and validated methods, including but not limited to those described by Hirayama et al. (2003), Tiniakov et al. (2003) and Magyar et al. (2002). Testing is conducted in mouse, guinea pig, dog or human in response to intranasal challenge with one or more irritants selected from bradykinin, histamine, pollens, dextran sulfate, 2,4-tolylene diisocyanate, Bordetella bronchiseptica, Pasteurella multodica or acetic acid. For increased sensitivity, animals may be sensitized by pre-exposure to ragweed or ovalbumin.
  • a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following irritant challenge.
  • the relevant dependent measures collected are plasma extravasation of the nasal mucosa, nasal eosinophilia or neutrophilia, nasal mucosal or nasal cavity lavage fluid levels of IL-5, interferon gamma, histamine or IgE, serum immunoglobulin levels, rhinorrhea, cumulative time spent sneezing or number of sneezes per unit time, nasal airway volume, peak inspiratory flow and resistance, intranasal pressure and nasal lesions.
  • Significant differences in one or more of these measures for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-rhinitis activity.
  • Vanilloid receptor modulators are tested in an animal model of anxiety, according to previously documented and validated methods, including but not limited to those reviewed by Imaizumi and Onodera (2000). Testing is conducted in mouse or rat and consists of methods to measure avoidance of aversive environmental stimuli selected from the Geller-type or Vogel-type anticonflict tests, the light/dark test, the hole-board test, the elevated plus-maze and the elevated T-maze. Prior to environmental exposure the test subject receives the prophylactic administration one or more times of a vanilloid receptor modulator, or vehicle control, by the enteral or parenteral route. The cumulative time or number of times spent engaged in the aversive behavior is measured. Significant differences in one or more of these measures for the test compound-treated subjects compared with vehicle-treated subjects are taken as evidence of anxiolytic activity.

Abstract

This invention is directed to vanilloid receptor VR1 ligands. More particularly, this invention relates to β-aminotetralin-derived ureas that are potent antagonists or agonists of VR1 which are useful for the treatment and prevention of inflammatory and other pain conditions in mammals.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This applicaiton claims priority to U.S. Provisional Application No. 60/381,575, filed May 17, 2003.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • The research and development of the invention described below was not federally sponsored.
  • BACKGROUND OF THE INVENTION
  • This invention is directed to novel vanilloid receptor VR1 ligands. More particularly, this invention relates to novel β-aminotetralin-derived ureas that are potent antagonists or agonists of VR1 and exhibit activity in animal models of hyperalgesia and colitis, and are useful for the treatment and prevention of pain conditions in humans including arthritis, and for the treatment of irritable-bowel syndrome and associated conditions.
  • Noxious chemical, thermal and mechanical stimuli excite peripheral nerve endings of small diameter sensory neurons (nociceptors) in sensory ganglia (e.g., dorsal root, nodose and trigeminal ganglIa) and initiate signals that are perceived as pain. These neurons are crucial for the detection of harmful or potentially harmful stimuli (heat) and tissue damage (local tissue acidosis and/or stretch) that arise from changes in the extracellular space during inflammatory or ischaemic conditions (Wall, P. D., and Meizack, R., Textbook of Pain, 1994, New York: Churchill Livingstone). Nociceptors transduce noxious stimuli into membrane depolarization that triggers action potential, conducts the action potential from the sensory sites to the synapses in the CNS, and conversion of action potentials invokes a perception of pain, discomfort, and appropriate mechanical/physical protective reflexes. At the molecular level, nociception is carried out by ion channels or receptors. Plant derived vanilloid compounds (capsaicin and its ultrapotent analog, resiniferatoxin, etc.) are known to selectively depolarize nociceptors and elicit sensations of burning pain—the sensation that is typically obtained by hot chili peppers. Therefore, capsaicin mimics the action of physiological/endogenous stimuli that activates the “nociceptive pathway”. Recent advances in pain biology have identified receptors for vanilloids, protons (i.e., acidic solutions), and for heat. Because nociceptors are involved with unwanted pain and inflammatory conditions in human beings and animals, modulation of their nociceptive pathway is important in palliative and other therapies.
  • Walpole and colleagues at Sandoz reported on the first competitive antagonist of the sensory neuron excitants capsaicin and resineriferatoxin (Walpole, C. S. J. et. al., J. Med. Chem. 1994, 37, 1942). Subsequently, capsazepine has been shown to be a vanilloid receptor antagonist. Capsazepine, however, is not aminotetralin-derived. Jee Woo Lee and colleagues at Pacific Corporation disclosed thiocarbamic acid derived VR1 antagonists in WO0216317A1 and vanilloid receptor modulators in WO0216318A1 and WO0216319A1 but these applications do not disclose or describe α-substituted β-aminotetralins. Hutchinson and colleagues at Neurogen describe a diaryl piperazinyl ureas and related compounds as capsaicin receptor ligands in WO02082212A1 but aminotetralins are not covered. Scientists at the Universidad Miguel Hernandez in Alicante, the Universidad de Valencia and the Consejo Superior de Investigaciones Cientificas (CSIC) in Barcelona have used a combinatorial chemistry-based approach to discover compounds that modulate the vanilloid VR1 receptor and have disclosed two trialkylglycine-based compounds as noncompetitive VR1 channel blockers (Garcia-Martinez, C. et al. Proc Natl Acad Sci USA 2002, 99(4): 2374) but none are aminotetralin-derived.
  • U.S. Pat. Nos. 6,140,354 and 6,201,025 by Dax et. al. teach the synthesis of N-acylated and N-alkylated α-substituted β-aminotetralins but do not describe the synthesis of ureido β-aminotetralins. U.S. Pat. No. 6,169,116 B1 by Swoboda describes β-aminotetralins and their pharmaceutical uses but does not describe the synthesis of α-substituted β-aminotetralins and does not describe the synthesis of ureido β-aminotetralins. European patent application 0064964 by Arvidsson teaches the synthesis of N-alkylated α-alkyl-β-aminotetralins in which the alkyl substituent in the α-position is hydrogen or C1-6alkyl but does not describe the synthesis of β-aminotetralins substituted with groups other than hydrogen or C1-6alkyl in α-position nor describe the synthesis of ureido β-aminotetralins.
  • Thus, there is a need for potent modulators of VR, and in particular, for novel β-aminotetralin-derived ureas that exhibit potent binding affinity for the human and rat VR1 ion channel. There is also a need for novel β-amino-tetralin-derived ureas that act as potent functional antagonists and/or agonists of the human and rat VR1 ion channel. Finally, there is a need for novel β-aminotetralin-derived ureas that bind with high affinity to VR1 and also act as potent functional antagonists of the human and rat VR1 ion channel.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to compositions comprising a compound of Formula (I):
    Figure US20050187291A1-20050825-C00001
      • wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and
      • enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Preferred embodiments of the present invention are those in which: (1) R1 is a substituent independently selected from the group consisting of hydrogen, hydroxy, fluoro, chloro, bromo, and C1-8alkanyloxy; (2) R1 is a substituent independently selected from the group consisting of fluoro, chloro, bromo, C1-8alkanyloxy, (3) R2 is independently selected from the group consisting of hydrogen, C2-8alkenyl, C2-8alkenyl, C1-8alkylidenyl, C1-8alkylidynyl, C3-8cycloalkanyl, phenyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, and fluorinated alkanyl), naphthyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, and fluorinated alkanyl), and a heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein the heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; (4) L is a direct bond or C1-8alkanylene; and (5) R3 is selected from the group consisting of naphthyl substituted with hydroxyl; quinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro, quinolinyl-N-oxide, isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro and isoquinolinyl-N-oxide.
  • Finally, the present invention is directed to pharamceutical compositions containing compounds of Formula (I), as well as to methods of treatment of diseases and conditions by administration of these compositions, and also to pharmaceutical kits containing them.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the IC50 values of the competitive vanilloid antagonist capsazepine for inhibition of calcium flux induced by a number of different stimuli known to activate VR1.
  • FIG. 2 shows the IC50 values for inhibition by a compound of the invention of the calcium flux induced by a number of different stimuli known to activate VR1.
  • FIG. 3 shows inhibition by a compound of the invention of capsaicin-induced contraction of guinea pig bronchial rings in an isolated tissue assay.
  • FIG. 4 shows inhibition by another compound of the invention of capsaicin-induced contraction of guinea pig bronchial rings in an isolated tissue assay.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the following underlined terms are intended to have the following meanings:
  • “Ca-b” (where a and b are integers) refers to a radical containing from a to b carbon atoms inclusive. For example, C1-3 denotes a radical containing 1, 2 or 3 carbon atoms.
  • “Fluorinated alkyl” refers to a saturated branched or straight chain hydrocarbon radical derived by removal of 1 hydrogen atom from the parent alkane; the parent alkane contains from 1 to 6 carbon atoms with 1 or more hydrogen atoms substituted with fluorine atoms up to and including substitution of all hydrogen atoms with fluorine. Preferred fluorinated alkyls include trifluoromethyl substituted alkyls and perfluorinated alkyls; more preferred fluorinated alkyls include trifluoromethyl, perfluoroethyl, 2,2,2-trifluoroethyl, perfluoropropyl, 3,3,3-trifluoroprop-1-yl, 3,3,3-trifluoroprop-2-yl, 1,1,1,3,3,3-hexafluoroprop-2-yl; a particularly preferred fluorinated alkyl is trifluoromethyl.
  • “Fluorinated alkanyloxy” refers to a radical derived from a fluorinated alkyl radical attached to an oxygen atom with the oxygen atom having one open valence for attachment to a parent structure.
  • “Alkyl:” refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne. Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature “alkanyl”, “alkenyl” and/or “alkynyl” is used, as defined below. In preferred embodiments, the alkyl groups are (C1-8) alkyl, with (C1-3) being particularly preferred.]
  • “Alkanyl:” refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane. Typical alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, etc.; butyanyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, etc.; and the like. In preferred embodiments, the alkanyl groups are (C1-8) alkanyl, with (C1-3) being particularly preferred.
  • “Alkenyl:” refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene. The radical may be in either the cis or trans conformation about the double bond(s). Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, prop-2-en-2-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, etc.; and the like. In preferred embodiments, the alkenyl group is (C2-8) alkenyl, with (C2-3) being particularly preferred.
  • “Alkynyl:” refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne. Typical alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like. In preferred embodiments, the alkynyl group is (C2-8) alkynyl, with (C2-3) being particularly preferred.
  • “Alkyldiyl:” refers to a saturated or unsaturated, branched, straight-chain or cyclic divalent hydrocarbon radical derived by the removal of one hydrogen atom from each of two different carbon atoms of a parent alkane, alkene or alkyne, or by the removal of two hydrogen atoms from a single carbon atom of a parent alkane, alkene or alkyne. The two monovalent radical centers can form bonds with the same or different atoms. Typical alkyldiyls include, but are not limited to methandiyl; ethyldiyls such as ethan-1,1-diyl, ethan-1,2-diyl, ethen-1,1-diyl, ethen-1,2-diyl; propyldiyls such as propan-1,1-diyl, propan-1,2-diyl, propan-2,2-diyl, propan-1,3-diyl, cyclopropan-1,1-diyl, cyclopropan-1,2-diyl, prop-1-en-1,1-diyl, prop-1-en-1,2-diyl, prop-2-en-1,2-diyl, prop-1-en-1,3-diyl, cycloprop-1-en-1,2-diyl, cycloprop-2-en-1,2-diyl, cycloprop-2-en-1, -diyl, prop-1-yn-1,3-diyl, etc.; butyldiyls such as, butan-1,1-diyl, butan-1,2-diyl, butan-1,3-diyl, butan-1,4-diyl, butan-2,2-diyl, 2-methyl-propan-1,1-diyl, 2-methyl-propan-1,2-diyl, cyclobutan-1,1-diyl; cyclobutan-1,2-diyl, cyclobutan-1,3-diyl, but-1-en-1,1-diyl, but-1-en-1,2-diyl, but-1-en-1,3-diyl, but-1-en-1,4-diyl, 2-methyl-prop-1-en-1,1-diyl, 2-methylprop-2-en-1,1-diyl, buta-1,3-dien-1,1-diyl, buta-1,3-dien-1,2-diyl, buta-1,3-dien-1,3-diyl, buta-1,3-dien-1,4-diyl, cyclobut-1-en-1,2-diyl, cyclobut-1-en-1,3-diyl, cyclobut-2-en-1,2-diyl, cyclobuta-1,3-dien-1,2-diyl, cyclobuta-1,3-dien-1,3-diyl, but-1-yn-1,3-diyl, but-1-yn-1,4-diyl, buta-1,3-diyn-1,4-diyl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkandiyl, alkendiyl and/or alkyndiyl is used. In preferred embodiments, the alkyldiyl group is (C1-8) alkyldiyl, with (C1-8) being particularly preferred. Also preferred are saturated acyclic alkandiyl radicals in which the radical centers are at the terminal carbons, e.g., methandiyl; ethan-1,2-diyl; propan-1,3-diyl; butan-1,4-diyl; and the like (also referred to as alkylenos, as defined infra).
  • “Vic Alkyldiyl:” refers to a saturated or unsaturated, branched, straight-chain or cyclic hydrocarbon radical having two adjacent monovalent radical centers derived by the removal of one hydrogen atom from each of two adjacent carbon atoms of a parent alkane, alkene or alkyne. The two monovalent radical centers can form bonds with the same or different atom(s). Typical vic alkyldiyls include, but are not limited to vic ethyldiyls such as ethan-1,2-diyl, ethen-1,2-diyl; vic propyldiyls such as propan-1,2-diyl, cyclopropan-1,2-diyl, prop-1-en-1,2-diyl, prop-2-en-1,2-diyl, cycloprop-1-en-1,2-diyl, etc.; vic butyldiyls such as butan-1,2-diyl, 2-methyl-propan-1,2-diyl, cyclobutan-1,2-diyl, but-1-en-1,2-diyl, cyclobut-1-en-1,2-diyl, buta-1,3-dien-1,2-diyl, cyclobuta-1,3-dien-1,2-diyl, but-3-yn-1,2-diyl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature vic alkandiyl, vic alkendiyl and/or vic alkyndiyl is used. In preferred embodiments, the vic alkyldiyl group is (C2-8) vic alkyldiyl, with (C2-3) being particularly preferred.
  • “Gem Alkyldiyl:” refers to a saturated or unsaturated, branched, straight-chain or cyclic hydrocarbon radical having one divalent radical center derived by the removal of two hydrogen atoms from a single carbon atom of a parent alkane, alkene or alkyne. The divalent radical center forms bonds with two different atoms. Typical gem alkyldiyls include, but are not limited to gem methanyldiyl; gem ethyldiyls such as ethan-1,1-diyl,ethen-1,I-diyl; gem propyldiyls such as propan-1,1-diyl, propan-2,2-diyl, cyclopropan-1,1-diyl, prop-1-en-1,1-diyl, cycloprop-2-en-1,1-diyl, prop-2-yn-1,1-diyl, etc.; butyldiyls such as butan-1,1-diyl, butan-2,2-diyl, 2-methyl-propan-1,2-diyl, cyclobutan-1,1-diyl, but-1-en-1,1-diyl, 2-methyl-prop-1-en-1,1-diyl, 2-methyl-prop-2-en-1,1-diyl, cyclobut-2-en-1,1-diyl, buta-1,3-dien-1,1-diyl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature gem alkandiyl, gem alkendiyl and/or gem alkyndiyl is used. In preferred embodiments, the gem alkyldiyl group is (C1-6) gem alkyldiyl, with (C1-3) being particularly preferred.
  • “Alkyleno:” refers to a saturated or unsaturated, straight-chain or branched acyclic bivalent hydrocarbon bridge radical derived by the removal of one hydrogen atom from each of the two terminal carbon atoms of an acyclic parent alkane, alkene or alkyne. Typical alkyleno groups include, but are not limited to, methano; ethylenos such as ethano, etheno, ethyno; propylenos such as propano, propeno, prop-1,2-dieno, propyno, etc.; butylenos such as butano, 2-methyl-propano, but-1-eno, but-2-eno, 2-methyl-prop-1-eno, 2-methanylidene-propano, but-1,3-dieno, but-1-yno, but-2-yno, but-1,3-diyno, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkano, alkeno and/or alkyno is used. In preferred embodiments, the alkyleno group is (C1-8) alkyleno, with (C1-3) being particularly preferred. Also preferred are straight-chain saturated alkano radicals, e.g., methano, ethano, propano, butano, and the like.
  • “Alkylidene:” refers to a saturated or unsaturated, branched, straight-chain or cyclic divalent hydrocarbon radical derived by removal of two hydrogen atoms from the same carbon atom of a parent alkane, alkene or alkyne. The divalent radical center forms a double bond with a single atom. Typical alkylidene radicals include, but are not limited to, methanylidene, ethylidenes such as ethanylidene, ethenylidene; propylidenes such as propan-1-ylidene, propan-2-ylidene, cyclopropan-1-ylidene, prop-1-en-1-ylidene, prop-2-en-1-ylidene, cycloprop-2-en-1-ylidene, etc.; butylidenes such as butan-1-ylidene, butan-2-ylidene, 2-methyl-propan-1-ylidene, cyclobutan-1-ylidene, but-1-en-1-ylidene, but-2-en-1-ylidene, but-3-en-1-ylidene, buta-1,3-dien-1-ylidene; cyclobut-2-en-1-ylidene, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkanylidene, alkenylidene and/or alkynylidene is used. In preferred embodiments, the alkylidene group is (C1-8) alkylidene, with (C1-3) being particularly preferred. Also preferred are acyclic saturated alkanylidene radicals in which the divalent radical is at a terminal carbon, e.g., methanylidene, ethan-1-ylidene, propan-1-ylidene, butan-1-ylidene, 2-methyl-propan-1-ylidene, and the like.
  • “Alkylidyne:” refers to a saturated or unsaturated, branched or straight-chain trivalent hydrocarbon radical derived by removal of three hydrogen atoms from the same carbon atom of a parent alkane, alkene or alkyne. The trivalent radical center forms a triple bond with a single atom. Typical alkylidyne radicals include, but are not limited to, methanylidyne; ethanylidyne; propylidynes such as propan-1-ylidyne, prop-2-en-1-ylidyne, prop-2-yn-1-ylidyne; butylidynes such as butan-1-ylidyne, 2-methyl-propan-1-ylidyne, but-2-en-1-ylidyne, but-3-en-1-ylidyne, buta-2,3-dien-1-ylidyne, but-2-yn-1-ylidyne, but-3-yn-1-ylidyne, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkanylidyne, alkenylidyne and/or alkynylidyne is used. In preferred embodiments, the alkylidyne group is (C1-8) alkylidyne, with (C1-3) being particularly preferred. Also preferred are saturated alkanylidyne radicals, e.g., methanylidyne, ethanylidyne, propan-1-ylidyne, butan-1-ylidyne, 2-methyl-propan-1-ylidyne, and the like.
  • “Heteroalkyl, Heteroalkanyl, Heteroalkenyl, Heteroalkynyl. Heteroalkylidene, Heteroalkylidyne, Heteroalkyldiyl, Vic Heteralkyldiyl, Gem Heteroalkyldiyl, Heteroalkyleno and Heteroalkyldiylidene:” refer to alkyl, alkanyl, alkenyl, alkynyl, alkylidene, alkylidyne, alkyldiyl, vic alkyldiyl, gem alkyldiyl, alkyleno and alkyldiylidene radicals, respectively, in which one or more carbon atoms (and any necessary associated hydrogen atoms) are independently replaced with the same or different heteroatoms (including any necessary hydrogen or other atoms). Typical heteroatoms to replace the carbon atom(s) include, but are not limited to, N, P, O, S, Si, etc. Preferred heteroatoms are O, N and S. Thus, heteroalkyl, heteroalkanyl, heteroalkenyl, heteroalkynyl, heteroalkylidene, heteroalkylidyne, heteroalkyldiyl, vic heteroalkyldiyl, gem heteroalkyldiyl, heteroalkyleno and heteroalkyldiylidene radicals can contain one or more of the same or different heteroatomic groups, including, by way of example and not limitation, epoxy (—O—), epidioxy (—O—O—), thioether (—S—), epidithio (—SS—), epoxythio (—O—S—), epoxyimino (—O—NR′—), imino (—NR′—), biimmino (—NR′—NR′—), azino (═N—N═), azo (—N═N—), azoxy (—N—O—N—), azimino (—NR′—N═N—), phosphano (—PH—), A4-sulfano (—SH2—), sulfonyl (—S(O)2—), and the like, where each R′ is independently hydrogen or (C1-C6) alkyl.
  • “Parent Aromatic Ring System:” refers to an unsaturated cyclic or polycyclic ring system having a conjugated ff electron system. Specifically included within the definition of “parent aromatic ring system” are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, indane, indene, phenalene, etc. Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like
  • “Aryl:” refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl groups include, but are not limited to, radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like. In preferred embodiments, the aryl group is (C5-20) aryl, with (C5-10) being particularly preferred. Particularly preferrec aryl groups are phenyl and naphthyl groups.
  • “Arylalkyl:” refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like. Where specific alkyl moieties are intended, the nomenclature arylalkanyl, arylakenyl and/or arylalkynyl is used. [In preferred embodiments, the arylalkyl group is (C6-26) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C1-6) and the aryl moiety is (C5-20). In particularly preferred embodiments the arylalkyl group is (C6-13), e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C1-3) and the aryl moiety is (C5-10). Even more preferred arylalkyl groups are phenylalkanyls.
  • “Alkanyloxy:” refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon alcohol radical derived by the removal of the hydrogen atom from the hydroxide oxygen of the alcohol. Typical alkanyloxy groups include, but are not limited to, methanyl; ethanyloxy; propanyloxy groups such as propan-1-yloxy (CH3CH2CH2O—), propan-2-yloxy ((CH3)2CHO—), cyclopropan-1-yloxy, etc.; butyanyloxy groups such as butan-1-yloxy, butan-2-yloxy, 2-methyl-propan-1-yloxy, 2-methyl-propan-2-yloxy, cyclobutan-1-yloxy, etc.; and the like. In preferred embodiments, the alkanyloxy groups are (C1-8) alkanyloxy groups, with (C1-3) being particularly preferred.
  • “Parent Heteroaromatic Ring System:” refers to a parent aromatic ring system in which one or more carbon atoms are each independently replaced with a heteroatom. Typical heteratoms to replace the carbon atoms include, but are not limited to, N, P, O, S, Si etc. Specifically included within the definition of “parent heteroaromatic ring systems” are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, arsindole, chromane, chromene, indole, indoline, xanthene, etc. Typical parent heteroaromatic ring systems include, but are not limited to, arsindole, carbazole, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like.
  • “Heteroaryl:” refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system. Typical heteroaryl groups include, but are not limited to, radicals derived from acridine, arsindole, carbazole, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like. In preferred embodiments, the heteroaryl group is a 5-20 membered heteroaryl, with 5-10 membered heteroaryl being particularly preferred. Specific preferred heteroaryls for the present invention are quinoline, isoquinoline, pyridine, pyrimidine, furan, thiophene and imidazole.
  • “Substituted:” refers to a radical in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s). Typical substituents include, but are not limited to, —X, —R, —O, ═O, —OR, —O—OR, —SR, —S, ═S, —NRR, ═NR, —CX3, —CN, —OCN, —SCN, —NCO, —NCS, —NO, —NO2, ═N2, —N3, —NHOH, —S(O)2O, —S(O)2OH, —S(O)2R, —P(O)(O)2, —P(O)(OH)2, —C(O)R, —C(O)X, —C(S)R, —C(S)X, —C(O)OR, —C(O)O, —C(S)OR, —C(O)SR, —C(S)SR, —C(O)NRR, —C(S)NRR and —C(NR)NRR, where each X is independently a halogen (preferably —F, —Cl or —Br) and each R is independently —H, alkyl, alkanyl, alkenyl, alkynyl, alkylidene, alkylidyne, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl or heteroaryl-heteroalkyl, as defined herein. Preferred substituents include hydroxy, halogen, C1-8alkyl, C1-8alkanyloxy, fluorinated alkanyloxy, fluorinated alkyl, C1-8alkylthio, C3-8cycloalkyl, C3-8cycloalkanyloxy, nitro, amino, C1-8alkylamino, C1-8dialkylamino, C3-8cycloalkylamino, cyano, carboxy, C1-7alkanyloxycarbonyl, C1-7alkylcarbonyloxy, formyl, carbamoyl, phenyl, aroyl, carbamoyl, amidino, (C1-8alkylamino)carbonyl, (arylamino)carbonyl and aryl(C1-8alkyl)carbonyl.
  • “Aroyl” refers to arylacyl substituents.
  • “Acyl” refers to alkylcarbonyl substituents.
  • With reference to substituents, the term “independently” means that when more than one of such substituent is possible, such substituents may be the same or different from each other.
  • Throughout this disclosure, the terminal portion of the designated side chain is described first, followed by the adjacent functionality toward the point of attachment. Thus, for example, a “phenylC1-6alkanylaminocarbonylC1-6alkyl” substituent refers to a group of the formula
    Figure US20050187291A1-20050825-C00002
  • The present invention is directed to compositions comprising a compound of Formula (I):
    Figure US20050187291A1-20050825-C00003

    wherein R1 independently may be absent or an optionally substituted substituent selected from alkyl, heteroalkyl, aryl (preferably 5-10 membered aryl), arylalkyl, halogen, nitro, amino, cyano, carboxy, carbamoyl, aroyl, amidino, and acyl; n is an integer from 1 to 3; m is an integer from 0 to 3; R2 may be absent or an optionally substituted substituent selected from alkyl, heteroalkyl, aryl (preferably 5-10 membered aryl), heteroaryl (preferably 5-10 membered heteroaryl), alkylidenyl, heteroalkylidenyl, alkylidynyl, heteroalkylidynyl, arylalkyl, halogen, nitro, amino, and cyano; L is a direct bond, alkyldiyl or heteroalkyldiyl; R3 is aryl (preferably 5-10 membered aryl) or heteroaryl (preferably 5-10 membered heteroaryl); R4 and R5 are hydrogen, alkyl, o r heteroalkyl; X is O or S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • In particular, the present invention is directed to compounds of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and
      • enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Preferred embodiments of the present invention are those in which: (1) R1 is a substituent independently selected from the group consisting of hydrogen, hydroxy, fluoro, chloro, bromo, and C1-8alkanyloxy; (2) R1 is a substituent independently selected from the group consisting of fluoro, chloro, bromo, C1-8alkanyloxy, (3) R2 is independently selected from the group consisting of hydrogen, C2-8alkenyl, C1-8alkylidenyl, C1-8alkylidynyl, C3-8cycloalkanyl, phenyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, and fluorinated alkanyl), naphthyl (optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, and fluorinated alkanyl), and a heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein the heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; (4) L is a direct bond or C1-8alkandiyl; (5) R3 is selected from the group consisting of naphthyl substituted with hydroxyl; quinolinyl and isoquinolinyl; and (6) any combination of (1) to (5) preceding. Thus, preferred embodiments of the present invention are as described below.
  • An embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; fluoro; chloro; and C1-8alkanyloxy;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl; and a heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Still another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R, is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy and fluorinated alkanyl; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy and fluorinated alkanyl; pyridyl; pyrimidyl; furyl; thienyl and imidazolyl.
  • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Furthermore, another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of fluoro, chloro, bromo, and fluorinated alkanyl.
  • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • An embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of fluoro; chloro; C1-8alkanyloxy;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is 1;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 1;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is 1;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond or C1-8alkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-18)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C: 8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, fluoro, chloro, bromo, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, fluoro, chloro, bromo, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, fluoro and chloro, wherein said heteroaryl is quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Furthermore, another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl substituted with one to three substituents independently selected from the group consisting of C1-8alkanyloxy and hydroxy; naphthyl substituted with one to three substituents independently selected from the group consisting of C1-8alkanyloxy and hydroxy; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl and chloro wherein said heteroaryl is quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl and pyridyl-N-oxide;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of naphthyl substituted with hydroxyl; quinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro, quinolinyl-N-oxide, isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro and isoquinolinyl-N-oxide;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R, is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally independently substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally independently substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is 2-hydroxynaphth-8-yl, isoquinolin-5-yl and isoquinolinyl-5-yl-N-oxide;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is hydrogen;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Still yet another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
  • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is hydrogen;
      • X is selected from the group consisting of O and S; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Furthermore, another embodiment of the present invention is directed to compositions comprising a compound of Formula (I) wherein:
      • R1 is a substituent independently selected from the group consisting of hydrogen; hydroxy; halogen; C1-8alkanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C1-8alkanyloxy optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; fluorinated alkanyloxy; fluorinated alkanyl; C1-8alkanylthio optionally substituted with one or more substituents independently selected from the group consisting of halogen, fluorinated alkanyl and C1-8alkanyloxy; C3-8cycloalkanyl; C3-8cycloalkanyloxy; nitro; amino; C1-8alkanylamino; C1-8dialkanylamino; C3-8cycloalkanylamino; cyano; carboxy; C1-7alkanyloxycarbonyl; C1-7alkanylcarbonyloxy; formyl; carbamoyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxyl, nitro, amino and cyano; aroyl; carbamoyl; amidino; (C1-8alkanylamino)carbonyl; (arylamino)carbonyl and aryl(C1-8alkanyl)carbonyl;
      • n is an integer from 1 to 3;
      • m is an integer from 0 to 3;
      • R2 is independently selected from the group consisting of hydrogen; hydroxy; C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
      • L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C2-8alkyndiyl, or C3-8cycloalkandiyl;
      • R3 is selected from the group consisting of phenyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, C1-8alkanyloxy, hydroxy, fluorinated alkanyl, nitro, amino, di(C1-8)alkanylamino, C1-8alkanylamino and cyano; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-8alkanyl, halogen, nitro, amino and cyano wherein said heteroaryl is quinolinyl, quinolinyl-N-oxide, isoquinolinyl, isoquinolinyl-N-oxide, pyridyl, pyridyl-N-oxide, pyrimidyl, furyl, thienyl or imidazolyl;
      • R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
      • X is O; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • Another embodiment of the present invention is directed to compositions comprising a compound of Formula (Ia):
    Figure US20050187291A1-20050825-C00004

    the compound selected from the group consisting of:
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is H, m is 0, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
      • a compound of formula (Ia) wherein R, is H, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is —CH═CH2, m is 1, L is —CH2—, R3 is (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is 4-Imidazolyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-methylenedioxy)Ph, and X is O;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diOMe)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-tBu)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (4-Cl)Ph, and X is O;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3,4-diOMe)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-methylenedioxy)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diOMe)Ph, and X is S;
      • a compound of formula (Ia) wherein R, is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-tBu)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (4-Cl)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3,4-diOMe)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH═CH—( ), R3 is (3-OMe-4-OH)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-N(Me)(C5H11))Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-[N(Me)(cyclohexyl)])Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diOMe)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-CF3)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diCl)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3,4-diCl)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (4-CF3)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diCl)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3,4-diCl)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 8-(2-naphtholyl), and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 5-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OH, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 8-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-CN)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Br)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is CN, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diF, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 8-(2-naphtholyl), and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Cyclopropyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Benzyloxy)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 4-Pyridinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 2-Thienyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2,6-diF)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is —CH2═CH2, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 7-F, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 5-F, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is H, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is H, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Cyclopropyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-thienyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 2-thienyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-furyl, m is 1, L is —CH2—, R3 is (3-OMe4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 2-furyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 4-pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH(Me)—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH(Me)CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH2—, R3 is (3-OMe-4-OCH2CH2NH2)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH(Me)—, R3 is (3-OMe-4-OCH2CH2NH2)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH(Me)CH2—, R3 is (3-OMe-4-OCH2CH2NH2)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6,7-diF, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 5-Cl, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 8-Cl, R2 is Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-OMe)Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-OMe)Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is —CH2═CH2, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is cyclopropyl, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-t-Bu, R2 is (4-t-Bu)Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-CF3, R2 is (4-CF3)Ph, m is 1, L is —CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is 3-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 8-F, R2 is Ph, m is 1, L is —CH2—, R3 is 2-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 4-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 3-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 2-pyridinyl, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is (2-OMe-3-OH)-5-thienyl, and X is S;
      • a compound of formula (Ia) wherein R1 is 6,7-diF, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 8-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is —CH2═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-t-Bu, R2 is (4-t-Bu)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-CF3, R2 is (4-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is (4-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is (3-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is (2-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is (4-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is (3-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is (2-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is (3-OMe-4-OH)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is (3-OH-4-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe-7-OH, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OH-7-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Me, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-C(Me2)CH2Me, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-NO2, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OSO3Me, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-NHSO2Ph, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-CO2H, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-C(O)NH2, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-C(O)NMe2, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-C(O)NHMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-CO2Ph, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-cyclohexyl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Ph, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-NHC(O)(CH2)4—CH═CH—CH(Me)2, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 2-pyridinyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-pyridinyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 4-pyridinyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-thienyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-furyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 2-furyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-hydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-hydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 4-hydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-hydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-chloro-2-hydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 2,3-dihydroxynaphth-8-yl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-cinnolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-Me-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 4-(1,8-naphthyridinyl), and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-quinazolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 2-OH-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-OH-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-F-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-Cl-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 2-OH-3-Cl-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is —CH2═CH2, m is 1, L is a direct bond, R3 is 5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is —CH2CH3, m is 1, L is a direct bond, R3 is 5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 8-Cl-5-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is 2-naphthyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1,3-diMe-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 8-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1,3-diMe-8-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OH-7-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOH, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe-7-OH, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is a direct bond, R3 is 3-quinolinyl, and X is O;
      • a compound of formula (Ia) wherein R, is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-Me-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-Me-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is Ph, m is 1, L is a direct bond, R3 is 8-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 2-furyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 4-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl-N-oxide, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 3-furanyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OCH3, R2 is 3-thienyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O
      • a compound of formula (Ia) wherein R1 is 6-OCH3, R2 is 2,4 di-F Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OCH3, R2 is 2,4 di-F Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OCH3, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl-N-oxide, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 4-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 4-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 3-methyl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-methyl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl-N-oxide, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 4-CF3 Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1,3-diCl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1,3-diCl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 8-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-piperidinyl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-OCH3-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-F-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 1-N,N-dimethyl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is nil, m is nil, R3 is 1-CH3-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is nil, m is nil, R3 is 1-Cl-5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl-N-oxide, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl-N-oxide, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is spiro-2-indanyl, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 4-Cl,3-CF3 Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is 0; and
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 1-CH3-5-isoquinolinyl, and X is O.
  • Preferred compounds of Formula (Ia) are selected from the group consisting of:
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is H, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is (3,4-diOMe)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, R3 is 8-(2-naphtholyl), and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 5-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 8-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-CN)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Br)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diF, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 2-Thienyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O.
  • More preferred compounds of Formula (Ia) are selected from the group consisting of:
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 5-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is H, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Br, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 7-Cl, R2 is H, m is 0, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6,7-diF, R2 is Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is —CH═CH2, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-F, R2 is 2-Thienyl, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O.
  • Still other more preferred compounds of Formula (Ia) are selected from the group consisting of:
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is (3-OMe-4-OH)Ph, and X is S;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (2-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (3-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-CF3)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-Br)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • a compound of formula (Ia) wherein R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct bond, R3 is 5-isoquinolinyl, and X is O;
      • The compounds of the present invention may also be present in the form of pharmaceutically acceptable salts. For use in medicine, the salts of the compounds of this invention refer to non-toxic “pharmaceutically acceptable salts” (Ref. International J. Pharm., 1986, 33, 201-217; J. Pharm. Sci., 1997 (Jan), 66, 1, 1). Other salts well known to those in the art may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts. Representative organic or inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydriodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, mandelic, methanesulfonic, hydroxyethanesulfonic, benzenesulfonic, oxalic, pamoic, 2-naphthalenesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, saccharinic or trifluoroacetic acid. Representative organic or inorganic bases include, but are not limited to, basic or cationic salts such as benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
  • The present invention includes within its scope prodrugs of the compounds of this invention. In general, such prodrugs will be functional derivatives of the compounds which are readily convertible in vivo into the required compound. Thus, in the methods of treatment of the present invention, the term “administering” shall encompass the treatment of the various disorders described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs”, ed. H. Bundgaard, Elsevier, 1985.
  • Where the compounds according to this invention have at least one chiral center, they may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
  • Where the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography.
  • The compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (−)-di-p-toluoyl-d-tartaric acid and/or (+)-di-p-toluoyl-1-tartaric acid followed by fractional crystallization and regeneration of the free base. The compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
  • During any of the processes for preparation of the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J. F. W. McOmie, Plenum Press, 1973; and T. W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.
  • Even though the compounds of the present invention (including their pharmaceutically, acceptable salts and pharmaceutically acceptable solvates) can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical or veterinary practice. Thus, the present invention is directed to pharmaceutical and veterinary compositions comprising compounds of Formula (I) and one or more pharmaceutically acceptable carriers, excipients or diluents.
  • By way of example, in the pharmaceutical and veterinary compositions of the present invention, the compounds of the present invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), and/or solubilising agent(s).
  • Tablets or capsules of the compounds may be administered singly or two or more at a time, as appropriate. It is also possible to administer the compounds in sustained release formulations.
  • Alternatively, the compounds of the general Formula (I) can be administered by inhalation or in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder. An alternative means of transdermal administration is by use of a skin patch. For example, they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. They can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.
  • For some applications, preferably the compositions are administered orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or coloring agents.
  • The compositions (as well as the compounds alone) can also be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. In this case, the compositions will comprise a suitable carrier or diluent.
  • For parenteral administration, the compositions are best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood.
  • For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.
  • By way of further example, pharmaceutical and veterinary compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral). Thus for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like; for solid oral preparations, such as powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate the major site of absorption. For parenteral administration, the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation. Injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
  • Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those skilled in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • A therapeutically effective amount for use of the instant compounds or a pharmaceutical composition thereof comprises a dose range of from about 0.001 mg to about 1,000 mg, in particular from about 0.1 mg to about 500 mg or, more particularly from about 1 mg to about 250 mg of active ingredient per day for an average (70 kg) human.
  • For oral administration, a pharmaceutical composition is preferably provided in the form of tablets containing, 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250 and 500 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the subject to be treated.
  • It is also apparent to one skilled in the art that the therapeutically effective dose for active compounds of the invention or a pharmaceutical composition thereof will vary according to the desired effect. Therefore, optimal dosages to be administered may be readily determined and will vary with the particular compound used, the mode of administration, the strength of the preparation, and the advancement of the disease condition. In addition, factors associated with the particular subject being treated, including subject age, weight, diet and time of administration, will result in the need to adjust the dose to an appropriate therapeutic level. The above dosages are thus exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
  • Compounds of this invention may be administered in any of the foregoing compositions and dosage regimens or by means of those compositions and dosage regimens established in the art whenever use of the compounds of the invention as vanilloid receptor modulators is required for a subject in need thereof.
  • The invention also provides a pharmaceutical or veterinary pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical and veterinary compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • As modulators of the vanilloid VR1 ion channel, the compounds of Formula (I) are useful in methods for treating or preventing a disease or condition in a mammal which disease or condition is affected by the modulation of one or more vanilloid receptors. Such methods comprises administering to a mammal in need of such treatment or prevention a therapeutically effective amount of a compound, salt or solvate of Formula (I). In particular, the compounds of Formula (I) are useful for in methods for preventing or treating a chronic- or acute-pain causing diseases or conditions and pulmonary dysfunction, and more particulalry, in treating diseases or conditions that cause inflammatory pain, burning pain, itch or urinary incontinence, and chronic obstructive pulmonary disease.
  • By way of example only, the compounds of Formula (I) are useful for treating diseases and conditions selected from the group consisting of osteoarthritis, rheumatoid arthritis, fibromyalgia, migraine, headache, toothache, burn, sunburn, snake bite (in particular, venomous snake bite), spider bite, insect sting, neurogenic bladder, benign prostatic hypertrophy, interstitial cystitis, urinary tract infection, cough, asthma, chronic obstructive pulmonary disease, rhinitis, contact dermatitis/hypersensitivity, itch, eczema, anxiety, panic disorders, pharyngitis, mucositis, enteritis, cellulites, peripheral neuropathy, bilateral peripheral neuropathy, diabetic neuropathy, postherpetic neuralgia, trigeminal neuralgia, causalgia, sciatic neuritis, mandibular joint neuralgia, peripheral neuritis, polyneuritis, stump pain, phantom limb pain, bony fractures, post-operative ileus, irritable bowel syndrome, inflammatory bowel diseases such as Crohn's Disease and ulcerative colitis, cholecystitis, pancreatitis, postmastectomy pain syndrome, oral neuropathic pain, Charcot's pain, reflex sympathetic dystrophy, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, optic neuritis, posifebrile neuritis, migrating neuritis, segmental neuritis, Gombault's neuritis, neuronitis, cervicobrachial neuralgia, cranial neuralgia, geniculate neuralgia, glossopharyngial neuralgia, migrainous neuralgia, idiopathic neuralgia, intercostals neuralgia, mammary neuralgia, Morton's neuralgia, nasociliary neuralgia, occipital neuralgia, red neuralgia, Sluder's neuralgia, splenopalatine neuralgia, supraorbital neuralgia, vidian neuralgia, sinus headache, tension headache, labor, childbirth, intestinal gas, menstruation, cancer, and trauma.
  • While the present invention comprises compositions comprising one or more of the compounds of Formula (I), the present invention also comprises compositoins comprising intermediates used in the manufacture of compounds of Formula (I).
  • General Synthetic Methods
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described below and are illustrated in the schemes that follows. Since the schemes are an illustration, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • The ureas of formula (I) that comprise this invention are synthesized using several distinct chemical methods. The general transformations for constructing (3-aminotetralin-derived ureas involve:
  • Preparation of suitably substituted β-aminotetralin, which is described in the general schemes below. Tetralone starting materials were either purchased from commercial sources or were prepared using the method reported by Sims (Sims, J. J. et. al. Tetrahedron Lett. 1971, 951). Specifically, substituted phenylacetic acids were separately reacted with ethylene gas and a Lewis Acid such as aluminum trichloride to afford the desired corresponding β-tetralone.
  • An appropriately substituted β-tetralone (II) is reacted with an aryl or heteroaryl aldehyde in the presence of a base such as piperidine, in an inert halohydrocarbon, ethereal or hydrocarbon solvent, such as benzene, from ambient temperature to reflux, to afford the corresponding α-benzylidenyl-β-tetralone or α-heteroarylmethylidenyl-β-tetralone (II). The β-tetralone (III) is dissolved in an inert hydrocarbon, ethereal, ester or alcohol solvent, such as methanol, and reacted with hydrogen gas at a pressure from ambient pressure to 100 p.s.i. in the presence of a suitable catalyst such as palladium on carbon. The reaction is performed at a temperature from ambient temperature to reflux, to yield the desired α-substituted-β-tetralone (IV) (Scheme 1).
  • An alternative method for the preparation of α-substituted-β-tetralones (IV) involves the reaction of an appropriately substituted β-tetralone (II) with a base such as pyrrolidine in an inert halohydrocarbon solvent such as dichloromethane or hydrocarbon solvent such as benzene, under Dean-Stark conditions (removal of water) or in an alcohol solvent such as methanol, from ambient temperature to reflux, to afford enamine (V). Alkylation of enamine (V) is accomplished by reaction with a benzylic, heterocyclicalkanyl or an allylic halide in an inert solvent such as acetonitrile, at a temperature from ambient temperature to reflux, to afford the α-substituted-β-iminium salt (VI). Hydrolysis of the salt (VI) to produce the desired α-substituted-β-tetralone product (IV) is accomplished by reaction of (VI) with water and an inorganic or organic acid such as hydrochloric or glacial acetic acid in an inert hydrocarbon, ethereal, alcohol or halohydrocarbon solvent, or a mixture thereof, such as methanol and dichloromethane (Scheme 1).
    Figure US20050187291A1-20050825-C00005
  • The α-substituted-β-tetralones (IV) are converted to the corresponding aminotetralins via reaction with an ammonium salt such as ammonium acetate in the presence of a reducing agent such as sodium cyanoborohydride, for example, in an inert halohydrocarbon, hydrocarbon, ethereal or alcohol solvent such as methanol to produce the cis-aminotetralin (VII). In some cases, the trans-aminotetralin (VIII) is also formed as a minor product; both sets of diastereomers are part of this invention. The aminotetralins (VII) can also be isolated as acid addition salts by treatment with an organic or an inorganic acid, such as trifluoroacetic acid or hydrochloric acid, for example (Scheme 2).
    Figure US20050187291A1-20050825-C00006
  • Compounds in which m=0 are prepared from an appropriately substituted aminotetralin (VII; m=0) starting from 1-tetralones using the synthetic sequence shown in Scheme 2a.
    Figure US20050187291A1-20050825-C00007
  • Aminotetralin (VII) can be used in subsequent reactions as the corresponding free base or as an acid addition salt. The use of acid addition salts requires an additive, such as an organic base like triethylamine or an inorganic base such as hydroxide, to neutralize the acid and liberate the reactive nucleophilic amine center. This common practice is well known to those skilled in the art.
  • Aminotetralin VII is reacted with isocyanate or isothiocyanate, in an appropriate inert solvent, with or without an added base, to form ureas (IX) or thioureas (X), shown in Scheme 3.
    Figure US20050187291A1-20050825-C00008
  • In addition to isocyanates and isothiocyanates, other carbamylating or thiocarbamylating agents may be used and this is well known to those skilled in the art. Thus an appropriate amine, such as an aminoisoquinoline, aminonaphthol or aminoquinoline, is reacted with a chloroformate, such as phenyl chloroformate in an inert solvent, with or without added base, to afford the corresponding phenylcarbamates. Separately these carbamates are reacted with aminotetralin (VI) in a polar solvent such as dimethylsulfoxide, with or without added base, from room temperature to approximately 150 C, to produce the aminotetralin-derived ureas (IX) (Scheme 4).
    Figure US20050187291A1-20050825-C00009
  • The use of chlorothionoformates in the scheme above produces the analogous aminotetralin-derived thioureas (X).
  • Isocyanates and isothiocyanates are also prepared by reacting an amine with phosgene or thiophosgene in the presence of a base. Benzylamines such as 4-alkanyloxy-3-methoxybenzylamine is reacted with thiophosgene or a thiophosgene equivalent, in the presence of a base, such as an organic amine, to produce the corresponding thiocyanate. Subsequent reaction with aminotetralin (VII) produces the corresponding aminotetralin-derived homovanillic thioureas (Scheme 5). Protecting group manipulations may be used to mask and subsequently liberate the phenolic OH group and this practice is well known to those skilled in the art.
    Figure US20050187291A1-20050825-C00010
  • The use of (heteroaryl)alkanylamines, such as pyridylmethylamine, produces the corresponding aminotetralin-derived ureas in which R3=heteroaryl (Scheme 6). Thiocarbamylation with aminotetralin, as described above, gives the analogous thioureas.
    Figure US20050187291A1-20050825-C00011

    minotetralin-derived ureas and thioureas with linking groups (L) of varying length are produced via homologation of aryl- or heteroaryl-carboxaldehydes or carboxylic acids. This practice is well known in the literature and encompasses a wide variety of chemical transformations, several of which are described below to illustrate the strategy but are not intended to be inclusive.
  • Isoquinoline is reacted with N-(hydroxymethyl)trifluoroacetamide in acid followed by reduction to afford isoquinolin-5-yl-methylamine. Carbamylation using aminotetralin as described above, produces aminotetralin-derived ureas in which L=CH2 (methylene) (Scheme 7).
    Figure US20050187291A1-20050825-C00012
  • Aminonaphthalene is subjected to a Sandmeyer reaction, namely diazotization followed by reaction with copper cyanide at high temperature to produce the cyanonaphthalene. Reduction affords naphthalen-2-yl-methylamine which is subjected to carbamylation using aminotetralin (VII), as described above, to produce aminotetralin-derived urea in which L CH2 (methylene) (Scheme 8).
    Figure US20050187291A1-20050825-C00013
  • Reaction of aryl- and heteroaryl-carboxaldehydes with toluenesulfonyl methylisocyanide in the presence of base, with subsequent hydrolysis affords the corresponding homologated nitrile. Reduction produces the homologated amine which is subjected to carbamylation with aminotetralin as described above to yield aminotetralin-derived ureas in which L CH2CH2 (Scheme 9).
    Figure US20050187291A1-20050825-C00014
  • Heteroaryl- and aryl-carboxaldehydes are modified using Wittig conditions to give the α,β-unsaturated nitrile which is reduced to the amine and subsequent carbamylated as described above to yield aminotetralin-derived ureas in which L=CH2CH2 CH2 (Scheme 10).
    Figure US20050187291A1-20050825-C00015
  • Homologation of heteroaryl- and aryl-carboxylic acids is also accomplished using chemistry known as the Arndt-Eistert synthesis, a procedure that converts carboxylic acids to the next higher homolog using a three step synthesis. In the first transformation, the carboxylic acid starting material is converted to its acyl chloride, using thionyl chloride, oxalyl chloride or another appropriate chlorinating agent. In the second step, the acyl chloride is converted to a diazoketone via reaction with diazomethane or a suitable equivalent. In the final transformation, the diazoketone is oxidized to the homologous acid using an oxidant such as silver oxide. The carboxylic acid group is then converted to an isocyanate through the intermediacy of the acyl azide (Curtius rearrangement) which is carried on to aminotetralin-derived ureas and thioureas using the chemistry described above. Alternatively, the carboxylic acid is reacted with hydrazoic acid (or equivalent) under acid catalysis followed by thermal decomposition to the amine (Schmidt reaction), which is carried on to aminotetralin-derived ureas and thioureas using the chemistry described above.
  • This chemistry and related variations are well known to those skilled in the art.
  • Protecting group manipulations may be needed at various stages of the syntheses depending upon substituents and functional groups that are present on the reactants.
  • It is generally preferred that the respective product of each process step be separated from other components of the reaction mixture and subjected to purification before its use as a starting material in a subsequent step. Separation techniques typically include evaporation, extraction, precipitation and filtration. Purification techniques typically include column chromatography (Still, W. C. et. al., J. Org. Chem. 1978, 43, 2921), thin-layer chromatography, crystallization and distillation. The structures of the final products, intermediates and starting materials are confirmed by spectroscopic, spectrometric and analytical methods including nuclear magnetic resonance (NMR), mass spectrometry (MS) and liquid chromatography (HPLC). In the descriptions for the preparation of compounds of this invention, ethyl ether, tetrahydrofuran and dioxane are common examples of an ethereal solvent; benzene, toluene, hexanes and cyclohexane are typical hydrocarbon solvents and dichloromethane and dichloroethane are representative halogenhydrocarbon solvents. In those cases wherein the product is isolated as the acid addition salt the free base may be obtained by techniques known to those skilled in the art. In those cases in which the product is isolated as an acid addition salt, the salt may contain one or more equivalents of the acid.
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described above and are illustrated more particularly in the schemes that follow. Since the schemes are illustrations, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • EXAMPLE 1 1-(1-Benzyl-6-methoxy-1,2,3,4-tetrahydronaphthalene-2-yl)-3-isoquinolin-5-yl-urea
  • Figure US20050187291A1-20050825-C00016
  • Isoquinolin-5-yl-carbamic acid phenyl ester 1-1 (0.004 mole, 1.06 g) was dissolved in 15 mL of dimethylsulfoxide. Diisopropylethyl amine (0.0044 mole, 0.57 g, 0.8 mL) was added followed by addition of 1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride 1-2 (0.0044 mole, 1.33 g). The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was then poured into 50 mL of water containing 10 mL of 1N sodium hydroxide. The precipitated solid was collected by filtration. This solid was chromatographed on silica gel eluting with methylene chloride, 3% methanol. Subsequently the product was further purified by recrystallization from ethyl acetate. The title compound 33 (1-(1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-isoquinolin-5-yl-urea) was obtained as an off-white solid (1.05 g, 0.0024 mole). MS (MH+): 438; 1H NMR (CDCl3): δ 1.7-1.8 (m, 2H), 2.6-2.9 (m, 4H), 3.6 (s, 3H), 4.1 (m, 1H), 5.8 (d, 1H), 6.4-6.4 (m, 3H), 6.95 (d, 2H), 7.1 (m, 3H), 7.3 (t, 1H), 7.4-7.5 (m, 2H), 8.2 (d, 2H), 9.0 (s, 1H).
  • EXAMPLE 2 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydronaphthalene-2-yl)-3-isoquinolin-5-yl-urea
  • Figure US20050187291A1-20050825-C00017
  • Isoquinolin-5-yl-carbamic acid phenyl ester 2-1 (0.005 mole, 1.32 g) was dissolved in 15 mL of DMSO (dimethylsulfoxide) followed by the addition of the aminotetralin 2-2,1-benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine (0.0044 mole, 1.12 g). The reaction mixture was then stirred at room temperature for 16 hours. The reaction mixture was poured into 50 mL of water containing 10 mL of 1N NaOH (sodium hydroxide). The precipitated solid was collected by filtration. This solid was chromatographed on silica gel eluting with methylene chloride, 3% methanol. Subsequently the product was further purified by recrystallization from ethyl acetate. The title compound 38, (1-(1-benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-isoquinolin-5-yl-urea) was obtained as an off-white solid (1.25 g, 0.00295 mole). MS (MH+): 426; 1H NMR (MeOH): 61.35 (m, 1H), 1.9 (m, 1H), 2.1-2.2 (m, 1H), 2.9-3.1 (m, 4H) 3.45 (m, 1H), 4.1-4.2 (m, 1H), 6.7 (t, 1H), 6.8-6.9 (m, 2H), 7.1-7.3 (m, 5H), 7.85 (t, 1H), 8.1 (d, 1H), 8.25 (d, 1H), 8.35 (d, 1H), 8.6 (d, 1H).
  • EXAMPLE 3 1-(1-cyclopropyl methyl-6-fluoro-1,2,3,4-tetrahydronaphthalene-2-yl)-3-isoquinolin-5-yl-urea Compound 71
  • 1-Cyclopropylmethyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride (127 mg, 0.49 mmol), isoquinolin-5-yl-carbamic acid phenyl ester (150 mg, 0.49 mmol), and diisopropylethylamine (193 mg, 1.47 mmol) were combined and stirred at ambient temperature in DMSO (3 mL) overnight. The product was purified by directly injecting the crude reaction onto a reverse phase prep-HPLC (10-90% water:acetonitrile gradient). The appropriate fractions were lyophilized to yield 1-(1-cyclopropylmethyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-isoquinolin-5-yl-urea 71 (68 mg, 0.14 mmol). MS (MH+) 390; 1H NMR (CD3OD) δ 0.08-0.87 (m, 2H), 1.60-1.65 (m, 2H), 2.03 (m, 1H), 2.97 (m, 2H), 3.14 (m, 1H), 4.36 (m, 1H), 6.87 (m, 2H), 7.27 (m, 1H), 7.93 (t, 1H, J=2.6 Hz), 8.14 (d, 1H, J=2.7 Hz), 8.32 (d, 1H, J=2.2 Hz), 8.47 (d, 1H, J=2.6 Hz), 8.53 (d, 1H, J=2.2 Hz), 9.63 (s, 1H). HPLC Rt=3.63 min (10-90% water:acetonitrile gradient, 100% pure).
  • EXAMPLE 4 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydronaphthalene-2-yl)-3-isoquinolin-5-ylmethyl-urea
  • Figure US20050187291A1-20050825-C00018
  • Isoquinoline 4-1 (0.01 mole, 1.29 g) was dissolved in 50 mL of concentrated H2SO4 (sulfuric acid) which had been cooled to 0° C. in an ice-water bath. The N-hydroxymethyl trifluoroacetamide was then added in portions. The reaction mixture was stirred at 0° C. for 15 minutes and then allowed to warm to room temperature and stirred for 16 hours. The clear light brown reaction mixture was poured onto 200 g of ice then NH4OH (ammonium hydroxide) was added until the reaction mixture was basic to pH paper. The aqueous mixture was extracted with 100 mL of CH2Cl2 (methylene chloride). The organic layer was separated and washed with 2×100 mL of brine, dried over Na2SO4 (sodium sulfate) and evaporated in vacuo. The residue was chromatographed on silica gel eluting with 60/40 hexane/ethyl acetate to yield the trifluoroacetamide 4-2 product as a white crystalline solid (0.008 mole, 2.03 g). MS (MH+): 255; 1H NMR (CDCl3): δ 5.0 (s, 2H), 7.6 (t, 1H), 7.8 (d, 1H), 7.95 (d, 1H), 8.1 (d, 1H), 8.5 (d, 1H), 9.2 (s, 1H).
  • The trifluoroacetamide 4-2 from step A (0.006 mole, 1.53 g) was dissolved in 50 mL of methanol. Sodium borohydride (0.02 mole, 0.8 g) was then added and the reaction mixture was stirred at room temperature for 2 hours. Thin layer chromatography (silica gel, 50/50 hexane/ethyl acetate) showed the reaction to be nearly complete. An additional amount of sodium borohydride was added (0.01 mole, 0.4 g) and stirring was continued for another 1 hour. The reaction mixture was evaporated in vacuo. The residue was taken up in 50 mL of CH2Cl2 and then washed with 2×50 mL of brine, dried over Na2SO4 and evaporated in vacuo to yield the amine product 4-3 as a clear oil (0.005 mole, 0.79 g). MS (MH+): 159; 1H NMR (CDCl3): δ 4.3 (s, 2H), 7.5 (t, 1H), 7.7 (d, 1H), 7.8 (d, 1H), 7.9 (d, 1H), 8.5 (d, 1H), 9.2 (s, 1H).
  • The amine 4-3 from step B (0.005 mole, 0.79 g) was dissolved in 20 mL of tetrahydrofuran (THF). Pyridine (0.0055 mole, 0.44 g, 0.44 mL) was added followed by the careful addition of phenylchloroformate (0.0055 mole, 0.86 g, 0.69 mL). The reaction mixture immediately turned yellow and turbid. Stirring at room temperature was continued for 2 hours. The reaction mixture was evaporated in vacuo. The residue was taken up in 50 mL of dichloromethane, washed with 2×100 mL saturated sodium bicarbonate then 2×100 mL of water. The organic layer was dried over sodium sulfate and evaporated in vacuo to give a thick slightly yellow oil. This oil was triturated with diethylether and then treated with 1M HCl/diethylether to give the carbamate hydrochloride product 4-4 as an off-white solid. MS (MH+): 279; 1H NMR (MeOH): δ 4.6 (s, 2H), 6.8 (m, 1H), 7.1-7.4 (m, 4H), 7.9 (t, 2H), 8.1 (d, 1H), 8.5 (d, 1H), 8.8 (d, 1H), 9.8 (s, 1H).
  • The carbamate hydrochloride 4-4 from step C (0.0005 mole, 0.139 g) was dissolved in 2 mL of dimethylsulfoxide. Diisopropylethyl amine (0.0011 mole, 0.142 g, 0.19 mL) was added followed by addition of 1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride (0.00055 mole, 0.297 g). The reaction mixture was stirred at room temperature for 4 hours. The reaction mixture was then poured into 20 mL of water containing 5 mL of 1N sodium hydroxide and stirred at room temperature for 15 minutes. The precipitated solid was collected by filtration. This cream colored powder was recrystallized from ethyl acetate/hexane to afford the title product 60, 1-(1-benzyl-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-isoquinolin-5-yl-methyl urea as a white chalky powder (0.000015 mole, 0.065 g). MS (MH+): 440; 1H NMR (CDCl3): δ1.8-2.0 (m, 2H), 2.8-3.0 (m, 4H), 4.1 (m 1H), 4.35 (d, 1H), 4.5 (m, 1H), 4.8 (d, 2H), 6.6-6.8 (m, 4H), 7.1-7.3 (m, 4H), 7.5 (t, 1H), 7.6 (d, 1H), 7.8 (d 1H), 7.9 (d, 1H), 8.6 (d, 1H), 9.2 (s, 1H).
  • EXAMPLE 5 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydronaphthalene-2-yl)-3-(7-hydroxy-naphthalen-1-yl)-urea Compound 67
  • 8-Amino-naphthalen-2-ol (74 mg, 0.46 mmol) was added to a solution of 1-benzyl-2-isocyanato-6-methoxy-1,2,3,4-tetrahydro-naphthalene (136 mg, 0.46 mmol) in acetonitrile (2 mL). The reaction was microwaved for 5 min at 100° C. The solvent was stripped off and the residue chromatographed on a silica column using chloroform as eluant to yield title compound 68 (95 mg, 45%) MS (MH+) 453; 1H NMR (CD3OD) δ 1.87 (m, 1H), 2.02 (m, 1H), 2.89-2.93 (m, 4H), 3.38 (m, 1H), 3.73 (s, 3H), 4.05 (m, 1H), 6.52 (d, 1H, J=3 Hz), 6.65 (m, 2H), 7.09 (d, 3H, J=2.4 Hz), 7.14 (d, 1H, J=2.2 Hz), 7.21 (d, 2H, J=2.3 Hz), 7.26 (d, 2H, J=3.0 Hz), 7.52-7.58 (m, 2H), 7.72 (d, 1H, J=2.9 Hz). HPLC Rt=4.73 min (10-90% water:acetonitrile gradient, 100% pure).
  • EXAMPLE 6 1-(1-Benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(4-hydroxy-3-methoxy-benzyl)-thiourea Compound 3
  • Sodium hydride (60% in oil, 2.81 g, 10 mmol) was added to a solution of 4-hydroxy-3-methoxy-benzonitrile (10 g, 67 mmol) in DMF (100 mL) at 0° C. Mixture was allowed to stir at ambient temperature for 30 min. Bromomethylmethyl ether (6.4 mL, 70 mmol) was added to the resultant solution, and the solution was stirred at rt for 2 h. The solution was poured into ice water (˜400 mL). The product, 3-Methoxy-4-methoxymethoxy-benzonitrile, was collected by filtration, washed generously with water, and allowed to air dry to give the product as a colorless solid 11.75 g (91%). The purity of the product was estimated to be (95% by HPLC and H NMR, and the product was used without further purification in the subsequent step). 1H NMR (CDCl3): δ 3.51 (s, 3H), 3.91 (s, 3H), 5.23 (s, 2H), 7.12 (d, J=1.8 Hz, 1H), 7.20 (d, J=8.4 Hz, 1H) and 7.25 (d of d, J=8.4 & 1.8 Hz, 1H).
  • A solution of 3-methoxy-4-methoxymethoxy-benzonitrile (9.1 g, 47.1 mmol) in THF (75 mL) was slowly added, via an addition funnel, to a solution of LAH in THF (1.0 M, 100 mL, 100 mmol) cooled on an ice bath. The resultant solution was heated to reflux for 4 h. The solution was cooled on an ice bath. Sequential addition of water (3.5 mL), 15% aqueous sodium hydroxide (7 mL) and water (10 mL) was carefully done via an addition funnel. The inorganics were removed by filtration, and washed generously with THF. The combined organic solutions were dried over sodium sulfate, and the solvent was evaporated under vacuum to give the product, 5.3 g (57%). The product was used without purification in the subsequent step. 1H NMR (CDCl3): δ 1.58 (br s, 1H), 3.51 (s, 3H), 3.82 (s, 2H), 3.89 (s, 3H), 5.21 (s, 2H), 6.82 (d of d, J=8.4 & 1.8 Hz, 1H), 6.90 (d, J=1.8 Hz) and 7.10 (d, J=8.1 Hz, 1H). MS: m/z 198 (M+H)+.
  • A solution of 3-methoxy-4-methoxymethoxybenzylamine (5.3 g, 26.9 mmol) in ethyl acetate (50 mL) was added, via an addition funnel) to a solution of thiophosgene (2.15 mL, 28.2 mmol) and triethylamine (7.87 mL, 56.5 mmol) in ethyl acetate (30 mL) at 0° C. The resultant solution was stirred at ambient temperature overnight. The solution was washed with saturated aqueous sodium bicarbonate and dried over sodium sulfate. The solvent was evaporated in vacuo, and the residue was purified by flash chromatography on silica gel eluted with ethyl acetate/hexanes (1/9 to 3/7) to give the product, 4-isothiocyanatomethyl-2-methoxy-1-methoxymethoxy-benzene, as a waxy tan solid, 4.9 g (76%). 1H NMR (CDCl3): δ 3.51 (s, 3H), 3.91 (s, 3H), 4.64 (s, 2H), 5.23 (s, 2H), 6.83 (m, 2H) and 7.14 (d, J=8 Hz).
  • A solution of cis-1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride (0.306 g, 1.01 mmol), diisopropylethylamine (0.264 mL, 1.51 mmol) and 4-isothiocyanatomethyl-2-methoxy-1-methoxymethoxy-benzene (0.253 g, 1.06 mmol) in acetonitrile (10 mL) was stirred at ambient temperature overnight. The solvent was evaporated in vacuo, and the residue was purified by reverse phase preparative HPLC, on a C18 column eluted with a gradient of 40 to 90% acetonitrile in water with 0.1% TFA, to give the product, 1-(1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(3-methoxy-4-methoxymethoxy-benzyl)-thiourea, 0.21 g (41%). 1H NMR (CDCl3): δ 1.64 (br s, 1H), 1.85 (m, 1H), 2.04 (m, 1H), 2.63 (m, 1H), 2.82 (m, 2H), 2.98 (m, 1H), 3.33 (m, 1H), 3.49 (s, 3H), 3.78 (s, 3H), 3.84 (s, 3H), 4.32 (br s, 2H), 5.19 (s, 2H), 5.7 (br s, 1H), 6.0 (br s, 1H), 6.64 (m, 3H), 6.80 (s, 1H), 6.91 (d, J=8.4 Hz, 1H), 7.03 (d, J=8.2 Hz, 1H) and 7.11 to 7.28 (m, 5H). MS: m/z 507 (M+H)+.
  • A solution of 1-(1-benzyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(3-methoxy-4-methoxymethoxy-benzyl)-thiourea (0.21 g, 0.42 mmol) in isopropanol/acetonitrile (10 mL/10 mL) was treated with concentrated hydrochloric acid (1 mL) and stirred at ambient temperature for 30 min. The solvent was evaporated under a stream of nitrogen, and the residue was partitioned between dichloromethane and water. The organic layer was collected and the solvent was evaporated. The product was purified by flash chromatography, on silica gel eluted with ethyl acetate/hexanes (1/2) to give the title product, compound 3, as a colorless solid, 0.184 g (95%). 1H NMR (CDCl3): δ 1.83 (m, 1H), 2.05 (m, 1H), 2.67 (m, 1H), 2.81 (m, 2H), 3.03 (br s, 1H), 3.78 (s, 3H), 3.84 (s, 3H), 4.25 (br s, 2H), 5.61 (s, 2H), 6.59 to 6.68(m, 3H), 6.74 (s, 1H), 6.80 (d, J=8 Hz, 1H), 6.94 (d, J=8.5 Hz, 1H) and 7.12 to 7.29 (m, 5H). MS: m/z 463 (M+H).
  • EXAMPLE 7 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(2-oxy-isoquinolin-5-yl)-urea
  • Figure US20050187291A1-20050825-C00019
  • The aminotetralin urea 1 (0.150 g, 0.00035 mol) was dissolved in 5 mL of dichloromethane. The solid m-chloroperbenzoic acid (0.066 g, 0.00039 mol) was added and the reaction mixture was stirred at room temperature for 16 hours. Thin layer chromatography (silica gel, CH2Cl2/5% MeOH) indicated the presence of starting material. An additional portion of MCPBA was added (0.050 g) and stirring at room temperature was continued for another 4 hours. At the end of this period, the reaction was complete was indicated by TLC. Saturated sodium bicarbonate (25 mL) was cautiously added to the reaction mixture and the organic layer was separated. The organic layer was washed with 25 mL of brine, dried over Na2SO4 and evaporated in vacuo. The residue was purified by flash chromatography on silica gel eluting with CH2Cl2/4% MeOH. The product 2 was obtained as a light brown powder (0.120 g, 0.00027 mol). 1H NMR (CD3OD): δ 1.8-2.1 (m, 2H), 2.9-3.1 (m, 4H), 3.6 (m, 1H), 4.2 (m, 1H), 6.6-6.9 (m, 3H), 7.1-7.3 (m, 5H), 7.6-7.8 (m, 2H), 8.0 (bd, 1H), 8.2 (bt, 2H), 8.9 (s, 1H); MS (M+): 442.
  • EXAMPLE 8 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(1-chloro-isoquinolin-5-yl)-urea Compound 79
  • (1-Chloro-isoquinolin-5-yl)-carbamic acid phenyl ester (150 mgs, 0.5 mmol), I-Benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride (146 mgs, 0.5 mmol), and sodium bicarbonate (42 mgs, 0.5 mmol) were combined and stirred for one hour in DMSO (4 ml) at ambient temperature. The product was purified by directly injecting the crude reaction onto a reverse phase prep-HPLC (10-90% water:acetonitrile gradient). The appropriate fractions were lyophilized to yield 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(1-chloro-isoquinolin-5-yl)-urea (64 mgs, 28%) MS (MH+) 459; 1H NMR (CD3OD) δ 1.93-2.06 (m, 1H), 2.09-2.13 (m, 1H), 2.91-3.07 (m, 4H), 3.40-3.42 (m, 1H), 4.07-4.10 (s, 1H), 6.69-6.78 (m, 1H), 6.80-6.89 (m, 2H), 7.12-7.26 (m, 5H), 7.72 (t, 1H, J=8.2 Hz), 7.83 (d, 1H, J=6.1 Hz), 8.19 (d, 1H, J=8.6 Hz), 8.17-8.24 (m, 2H). HPLC Rt=4.04 min (50-90% water:acetonitrile gradient, 100% pure).
  • EXAMPLE 9 1-(1-Benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-yl)-3-(1-methyl-isoquinolin-5-yl)-urea
  • Figure US20050187291A1-20050825-C00020
  • A. 1-Methyl-5-aminoisoquinoline (J. Med Chem., 1968, 11,700), (0.01 mole, 1.58 g) was dissolved in 20 mL of tetrahydrofuran (THF). Pyridine (0.011 mole, 0.88 g, 0.88 mL) was added followed by the careful addition of phenylchloroformate (0.011 mole, 1.72 g, 1.4 mL). The reaction mixture immediately turned yellow and turbid. Stirring at room temperature was continued for 4 hours. The reaction mixture was evaporated in vacuo. The residue was taken up in 50 mL of dichloromethane, washed with 2×100 mL saturated sodium bicarbonate then 2×100 mL of water. The organic layer was dried over sodium sulfate and evaporated in vacuo to give a thick dark yellow-brown oil. This oil was triturated with diethylether to give the carbamate product I as a yellowish-brown solid.
  • 1H NMR (CDCl3): δ 3.0 (bs, 3H), 7.2 (m, 3H), 7.3-7.4 (m, 2H), 7.5-7.6 (m, 2H), 7.8 (bs, 1H), 8.2 (bs, 1H), 8.4 (bt, 1H). MS (MH+): 279
    Figure US20050187291A1-20050825-C00021
  • B. 1-Methyl-isoquinolin-5-yl-carbamic acid phenyl ester 1 obtained in step A (0.001 mole, 0.278 g) was dissolved in 5 mL of dimethylsulfoxide. Diisopropylethyl amine (0.0011 mole, 0.14 g, 0.2 mL) was added followed by the addition of 1-benzyl-6-fluoro-1,2,3,4-tetrahydro-naphthalen-2-ylamine hydrochloride 2 (0.0011 mole, 0.321 g). The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was then poured into 20 mL of water containing 5 mL of 1N sodium hydroxide. The precipitated solid was collected by filtration. This solid was chromatographed on silica gel eluting with a gradient of methylene chloride/3-10% methanol. Subsequently the product was further purified by recrystallization from ethyl acetate. The title compound 3 was obtained as an off-white solid (0.272 g, 0.0006 mole).
  • 1H NMR (CDCl3): δ 1.8-1.9 (m, 2H), 2.7-2.8 (m, 4H), 2.95 (s, 3H), 3.2-3.2 (m, 1H), 4.1-4.2 (m, 1H), 5.1 (d, 1H), 6.4-6.6 (m, 2H), 6.8 (d, 1H), 6.9 (s, 1H), 7.0 (d, 1H), 7.1-7.2 (m, 2H), 7.4-7.5 (m, 2H), 7.7 (d, 1H), 7.9 (d, 1H), 8.3 (d, 1H).
  • MS (MH+): 440
  • EXAMPLE 10 Spiro{indan-2,1′-(1′,2′,3′,4′-tetrahydronaphthalene)-2′-yl}-3-isoquinolin-5-yl-urea
  • Figure US20050187291A1-20050825-C00022
  • A. 6-Fluoro-3,4-dihydro-1H-naphthalen-2-one (2.472 g, 15.06 mmol) was dissolved in 75 mL THF and cooled on an ice bath with stirring under nitrogen. o-Xylene dibromide (4.378 g, 16.59 mmol) was added to the cooled tetralone solution. Separately potassium tert-butoxide (3.73 g, 33.2 mmol) was slurried in a combination of 75 mL THF and 10 mL tBuOH. The KOtBu slurry was added to the reaction mixture over a period of 15 minutes. The reaction was stirred on the ice bath for one hour then at room temperature for an additional hour after which time the entire reaction mixture was filtered over a pad of celite. The filtrate was evaporated in vacuo to give a residue which was taken up in 100 mL diethyl ether, washed twice with 50 mL 1N HCl and once with 50 mL brine. The organics were dried with MgSO4, filtered and evaporated in vacuo to give the crude product which was purified by chromatography over silica gel eluting with 0-10% EtOAc in hexanes. Evaporation of the proper fractions yielded the product as an off-white solid (3.09 g, 11.6 mmol). 1H NMR (CDCl3): δ 7.33-7.17 (m, 4H), 7.07 (q, 1H), 6.93 (dd, 1H), 6.82 (dt, 1H), 3.81 (d, 2H), 3.19 (m, 4H), 2.79 (t, 2H).
  • B. The spirotetralone from step A (3.06 g, 11.5 mmol) was dissolved in 150 mL MeOH along with NH4OAc (13.57 g, 176.1 mmol) and NaCNBH3 (3.7 g, 59 mmol). The mixture was kept under a nitrogen atmosphere and heated to reflux for 3 hours. The reaction was concentrated in vacuo, mixed with 100 mL water and basified with 25 mL 50% NaOH. The basified mixture was extracted three times with 50 mL methylene chloride. The combined organics were washed once with 50 ml brine, dried with Na2SO4, filtered and concentrated in vacuo to give the crude free base. The free base was then dissolved in diethyl ether, acidified with ethereal HCl and evaporated in vacuo. The solid residue was triturated with 50 mL hot EtOAc, filtered and dried to yield the product HCl salt as a white powder (2.867 g, 9.44 mmol). MS: M+H+=268.1; 1H NMR (d6-DMSO): δ 8.22 (br s, 3H), 7.33 (d, 1H), 7.24 (m, 3H), 7.01 (d, 1H), 6.87 (d, 2H), 3.71 (m, 1H), 3.52 (d, 1H), 3.38 (d, 1H), 3.11 (d, 1H), 2.97 (m, 3H), 2.15 (m, 2H).
  • C. The spirotetralin salt from step B (0.304 g, 1.00 mmol) was dissolved in 6 mL DMSO along with iPr2NEt (0.38 mL, 2.2 mmol) and 5-aminoisoquinoline phenylcarbamate (0.308 g, 1.02 mmol). The reaction was stirred overnight then poured into 100 mL water. The solid which formed was collected by filtration, rinsed with water then triturated first with diethyl ether and finally with hexanes to give the product urea as a tan powder (0.287 g, 0.66 mmol). MS: M+H+=438.4; 1H NMR (d6-DMSO): δ 9.27 (s, 1H), 8.67 (s, 1H), 8.52 (d, 1H), 8.38 (d, 1H), 7.89 (d, 1H), 7.72 (d, 1H), 7.61 (t, 1H), 7.32 (d, 1H), 7.70 (m, 3H), 7.04 (dd, 1H), 7.00-6.76 (m, 3H), 4.26 (m, 1H), 3.39 (m, 2H), 3.19 (d, 1H), 3.05-2.88 (m, 3H), 2.18-1.92 (m, 2H).
  • EXAMPLE 11 Experimental Protocol for Resolution
  • Figure US20050187291A1-20050825-C00023
  • A. 6-F-α-(3-trifluoromethylbenzyl)-β-aminotetralin (1.931 g, 5.97 mmol) was dissolved in 50 mL 1:1 iPrOH/MeOH. (R)-(−)-O-Methyl mandelic acid (0.992 g, 5.97 mmol) was added and the mixture was heated to reflux. An additional 170 mL 1:1 iPrOH/MeOH was added to bring the total volume of solvent to 220 mL and make a clear solution. The solution was then allowed to sit and cool overnight. The resulting crystalline material was collected by filtration, rinsed with a small amount of 1:1 iPrOH/MeOH and dried. This batch of crystals was re-crystallized as before from 125 mL 1:1 iPrOH/MeOH. After filtration and drying, 625 mg of the salt of the aminotetralin with (R)-(−)-O-methyl mandelic acid (1.28 mmol) were obtained.
  • B. The combined mother liquors, filtrates, and rinsates from above were evaporated under vacuum. The residue was partitioned between 200 mL Et2O and 100 mL 10% Na2CO3 solution. The organics were separated, washed again with 100 mL 10% Na2CO3 and then with 100 mL brine. The organics were dried over Na2SO4, treated with charcoal, filtered and evaporated in vacuo to give the recovered aminotetralin (1.399 g, 4.33 mmol). To this was added (S)-(+)—O-methyl mandelic acid (0.719 g, 4.33 mmol) and 190 mL 1:1 iPrOH/MeOH and the mixture was heated to reflux to give a clear solution. The solution was then allowed to sit and cool overnight. The resulting crystalline material was collected by filtration, rinsed with a small amount of 1:1 iPrOH/MeOH and dried. This batch of crystals was re-crystallized as before from 140 mL 1:1 iPrOH/MeOH. After filtration and drying, 759 mg of the salt of the aminotetralin with (S)-(+)—O-methyl mandelic acid (1.55 mmol) were obtained.
  • C. Each of the mandelate salts thus prepared was separately suspended in 100 mL Et2O, washed with 50 mL 10% Na2CO3 then with 50 mL brine. The organics were then dried with Na2SO4, filtered and evaporated in vacuo. The residue was dissolved in MeOH and excess ethereal HCl was added. The mixture was evaporated in vacuo and the resulting solids were triturated with hexanes, filtered and dried under vacuum.
  • The HCl salt derived from the aminotetralin resolved with (R)-(−)-O-methyl mandelic acid (0.422 g, 1.17 mmol): [α]D=−159.0° (c=1, MeOH).
  • The HCl salt derived from the aminotetralin resolved with (S)-(+)-O-methyl mandelic acid (0.506 g, 1.41 mmol): [α]D=+159.1°(c=1, MeOH).
  • The 1H NMR spectra of the hydrochloride salts were identical: 1H NMR (d6-DMSO): 8.64 (br s, 3H), 7.59 (d, 1H), 7.52 (t, 1H), 7.42 (m, 2H), 6.99 (dd, 1H), 6.63 (dt, 1H), 5.91 (dd, 1H), 3.59 (m, 1H), 3.34-3.19 (m, 2H), 3.08 (m, 1H), 2.92 (m, 1H), 2.59 (d, 1H), 2.08 (m, 2H). MS: M+H+=324.1.
  • D. Other resolutions were performed in a similar manner to yield the results as shown in the table below.
    [α]D of the HCl
    Salts (c = 1,
    Racemic Amine Resolving Acid Solvent MeOH)
    Figure US20050187291A1-20050825-C00024
    Figure US20050187291A1-20050825-C00025
    1:1 iPrOH:MeOH +159.1°/−159.0°
    Figure US20050187291A1-20050825-C00026
    Figure US20050187291A1-20050825-C00027
    iPrOH +213.0°/−216.6°
    Figure US20050187291A1-20050825-C00028
    Figure US20050187291A1-20050825-C00029
    14-67:1 EtOH:H2O +70.7°/−71.4°
  • Using the procedures of the Examples above and the appropriate reagents, starting materials and purification methods known to those skilled in the art, other compounds of the present invention may be prepared including, but not limited to:
    TABLE 1
    Mass Spectral Data for Selected Compounds
    Parent
    Peak
    No. Substituents on Formula (Ia) MW (calc) (obs)
     3 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 462.6 463.1
    (3-OMe-4-OH)Ph, and X is S; (cis)
     4 R1 is H, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is 477.6 477.8
    (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
    (cis)
     5 R1 is H, R2 is 3-Pyridinyl, m is 1, L is —CH2—, R3 is
    (3-OMe-4-OH)Ph, and X is S; (cis)
     6 R1 is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is —CH2—, 463.6 464.1
    R3 is (3-OMe-4-OH)Ph, and X is S; (cis)
     7 R1 is 6-OMe, R2 is —CH═CH2, m is 1, L is —CH2—, R3 456.6 457.1
    is (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
    (cis)
     8 R1 is 6-OMe, R2 is 4-Imidazolyl, m is 1, L is —CH2—, 452.6 453.1
    R3 is (3-OMe-4-OH)Ph, and X is S;
     9 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 444.5 445.1
    (3,4-methylenedioxy)Ph, and X is O;
     10 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 460.6 461.1
    (3,4-diOMe)Ph, and X is O;
     11 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 456.6 457.2
    (4-tBu)Ph, and X is O;
     12 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 449.0 449.1
    (4-Cl)Ph, and X is O;
     13 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 474.6 475.1
    (3,4-diOMe)Ph, and X is O;
     14 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 460.6 461.1
    (3,4-methylenedioxy)Ph, and X is S;
     15 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 476.6 477.1
    (3,4-diOMe)Ph, and X is S;
     16 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 472.7 473.1
    (4-tBu)Ph, and X is S;
     17 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 465.1 465.0
    (4-Cl)Ph, and X is S;
     18 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 490.7 491.1
    (3,4-diOMe)Ph, and X is S;
     19 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 446.5 447.1
    (3-OMe-4-OH)Ph, and X is O;
     21 R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is 476.6 476.7
    (3-OMe-4-(Methoxymethyleneoxy)Ph, and X is S;
    (cis)
     23 R1 is H, R2 is Ph, m is 1, L is —CH2—, R3 is 432.6 433.1
    (3-OMe-4-OH)Ph, and X is S; (cis)
     24 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 499.7 500.3
    (4-N(Me)(C5H11))Ph, and X is O;
     25 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 511.7 512.3
    (4-[N(Me)(cyclohexyl)])Ph, and X is O;
     26 R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 450.6 451.1
    (3,4-diOMe)Ph, and X is S; (cis)
     27 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 468.5 469.3
    (4-CF3)Ph, and X is O;
     28 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 469.4 469.1
    (3,4-diCl)Ph, and X is O;
     29 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2CH2—, R3 is 483.4 483.7
    (3,4-diCl)Ph, and X is O;
     30 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 484.6 485.6
    (4-CF3)Ph, and X is S;
     31 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is 485.5 485.0
    (3,4-diCl)Ph, and X is S;
     32 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—CH2—, R3 is 499.5 499.0
    (3,4-diCl)Ph, and X is S;
     33 R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, 437.5 438.4
    R3 is 5-isoquinolinyl, and X is O;
     34 R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, 437.5 438.7
    R3 is 3-quinolinyl, and X is O;
     35 R1 is 6-OMe, R2 is Ph, m is 1, L is a direct bond, 452.5 453.1
    R3 is 8-(2-naphtholyl), and X is O;
     36 R1 is H, R2 is H, m is 0, L is a direct bond, R3 is 317.4 359.1
    5-isoquinolinyl, and X is O; (MeCN)
     37 R1 is 6-F, R2 is H, m is 0, L is a direct bond, R3 is 335.4 336.2
    5-isoquinolinyl, and X is O;
     38a R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 425.5 426.3
    5-isoquinolinyl, and X is O; (racemate)
     38b R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 425.5 426
    5-isoquinolinyl, and X is O; (enantiomer 1)
     38c R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 425.5 426
    5-isoquinolinyl, and X is O; (enantiomer 2)
     39 R1 is 6-Br, R2 is Ph, m is 1, L is a direct bond, R3 is 486.4 485.9
    5-isoquinolinyl, and X is O; (cis)
     40 R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct 467.6 468.2
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     41 R1 is 7-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 441.9 442.0
    5-isoquinolinyl, and X is O; (cis)
     42 R1 is 5-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 441.9 441.9
    5-isoquinolinyl, and X is O; (cis)
     43 R1 is H, R2 is Ph, m is 1, L is a direct bond, R3 is 407.5 408.2
    5-isoquinolinyl, and X is O;
     44 R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct 472.0 472.3
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     45 R1 is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is a direct 438.5 439.0
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     46 R1 is 6-OMe, R2 is (3-Cl)Ph, m is 1, L is a direct 472.0 471.9
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     47 R1 is 6-OMe, R2 is 3-Pyridinyl, m is 1, L is a direct 438.5 438.8
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     48 R1 is 6,7-diOMe, R2 is Ph, m is 1, L is a direct 467.6 468.2
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     49 R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct 472.0 473.3
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     50 R1 is 6-OMe, R2 is (4-Cl)Ph, m is 1, L is a direct 472.0 472.3
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     51 R1 is 6-OMe, R2 is H, m is 0, L is a direct bond, R3 347.4 348.6
    is 5-isoquinolinyl, and X is O;
     52 R1 is 6-OMe, R2 is (2-Cl)Ph, m is 1, L is a direct 472.0 472.2
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     53 R1 is 6-OMe, R2 is (2-CF3)Ph, m is 1, L is a direct 505.5 506.4
    bond, R3 is 5-isoquinolinyl, and X is O;
     54 R1 is 6-OMe, R2 is (3-CF3)Ph, m is 1, L is a direct 505.5 506.4
    bond, R3 is 5-isoquinolinyl, and X is O;
     55 R1 is 6-OMe, R2 is (4-CF3)Ph, m is 1, L is a direct 505.5 506.3
    bond, R3 is 5-isoquinolinyl, and X is O;
     56 R1 is 6-OH, R2 is Ph, m is 1, L is a direct bond, R3 423.5 424.2
    is 5-isoquinolinyl, and X is O;
     57 R1 is H, R2 is —CH═CH2, m is 1, L is a direct bond, 357.4 358.2
    R3 is 5-isoquinolinyl, and X is O;
     58 R1 is 6-Br, R2 is H, m is 0, L is a direct bond, R3 is 396.3 397.9
    5-isoquinolinyl, and X is O;
     59 R1 is 6-Cl, R2 is H, m is 0, L is a direct bond, R3 is 351.8 351.9
    5-isoquinolinyl, and X is O;
     60 R1 is 6-F, R2 is Ph, m is 1, L is —CH2—, R3 is 439.5 440.2
    5-isoquinolinyl, and X is O;
     61 R1 is 7-Cl, R2 is H, m is 0, L is a direct bond, R3 is 351.8 351.9
    5-isoquinolinyl, and X is O;
     62 R1 is 8-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 441.9 441.9
    5-isoquinolinyl, and X is O;
     63 R1 is 6-OMe, R2 is (4-CN)Ph, m is 1, L is a direct 462.6 463.2
    bond, R3 is 5-isoquinolinyl, and X is O;
     64 R1 is 6-OMe, R2 is (4-Br)Ph, m is 1, L is a direct 516.4 517.9
    bond, R3 is 5-isoquinolinyl, and X is O;
     65 R1 is 6-Cl, R2 is CN, m is 1, L is a direct bond, R3 390.0 390.9
    is 5-isoquinolinyl, and X is O; (cis)
     66 R1 is 6,7-diF, R2 is Ph, m is 1, L is a direct bond, 443.5 443.9
    R3 is 5-isoquinolinyl, and X is O;
     67 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 440.5 441.1
    8-(2-naphtholyl), and X is O;
     68 R1 is 6-OMe, R2 is —CH═CH2, m is 1, L is a direct 387.5 388.4
    bond, R3 is 5-isoquinolinyl, and X is O;
     69 R1 is 6-F, R2 is —CH═CH2, m is 1, L is a direct 375.4 376.4
    bond, R3 is 5-isoquinolinyl, and X is O;
     70 R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct 467.6 468.2
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     71 R1 is 6-F, R2 is Cyclopropyl, m is 1, L is a direct 389.5 390.5
    bond, R3 is 5-isoquinolinyl, and X is O;
     72 R1 is 6-OMe, R2 is (4-OMe)Ph, m is 1, L is a direct 467.6 468.2
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     73 R1 is 6-OMe, R2 is (2-OMe)Ph, m is 1, L is a direct 467.6 468.2
    bond, R3 is 5-isoquinolinyl, and X is O;
     74 R1 is 6-OMe, R2 is (4-Benzyloxy)Ph, m is 1, L is a 543.4 544.1
    direct bond, R3 is 5-isoquinolinyl, and X is O;
     75 R1 is 6-OMe, R2 is Ph, m is 1, L is —CH2—, R3 is
    4-Pyridinyl, and X is O;
     76 R1 is 6-F, R2 is 2-Thienyl, m is 1, L is a direct 431.5 432.0
    bond, R3 is 5-isoquinolinyl, and X is O;
     77 R1 is 6-OMe, R2 is (2,6-diF)Ph, m is 1, L is a direct 473.5 474.4
    bond, R3 is 5-isoquinolinyl, and X is O;
     81a R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440
    3-Me-5-isoquinolinyl, and X is O; (cis) (enantiomer 1)
     81b R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440
    3-Me-5-isoquinolinyl, and X is O; (cis) (enantiomer 2)
     85a R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 441.5 442
    5-isoquinolinyl-N-oxide, and X is O; (cis) (enantiomer
    1)
     85b R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 441.5 442
    5-isoquinolinyl-N-oxide, and X is O; (cis) (enantiomer
    2)
     86 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 442 442
    is 5-isoquinolinyl, and X is O;
     87 R1 is 6-OCH3, R2 is Ph, m is 1, L is a direct bond, 437.5 438.2
    R3 is 5-isoquinolinyl, and X is O; (cis) (enantiomer
    2)
     88 R1 is 6-F, R2 is 3-furanyl, m is 1, L is a direct bond, 415.5 416.4
    R3 is 5-isoquinolinyl, and X is O; (cis)
     89 R1 is 6-OCH3, R2 is 3-thienyl, m is 1, L is a direct 443.6 444.4
    bond, R3 is 5-isoquinolinyl, and X is O
     90 R1 is 6-OCH3, R2 is 2,4 di-F Ph, m is 1, L is a direct 473.5 474.4
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
     91 R1 is 6-OCH3, R2 is 2,4 di-F Ph, m is 1, L is a direct 473.5 474.5
    bond, R3 is 5-isoquinolinyl, and X is O; (trans)
     92 R1 is 6-OCH3, R2 is Ph, m is 1, L is a direct bond, R3 437.5 438.1
    is 5-isoquinolinyl, and X is O; (cis) (enantiomer 1)
     93 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 425.5 426.4
    5-isoquinolinyl, and X is O; (cis) (enantiomer 1)
     94 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 425.5 426.6
    5-isoquinolinyl, and X is O; (cis) (enantiomer 2)
     95 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 442.0 442.5
    5-isoquinolinyl, and X is O; (cis)
     96 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 441.5 442.7
    5-isoquinolinyl-N-oxide, and X is O; (cis) (enantiomer
    1)
     97 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 441.5 442.8
    5-isoquinolinyl-N-oxide, and X is O; (cis) (enantiomer
    2)
     98 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 460.0 460
    4-Cl-5-isoquinolinyl, and X is O; (cis)
     99 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 460.0 460
    4-Cl-5-isoquinolinyl, and X is O; (cis)
    100 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440.3
    3-methyl-5-isoquinolinyl, and X is O; (cis)
    (enantiomer 1)
    101 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440.3
    3-methyl-5-isoquinolinyl, and X is O; (cis)
    (enantiomer 2)
    102 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440.5
    1-methyl-5-isoquinolinyl, and X is O; (cis)
    (enantiomer 1)
    103 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 439.5 440.5
    1-methyl-5-isoquinolinyl, and X is O; (cis)
    (enantiomer 2)
    104 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 459.96 459.6
    1-Cl-5-isoquinolinyl, and X is O; (cis) (enantiomer 1)
    105 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 460.0 459.9
    1-Cl-5-isoquinolinyl, and X is O; (cis) (enantiomer 2)
    106 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 457.9 459.0
    5-isoquinolinyl-N-oxide, and X is O; (cis)
    107 R1 is 6-F, R2 is 4-CF3 Ph, m is 1, L is a direct bond, 493.5 494.5
    R3 is 5-isoquinolinyl, and X is O; (cis)
    108 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 494.4 494
    1,3-diCl-5-isoquinolinyl, and X is O; (cis)
    109 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 494.4 494
    1,3-diCl-5-isoquinolinyl, and X is O; (cis)
    110 R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, 493.5 494.6
    R3 is 5-isoquinolinyl, and X is O; (±cis)
    111 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 460.0 460
    8-Cl-5-isoquinolinyl, and X is O; (cis
    112 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 508.6 509
    1-piperidinyl-5-isoquinolinyl, and X is O; (cis)
    113 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 455.5 456
    1-OCH3-5-isoquinolinyl, and X is O; (cis)
    114 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 443.5 444
    1-F-5-isoquinolinyl, and X is O; (cis)
    115 R1 is 6-F, R2 is Ph, m is 1, L is a direct bond, R3 is 468.6 469
    1-N,N-dimethyl-5-isoquinolinyl, and X is O; (cis)
    116 R1 is 6-Cl, R2 is nil, m is nil, R3 is 1-CH3- 365.9 366.0
    5-isoquinolinyl, and X is O
    117 R1 is 6-Cl, R2 is nil, m is nil, R3 is 1-Cl- 386.3 386.1
    5-isoquinolinyl, and X is O
    118 R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, 493.5 494.6
    R3 is 5-isoquinolinyl, and X is O; (cis)(enantiomer 1)
    119 R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, 493.5 494.6
    R3 is 5-isoquinolinyl, and X is O; (cis)(enantiomer 2)
    120 R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, 509.5 510.2
    R3 is 5-isoquinolinyl-N-oxide, and X is O; (cis)
    (enantiomer 1)
    121 R1 is 6-F, R2 is 3-CF3 Ph, m is 1, L is a direct bond, 509.5 510.2
    R3 is 5-isoquinolinyl-N-oxide, and X is O; (cis)
    (enantiomer 2)
    122 R1 is 6-F, R2 is spiro-2-indanyl, L is a direct bond, 437.5 438.4
    R3 is 5-isoquinolinyl, and X is O
    123 R1 is 6-F, R2 is 4-Cl, 3-CF3 Ph, m is 1, L is a direct 527.9 528.3
    bond, R3 is 5-isoquinolinyl, and X is O; (cis)
    124 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 442.0 442.2
    1-CH3-5-isoquinolinyl, and X is O; (cis) (enantiomer
    1)
    125 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 442.0 442.2
    1-CH3-5-isoquinolinyl, and X is O; (cis) (enantiomer
    2)
    126 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 442.0 442.2
    1-CH3-5-isoquinolinyl, and X is O; (trans)
    (enantiomer 1)
    127 R1 is 6-Cl, R2 is Ph, m is 1, L is a direct bond, R3 is 442.0 442.2
    1-CH3-5-isoquinolinyl, and X is O; (trans)
    (enantiomer 2)
  • BIOLOGICAL EXAMPLES Example 1
  • Human or Rat VR1 Binding Assay
  • Compounds of the present invention were tested for their ability to inhibit the binding of [3H] RTX to hVR1 receptors in a [3H] RTX binding assay as previously described (Zhang, Sui-Po. Improved ligand binding assays for vantiloid receptors. PCT Int. Appl. (2002), 29 pp. CODEN: PIXXD2 WO 0233411 A1 20020425 AN 2002:315209; Grant, Elfrida R.; Dubin, Adrienne E.; Zhang, Sui-Po; Zivin, Robert A.; Zhong, Zhong Simultaneous intracellular calcium and sodium flux imaging in human vanilloid receptor 1 (VR1)— transfected human embryonic kidney cells: a method to resolve ionic dependence of VR1-mediated cell death. Journal of Pharmacology and Experimental Therapeutics (2002), 300(1), 9-17.)
  • HEK293 cells were transfected with human VR1 vanilloid receptors and washed with Hank's Balanced Salt Solution, dissociated with cell dissociation buffer (Sigma), and then centrifuged at 1000×g for 5 min. Cell pellets were homogenized in cold 20 mM HEPES buffer, pH 7.4, containing 5.8 mM NaCl, 320 mM sucrose, 2 mM MgCl2, 0.75 CaCl2 and 5 mM KCl and centrifuged at 1000×g for 15 min. The resultant supernate was then centrifuged at 40000×g for 15 min. The pelleted membranes were kept in an −80° C. freezer.
  • Approximately 120 μg protein/ml from membranes were incubated with indicated concentrations of [3H] RTX in 0.5 ml of the HEPES buffer (pH 7.4) containing 0.25 mg/mL fatty acid-free bovine serum albumin at 37° C. for 60 min. The reaction mixture was then cooled to 4° C., 0.1 mg α1-acid glycoprotein added to each sample and incubated at 4° C. for 15 min. The samples were centrifuged at 18500×g for 15 min. The tip of the microcentrifuge tube containing the pellet was cut off. Bound radioactivity was quantified by scintillation counting. Non-specific binding was tested in the presence of 200 nM unlabeled RTX.
  • Alternatively, a binding assay using rat tissue was used. Rat spinal cord was homogenized twice with a Polytron and centrifuged at 3000 rpm for 10 min in HEPES buffer containing 20 mM HEPES, pH 7.4, NaCl 5.8 mM, sucrose 320 mM, MgCl2 2 mM, CaCl2 0.75 mM and KCl 5 mM. The supernatant was then centrifuged at 18,000 rpm for 20 min. The pellet was saved in a tube and 10 ml assay buffer was added into the tube. The pellet and buffer were mixed with a Polytron. The assay contained 120 μg/ml membrane protein and 0.3-0.6 nM [3H]-RTX (NEN, Boston) in a total volume of 0.5 ml HEPES buffer. Following-incubation for 60 min at 37 C, the samples were cooled down on ice, and 100 mg of α-acid glycoprotein were added into the samples. After centrifugation at 13,000 rpm for 15 min, the supernatant was aspirated and the tips of tubes were cut off and placed into 6 ml vials. Data were calculated according to the equation: % inhibition =(total binding−binding)*100/(total binding−non specific binding). Ki value values were calculated using a Prism program.
  • Example 2 Human VR1 Functional Assay
  • The functional activity of the test compounds was determined by measuring changes in intracellular calcium concentration using a Ca++-sensitive fluorescent dye and FLIPR™ technology. Increases in Ca++ concentration were readily detected upon challenge with capsaicin.
  • HEK293 Cells expressing human VR1 were grown on poly-D-lysine coated 96 well black-walled plates (BD 354640) and 2 days later loaded with Fluo-3/AM for 1 hour and subsequently tested for agonist-induced increases in intracellular Ca2+ levels using FLIPR technology. Cells were challenged with test compounds (at varying concentrations) and intracellular Ca++ was measured for 3 min prior to the addition of capsaicin to all wells to achieve a final concentration of 0.015 μM eliciting 80% maximal response. EC50 or IC50 values were determined from dose-response studies.
    TABLE 2
    Vanilloid In vitro assay data
    Compound No. hVR1 Ki (nM) Rat VR1 Ki (nm) IC50 or EC50 (nM)
     1 2530 NT 780
     2 31600 NT NT
     3 98.9 NT 12
     4 NT NT 460
     5 NT NT 120
     6 >10000 NT 260
     7 NT NT 2400
     8 >10000 NT 10000
     9 >10000 NT 3000
     10 13000 NT 690
     11 NT NT 10000
     12 NT NT >30000
     13 3600 NT >30000
     14 >10000 NT 10000
     15 3110 NT 440
     16 NT NT >30000
     17 NT NT >30000
     18 NT NT >30000
     19 258 NT 92
     20 5520 NT 10000
     21 520 NT 520
     23 98.2 NT 64
     24 NT NT >30000
     25 70900 NT 10000
     26 28.2 NT 69
     27 NT NT >30000
     28 NT NT >30000
     29 NT NT >30000
     30 NT NT >30000
     31 NT NT >30000
     32 NT NT >30000
     33 3.37 NT 25
     34 NT NT >30000
     35 9.64 NT 60
     36 45.6 NT 41
     37 24.9 NT 16
     38a 1.76 NT 12
     38b 0.72 NT NT
     38c 3.59 NT NT
     39 0.89 NT 14
     40 29.6 NT 195
     41 4.58 NT 86
     42 1.94 NT 16
     43 3.66 NT 20
     44 1.96 NT 13
     45 1540 NT 511
     46 8.81 NT 540
     47 1030 NT 3000
     48 19.3 NT 230
     49 2.66 NT 130
     50 1.8 NT 80
     51 24 NT 72
     52 12.3 NT 250
     53 0.48 NT 4.8
     54 2.04 NT 5.1
     55 1.55 NT 2.3
     56 277 NT 200
     57 15.4 NT 120
     58 2.62 NT 13
     59 2.6 NT 9
     60 4.99 NT 14
     61 3.42 NT 5.7
     62 7.59 NT 22
     63 16.5 NT 21
     64 1.28 NT 22
     65 NT NT 1000
     66 1.82 NT 26
     67 1.44 NT 390
     68 21.3 NT 97
     69 2.19 NT 100
     70 5.55 NT 460
     71 0.84 NT 350
     72 7.52 NT 36
     73 53.4 NT 110
     74 11.3 NT 480
     75 NT NT 730
     76 3.81 NT 140
     77 6.26 NT 490
     79a 10.8 NT NT
     79b 32.3 NT NT
     80a 5.32 NT NT
     80b 25.1 NT NT
     81a 1.12 NT NT
     81b 5.25 NT NT
     82 103 NT NT
     83 15.5 NT NT
     84a 2700 NT NT
     84b 2730 NT NT
     85a 45.4 NT NT
     85b 50.2 NT NT
     86 1.7 NT NT
     87 NT 53.7 NT
     88 15.5 1270 NT
     89 NT 1080 NT
     90 NT 259 NT
     91 NT 1480 NT
     92 NT 7080 NT
     93 3.59 517 NT
     94 0.719 131 NT
     95 1.7 217 NT
     96 50.2 NT NT
     97 45.4 NT NT
     98 2730 100000 NT
     99 2700 100000 NT
    100 5.25 781 NT
    101 1.12 53.1 NT
    102 25.1 100000 NT
    103 5.32 101 NT
    104 32.3 100000 NT
    105 10.8 4922 NT
    106 8.6 2840 NT
    107 0.93 28.7 NT
    108 186 NT NT
    109 29.2 100000 NT
    110 0.531 185 NT
    111 NT 100000 NT
    112 NT 100000 NT
    113 NT 100000 NT
    114 NT 100000 NT
    115 NT 100000 NT
    116 NT 100000 NT
    117 NT 100000 NT
    118 2.16 169 NT
    119 0.5 152 NT
    120 95.7 10000 NT
    121 5.75 88.5 NT
    122 73 1700 NT
    123 NT NT NT
    124 NT NT NT
    125 NT NT NT
    126 NT NT NT
    127 NT NT NT
  • Example 3 Broadly Stimulated Recombinant Human VR1 and rat VR1 Functional Assays
  • When nociceptors are exposed to tissue damaging stimuli, VR1 receptors are activated by a plethora of stimuli. In an effort to identify potent and efficacious antagonists at human and rat VR1 that were active under conditions simulating aspects of in vivo inflammation functional assays were developed using FLIPR to determine antagonist activity against endogenous activators and stimuli likely to be present in inflammation. Cell lines were constructed that stably expressed recombinant rat VR1 (rVR1/HEK293). Cells were exposed to various stimuli at their EC80, with the exception of the low pH and DTT stimuli.
  • Low pH (pH 5.9 (rat) or pH 6.5 (human). Cells were challenged for 5 min with low pH solution which produced an increase in intracellular Ca2+ which was subsequently reduced by exposure to antagonists. After 3 min, other stimuli (a phorbol ester to induce phosphorylation, capsaicin, anandamide, redox agents) were applied to the cells to determine the potency of antagonists to block those stimuli in an acidic environment. Cells were maintained in low pH in all steps subsequent to the calcium dye loading step.
  • Phoshorylation by PKC. Previous studies have suggested that phorbol esters activate VR1 via PKC phosphorylation [Premkumar, 2000 #697; Vellani, 2001 #739]. These studies were corroborated and further studies were performed to confirm that the phorbol ester effect was not due to direct effects on the channel. The role of PKC was shown pharmacologically: phorbol-12-myristate-13-acetate (PMA) and other phorbol esters active at PKC (but not the inactive 4α-phorbol) caused an increase in intracellular Ca2+ that was mediated by VR1. The rank order potency for the panel of phorbol esters was similar to their rank order potency to block PKC. The PKC inhibitors bisindolylmaleimide (BIM) and staurosporin blocked the PMA induced increase in Ca2+. The EC50 for PMA at either rat or human recombinant VR1 was 90 nM. Cells were challenged with 300 nM PMA (˜EC80) after 3 min in the indicated antagonist. The active phorbol ester effect was blocked by RR and CPZ and required extracellular Ca2+. CPZ was more potent at the recombinant human compared to the rat receptor.
  • Anandamide. Anandamide is a brain-derived cannabinoid ligand that acts as a near full agonist at VR1 at low pM concentrations [Smart, 2000 #507]. The EC50 of anandamide at recombinant rat and human receptors was 5 μM and 3 μM, respectively. The IC50 was determined near the EC80 of anandamide (10 μM).
  • Reactive oxygen species: Disturbances in the regulatory activities of free radicals may play a role in inflammation [Winrow, 1993]. Reactive oxygen species (ROS) such as H2O2 are formed in inflamed joints. H2O2 directly activates VR1: the increase in intracellular Ca2+ is in part blocked by VR1 antagonists and the response is dependent on extracellular Ca2+. The influx of Ca2+ through VR1 may contribute to the known effects of ROS on signal transduction (e.g., phosphorylation of proteins) and downstream regulation of gene transcription. The EC80 for H2O2-induced Ca+ flux in VR1/HEK cells was 0.015% H2O2 and this concentration was used to determine the IC50 of VR1 antagonists.
  • Reducing agents: The reducing agent DTT also directly activates VR1 [Vyklicky, 2002]. Cells were challenged with 5-10 mM DTT to stimulate VR1 after 3 min incubation in compound.
  • Compound 33 potently blocked the activation of human recombinant VR1 elicited by the agonists shown in Table 3. The increase in intracellular Ca2+ caused by acidic solutions, anandamide the PKC activator PMA, and H2O2 was completely abolished by Compound 33 in a dose dependent manner after 3 min incubation in antagonist (Table 3). The IC50 values obtained in assays with low pH, anandamide and PMA stimuli were similar to the IC50 values obtained against capsaicin-induced responses. Thus, Compound 33 is a potent antagonist against a panel of activators at the recombinant human receptor, with a more favorable pharmacological profile than the two most well studied antagonists, capsazepine and ruthenium red.
    TABLE 3
    Antagonism of recombinant human VR1 activated by a panel of
    stimuli in a Ca2+ influx in vitro assay (IC50 in nM)
    H2O2
    PKC reactive
    Low PKC phosphory- oxygen
    pH Anandamide phosphory- lation at low species
    Compound (nM) (nM) lation (nM) pH (nM) (nM)
    33 23,40 41  70 39
    Capsazepine 110 160 370
    (CPZ)
    Ruthenium 500 500
    Red (RR)
  • The reference compounds used in these studies were the previously characterized VR1 antagonists capsazepine (CPZ) and ruthenium red. CPZ, previously the most potent antagonist at human VR1, shows similar potency (100-300 nM) at the human recombinant receptor to inhibit Ca+ activity induced by these stimuli (FIG. 1, left set of panels). For FIG. 1, human (left) and rat (right) vanilloid 1 receptor expressed in HEK 293 cells was stimulated by a number of different stimuli known to activate VR1. FIG. 1 shows the IC50 values of the competitive vanilloid antagonist capsazepine for inhibition of the calcium flux induced by each of these activators. Note the similar potency of the compound at the human receptor stimulated by various stimuli, but the lower potency of the compound as an inhibitor of rat VR1.
  • In FIG. 2, the human (left) and rat (right) vanilloid 1 receptor expressed in HEK 293 cells was stimulated by a number of different stimuli known to activate VR1. The IC50 values for inhibition by example #33 of the calcium flux induced by each of these activators is seen in FIG. 2.
  • CPZ has been shown to have significantly lower potency at the rat receptor (recombinant and native receptors; [Mcintyre, 2001]). Since many of our animal models were in rat, we cloned the rat VR1 and expressed it stably in HEK293 cells. We performed assays similar to those described for the human recombinant receptor with the exception that a lower pH was required in the Ca2+ influx assay at the rat recombinant receptor.
  • As expected based on data from the literature, the CPZ profile revealed low potency against heat-induced responses at the recombinant rat receptor [Nagy, 1999]. With the exception of the pore blocker RR, antagonists tended to have a lower potency at the rat compared to the human recombinant receptor. Importantly, Compound 33 potently and completely blocks rat recombinant VR1 activated by acidic solution, anandamide, and H2O2, and PMA at acidic pH (Table 4).
    TABLE 4
    Antagonism of recombinant rat VR1 activated by a panel of
    stimuli in the Ca2+ influx in vitro assay (IC50 in nM)
    Low Anand- PKC PKC
    pH amide phosphory- phosphorylation H2O2
    Compound (nM) (nM) lation (nM) at low pH (nM) (NM)
    Cmpd 33 170  38   47 33
    Capazepine 5000 1300 10000 10000
    (CPZ)
    Ruthenium 1860  300
    Red (RR)
  • Compound 33 potently blocked the activation of rat recombinant VR1 elicited by the agonists shown in Table 4. The increase in intracellular Ca2+ caused by acidic solutions, anandamide the PKC activator PMA at low pH, and H2O2 was completely abolished by Compound 33 in a dose dependent manner after 3 min incubation in antagonist (Table 4). The IC50 values obtained in assays with low pH, anandamide and PMA stimuli were similar to the IC50 values obtained against capsaicin-induced responses with the possible exception of the blockade of the low pH response. Thus, Compound 33 is a potent antagonist against a panel of activators at the recombinant rat receptor, with a more favorable pharmacological profile than the two most well studied antagonists, capsazepine and ruthenium red.
  • EXAMPLE 4 Electrophysiologic Functional Assay Using Dissociated Rat DRG Cells
  • Compounds 42, 95, 101, 105 and 106 were tested for their activity on VR1 expressed endogenously on small rat dorsal root ganglion (DRG) neurons. DRG neurons from normal rats were dissociated (see methods in Chaplan et al., 2003) and whole cell currents mediated by VR1 were recorded using the whole cell patch clamp technique. The estimated potency of the compounds were determined either 1) by measuring the shift in the capsaicin-induced dose response in the presence of compound or 2) by calculating the percent of capsaicin-induced current responses in the presence of compound under conditions of limited capsaicin-induced desensitization (i.e., using 0 Ca2+-containing saline solutions). Under these conditions, repeated application of capsaicin produced similar current responses when 3 min recovery/washout periods were allowed. Briefly in the first method, if a cell was responsive to 300 nM capsaicin (EC20), compound was applied to the cell at 100 or 300 or 1000 nM to determine if the compound had intrinsic agonist activity and allow a 4-5 min incubation period prior to testing with capsaicin in the presence of compound. After 4-5 min exposure to compound, 1 μM capsaicin was applied in the presence of the same concentration of compound and incubated another 2-3 min. This was followed by application of 10 μM CAP in the presence of compound. Control cumulative capsaicin dose response curves (filled squares) were obtained from a cell (the approximate EC50 in this cumulative dose response assay was 1 μM CAP; 10 μM causes a maximal response). Vehicle caused no shift in the capsaicin concentration dependence (not shown). The ability of 1 and 10 μM CAP to cause an increased current after exposure to a compound of the invention was compared to controls.
  • In the second method, a nociceptor was challenged with 0.3 uM capsaicin while taking measurements of whole cell current using voltage ramp protocols. After washout of the capsaicin, cells were exposed to the compound for 4-5 min and subsequently challenged with 1 uM capsaicin (approximately the ED80 at the native receptor in this experiments) in the continued presence of compound. The current elicited near −100 mV was measured during the first and second capsaicin exposure. The percent of the response elicited by 0.3 μcapsaicin obtained during the exposure to 1 uM capsaicin/compound was calculated. After washout, the cell was challenged with 10 uM capsaicin in the presence of compound and subsequently washed again and challenged with capsaicin without compound.
    TABLE 5
    VR1 antagonists inhibit capsaicin-induced currents in dissociated rat
    DRG neurons
    % of the initial CAP % of the initial CAP
    Compound response in response in
    concentration presence of 1 uM presence of 10 uM
    Compound (uM) CAP CAP
     42 0.3 0
     95 0.03 78 1073
    0.1 21 200
    0.1 4 12
    101 0.03 14 54
    0.1 0 0
    105 1 0 23
    8 160
    106 1 2 11
    vehicle 330
    115 180
    171 204
  • All compounds inhibited the response to 1 uM capsaicin. The inhibition was dose dependent (compounds 95 and 101). The response to 10 uM capsaicin in the presence of compound was larger than the response to 1 uM capsaicin/compound with the exception of the cell challenged with 0.1 uM 101 which revealed no capsaicin induced current until the compound was washed out and capsaicin alone was applied to the cell. These results indicate that Compounds 95 and 101 appeared to shift the capsaicin dose response to the right in a dose dependent manner. PKB′ values could not be determined because it is not known whether the blockade could not be surmounted by higher concentrations of capsaicin. Tested compounds had no detectable, reproducible effect on whole cell voltage-activated currents in the DRG neurons studied.
  • Example 5 Carrageenan Paw-Induced Thermal Hyperalgesia
  • Each rat was placed on a heated surface (51° C.) in order to measure the time necessary to elicit a response, and an initial (baseline) response time to a thermal stimuli was recorded for each animal. A response is defined as any shaking, licking, or tucking of the treated paw or jumping. Animals not treated with a test compound respond in approximately 20 seconds. The maximal exposure time permitted is 60 seconds to prevent tissue damage. Rats were injected with an irritant (e.g., 1% carrageenan solution in 0.9% saline) subcutaneously into the sub-plantar tissue of the left hind paw to stimulate an acute inflammatory reaction.
  • Two hours later, the response time of the animal to the thermal stimulus was evaluated and compared to the animal's baseline response time. This shorter response time was recorded as percent hyperalgesia (% H). A cut-off value for % H (usually 75%) was used during analysis to ensure that the animals were hyperalgesic. Animals were then dosed with test drug or vehicle.
  • At some time(s) later (typically 45 and 90 minutes), the response time of the animal to the thermal stimulus was again evaluated. For each time point, a percent reversal of hyperalgesia (% R) was calculated using the following formula: % R=(Drug Latency−Carrageenan latency)/(Baseline latency−Carrageenan latency). ED50 values were calculated from % R obtained at several drug doses.
    CgHP ED50
    Cmpd No (mg/kg, po)
    33 0.276
    57 0.354
    4 0.804
    17 19.958
  • TABLE 6
    Percent Recovery at 1 mg/ml or ED50 value (mg/kg, p.o.), each at 90 min.
    Compound % Recovery ED50 (mg/kg, p.o.)
    106 0.027
    105 0.394
    107 0.92
    110 64.3
    120 83.0
    121 80.1
    124 55.2
    125 63.9
    126 46.0
    127 41.3
  • Example 6 Evaluation of Action on Isolated Guinea Pig Bronchial Rings
  • Aminotetralin VR1 antagonists were tested for their potency to block capsaicin-induced guinea pig bronchial ring contraction in a standard in vitro organ bath assay [Tucker, 2001]. Two mm rings of bronchial tissue obtained from male guinea pigs (325 g) were suspended in normal Krebs solution between two wire hooks under an initial loading tension of 1 gram. The saline was maintained in a 5% CO2 and 95% O2 atmosphere at 37° C. in the presence of indomethacin (5 μM). A sub-maximal dose of 5-Methylfurmethide (5Mef, 1 μM) was added to each tissue to determine responsiveness using an isometric force transducer. After washout, tissues were exposed to compounds or vehicle for 30 min, treated with thiorphan (10 μM, 5% Na2CO3), and primed using KCl in increasing linear concentrations from 1 mM at 1 mM intervals until a slight increase in muscle tone was induced (˜1% of 5Mef response). A concentration-response curve was then constructed using capsaicin (10 nM-10 μM) increasing in 0.5 log unit increments. The dose response curve was calculated as % max of the 5-Mef response and estimated pA2 were determined [Tucker, 2001]).
  • Both Compound 38a (FIG. 3) and Compound 105 (FIG. 4) inhibited capsaicin-evoked bronchial ring contraction with an estimated pA2 of 8.0 and 6.2, respectively (Table 7). The potent antagonism of capsaicin-induced bronchial ring contraction indicated that these compounds may be effective inhibitors of cough and bronchial spasm mediated by VR1.
  • In FIG. 3, inhibition of capsaicin-induced contraction of guinea pig bronchial rings is shown for an isolated tissue assay. The closed symbols represent the capsaicin-only concentration-response relationship, whereas the open symbols represent the capsaicin plus example number 105 concentration-response. The inhibition appears as a shift to the right of the concentration-response curve, resulting in a pA2 (±SEM) value of 6.2±0.11.
  • In FIG. 4, inhibition of capsaicin-induced contraction of guinea pig bronchial rings is shown for an isolated tissue assay. The closed symbols represent the capsaicin-only concentration-response relationship, whereas the open symbols represent the capsaicin plus example number 38a concentration-response. The inhibition appears as a shift to the right of the concentration-response curve, resulting in a pA2 (+SEM) value of 8.0±0.02.
    TABLE 7
    VR1 antagonist blocked capsaicin-induced guinea pig bronchial
    ring contraction in a competitive manner.
    Compound Estimated pA2
     33 8.0 +/− 0.02
    105 (1000 nM) 6.2 +/− 0.11
  • Example 7 Antitussive efficacy of VR1 Antagonists
  • The antitussive activity of intraperitoneally (IP) administered compound is assessed at a single dose level against capsaicin-induced cough responses as compared to positive and vehicle controls. Thirty-six male Dunkin-Hartley guinea pigs (295-590 g, mean=425 g) are randomly allocated to one of three groups (n=12 guinea pigs per group). The blinding code is not revealed to the experimenter until coughs from all animals are tallied. Guinea pigs are dosed IP at −60 min with vehicle (15% Solutol in 5% dextrose solution); the positive control codeine (25 mg/kg), or test compound (20 mg/kg in 15% Solutol in 5% dextrose solution). Individual guinea pigs are placed in an exposure chamber with an airflow of 3 L/min at −10 min to acclimatize. At ±0 min, cough responses are induced by exposure to capsaicin aerosol (15 μM) generated by an ultrasonic nebulizer at a nebulization rate of 0.6 ml/min for 4 min. Coughs are counted throughout the 4 min capsaicin exposure and for a further 11 min. The mean±SEM number of capsaicin-induced cough responses recorded in vehicle pre-treated guinea pigs was 3.0±0.5. This level of response was reduced significantly to 0.58±0.15 coughs in codeine pre-treated guinea pigs (P<0.001) and is reduced in compound pre-treated guinea pigs. ANOVA statistical analysis was used to determine the level of significance.
  • The antitussive properties of test compounds are assessed in a citric acid-induced cough model as compared to positive and vehicle controls. Evaluation of a given compound in this paradigm is as follows: Six male Dunkin-Hartley guinea pigs (approximately 300-600 g) are randomly assigned to each treatment group. Guinea pigs are intra-peritoneally (IP) injected with vehicle, test compound, or positive control (codeine 25 mg/kg) 60 minutes prior to citric acid exposure. Individual guinea pigs are placed in an exposure chamber with an airflow of 3 L/min at −10 min to acclimatize. At ±0 min, cough responses are induced by exposure to nebulized citric acid. Coughs elicited during the 10-minute aerosol of citric acid and additional 5-minute observation period are recorded and analysed for onset of cough, and cough number and frequency. To eliminate bias, pre-treatments are randomised and the experiments are done blinded. The blinding code is not revealed to the experimenter until coughs from all animals are tallied.
  • Example 8 Rodent Colitis Model
  • 5% Dextran Sulfate Sodium administered in the drinking water of mice or rats for 7 days results in an acute colitis with some morphological changes that are similar to human ulcerative colitis. Among those changes are colon shortening, accumulation of neutrophils and other inflammatory cells, decreases in colon weight, decreases in body weight, tissue damage in the colon, and loss of stool consistency.
  • Each animal is dosed daily in the morning and late afternoon for BID dosing. Treatment with vehicle or test compound begins on day 0, immediately after initial body weights are taken, and ends on day 6. Water bottles are removed and replaced by graduated water bottles containing 5% DSS in indicated groups. Tap water remains on control groups only. Sufficient DSS drinking water is placed in graduated water bottles and refilled each day to monitor daily output. Animals are weighed daily from day 0 to 7, and animal condition and the consistency of stools recorded. Following sacrifice of the animal on day 7, the colon is surgically removed from the distal rectum (anus) to the cecal-colonic juncture and the colon length and weight measured. Colon slices may be obtained for histological evaluation. An active drug should decrease or eliminate disruption of the epithelium and colonic folds, dense inflammatory cell infiltrates, mucosal sloughing, etc. In life observations include monitoring for signs of gross toxicity and/or behavioral changes, gross evaluation of the skin and fur, motor activity and any behavioral patterns with special attention to tremors, convulsions and diarrhea. Water consumption and body weights are measured daily. Scores include ratings for colon weight loss, stool consistency, colon damage, and colon shortening, and are used to assemble a Disease Activity Score. An increase in myeloperoxidase activity occurs in this model and is evaluated separately.
  • Example 9 Uterine Pain Assessment
  • Female adult virgin Sprague Dawley rats (190-290 g) are used. Rats are anesthetized with pentobarbital (50 mg/kg IP). One uterine horn is approached via a small ventral midline laparotomy and tightly ligated at its caudal end near the cervix with 3.0 silk suture to prevent leakage of mustard oil through the cervix and vagina. Using a 22 G needle 0.1-0.2 ml of 10% mustard oil (Aldrich Chemical Co., Milwaukee Wis. USA; dissolved in mineral oil) or an equivalent volume of saline in sham control rats, are injected into the uterine lumen. The abdominal incision is then closed and the rats allowed to recover from anesthesia. Rats are then transferred to individual Plexiglas cages in a quiet environment (12/12 h light-dark cycle) with food and water ad libitum for nonstop videotape recording for the duration of the experiment. Compounds or vehicle is administered by the intended route before (therapeutic) or after (prophylactic) acquisition of hyperalgesia. The recording system consists of a camera connected to a videotape recorder with a wide range of recording and reading speeds to allow for detailed analysis of the movements of the rats. During the dark phase an infrared light is used to permit continuous filming. Animal behavior is analyzed post-hoc using a scoring system to count abnormal behaviors. Six characteristic abnormal behaviors are expected in uterine inflammation rats: (1) hunching (2) hump-backed position (3) repeated licking of the lower abdomen/ipsilateral flank (4) repeated waves of contraction of the ipsilateral oblique musculature with inward turning of the ipsilateral hind limb (5) stretching of the body (6) squashing of the lower abdomen against the cage floor. The effect of administered compounds on the intensity and frequency of pain related behaviors is quantitatively assessed.
  • Example 10 Models of Itch, Contact Dermatitis, Eczema and Other Manifestations of Dermal Allergy, Hypersensitivity and/or Inflammation
  • Vanilloid receptor modulators are tested in an animal model of contact dermatitis or itch, according to previously documented and validated methods, including but not limited to those described by Saint-Mezard et al. (2003), Gonzalez et al. (2001), Wille et al. (1998), Weisshaar et al. (1999) and Thomsen et al. (2002). In models of contact dermatitis, testing is conducted in mouse, guinea pig or human in response to a single (primary allergic dermatitis) or repeated (sensitized allergic dermatitis) topical or photomechanical exposure of the skin to one or more haptensselected from 12-myristate-13 acetate, picryl chloride, oxazolone, capsaicin, arachidonic acid, lactic acid, trans-retinoic acid or sodium lauryl sulfate. For increased sensitivity, animals are sensitized by pre-exposure to certain agents selected from dinitrochlorobenzene, para-phenylenediamine or oxazolone. For prophylactic or therapeutic testing, a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following hapten challenge. Significant differences in skin inflammation (erythema, edema, hyperthermia, etc.) for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-allergy activity. The following additional dependent measures are also collected and compared: skin and/or lymph node levels of CF8+ T cells, interleukin-1 alpha and beta, tumor necrosis factor alpha, interferon gamma, nitric oxide, inducible nitric oxide synthase and keratinocyte apoptosis, Fas expression and/or inflammatory mediator secretion.
  • In models of itch, testing is conducted in mouse, rat, guinea pig or human in response to the sub- or intra-dermal injection or iontophoresis of pruritogens select4ed from serotonin, compound 48/80, leukotriene B4, arachidonic acid, prostaglandin E2, histamine, substance P, neurokinin A, neurokinin B, trypsin, hydroxyethylstarch or platelet-activating factor singly or in combination with mosquito bite or injection of salivary gland extract therefrom. In some cases, animals are inflamed by pre-exposure to certain agents, including but not limited to sodium lauryl sulfate. For prophylactic or therapeutic testing, a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following pruritogen challenge. Cumulative scratching behavior and/or number of scratches per unit time are measured. Significant differences in scratching behavior for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-pruritic activity. The following additional dependent measures are collected and compared: skin inflammation (erythema, edema, hyperthermia, etc.), surface area of the wheal and flare, hyperalgesia, allodynia, plasma protein extravasation, inflammatory mediator release and serum immunoglobulin levels.
  • Example 11 Models of Rhinitis and Other Manifestations of Nasal Hypersensitivity and/or Inflammation
  • Vanilloid receptor modulators are tested in an animal model of rhinitis, according to previously documented and validated methods, including but not limited to those described by Hirayama et al. (2003), Tiniakov et al. (2003) and Magyar et al. (2002). Testing is conducted in mouse, guinea pig, dog or human in response to intranasal challenge with one or more irritants selected from bradykinin, histamine, pollens, dextran sulfate, 2,4-tolylene diisocyanate, Bordetella bronchiseptica, Pasteurella multodica or acetic acid. For increased sensitivity, animals may be sensitized by pre-exposure to ragweed or ovalbumin. For prophylactic or therapeutic testing, a vanilloid receptor modulator or vehicle control is administered to the test subjects by the enteral or parenteral route prior to or following irritant challenge. The relevant dependent measures collected are plasma extravasation of the nasal mucosa, nasal eosinophilia or neutrophilia, nasal mucosal or nasal cavity lavage fluid levels of IL-5, interferon gamma, histamine or IgE, serum immunoglobulin levels, rhinorrhea, cumulative time spent sneezing or number of sneezes per unit time, nasal airway volume, peak inspiratory flow and resistance, intranasal pressure and nasal lesions. Significant differences in one or more of these measures for the test compound-treated subjects compared with vehicle-treated subjects demonstrate anti-rhinitis activity.
  • Example 12 Models of Anxiety, Panic Disorder and Other Non-Adaptive Stressful or Phobic Responses
  • Vanilloid receptor modulators are tested in an animal model of anxiety, according to previously documented and validated methods, including but not limited to those reviewed by Imaizumi and Onodera (2000). Testing is conducted in mouse or rat and consists of methods to measure avoidance of aversive environmental stimuli selected from the Geller-type or Vogel-type anticonflict tests, the light/dark test, the hole-board test, the elevated plus-maze and the elevated T-maze. Prior to environmental exposure the test subject receives the prophylactic administration one or more times of a vanilloid receptor modulator, or vehicle control, by the enteral or parenteral route. The cumulative time or number of times spent engaged in the aversive behavior is measured. Significant differences in one or more of these measures for the test compound-treated subjects compared with vehicle-treated subjects are taken as evidence of anxiolytic activity.

Claims (8)

1-96. (canceled)
97. A method for preventing or treating a chronic-pain causing disease or condition, an acute-pain causing disease or condition, or a pulmonary dysfunction comprising the step of administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formula 1:
Figure US20050187291A1-20050825-C00030
wherein:
R1 is a substituent independently selected from the group consisting of hydrogen;
hydroxy; fluoro; and chloro; and C1-8alkanyloxy;
n is an integer from 1 to 3;
m is an integer from 0 to 3;
R2 is independently selected from the group consisting of hydrogen; hydroxy;
C1-8alkanyl; C2-8alkenyl; C1-8alkylidenyl; C1-8alkylidynyl; fluoro; chloro; C3-8cycloalkanyl; phenyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8alkanylamino, and C1-8dialkanylamino; naphthyl optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, phenyl(C1-8)alkanyloxy, fluorinated alkanyl, cyano, nitro, amino, C1-8 alkanylamino, and C1-8dialkanylamino; phenoxy optionally substituted with one to three substituents independently selected from the group consisting of halogen, hydroxy, C1-8alkanyl, C1-8alkanyloxy, fluorinated alkanyl, cyano and nitro; and heteroaryl optionally substituted with one to three substituents independently selected from the group consisting of C1-6alkanyl and halogen wherein said heteroaryl is pyridyl, pyrimidyl, furyl, thienyl or imidazolyl; pyrrolidino; and piperidino;
L is a direct bond, C1-8alkandiyl, C2-8alkendiyl, C1-8alkyndiyl, or C3-8cycloalkandiyl;
R3 is selected from the group consisting of naphthyl substituted with hydroxyl; quinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro; quinolinyl-N-oxide; isoguinolinyl optionally substituted with one or more substituents selected from the group consisting of methyl and chloro and isoguinolinyl-N-oxide;
R4 is selected from the group consisting of hydrogen and C1-8alkanyl;
R5 is selected from the group consisting of hydrogen and C1-8alkanyl;
X is selected from the group consisting of O and S; and
enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
98. The method according to claim 97 wherein said disease or condition causes inflammatory pain, burning pain, itch, urinary incontinence, or chronic obstructive pulmonary disease, said method comprising the step of administering to a mammal in need of such treatment a therapeutically effective amount of a compound, salt or solvate of claim 1.
99. The method for preventing according to claim 97 wherein the disease or condition selected from the group consisting of osteoarthritis, rheumatoid arthritis, fibromyalgia, migraine, headache, toothache, burn, sunburn, snake bite (in particular, venomous snake bite), spider bite, insect sting, neurogenic bladder, benign prostatic hypertrophy, interstitial cystitis, urinary tract infection, cough, asthma, chronic obstructive pulmonary disease, rhinitis, contact dermatitis/hypersensitivity, itch, eczema, anxiety, panic disorders, inflammatory bowel diseases, pharyngitis, mucositis, enteritis, cellulites, peripheral neuropathy, bilateral peripheral neuropathy, diabetic neuropathy, postherpetic neuralgia, trigeminal neuralgia, causalgia, sciatic neuritis, mandibular joint neuralgia, peripheral neuritis, polyneuritis, stump pain, phantom limb pain, bony fractures, post-operative ileus, irritable bowel syndrome, Crohn's Disease, ulcerative colitis, cholecystitis, pancreatitis, postmastectomy pain syndrome, oral neuropathic pain, Charcot's pain, reflex sympathetic dystrophy, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, optic neuritis, postfebrile neuritis, migrating neuritis, segmental neuritis, Gombault's neuritis, neuronitis, cervicobrachial neuralgia, cranial neuralgia, geniculate neuralgia, glossopharyngial neuralgia, migrainous neuralgia, idiopathic neuralgia, intercostals neuralgia, mammary neuralgia, Morton's neuralgia, nasociliary neuralgia, occipital neuralgia, red neuralgia, Sluder's neuralgia, splenopalatine neuralgia, supraorbital neuralgia, vidian neuralgia, sinus headache, tension headache, labor, childbirth, intestinal gas, menstrual cramps, cancer, and trauma, said method comprising the step of administering to a mammal in need of such treatment a therapeutically effective amount of a compound, salt or solvate of claim 1.
100. The method of claim 97 wherein said therapeutically effective amount comprises a dose range of from about 0.001 mg to about 1,000 mg.
101. The method of claim 97 wherein said therapeutically effective amount comprises a dose range of from about 0.1 mg to about 500 mg.
102. The method of claim 97 wherein said therapeutically effective amount comprises a dose range of from about 1 mg to about 250 mg.
103-117. (canceled)
US11/045,956 2002-05-17 2005-01-28 Aminotetralin-derived urea modulators of vanilloid VR1 receptor Abandoned US20050187291A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/045,956 US20050187291A1 (en) 2002-05-17 2005-01-28 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US11/877,220 US7678812B2 (en) 2002-05-17 2007-10-23 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US12/692,128 US8569505B2 (en) 2002-05-17 2010-01-22 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38157502P 2002-05-17 2002-05-17
US10/438,477 US6984647B2 (en) 2002-05-17 2003-05-15 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US11/045,956 US20050187291A1 (en) 2002-05-17 2005-01-28 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/438,477 Division US6984647B2 (en) 2002-05-17 2003-05-15 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/877,220 Continuation US7678812B2 (en) 2002-05-17 2007-10-23 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US11/877,220 Division US7678812B2 (en) 2002-05-17 2007-10-23 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Publications (1)

Publication Number Publication Date
US20050187291A1 true US20050187291A1 (en) 2005-08-25

Family

ID=29550146

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/438,477 Expired - Lifetime US6984647B2 (en) 2002-05-17 2003-05-15 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US11/045,956 Abandoned US20050187291A1 (en) 2002-05-17 2005-01-28 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US11/877,220 Expired - Fee Related US7678812B2 (en) 2002-05-17 2007-10-23 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US12/692,128 Expired - Fee Related US8569505B2 (en) 2002-05-17 2010-01-22 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/438,477 Expired - Lifetime US6984647B2 (en) 2002-05-17 2003-05-15 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/877,220 Expired - Fee Related US7678812B2 (en) 2002-05-17 2007-10-23 Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US12/692,128 Expired - Fee Related US8569505B2 (en) 2002-05-17 2010-01-22 Aminotetralin-derived urea modulators of vanilloid VR1 receptor

Country Status (9)

Country Link
US (4) US6984647B2 (en)
EP (1) EP1506166B1 (en)
JP (1) JP2005526137A (en)
AR (1) AR039823A1 (en)
AT (1) ATE533743T1 (en)
AU (1) AU2003241453A1 (en)
CA (1) CA2486092A1 (en)
TW (1) TW200406375A (en)
WO (1) WO2003097586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080153845A1 (en) * 2006-10-27 2008-06-26 Redpoint Bio Corporation Trpv1 antagonists and uses thereof

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097586A1 (en) * 2002-05-17 2003-11-27 Janssen Pharmaceutica N.V. Aminotetralin-derived urea modulators of vanilloid vr1 receptor
CA2508618C (en) 2002-12-06 2012-02-21 Bayer Healthcare Ag Tetrahydro-naphthalene derivatives
CA2509239A1 (en) * 2002-12-13 2004-07-01 Neurogen Corporation Carboxylic acid, phosphate or phosphonate substituted quinazolin-4-ylamine analogues as capsaicin receptor modulators
AU2004228028B2 (en) 2003-04-03 2009-12-10 The Regents Of The University Of California Improved inhibitors for the soluble epoxide hydrolase
US7375126B2 (en) 2003-06-12 2008-05-20 Abbott Laboratories Fused compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor
DE602004017329D1 (en) * 2003-06-12 2008-12-04 Abbott Lab CONDENSED COMPOUNDS THAT RESIST THE VANILLOID RECEPTOR SUBTYPE 1 (VR1) RECEPTOR
US7015233B2 (en) 2003-06-12 2006-03-21 Abbott Laboratories Fused compounds that inhibit vanilloid subtype 1 (VR1) receptor
CA2531619A1 (en) * 2003-07-16 2005-01-27 Neurogen Corporation Biaryl piperazinyl-pyridine analogues
US7799832B2 (en) 2003-10-23 2010-09-21 Valeant Pharmaceuticals North America Combinations of retigabine and sodium channel inhibitors or sodium channel-influencing active compounds for treating pains
WO2005035471A1 (en) 2003-10-14 2005-04-21 Ajinomoto Co., Inc. Ether derivative
CA2545109A1 (en) * 2003-11-08 2005-05-19 Bayer Healthcare Ag Tetrahydro-quinolinylurea derivatives
CA2555720A1 (en) * 2004-02-26 2005-09-09 Merck Patent Gesellschaft Mit Beschraenkter Haftung Isoquinoline derivatives
US20090018092A1 (en) 2004-03-16 2009-01-15 The Regents Of The University Of California Reducing Nephropathy with Inhibitors of Soluble Epoxide Hydrolase and Epoxyeicosanoids
JP2007533673A (en) * 2004-04-20 2007-11-22 バイエル・ヘルスケア・アクチェンゲゼルシャフト Urea derivatives as antagonists of vanilloid receptor (VR1)
EP1775283A4 (en) * 2004-07-14 2008-12-10 Japan Tobacco Inc 3-aminobenamide compound and vanilloid receptor 1 (vr1) activity inhibitor
WO2006006741A1 (en) * 2004-07-15 2006-01-19 Japan Tobacco Inc. Fused benzamide compound and vanilloid receptor 1 (vr1) activity inhibitor
US7662910B2 (en) 2004-10-20 2010-02-16 The Regents Of The University Of California Inhibitors for the soluble epoxide hydrolase
EP1807080A1 (en) * 2004-10-29 2007-07-18 AstraZeneca AB Use of unsaturated quionoline or naphtalene derivatives as medicaments
CN101443327A (en) 2004-11-24 2009-05-27 艾博特公司 Chromanylurea compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor and uses thereof
KR20060087386A (en) 2005-01-28 2006-08-02 주식회사 대웅제약 Novel benzoimidazole derivatives and a pharmaceutical composition comprising the same
DE102005017286B3 (en) * 2005-04-14 2006-12-28 Schering Ag Tetrahydronaphthalene derivatives, process for their preparation and their use as anti-inflammatory agents
DE102005044813A1 (en) * 2005-05-19 2007-10-04 Grünenthal GmbH Substituted spiro compounds and their use for the preparation of medicaments
DE102005023784A1 (en) * 2005-05-19 2006-11-30 Grünenthal GmbH Substituted spiro compounds and their use for the preparation of medicaments
DE102005044814A1 (en) * 2005-05-19 2006-11-23 Grünenthal GmbH New spiro-isoxazole-cycloalkane compounds, useful as vanilloid receptor 1 ligands for treating e.g. pain, depression and neurodegeneration
ZA200802977B (en) * 2005-09-09 2009-08-26 Vertex Pharma Bicyclic derivatives as modulators of voltage gated ion channels
US7906508B2 (en) 2005-12-28 2011-03-15 Japan Tobacco Inc. 3,4-dihydrobenzoxazine compounds and inhibitors of vanilloid receptor subtype 1 (VRI) activity
TW200808723A (en) * 2006-03-13 2008-02-16 Univ California Conformationally restricted urea inhibitors of soluble epoxide hydrolase
EP2007749A2 (en) * 2006-03-13 2008-12-31 Pfizer Products Inc. Tetralines antagonists of the h-3 receptor
UA94940C2 (en) 2006-04-18 2011-06-25 Эбботт Леборетриз Antagonists of the vanilloid receptor subtype 1 (vr1) and uses thereof
US7960436B2 (en) 2006-06-05 2011-06-14 Valeant Pharmaceuticals International Substituted arylamino-1,2,3,4-tetrahydro naphthalenes and-2,3-dihydro-1H-indenes as potassium channel modulators
EP2061465B1 (en) 2006-08-23 2013-04-10 Valeant Pharmaceuticals International Derivatives of 4-(n-azacycloalkyl) anilides as potassium channel modulators
CN104292229A (en) 2006-08-23 2015-01-21 神经能质公司 2-phenoxy pyrimidinone analogues
US8993593B2 (en) 2006-08-23 2015-03-31 Valeant Pharmaceuticals International N-(4-(6-fluoro-3,4-dihydroisoquinolin-2(1H)-yl)-2,6-dimethylphenyl)-3,3-dimethylbutanamide as potassium channel modulators
MX2009002018A (en) 2006-08-25 2009-03-05 Abbott Lab Indazole derivatives that inhibit trpv1 and uses thereof.
US8722929B2 (en) 2006-10-10 2014-05-13 Valeant Pharmaceuticals International N-[2-amino-4-(phenylmethoxy)phenyl] amides and related compounds as potassium channel modulators
MX2009005652A (en) 2006-11-28 2009-08-07 Valeant Pharmaceuticals Int 1,4 diamino bicyclic retigabine analogues as potassium channel modulators.
WO2008079683A2 (en) 2006-12-20 2008-07-03 Abbott Laboratories N- (5, 6, 7, 8-tetrahydronaphthalen-1-yl) urea derivatives and related compounds as trpv1 vanilloid receptor antagonists for the treatment of pain
US8367684B2 (en) 2007-06-13 2013-02-05 Valeant Pharmaceuticals International Derivatives of 4-(N-azacycloalkyl) anilides as potassium channel modulators
US8563566B2 (en) 2007-08-01 2013-10-22 Valeant Pharmaceuticals International Naphthyridine derivatives as potassium channel modulators
US7786146B2 (en) 2007-08-13 2010-08-31 Valeant Pharmaceuticals International Derivatives of 5-amino-4,6-disubstituted indole and 5-amino-4,6-disubstituted indoline as potassium channel modulators
CA2702455A1 (en) * 2007-10-16 2009-04-23 Santen Pharmaceutical Co., Ltd. Therapeutic agent for trpv1-mediated disease
EP2489660A1 (en) 2008-03-20 2012-08-22 Abbott Laboratories Methods for making central nervous system agents that are TRPV1 antagonists
EP2527328A1 (en) 2008-04-01 2012-11-28 Abbott GmbH & Co. KG Tetrahydroisoquinolines, pharmaceutical compositions containing them, and their use in therapy
CN101983197B (en) 2008-04-18 2015-04-22 大熊制药株式会社 A novel benzoxazine benzimidazole derivative, a pharmaceutical composition comprising the same, and a use thereof
CN102245564B (en) * 2008-12-10 2015-04-01 施万生物制药研发Ip有限责任公司 Crystalline forms of a 3-carboxypropyl-aminotetralin compound
AR075442A1 (en) 2009-02-16 2011-03-30 Abbott Gmbh & Co Kg AMINOTETRALINE DERIVATIVES, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND THEIR USES IN THERAPY
WO2010119877A1 (en) * 2009-04-13 2010-10-21 味の素株式会社 Process for production of amidine derivative
EP2435040A2 (en) * 2009-05-28 2012-04-04 President and Fellows of Harvard College N,n-diarylurea compounds and n,n'-diarylthiourea compounds as inhibitors of translation initiation
EP2528604B1 (en) 2010-01-29 2017-11-22 The Regents of the University of California Acyl piperidine inhibitors of soluble epoxide hydrolase
US8846743B2 (en) 2010-08-13 2014-09-30 Abbott Laboratories Aminoindane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8883839B2 (en) 2010-08-13 2014-11-11 Abbott Laboratories Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8877794B2 (en) 2010-08-13 2014-11-04 Abbott Laboratories Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9045459B2 (en) 2010-08-13 2015-06-02 AbbVie Deutschland GmbH & Co. KG Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9051280B2 (en) 2010-08-13 2015-06-09 AbbVie Deutschland GmbH & Co. KG Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
KR101293384B1 (en) 2010-10-13 2013-08-05 주식회사 대웅제약 Novel pyridyl benzoxazine derivatives, pharmaceutical composition comprising the same, and use thereof
UY33966A (en) 2011-03-25 2012-10-31 Abbott Lab VANILLOID POTENTIAL TRANSITORY RECEIVER ANTAGONISTS 1 (TRPV1)
US9309200B2 (en) 2011-05-12 2016-04-12 AbbVie Deutschland GmbH & Co. KG Benzazepine derivatives, pharmaceutical compositions containing them, and their use in therapy
JP2014521682A (en) 2011-08-05 2014-08-28 アッヴィ・ドイチュラント・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Aminochroman, aminothiochroman and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
MX2014006004A (en) 2011-11-18 2015-04-16 Abbvie Deutschland N-substituted aminobenzocycloheptene, aminotetraline, aminoindane and phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy.
US8969325B2 (en) 2011-12-19 2015-03-03 Abbvie Inc. TRPV1 antagonists
WO2013096223A1 (en) 2011-12-19 2013-06-27 Abbvie Inc. Trpv1 antagonists
US9365512B2 (en) 2012-02-13 2016-06-14 AbbVie Deutschland GmbH & Co. KG Isoindoline derivatives, pharmaceutical compositions containing them, and their use in therapy
US20130315843A1 (en) * 2012-05-25 2013-11-28 The Procter & Gamble Company Composition for reduction of trpa1 and trpv1 sensations
US8796328B2 (en) 2012-06-20 2014-08-05 Abbvie Inc. TRPV1 antagonists
US9650334B2 (en) 2013-03-15 2017-05-16 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9656955B2 (en) 2013-03-15 2017-05-23 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
US10420761B2 (en) 2013-03-15 2019-09-24 University Of Florida Research Foundation, Inc. Allosteric inhibitors of thymidylate synthase
US20160213659A1 (en) 2013-09-24 2016-07-28 George Sylvestre Treatment of burn pain by trpv1 modulators
JP2016533375A (en) * 2013-10-17 2016-10-27 アッヴィ・ドイチュラント・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Aminotetralin derivatives and aminoindan derivatives, pharmaceutical compositions containing them, and their use in therapy
JP2016537323A (en) 2013-10-17 2016-12-01 アッヴィ・ドイチュラント・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Aminochroman derivatives, aminothiochroman derivatives and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
EP3201174A4 (en) * 2014-10-03 2018-06-06 The Royal Institution for the Advancement of Learning / McGill University Urea and bis-urea based compounds and analogues thereof useful in the treatment of androgen receptor mediated diseases or disorders
US10835524B2 (en) 2015-06-24 2020-11-17 University Of Florida Research Foundation, Incorporated Compositions for the treatment of pancreatic cancer and uses thereof
WO2018081190A1 (en) 2016-10-25 2018-05-03 The Procter & Gamble Company Fibrous structures
TW202138352A (en) * 2019-12-20 2021-10-16 美商愛彼特生物製藥股份有限公司 Substituted bicyclic and tricyclic ureas and amides, analogues thereof, and methods using same
DE102022104759A1 (en) 2022-02-28 2023-08-31 SCi Kontor GmbH Co-crystal screening method, in particular for the production of co-crystals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140354A (en) * 1998-04-29 2000-10-31 Ortho-Mcneil Pharmaceutical, Inc. N-substituted aminotetralins as ligands for the neuropeptide Y Y5 receptor useful in the treatment of obesity and other disorders
US6169116B1 (en) * 1995-05-05 2001-01-02 Novartis Ag Amino-tetralines, pharmaceutical compositions containing them and their pharmaceutical uses
US6201025B1 (en) * 1998-10-07 2001-03-13 Ortho-Mcneil Pharmaceutical, Inc. N-aralkylaminotetralins as ligands for the neuropeptide Y Y5 receptor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL65501A (en) 1981-05-08 1986-04-29 Astra Laekemedel Ab 1-alkyl-2-aminotetralin derivatives,process for their preparation and pharmaceutical compositions containing them
US4868210A (en) * 1988-03-30 1989-09-19 Warner-Lambert Company Antihyperlipidemic and antiatherosclerotic compounds and compositions
AUPP891299A0 (en) * 1999-02-26 1999-03-25 Fujisawa Pharmaceutical Co., Ltd. New 6-membered cyclic compounds
US6599849B1 (en) 2000-06-23 2003-07-29 Milliken & Company Knitted fabric-elastomer composite preferable for transfer or film-coating
WO2002008221A2 (en) 2000-07-20 2002-01-31 Neurogen Corporation Capsaicin receptor ligands
KR100453078B1 (en) 2000-08-21 2004-10-15 주식회사 태평양 Novel thiourea compounds and the pharmaceutical compositions containing the same
EP1311477A4 (en) 2000-08-21 2005-01-12 Pacific Corp Novel thiocarbamic acid derivatives and the pharmaceutical compositions containing the same
CN100439332C (en) * 2000-08-21 2008-12-03 株式会社太平洋 Novel thiourea derivatives and the pharmaceutical compositions containing thd same
EP1328809A1 (en) 2000-10-15 2003-07-23 Ortho-Mcneil Pharmaceutical, Inc. Improved ligand binding assays for vanilloid receptors
WO2002082212A2 (en) 2001-04-03 2002-10-17 United States Postal Service Systems and methods for capturing mail for electronic bill presentment
JP2005501873A (en) 2001-07-31 2005-01-20 バイエル・ヘルスケア・アクチェンゲゼルシャフト Amine derivatives
MXPA04005427A (en) 2001-12-10 2005-04-19 Amgen Inc Vanilloid receptor ligands and their use in treatments.
WO2003059904A1 (en) 2001-12-21 2003-07-24 Merck & Co., Inc. Heteroaryl substituted pyrrole modulators of metabotropic glutamate receptor-5
KR20040085151A (en) 2002-01-17 2004-10-07 뉴로젠 코포레이션 Substituted quinazolin-4-ylamine analogues as modulators of capsaicin
AR038420A1 (en) 2002-02-15 2005-01-12 Glaxo Group Ltd AMIDA COMPOSITE, PROCEDURE FOR THE PREPARATION OF THE SAME, ITS USE FOR THE MANUFACTURE OF A MEDICINAL PRODUCT AND PHARMACEUTICAL COMPOSITION THAT INCLUDES IT
US7074805B2 (en) 2002-02-20 2006-07-11 Abbott Laboratories Fused azabicyclic compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor
US20030158188A1 (en) 2002-02-20 2003-08-21 Chih-Hung Lee Fused azabicyclic compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor
WO2003097586A1 (en) 2002-05-17 2003-11-27 Janssen Pharmaceutica N.V. Aminotetralin-derived urea modulators of vanilloid vr1 receptor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169116B1 (en) * 1995-05-05 2001-01-02 Novartis Ag Amino-tetralines, pharmaceutical compositions containing them and their pharmaceutical uses
US6140354A (en) * 1998-04-29 2000-10-31 Ortho-Mcneil Pharmaceutical, Inc. N-substituted aminotetralins as ligands for the neuropeptide Y Y5 receptor useful in the treatment of obesity and other disorders
US6201025B1 (en) * 1998-10-07 2001-03-13 Ortho-Mcneil Pharmaceutical, Inc. N-aralkylaminotetralins as ligands for the neuropeptide Y Y5 receptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080153845A1 (en) * 2006-10-27 2008-06-26 Redpoint Bio Corporation Trpv1 antagonists and uses thereof

Also Published As

Publication number Publication date
ATE533743T1 (en) 2011-12-15
JP2005526137A (en) 2005-09-02
US20080097102A1 (en) 2008-04-24
US20100125140A1 (en) 2010-05-20
EP1506166A1 (en) 2005-02-16
WO2003097586A1 (en) 2003-11-27
EP1506166B1 (en) 2011-11-16
US7678812B2 (en) 2010-03-16
AR039823A1 (en) 2005-03-02
US6984647B2 (en) 2006-01-10
TW200406375A (en) 2004-05-01
US20030236280A1 (en) 2003-12-25
AU2003241453A1 (en) 2003-12-02
CA2486092A1 (en) 2003-11-27
US8569505B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US6984647B2 (en) Aminotetralin-derived urea modulators of vanilloid VR1 receptor
US7183411B2 (en) Naphthol, quinoline and isoquinoline-derived urea modulators of vanilloid VR1 receptor
US8394828B2 (en) Quinoline-derived amide modulators of vanilloid VR1 receptor
US20060223837A1 (en) Biaryl derived amide modulators of vanilloid VR1 receptor
Leeson et al. 4-Amido-2-carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor
DE69834842T2 (en) INHIBITION OF RAF-KINASE USING ARYL AND HETEROARYL SUBSTITUTED HETEROCYCLIC UREA
DE602005003128T3 (en) CHINAZOLINONE DERIVATIVES AS VANILLOID ANTAGONISTS
JP2005501873A (en) Amine derivatives
US6291491B1 (en) Amide derivatives as β 3 agonists
MX2011012712A (en) Aryl substituted carboxamide derivatives as calcium or sodium channel blockers.
JP2007509846A (en) Tetrahydro-naphthalene and urea derivatives
EP1757590A1 (en) Piperazinylalkylpyrazole derivatives useful as selective T-type calcium channel blockers and preparation method thereof
CZ151895A3 (en) Aminomethylindanes, -benzofurans and -benzothiophenes, their use and a pharmaceutical preparation
US8778941B2 (en) TRPM8 antagonists and their use in treatments
JP5467044B2 (en) TSH receptor antagonistic tetrahydroquinoline compound
JP2003192659A (en) Phenylurea derivative
JP2006528610A (en) Novel dibenzo [B, F] oxepin-10-carboxamide and pharmaceutical use thereof
US6872748B2 (en) Simplified resiniferatoxin analogues as vanilloid receptor agonist showing excellent analgesic activity and the pharmaceutical compositions containing the same
JP2002538154A (en) N-substituted imide derivatives having serotonin agonist activity
RU2155761C2 (en) Bicyclic derivatives of amidine, method of their synthesis, pharmaceutical composition and method of inhibition of nitrogen oxide synthetase activity
CA2388686A1 (en) Vla-4 integrin antagonists

Legal Events

Date Code Title Description
AS Assignment

Owner name: JANSSEN PHARMACEUTICA, N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CODD, ELLEN;DAX, SCOTT L.;JETTER, MICHELE;AND OTHERS;REEL/FRAME:017044/0641

Effective date: 20030506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION