US20050181205A1 - Cohesive coating for snack food packaging - Google Patents

Cohesive coating for snack food packaging Download PDF

Info

Publication number
US20050181205A1
US20050181205A1 US10/780,524 US78052404A US2005181205A1 US 20050181205 A1 US20050181205 A1 US 20050181205A1 US 78052404 A US78052404 A US 78052404A US 2005181205 A1 US2005181205 A1 US 2005181205A1
Authority
US
United States
Prior art keywords
weight
cohesive coating
coating
cohesive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/780,524
Other versions
US7235294B2 (en
Inventor
Harold Story
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bostik Inc
Original Assignee
Bostik Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34838619&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050181205(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bostik Inc filed Critical Bostik Inc
Priority to US10/780,524 priority Critical patent/US7235294B2/en
Assigned to BOSTIK FINDLEY, INC. reassignment BOSTIK FINDLEY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STORY, HAROLD G.
Priority to CNA2005800116100A priority patent/CN1946824A/en
Priority to ES05713278T priority patent/ES2315846T3/en
Priority to AU2005214330A priority patent/AU2005214330B2/en
Priority to CN201410174358.6A priority patent/CN103923580B/en
Priority to BRPI0507770-2A priority patent/BRPI0507770B1/en
Priority to MXPA06009639A priority patent/MXPA06009639A/en
Priority to EP20050713278 priority patent/EP1725627B1/en
Priority to PCT/US2005/004233 priority patent/WO2005080519A1/en
Priority to DE200560010057 priority patent/DE602005010057D1/en
Priority to AT05713278T priority patent/ATE409734T1/en
Priority to CA 2556466 priority patent/CA2556466C/en
Priority to JP2006554133A priority patent/JP5248018B2/en
Assigned to BOSTIK, INC. reassignment BOSTIK, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BOSTIK FINDLEY, INC.
Publication of US20050181205A1 publication Critical patent/US20050181205A1/en
Publication of US7235294B2 publication Critical patent/US7235294B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5855Peelable seals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D107/00Coating compositions based on natural rubber
    • C09D107/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/04Articles or materials wholly enclosed in single sheets or wrapper blanks
    • B65D75/20Articles or materials wholly enclosed in single sheets or wrapper blanks in sheets or blanks doubled around contents and having their opposed free margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/08Homopolymers or copolymers according to C08L7/00 - C08L21/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2857Adhesive compositions including metal or compound thereof or natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to a water based, cold seal, cohesive coating for flexible packaging systems, and more particularly to a water based, cold seal, cohesive coating containing a non-self-crosslinking acrylic emulsion for use in food packaging and especially snack food packaging.
  • a cold seal adhesive also referred to as a cohesive coating, is a type of pressure sensitive adhesive which possesses the ability to form a strong bond to itself when pressure is applied and also to form a bond with the flexible substrate on which it is applied. Cohesive coatings are thus pressure respondent, i.e. the introduction of mechanical energy is all that is required to initiate seal formation. Cold seal adhesives also preferably lack adhesion to the surfaces such as plastic films and overprint varnishes which are on the opposite face of these flexible substrates so that such flexible substrates or webs coated with the cold seal adhesive may be stored in roll form without blocking, i.e. without sticking together.
  • Cohesive coatings are used in a variety of different types of applications, but are particularly desirable for use as sealants in packaging for snack food such as candies, chocolates, ice cream and the like which are sensitive to heat thus rendering undesirable the use of heat sealable adhesives to seal such packages.
  • Typical cold seal adhesives have been formulated by combining a natural rubber elastomer, particularly a latex, with other ingredients such as stabilizers, antioxidants, and the like. Natural rubber elastomers exhibit most of the desirable cold seal properties noted above. Typically, these natural rubber elastomers where blended together with an acrylic emulsion. The acrylic emulsion provides advantageous properties to the natural rubber latex to enable the latex to adequately bond to flexible packaging substrates that may be covered with various types of inks, primers, release modifiers, slip agents and the like. Unfortunately, acrylic emulsions used in the past had heat reactive sites in the polymer chain which allow crosslinking of the polymer at temperatures ranging from above about 127° C. (260° F.).
  • Crosslinking results in an improvement of some physical properties and in better water and solvent resistance, but also makes the acrylic more brittle so that its adhesive properties are reduced.
  • the heat reactive functionality of such acrylic emulsions was not important since there was no way for the crosslinking to be initiated, i.e. processing temperatures of the flexible packaging substrates were well below the critical temperature of 127° C. (260° F.), and there were no known chemical initiators in the packaging materials per se.
  • the acrylic emulsion was adapted for use in cohesive or cold seal coatings for flexible food packaging systems.
  • the present invention provides a water based, cold seal, cohesive coating containing a natural rubber latex emulsion together with a non-self-crosslinking acrylic emulsion for flexible packaging systems, preferably food packaging systems, and most preferably snack food packaging systems.
  • the cold seal cohesive coating is applied to selected areas of a substrate in the form of a flexible sheet of material, and provides satisfactory adhesion to the surface of the substrate and also provides the ability to form a strong bond to itself when pressure is applied to seal the package.
  • the cold seal cohesive coating thus provides improved adhesion to meet the desired goal of providing at least 118.11 g/cm (300 g/inch) minimum bond strengths, offers enhanced cohesion to itself, offers resistance to seal deadening or degradation, and acceptable blocking strength so that it can be conveniently wound up on a reel for storage purposes.
  • the cold seal cohesive coating of the present invention is comprised of about 25% to about 90% by weight of a natural rubber latex emulsion, about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion, about 0.01% to about 10% by weight water, and one or more ingredients selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent, so that in combination the components total 100% by weight of the cohesive coating.
  • the cohesive coating of the present invention includes about 50% to about 90% by weight of the natural rubber latex emulsion and about 10% to about 50% by weight of the non-self-crosslinking acrylic emulsion in a blend with water and one or more of the other ingredients described above.
  • the cohesive coating includes about 60% to about 80% by weight of the natural rubber latex emulsion, about 20% to about 40% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 5% by weight water, and about 0.01% to about 5% by weight of each of the anti-foam agent, ammonia, the surfactant, and the anti-blocking agent.
  • the cohesive coating composition contains about 65% to about 70% by weight of the natural rubber latex emulsion, about 25% to about 35% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 3% by weight water, and about 0.01% to about 5% by weight of each of the anti-foam agent, the ammonia, the surfactant, and the anti-blocking agent.
  • the exact proportions of natural rubber latex emulsion and non-self-crosslinking acrylic emulsion are dependent on the commercial end use. For example, low pressure sealing which occurs at about 162.5 kpa (20 lbs./in. 2 ) would require a higher proportion of latex emulsion whereas higher pressure sealing as for example at about 650 kpa (80 lbs./in 2 ) would require a lower proportion of latex.
  • the cold seal cohesive coating of the present invention may be advantageously applied to selected areas of the substrate by conventional means, e.g. gravure, reverse roll coating, flexo, Meyer rod or air knife coating.
  • the cold seal cohesive coating of the present invention may then also be advantageously dried by conventional means, e.g. in an oven, at temperatures above 127° C. (260° F.), if desired, without detrimentally affecting the seals of the package.
  • a flexible packaging assembly for containing a food article.
  • the flexible packaging assembly includes a substrate in the form of a flexible sheet of material having opposite longitudinal edges, and a water based, cold seal cohesive coating disposed on at least one of the longitudinal edges.
  • the cohesive coating is comprised of the ingredients listed above.
  • the present invention provides a method for making a flexible package comprising the steps of applying a cold seal, cohesive coating containing the ingredients listed above to opposite longitudinal edges of a substrate in the form of a flexible sheet of material, contacting the cold seal cohesive coating applied along one longitudinal edge of the substrate with the cold seal cohesive coating applied on the opposite longitudinal edge of the substrate, and applying pressure to seal the cold seal cohesive coatings to one another and thus bond the two opposite longitudinal edges of the substrate together.
  • the cold seal cohesive coating may also be applied transversely across the substrate so that when the longitudinal edges of the substrate are brought together, the coating at the end of each individual package is also brought together into intimate contact so that when pressure is applied, it will cause the cold seal cohesive coating to cohere and thus provide an end seal for the package.
  • the method of forming a flexible package can also be utilized with two separate substrates.
  • the cold seal cohesive coating applied to the longitudinal edges and the transverse ends of each substrate are brought into contact with each other so that when pressure is applied, the cold seal cohesive coatings on the two substrates are caused to cohere and thus bond the two substrates together to form a package.
  • FIG. 1 is a plan view of an unassembled cold seal package utilizing a single flexible substrate and having the cohesive coating of the present invention applied thereon;
  • FIG. 2 is a cross-sectional view of the single flexible substrate of FIG. 1 formed into an assembled cold seal package in accordance with the present invention.
  • FIG. 3 is a cross-sectional view of an alternate embodiment of an assembled cold seal package utilizing two separate substrates.
  • the present invention relates to a water based cold seal adhesive flexible packaging material which utilizes a cohesive coating containing natural latex and a non-self-crosslinking acrylic to provide a bond between one or more substrates when sealed.
  • the packaging material can be utilized to wrap various types of products, such as food products like candy and other snack food to provide a flexible package to contain the product.
  • food products are the preferred articles wrapped by the present cold seal adhesive system, the present disclosure is not limited to such packages, but instead may be utilized with other forms of packaging for containing both comestible as well as non-comestible products.
  • the creation of a package typically begins with the production of a continuous sheet or web of wrapping material 2 .
  • the continuous web of material 2 is generally in the form of a thin, flexible film, and as is conventional, proceeds generally horizontally downstream to multi-station printing presses where artwork and text in one or more colors is applied to its exterior surface 4 (see FIG. 2 ), and adhesive in applied to its interior surface 6 in either a predetermined pattern or overall coverage.
  • the adhesive pattern typically will be rectangular defined by a pair of longitudinal strips 8 and 10 along opposite edges of the web and a transverse strip 12 extending between the two longitudinal strips 8 , 10 .
  • the distance between the transverse strips of adhesive define the length of the particular package, and is indicated by transverse dashed line 14 .
  • the adhesive layer is typically applied to the interior surface of the web after the application of the artwork and text on the exterior of the web by Gravure roll application, or by any other conventional means, so that the layer of adhesive has a thickness of about 0.05 to about 1.0 mil and may consist of either a multitude of separate spots or dots or a solid continuous layer. Also, it is typical for a protective surface, such as an overprint varnish or a release film, to be applied over the artwork and text to protect the artwork and text from smudging, and to control the coefficient of friction of the exterior surface of the web. As is conventional, the adhesive is applied in lengthwise and widthwise strips in appropriate selected surface areas of the web to form a rectangular configuration so that after insertion of the article 16 ( FIG.
  • the web 2 may be folded, as shown best in FIG. 2 , so that the longitudinal and transverse strips 8 , 10 , 12 of adhesive register with one another and become aligned so that upon the application of pressure, the web 2 forms the shape, size and volume of the package desired.
  • the web 2 itself is generally preferred to be formed as a thin, flexible material to function as a substrate for the materials to be applied.
  • the web 2 itself may be made of a plastic film material such as polyethylene, polypropylene, polyester, polyolefins, polystyrene, nylon, polycarbonates, cellophane, ethylenevinyl acetates, ethylenevinyl alcohols, polyvinyl alcohols, polyvinyl chloride, alphaolefins, polyvinyl butyrate, cellulose acetate, butyrate or cellulose acetate propionate or metalized versions of any of the aforementioned films.
  • a plastic film material such as polyethylene, polypropylene, polyester, polyolefins, polystyrene, nylon, polycarbonates, cellophane, ethylenevinyl acetates, ethylenevinyl alcohols, polyvinyl alcohols, polyvinyl chloride, alphaolefins, polyvinyl butyrate,
  • the web 2 may be made of a metalized foil such as aluminum foil, or the metalized foil may be laminated to the web.
  • one or more webs is for one or more webs to be formed of paper and paper products, including paperboard such as containerboard, which includes corrugating medium and linerboard used to make corrugated paper, and boxboard used to make folding cartons.
  • paper products such as publication grade paper or bleached or unbleached kraft paper, or recycled paper may also be utilized.
  • the above paper products may also be clay-coated to enhance printing of the artwork and text.
  • the present invention provides a water based cold seal cohesive system containing natural rubber latex and a non-self-crosslinking acrylic.
  • the system is comprised of a cohesive coating applied to one or more substrates or webs.
  • the packaging material may be comprised of a single substrate or web 2 and composed of the same substrate material. However, as shown best in FIG.
  • the packaging material may be separate substrates 20 , 22 and each may be composed of a different material depending upon the particular packaging desired and article 18 to be wrapped, and each substrate 20 , 22 may contain a cohesive coating 24 , 26 respectively, as described above.
  • the cohesive coatings 24 and 26 must have sufficient affinity for each other so that when a sealing pressure appropriate for the marketplace, typically 5 to 20 pounds per linear inch for low pressure packaging and 60 to 100 pounds per linear inch for confectionery, is applied thereto, the cohesive bonds to itself to form a closure for the packaging material and thus contain or wrap the article 18 inside.
  • the cohesive has more affinity for itself than it does for the substrate on which it is applied. It is also essential that the cohesive does not destroy, pull fibers, or if the web is laminated, de-laminate the web substrate when the package is opened. This necessarily implies that it is essential that the cohesive has more affinity for bonding to itself than the cohesive has for bonding to the substrate on which it is applied. This is typically measured by percent transfer of the cohesive when peeling in a T-peel configuration. The adhesive, when peeled, must not be resealable to the web or substrate from which it transferred.
  • the the bond formed when the packaging material is closed must be stronger than the bond between the cohesive and the web resulting in the transfer of the cohesive when the substrates are peeled apart, i.e. the package is opened by a user, to thereby provide a non-resealable package.
  • Modes of failure include but are not restricted to, cohesive failure, cohesive split, adhesive failure, film or paper destruct, etc.
  • the cold seal cohesive utilized in the present system contains natural rubber.
  • natural rubber includes all materials made from or containing natural latex.
  • natural latex as used herein is defined as a milky fluid that consists of extremely small particles of rubber obtained from plants, principally from the H. brasiliensis (rubber) tree dispersed in an aqueous medium. It contains a variety of naturally occurring substances, including cis-1,4-polyisoprene in a colloidal suspension and plant proteins.
  • the water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package material to contain an article in accordance with the present invention comprises a cohesive coating containing the following components: about 25% to about 90% by weight of a natural rubber latex emulsion, about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion, about 0.01% to about 10% by weight water, and one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent, so that in combination the components total 100% by weight of the cohesive coating.
  • the cohesive coating of the present invention includes about 50% to about 90% by weight of the natural rubber latex emulsion and about 10% to about 50% by weight of the non-self-crosslinking acrylic emulsion in a blend with water and one or more of the other ingredients described above.
  • the cohesive coating composition comprises about 60% to about 80% by weight of the natural rubber latex emulsion, about 20% to about 40% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 5% by weight water, about 0.01% to about 5% by weight of the anti-foam agent, about 0.01% to about 5% by weight of ammonia, about 0.01% to about 5% by weight of the surfactant, and about 0.01% to about 5% by weight of the anti-blocking agent.
  • the most preferred composition for the cohesive coating comprises about 65% to about 70% by weight of the natural rubber latex emulsion, about 25% to about 35% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 3% by weight water, about 0.01% to about 1% by weight of the anti-foam agent, about 0.01% to about 1% by weight of ammonia, about 0.01% to about 1% by weight of the surfactant, and about 0.01% to about 1% by weight of the anti-blocking agent.
  • one particularly desirable cohesive coating composition comprises about 68% by weight of the natural rubber latex emulsion, about 30% by weight of the non-self-crosslinking acrylic emulsion, about 1.2% by weight water, about 0.4% by weight of the anti-foam agent, about 0.2% by weight of ammonia, about 0.1% by weight of the surfactant, and about 0.1% by weight of the anti-blocking agent.
  • the natural rubber latex utilized in the composition of the present invention may be standard grade natural latex, high ammonia natural latex, low ammonia natural latex, double centrifuged latex, and/or high dry rubber content latex.
  • the preferred natural rubber latex is of the high ammonia type.
  • high ammonia natural latex is centrifuged natural latex preserved with ammonia only or by formaldehyde followed by ammonia.
  • the ammonia (alkalinity) content of high ammonia latex is not less than 0.6% on latex percent, as per ISO-2004 ('88E) and ASTM D1076-88.
  • Low ammonia latex is typically a centrifuged natural latex preserved with low ammonia and other preservatives.
  • ammonia content of low ammonia latex does not exceed 0.29% on latex percent as per the above cited ISO and ASTM Standards.
  • low ammonia latex is preserved with 0.2% ammonia together with a suitable combination of zinc oxide (ZnO) and tetramethylthiuramdisulphide (TMTD) of not more than 0.1% in total, based on latex weight.
  • Double centrifuged latex is a highly purified latex concentrate prepared by recentrifuging the first centrifuged latex which has been suitably diluted. As a result, the non-rubber constituents of latex are further reduced.
  • High dry rubber content (65-67%) latex is prepared by centrifugation, and provides an alternative to the above latex emulsions because it dries faster.
  • a particularly preferred natural rubber latex for use in the present cohesive composition is a high ammonia natural rubber latex available under the trade designation “UNITEX” from Guthrie Latex, Inc.
  • Another suitable high ammonia natural rubber latex emulsion is available under the trade designation Revertex from Centrotrade Rubber USA, Inc.
  • the cohesive composition of the present invention also includes a non-self-crosslinking acrylic emulsion. It is essential that the acrylic emulsion does not contain any self-crosslinking functionality.
  • the acrylic emulsion may contain from about 45% to about 60% solids, with about 48% to about 56% solids preferred.
  • the non-self-crosslinking acrylic emulsions may be selected from various types, such as styrene/acrylic, nitrile/acrylic and all-acrylic (i.e. 100% acrylic emulsion).
  • Non-self-crosslinking emulsions are available under the trade designations Hycar 26548 (a styrene acrylic emulsion), Joncryl 77 (a styrene acrylic emulsion), or Eastarez 1040 (a styrene acrylic emulsion), from Noveon, Johnson Polymer, or Eastman Chemical Products, respectively, and may be employed herein.
  • the preferred non-self-crosslinking acrylic emulsion is a styrene acrylic emulsion which contains from about 20% to about 40% styrene.
  • the preferred styrene-acrylic emulsion is that available under the trade designation Eastarez 4000 available from Eastman Chemical Products.
  • non-self-crosslinking acrylic emulsion provides water resistance, film clarity, alkali resistance, and pigment binding strength.
  • it since it contains no self-crosslinking functionalities, it can be used with the high temperature converting processes currently used in the industry and in particular above 127° C. (260° F.) without resulting in seal deadening of the packaged product.
  • the water utilized in the present cohesive composition may be local tap water, distilled water or deionized water. The only requirement is that the water utilized not contain any substantial degree of impurities and/or dissolved components that would not be compatible with the other formulating ingredients utilized in the present cohesive composition.
  • the ammonia which may be utilized in the cohesive composition is preferably in the form of ammonia hydroxide containing from about 20% to about 40% ammonia.
  • the source of ammonia that can be utilized in the cohesive coating of the present invention may also be concentrated ammonia itself, or may be available as aqueous ammonia, ammonium hydroxide 29.4%, or ammonium hydroxide BE.
  • Ammonia hydroxide available under the trade designation 26 DE from Hydrite Chemical Company has been found to be a preferred ingredient.
  • Anti-foam agents such as an emulsified silicone, a mineral oil based product and/or a glycol ester/polyol may be added to the cohesive coating to prevent foaming during application.
  • Typical anti-foam agents include an emulsified silicone available under the trade designation Dow Antifoam AF from Dow Corning, a mineral oil based blend available under the trade designation Ultra Deefo 2001 from Ultra Additives, Inc. and a mineral oil available under the trade designation Rhodoline 675 from Rhodia, Inc.
  • a particularly preferred anti-foam agent is a glycol ester/polyol available under the trade designation Rhodoline 999 from Rhodia, Inc.
  • Anti-blocking agents such as clays, calcium carbonate and/or fumed silica may be added to the cohesive coating to prevent blocking of the coating to the exterior side of the flexible material and which is not coated with the cohesive. These anti-blocking agents thus aid in preventing the cohesive coating from adhering to that exterior surface when the material is rolled up on a reel for storage.
  • Typical anti-blocking agents include a clay available under the trade designation ASP600 from Fleming Co., a fumed silica available under the trade designation Lo-Vel 29 from PPG Industries, and a calcium carbonate available under the trade designation Atomite from Harry Holland.
  • a particularly preferred anti-blocking agent is a fumed silica available under the trade designation Lo-Vel 29 available from PPG Industries.
  • the surfactant can be optionally present in the cohesive composition of the present invention in order to make the adhesive more hydrophilic.
  • the surfactant has a hydrophile-lipophile balance (HLB) number of preferably less than 15.
  • HLB hydrophile-lipophile balance
  • the HLB of a surfactant is an expression of its hydrophile-lipophile balance, i.e. the balance of the size and strength of the hydrophilic (water-loving or polar) and the lipophilic (oil-loving or non-polar) groups of the surfactant. All surfactants consist of a molecule that combines both hydrophilic and lipophilic groups.
  • the surfactant must be reasonably compatible with the other raw materials used in the cohesive so that it does not adversely affect the construction and performance of the adhesive. On the other hand, the surfactant must “bloom” to the surface of the adhesive so as to make the adhesive more hydrophilic. Thus, a delicate balance of compatibility must be maintained.
  • the surfactant also must be sufficiently stable and non-volatile to allow processing in manufacturing and application equipment without effect on the cohesive.
  • surfactant or “surface-active agent” refers to any compound that reduces surface tension when dissolved in water or water solutions, or which reduces interfacial tension between two liquids, or between a liquid and a solid.
  • the surfactant may be selected from both nonionic and anionic types of surfactants. Examples of suitable surfactants include, but are not limited to, the following:
  • Aerosol MA80I is a sulfosuccinate anionic surfactant available from Cytec Industries which has been found to be a preferred surfactant for use in the present cohesive composition.
  • the cohesive composition useful in the present invention may be formulated using any of the techniques known in the art.
  • a representative example of the prior art procedure involves placing the ingredients one by one into a stainless steel mixing vessel, while providing enough agitation to ensure proper and effective mixing of the ingredients. After all the ingredients have been added, the adhesive batch is adjusted to meet its critical physical parameters.
  • Optional conditioning additives may be incorporated into the cohesive composition in order to modify particular physical properties.
  • These additives may include colorants, such as titanium dioxide, sequestrants, deionized water, preservatives, biocides, stabilizers, anti-cling agents, pH adjusters, and other commonly known and used additives. As noted above, each of such additives can be present in amounts ranging from 0% to about 5% by weight.
  • Fillers may also optionally be incorporated into the adhesive composition in amounts ranging from about 0% to 5% by weight, preferably 0% to 3% by weight. These are inert in the formulation, and are typically added to increase the bulk of the composition. Also, depending upon the substance employed, a filler may function as an anti-blocking agent. Fillers may include alumina, hydrated alumina (Al 2 O 3 -3H 2 O), a silicate such as magnesium silicate, aluminum silicate, sodium silicate, potassium silicate and the like, mica, calcium carbonate (CaCO 3 ) and silica.
  • Al 2 O 3 -3H 2 O hydrated alumina
  • silicate such as magnesium silicate, aluminum silicate, sodium silicate, potassium silicate and the like
  • mica calcium carbonate (CaCO 3 ) and silica.
  • fillers such as talc, clay, wollastonite, feldspar, glass microspheres, ceramic microspheres, thermoplastic microspheres, baryte and wood flour may also be used as long as they do not materially alter the function of the remaining ingredients in the formulation.
  • Test Environment Tempoture 22.2° C. (72° F.)/Humidity 48%
  • Cohesive samples for bond strength testing were prepared using a number 7-wire wound rod drawing down cohesive on 20.32 cm by 27.94 cm (8 inches by 11 inches) film substrate then dried at 82° C. (180° F.) for 30 seconds in a convection oven. Samples were then allowed to cool to ambient temperature. 2.54 cm by 10.16 cm (1 inch by 4 inch) samples were cut from lab draw down, sealed using TMI SupersealerTM then within 60 seconds of sealing tested for bond strength on the Instron Tester. Bond strength data was then recorded in grams/inch units.
  • NRL refers to “natural rubber latex.”

Abstract

A water based, cold seal, cohesive coating for bonding one or more substrates together to form a flexible package to contain an article, especially useful for snack food packaging. The cohesive coating includes about 25% to about 90% by weight of a natural rubber latex emulsion, about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion, about 0.01% to about 10% by weight water, and one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent, so that in combination the components total 100% by weight of the composition. The use of a non-self-crosslinking acrylic emulsion provides an improved cold seal cohesive that may be employed with current high temperature converting systems and provides improved adhesion to substrates, enhanced cohesion to itself, reduced blocking and avoids seal deadening.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a water based, cold seal, cohesive coating for flexible packaging systems, and more particularly to a water based, cold seal, cohesive coating containing a non-self-crosslinking acrylic emulsion for use in food packaging and especially snack food packaging.
  • A cold seal adhesive, also referred to as a cohesive coating, is a type of pressure sensitive adhesive which possesses the ability to form a strong bond to itself when pressure is applied and also to form a bond with the flexible substrate on which it is applied. Cohesive coatings are thus pressure respondent, i.e. the introduction of mechanical energy is all that is required to initiate seal formation. Cold seal adhesives also preferably lack adhesion to the surfaces such as plastic films and overprint varnishes which are on the opposite face of these flexible substrates so that such flexible substrates or webs coated with the cold seal adhesive may be stored in roll form without blocking, i.e. without sticking together. Cohesive coatings are used in a variety of different types of applications, but are particularly desirable for use as sealants in packaging for snack food such as candies, chocolates, ice cream and the like which are sensitive to heat thus rendering undesirable the use of heat sealable adhesives to seal such packages.
  • Typical cold seal adhesives have been formulated by combining a natural rubber elastomer, particularly a latex, with other ingredients such as stabilizers, antioxidants, and the like. Natural rubber elastomers exhibit most of the desirable cold seal properties noted above. Typically, these natural rubber elastomers where blended together with an acrylic emulsion. The acrylic emulsion provides advantageous properties to the natural rubber latex to enable the latex to adequately bond to flexible packaging substrates that may be covered with various types of inks, primers, release modifiers, slip agents and the like. Unfortunately, acrylic emulsions used in the past had heat reactive sites in the polymer chain which allow crosslinking of the polymer at temperatures ranging from above about 127° C. (260° F.). Crosslinking results in an improvement of some physical properties and in better water and solvent resistance, but also makes the acrylic more brittle so that its adhesive properties are reduced. In the past, the heat reactive functionality of such acrylic emulsions was not important since there was no way for the crosslinking to be initiated, i.e. processing temperatures of the flexible packaging substrates were well below the critical temperature of 127° C. (260° F.), and there were no known chemical initiators in the packaging materials per se. Thus, the acrylic emulsion was adapted for use in cohesive or cold seal coatings for flexible food packaging systems.
  • In more recent years, however, new inks such as acrylic based and polyurethane based inks have been introduced for use on flexible packaging substrates. Also, the substrates themselves are typically laminations of various types of films bonded together with new laminating adhesives such as water based polyurethane dispersions (PUD's) and acrylics to form the substrate lamination. Further, the substrate itself is being manufactured from new films with multiple co-extrusion layers such as high barrier resins, high surface energy resins and low temperature sealing resins for the purpose of promoting adhesion of cold seal or cohesive coatings to the surface of the substrates. In addition, new processing equipment has been developed to speed the rate of converting raw materials to the flexible end product packaging assembly. New “extreme dryers” are being used to superheat and compress oven air that is used to dry flexible packaging coatings, and for example these extreme dryers run at 135° C. (275° F.) at 2.1 kg/cm2 (30 psi). Unfortunately, running at such temperatures results in being 15 degrees higher than the critical temperature of 127° C. (260° F.) mentioned above for initiating crosslinking. As a result, the acrylic latex used in the past crosslinked with the result that although it became tougher, it also decreased its cohesiveness resulting in what is commonly referred to in the art as “seal deadening.” Seal deadening of a flexible package results in failure of the seal which is unacceptable to manufacturers and consumers. As a result, it was desirable to develop a water based cohesive which could be utilized with flexible packaging systems that are manufactured by current techniques so that such systems do not result in cohesive failure.
  • SUMMARY OF THE INVENTION
  • The present invention provides a water based, cold seal, cohesive coating containing a natural rubber latex emulsion together with a non-self-crosslinking acrylic emulsion for flexible packaging systems, preferably food packaging systems, and most preferably snack food packaging systems. The cold seal cohesive coating is applied to selected areas of a substrate in the form of a flexible sheet of material, and provides satisfactory adhesion to the surface of the substrate and also provides the ability to form a strong bond to itself when pressure is applied to seal the package. The cold seal cohesive coating thus provides improved adhesion to meet the desired goal of providing at least 118.11 g/cm (300 g/inch) minimum bond strengths, offers enhanced cohesion to itself, offers resistance to seal deadening or degradation, and acceptable blocking strength so that it can be conveniently wound up on a reel for storage purposes.
  • In order to accomplish the above, the cold seal cohesive coating of the present invention is comprised of about 25% to about 90% by weight of a natural rubber latex emulsion, about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion, about 0.01% to about 10% by weight water, and one or more ingredients selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent, so that in combination the components total 100% by weight of the cohesive coating. Preferably, the cohesive coating of the present invention includes about 50% to about 90% by weight of the natural rubber latex emulsion and about 10% to about 50% by weight of the non-self-crosslinking acrylic emulsion in a blend with water and one or more of the other ingredients described above. In one particularly preferred composition the cohesive coating includes about 60% to about 80% by weight of the natural rubber latex emulsion, about 20% to about 40% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 5% by weight water, and about 0.01% to about 5% by weight of each of the anti-foam agent, ammonia, the surfactant, and the anti-blocking agent. Most preferably, the cohesive coating composition contains about 65% to about 70% by weight of the natural rubber latex emulsion, about 25% to about 35% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 3% by weight water, and about 0.01% to about 5% by weight of each of the anti-foam agent, the ammonia, the surfactant, and the anti-blocking agent.
  • The exact proportions of natural rubber latex emulsion and non-self-crosslinking acrylic emulsion are dependent on the commercial end use. For example, low pressure sealing which occurs at about 162.5 kpa (20 lbs./in.2) would require a higher proportion of latex emulsion whereas higher pressure sealing as for example at about 650 kpa (80 lbs./in2) would require a lower proportion of latex. The cold seal cohesive coating of the present invention may be advantageously applied to selected areas of the substrate by conventional means, e.g. gravure, reverse roll coating, flexo, Meyer rod or air knife coating. In addition, the cold seal cohesive coating of the present invention may then also be advantageously dried by conventional means, e.g. in an oven, at temperatures above 127° C. (260° F.), if desired, without detrimentally affecting the seals of the package.
  • In another aspect of the invention, there is provided a flexible packaging assembly for containing a food article. The flexible packaging assembly includes a substrate in the form of a flexible sheet of material having opposite longitudinal edges, and a water based, cold seal cohesive coating disposed on at least one of the longitudinal edges. The cohesive coating is comprised of the ingredients listed above.
  • In yet another aspect of the invention, the present invention provides a method for making a flexible package comprising the steps of applying a cold seal, cohesive coating containing the ingredients listed above to opposite longitudinal edges of a substrate in the form of a flexible sheet of material, contacting the cold seal cohesive coating applied along one longitudinal edge of the substrate with the cold seal cohesive coating applied on the opposite longitudinal edge of the substrate, and applying pressure to seal the cold seal cohesive coatings to one another and thus bond the two opposite longitudinal edges of the substrate together. The cold seal cohesive coating may also be applied transversely across the substrate so that when the longitudinal edges of the substrate are brought together, the coating at the end of each individual package is also brought together into intimate contact so that when pressure is applied, it will cause the cold seal cohesive coating to cohere and thus provide an end seal for the package.
  • It should also be noted that the method of forming a flexible package can also be utilized with two separate substrates. In such case, the cold seal cohesive coating applied to the longitudinal edges and the transverse ends of each substrate are brought into contact with each other so that when pressure is applied, the cold seal cohesive coatings on the two substrates are caused to cohere and thus bond the two substrates together to form a package.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1 is a plan view of an unassembled cold seal package utilizing a single flexible substrate and having the cohesive coating of the present invention applied thereon;
  • FIG. 2 is a cross-sectional view of the single flexible substrate of FIG. 1 formed into an assembled cold seal package in accordance with the present invention; and
  • FIG. 3 is a cross-sectional view of an alternate embodiment of an assembled cold seal package utilizing two separate substrates.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a water based cold seal adhesive flexible packaging material which utilizes a cohesive coating containing natural latex and a non-self-crosslinking acrylic to provide a bond between one or more substrates when sealed. The packaging material can be utilized to wrap various types of products, such as food products like candy and other snack food to provide a flexible package to contain the product. Although food products are the preferred articles wrapped by the present cold seal adhesive system, the present disclosure is not limited to such packages, but instead may be utilized with other forms of packaging for containing both comestible as well as non-comestible products.
  • Referring to FIG. 1, the creation of a package typically begins with the production of a continuous sheet or web of wrapping material 2. The continuous web of material 2 is generally in the form of a thin, flexible film, and as is conventional, proceeds generally horizontally downstream to multi-station printing presses where artwork and text in one or more colors is applied to its exterior surface 4 (see FIG. 2), and adhesive in applied to its interior surface 6 in either a predetermined pattern or overall coverage. The adhesive pattern typically will be rectangular defined by a pair of longitudinal strips 8 and 10 along opposite edges of the web and a transverse strip 12 extending between the two longitudinal strips 8, 10. The distance between the transverse strips of adhesive define the length of the particular package, and is indicated by transverse dashed line 14. The adhesive layer is typically applied to the interior surface of the web after the application of the artwork and text on the exterior of the web by Gravure roll application, or by any other conventional means, so that the layer of adhesive has a thickness of about 0.05 to about 1.0 mil and may consist of either a multitude of separate spots or dots or a solid continuous layer. Also, it is typical for a protective surface, such as an overprint varnish or a release film, to be applied over the artwork and text to protect the artwork and text from smudging, and to control the coefficient of friction of the exterior surface of the web. As is conventional, the adhesive is applied in lengthwise and widthwise strips in appropriate selected surface areas of the web to form a rectangular configuration so that after insertion of the article 16 (FIG. 2) to be wrapped, the web 2 may be folded, as shown best in FIG. 2, so that the longitudinal and transverse strips 8, 10, 12 of adhesive register with one another and become aligned so that upon the application of pressure, the web 2 forms the shape, size and volume of the package desired.
  • As noted above, the web 2 itself is generally preferred to be formed as a thin, flexible material to function as a substrate for the materials to be applied. The web 2 itself may be made of a plastic film material such as polyethylene, polypropylene, polyester, polyolefins, polystyrene, nylon, polycarbonates, cellophane, ethylenevinyl acetates, ethylenevinyl alcohols, polyvinyl alcohols, polyvinyl chloride, alphaolefins, polyvinyl butyrate, cellulose acetate, butyrate or cellulose acetate propionate or metalized versions of any of the aforementioned films. Alternately, depending upon the article to be packaged, the web 2 may be made of a metalized foil such as aluminum foil, or the metalized foil may be laminated to the web. Another alternative, is for one or more webs to be formed of paper and paper products, including paperboard such as containerboard, which includes corrugating medium and linerboard used to make corrugated paper, and boxboard used to make folding cartons. In addition, paper products such as publication grade paper or bleached or unbleached kraft paper, or recycled paper may also be utilized. The above paper products may also be clay-coated to enhance printing of the artwork and text.
  • In the packaging of food products, it is desirable to provide a peelable but non-resealable closure system (hereinafter referred to as a PNR system). In order to provide a peelable but non-resealable closure for the packaging material, the present invention provides a water based cold seal cohesive system containing natural rubber latex and a non-self-crosslinking acrylic. The system is comprised of a cohesive coating applied to one or more substrates or webs. Regardless of what is being packaged, it should be noted that in one form the packaging material may be comprised of a single substrate or web 2 and composed of the same substrate material. However, as shown best in FIG. 3, the packaging material may be separate substrates 20, 22 and each may be composed of a different material depending upon the particular packaging desired and article 18 to be wrapped, and each substrate 20, 22 may contain a cohesive coating 24, 26 respectively, as described above. In any event, the cohesive coatings 24 and 26 must have sufficient affinity for each other so that when a sealing pressure appropriate for the marketplace, typically 5 to 20 pounds per linear inch for low pressure packaging and 60 to 100 pounds per linear inch for confectionery, is applied thereto, the cohesive bonds to itself to form a closure for the packaging material and thus contain or wrap the article 18 inside.
  • However, for a PNR system, it is essential that the cohesive has more affinity for itself than it does for the substrate on which it is applied. It is also essential that the cohesive does not destroy, pull fibers, or if the web is laminated, de-laminate the web substrate when the package is opened. This necessarily implies that it is essential that the cohesive has more affinity for bonding to itself than the cohesive has for bonding to the substrate on which it is applied. This is typically measured by percent transfer of the cohesive when peeling in a T-peel configuration. The adhesive, when peeled, must not be resealable to the web or substrate from which it transferred.
  • The the bond formed when the packaging material is closed must be stronger than the bond between the cohesive and the web resulting in the transfer of the cohesive when the substrates are peeled apart, i.e. the package is opened by a user, to thereby provide a non-resealable package.
  • In all PNR systems, the acceptable mode of failure is determined by the market in which the cold seal cohesive will be sold. Modes of failure include but are not restricted to, cohesive failure, cohesive split, adhesive failure, film or paper destruct, etc.
  • It is important to note that the cold seal cohesive utilized in the present system contains natural rubber. As used herein, the term “natural rubber” includes all materials made from or containing natural latex. The term “natural latex” as used herein is defined as a milky fluid that consists of extremely small particles of rubber obtained from plants, principally from the H. brasiliensis (rubber) tree dispersed in an aqueous medium. It contains a variety of naturally occurring substances, including cis-1,4-polyisoprene in a colloidal suspension and plant proteins.
  • The water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package material to contain an article in accordance with the present invention comprises a cohesive coating containing the following components: about 25% to about 90% by weight of a natural rubber latex emulsion, about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion, about 0.01% to about 10% by weight water, and one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent, so that in combination the components total 100% by weight of the cohesive coating. Preferably, the cohesive coating of the present invention includes about 50% to about 90% by weight of the natural rubber latex emulsion and about 10% to about 50% by weight of the non-self-crosslinking acrylic emulsion in a blend with water and one or more of the other ingredients described above. In one particularly preferred composition, the cohesive coating composition comprises about 60% to about 80% by weight of the natural rubber latex emulsion, about 20% to about 40% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 5% by weight water, about 0.01% to about 5% by weight of the anti-foam agent, about 0.01% to about 5% by weight of ammonia, about 0.01% to about 5% by weight of the surfactant, and about 0.01% to about 5% by weight of the anti-blocking agent. The most preferred composition for the cohesive coating comprises about 65% to about 70% by weight of the natural rubber latex emulsion, about 25% to about 35% by weight of the non-self-crosslinking acrylic emulsion, about 0.01% to about 3% by weight water, about 0.01% to about 1% by weight of the anti-foam agent, about 0.01% to about 1% by weight of ammonia, about 0.01% to about 1% by weight of the surfactant, and about 0.01% to about 1% by weight of the anti-blocking agent. It has been determined that one particularly desirable cohesive coating composition comprises about 68% by weight of the natural rubber latex emulsion, about 30% by weight of the non-self-crosslinking acrylic emulsion, about 1.2% by weight water, about 0.4% by weight of the anti-foam agent, about 0.2% by weight of ammonia, about 0.1% by weight of the surfactant, and about 0.1% by weight of the anti-blocking agent.
  • The natural rubber latex utilized in the composition of the present invention may be standard grade natural latex, high ammonia natural latex, low ammonia natural latex, double centrifuged latex, and/or high dry rubber content latex. The preferred natural rubber latex is of the high ammonia type. Typically, high ammonia natural latex is centrifuged natural latex preserved with ammonia only or by formaldehyde followed by ammonia. The ammonia (alkalinity) content of high ammonia latex is not less than 0.6% on latex percent, as per ISO-2004 ('88E) and ASTM D1076-88. Low ammonia latex is typically a centrifuged natural latex preserved with low ammonia and other preservatives. The ammonia content of low ammonia latex does not exceed 0.29% on latex percent as per the above cited ISO and ASTM Standards. Typically, low ammonia latex is preserved with 0.2% ammonia together with a suitable combination of zinc oxide (ZnO) and tetramethylthiuramdisulphide (TMTD) of not more than 0.1% in total, based on latex weight. Double centrifuged latex is a highly purified latex concentrate prepared by recentrifuging the first centrifuged latex which has been suitably diluted. As a result, the non-rubber constituents of latex are further reduced. High dry rubber content (65-67%) latex is prepared by centrifugation, and provides an alternative to the above latex emulsions because it dries faster.
  • A particularly preferred natural rubber latex for use in the present cohesive composition is a high ammonia natural rubber latex available under the trade designation “UNITEX” from Guthrie Latex, Inc. Another suitable high ammonia natural rubber latex emulsion is available under the trade designation Revertex from Centrotrade Rubber USA, Inc.
  • The cohesive composition of the present invention also includes a non-self-crosslinking acrylic emulsion. It is essential that the acrylic emulsion does not contain any self-crosslinking functionality. The acrylic emulsion may contain from about 45% to about 60% solids, with about 48% to about 56% solids preferred. The non-self-crosslinking acrylic emulsions may be selected from various types, such as styrene/acrylic, nitrile/acrylic and all-acrylic (i.e. 100% acrylic emulsion). Non-self-crosslinking emulsions are available under the trade designations Hycar 26548 (a styrene acrylic emulsion), Joncryl 77 (a styrene acrylic emulsion), or Eastarez 1040 (a styrene acrylic emulsion), from Noveon, Johnson Polymer, or Eastman Chemical Products, respectively, and may be employed herein. However, the preferred non-self-crosslinking acrylic emulsion is a styrene acrylic emulsion which contains from about 20% to about 40% styrene. The preferred styrene-acrylic emulsion is that available under the trade designation Eastarez 4000 available from Eastman Chemical Products. The use of a non-self-crosslinking acrylic emulsion provides water resistance, film clarity, alkali resistance, and pigment binding strength. In addition, since it contains no self-crosslinking functionalities, it can be used with the high temperature converting processes currently used in the industry and in particular above 127° C. (260° F.) without resulting in seal deadening of the packaged product.
  • The water utilized in the present cohesive composition may be local tap water, distilled water or deionized water. The only requirement is that the water utilized not contain any substantial degree of impurities and/or dissolved components that would not be compatible with the other formulating ingredients utilized in the present cohesive composition.
  • The ammonia which may be utilized in the cohesive composition is preferably in the form of ammonia hydroxide containing from about 20% to about 40% ammonia. However, the source of ammonia that can be utilized in the cohesive coating of the present invention may also be concentrated ammonia itself, or may be available as aqueous ammonia, ammonium hydroxide 29.4%, or ammonium hydroxide BE. Ammonia hydroxide available under the trade designation 26 DE from Hydrite Chemical Company has been found to be a preferred ingredient.
  • Anti-foam agents such as an emulsified silicone, a mineral oil based product and/or a glycol ester/polyol may be added to the cohesive coating to prevent foaming during application. Typical anti-foam agents include an emulsified silicone available under the trade designation Dow Antifoam AF from Dow Corning, a mineral oil based blend available under the trade designation Ultra Deefo 2001 from Ultra Additives, Inc. and a mineral oil available under the trade designation Rhodoline 675 from Rhodia, Inc. A particularly preferred anti-foam agent is a glycol ester/polyol available under the trade designation Rhodoline 999 from Rhodia, Inc.
  • Anti-blocking agents such as clays, calcium carbonate and/or fumed silica may be added to the cohesive coating to prevent blocking of the coating to the exterior side of the flexible material and which is not coated with the cohesive. These anti-blocking agents thus aid in preventing the cohesive coating from adhering to that exterior surface when the material is rolled up on a reel for storage. Typical anti-blocking agents include a clay available under the trade designation ASP600 from Fleming Co., a fumed silica available under the trade designation Lo-Vel 29 from PPG Industries, and a calcium carbonate available under the trade designation Atomite from Harry Holland. A particularly preferred anti-blocking agent is a fumed silica available under the trade designation Lo-Vel 29 available from PPG Industries.
  • The surfactant can be optionally present in the cohesive composition of the present invention in order to make the adhesive more hydrophilic. The surfactant has a hydrophile-lipophile balance (HLB) number of preferably less than 15. The HLB of a surfactant is an expression of its hydrophile-lipophile balance, i.e. the balance of the size and strength of the hydrophilic (water-loving or polar) and the lipophilic (oil-loving or non-polar) groups of the surfactant. All surfactants consist of a molecule that combines both hydrophilic and lipophilic groups.
  • The surfactant must be reasonably compatible with the other raw materials used in the cohesive so that it does not adversely affect the construction and performance of the adhesive. On the other hand, the surfactant must “bloom” to the surface of the adhesive so as to make the adhesive more hydrophilic. Thus, a delicate balance of compatibility must be maintained. The surfactant also must be sufficiently stable and non-volatile to allow processing in manufacturing and application equipment without effect on the cohesive.
  • As used herein, the term “surfactant” or “surface-active agent” refers to any compound that reduces surface tension when dissolved in water or water solutions, or which reduces interfacial tension between two liquids, or between a liquid and a solid. The surfactant may be selected from both nonionic and anionic types of surfactants. Examples of suitable surfactants include, but are not limited to, the following:
      • (1) Fatty acid esters such as glycerol esters, PEG esters, and sorbitan esters, including ethylene glycol distearate, ethylene glycol monostrearate, glycerol mono and/or dioleate, PEG dioleate, PEG monolaurate, sorbitan monolaurate, sorbitan trioleate, etc. These surfactants are available from ICI, Rhone-Poulenc, and other sources.
      • (2) Nonionic ethoxylates such as alkylphenol ethoxylates, alcohol ethoxylates, alkylamine ethoxylates, etc., including octylphenol ethoxylate, nonylphenol ethoxylate, alkylamine ethoxylates, etc. These surfactants are available from Rhone-Poulenc, Union Carbide, and other sources.
      • (3) Nonionic surfactants such as 2,4,7,9-tetramethyl-5-decyn-4,7-diol available from Air Products.
      • (4) Ethylene oxide/Propylene oxide copolymers which are available from Union Carbide, BASF, etc. It should be noted that these and other surfactants can be blended if necessary to produce the best blend of hydrophilic performance properties.
  • Aerosol MA80I is a sulfosuccinate anionic surfactant available from Cytec Industries which has been found to be a preferred surfactant for use in the present cohesive composition.
  • The cohesive composition useful in the present invention may be formulated using any of the techniques known in the art. A representative example of the prior art procedure involves placing the ingredients one by one into a stainless steel mixing vessel, while providing enough agitation to ensure proper and effective mixing of the ingredients. After all the ingredients have been added, the adhesive batch is adjusted to meet its critical physical parameters.
  • Optional conditioning additives may be incorporated into the cohesive composition in order to modify particular physical properties. These additives may include colorants, such as titanium dioxide, sequestrants, deionized water, preservatives, biocides, stabilizers, anti-cling agents, pH adjusters, and other commonly known and used additives. As noted above, each of such additives can be present in amounts ranging from 0% to about 5% by weight.
  • Fillers may also optionally be incorporated into the adhesive composition in amounts ranging from about 0% to 5% by weight, preferably 0% to 3% by weight. These are inert in the formulation, and are typically added to increase the bulk of the composition. Also, depending upon the substance employed, a filler may function as an anti-blocking agent. Fillers may include alumina, hydrated alumina (Al2O3-3H2O), a silicate such as magnesium silicate, aluminum silicate, sodium silicate, potassium silicate and the like, mica, calcium carbonate (CaCO3) and silica. Other commonly employed fillers such as talc, clay, wollastonite, feldspar, glass microspheres, ceramic microspheres, thermoplastic microspheres, baryte and wood flour may also be used as long as they do not materially alter the function of the remaining ingredients in the formulation.
  • EXAMPLES
  • The following data was obtained by comparing bond strength performance using a self-crosslinking styrene/acrylic (Hycar 26288) to a non-self-crosslinking styrene/acrylic (Eastarez 4000) in cohesive formulations.
  • Test Method and Sample Preparation:
  • Test Equipment
  • Instron Model 1122 Material Tester with Model 5500 Electronics
  • Instron Test Equipment Setting—Crosshead Speed 30.5 cm/minute (12 inches/minute)
  • TMI Supersealer™—Sealing conditions 5.63 kg/cm2 (80 psi/) 0.5 second dwell/serrated jaws.
  • Test Environment—Temperature 22.2° C. (72° F.)/Humidity 48%
  • Sample Size—2.54 cm by 10.16 cm (1 inch by 4 inches)
  • Cohesive Coat Weight—approximately 1.5 kg (3.3 lb)/ream
  • Cohesive samples for bond strength testing were prepared using a number 7-wire wound rod drawing down cohesive on 20.32 cm by 27.94 cm (8 inches by 11 inches) film substrate then dried at 82° C. (180° F.) for 30 seconds in a convection oven. Samples were then allowed to cool to ambient temperature. 2.54 cm by 10.16 cm (1 inch by 4 inch) samples were cut from lab draw down, sealed using TMI Supersealer™ then within 60 seconds of sealing tested for bond strength on the Instron Tester. Bond strength data was then recorded in grams/inch units.
  • In the following Examples, the abbreviation “NRL” refers to “natural rubber latex.”
  • Example 1
  • Most preferred formula using non-self-crosslinking acrylics vs. standard cohesive formulations using self-crosslinking acrylics on polypropylene film. Results are an average of three data points.
    Cohesive Samples on Minimum
    OPP film Bond Strength Mode of Failure
    C2881 (most preferred 449 g adhesive failure/non-
    formula) (69% NRL/ resealable
    31% Non-self-
    crosslinking acrylic)
    C1099B (Standard w/self 324 g cohesive failure/resealable
    crosslinker)
    C1380-01 (Standard w/self 314 g cohesive failure/resealable
    crosslinker)
  • Example 2
  • Preferred formula range using non self-crosslinking acrylics vs. standard cohesive formulation using a self-crosslinking acrylic on primed polyester film. Results are an average of three data points.
    Cohesive Samples Minimum
    on primed PET film Bond Strength Mode of Failure
    C1772 (preferred 686 g adhesive failure/non-
    range 75% NRL/25% Non resealable
    self-crosslinking
    acrylic)
    C2942 (preferred 915 g adhesive failure/non-
    range 80% NRL/20% resealable
    Non self-crosslinking
    acrylic
    C1380-01 (Standard 180 g cohesive failure/resealable
    w/self crosslinker)
  • Example 3
  • Preferred formula range using non self-crosslinking acrylics vs. standard cohesive formulation using a self-crosslinking acrylic on polyester film. Results are an average of three data points.
    Cohesive Samples Minimum
    on primed PET film Bond Strength Mode of Failure
    C1704 (preferred 547 g adhesive failure/non-
    range 65% NRL/35% resealable
    Non self-crosslinking
    acrylic
    C1380-01 (Standard 455 g cohesive failure/resealable
    w/self crosslinker)
  • Example 4
  • Preferred formula range using non self-crosslinking acrylics vs. standard cohesive formulation using a self-crosslinking acrylic on primed foil film. Results are an average of three data points.
    Cohesive Samples Minimum
    on primed PET film Bond Strength Mode of Failure
    C2942 (preferred 660 g adhesive failure/non-
    range 80% NRL/20% Non resealable
    self-crosslinking acrylic
    C1099 (Standard w/self 220 g cohesive failure/resealable
    crosslinker)
  • Example 5
  • Most preferred formulation using non self-crosslinking acrylics vs. standard cohesive formulation using a self-crosslinking acrylic on OPP film. Results are an average of three data points and are from a customer's test trial roll.
    Cohesive Samples on Minimum
    primed foil film Bond Strength Mode of Failure
    C2881 (most preferred 371 g adhesive failure/non-
    formula) (69% NRL/31% resealable
    Non-self-crosslinking
    acrylic)
    C1099 (Standard w/self 217 g cohesive failure/resealable
    crosslinker)
  • In summary, it can be seen from the above data that in each case the use of a non-self-crosslinking acrylic resulted in higher bond strength than the use of a self-crosslinking acrylic.

Claims (83)

1. A water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package to contain an article, said cohesive coating comprised of the following components:
about 25% to about 90% by weight of a natural rubber latex emulsion;
about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion;
about 0.01% to about 10% by weight water; and
one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent;
so that in combination the components total 100% by weight of said cohesive coating.
2. The cohesive coating of claim 1 wherein said anti-foam agent is selected from the group consisting of an emulsified silicone, a mineral oil based product and a glycol ester/polyol.
3. The cohesive coating of claim 1 wherein said anti-foam agent is a glycol ester/polyol.
4. The cohesive coating of claim 1 wherein said ammonia is selected from the group consisting of ammonium hydroxide and aqueous ammonia.
5. The cohesive coating of claim 1 wherein said surfactant is selected from the group consisting of a fatty acid ester, a nonionic ethoxylate and an anionic sulfosuccinate.
6. The cohesive coating of claim 1 wherein said surfactant is an anionic sulfosuccinate.
7. The cohesive coating of claim 1 wherein said anti-blocking agent is selected from the group consisting of fumed silica, clay and calcium carbonate.
8. The cohesive coating of claim 1 wherein said anti-blocking agent is fumed silica.
9. The cohesive coating of claim 1 wherein said coating contains about 0.01% to about 5% by weight of the anti-foam agent.
10. The cohesive coating of claim 1 wherein said coating contains about 0.01% to about 5% by weight of ammonia.
11. The cohesive coating of claim 1 wherein said coating contains about 0.01% to about 5% by weight of the surfactant.
12. The cohesive coating of claim 1 wherein said coating contains about 0.01% to about 5% by weight of the anti-blocking agent.
13. The cohesive coating of claim 1 wherein said non-self-crosslinking acrylic emulsion is selected from the group consisting of styrene acrylic, nitrile acrylic and all-acrylic.
14. The cohesive coating of claim 1 wherein said non-self-crosslinking acrylic emulsion is a styrene-acrylic emulsion.
15. A water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package to contain an article, said cohesive coating comprised of the following components:
about 50% to about 90% by weight of a natural rubber latex emulsion;
about 10% to about 50% by weight of a non-self-crosslinking acrylic emulsion;
about 0.01% to about 10% by weight water; and
one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent;
so that in combination the components total 100% by weight of said cohesive coating.
16. The cohesive coating of claim 15 wherein said anti-foam agent is selected from the group consisting of an emulsified silicone, a mineral oil based product and a glycol ester/polyol.
17. The cohesive coating of claim 15 wherein said anti-foam agent is a glycol ester/polyol.
18. The cohesive coating of claim 15 wherein said ammonia is selected from the group consisting of ammonium hydroxide and aqueous ammonia.
19. The cohesive coating of claim 15 wherein said surfactant is selected from the group consisting of a fatty acid ester, a nonionic ethoxylate and an anionic sulfosuccinate.
20. The cohesive coating of claim 15 wherein said surfactant is an anionic sulfosuccinate.
21. The cohesive coating of claim 15 wherein said anti-blocking agent is selected from the group consisting of fumed silica, clay and calcium carbonate.
22. The cohesive coating of claim 15 wherein said anti-blocking agent is fumed silica.
23. The cohesive coating of claim 15 wherein said coating contains about 0.01% to about 5% by weight of the anti-foam agent.
24. The cohesive coating of claim 15 wherein said coating contains about 0.01% to about 5% by weight of ammonia.
25. The cohesive coating of claim 15 wherein said coating contains about 0.01% to about 5% by weight of the surfactant.
26. The cohesive coating of claim 15 wherein said coating contains about 0.01% to about 5% by weight of the anti-blocking agent.
27. The cohesive coating of claim 15 wherein said non-self-crosslinking acrylic emulsion is selected from the group consisting of styrene acrylic, nitrile acrylic and all-acrylic.
28. The cohesive coating of claim 15 wherein said non-self-crosslinking acrylic emulsion is a styrene-acrylic emulsion.
29. A water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package to contain an article, said cohesive coating comprised of the following components:
about 60% to about 80% by weight of a natural rubber latex emulsion;
about 20% to about 40% by weight of a non-self-crosslinking acrylic emulsion;
about 0.01% to about 10% by weight water; and
one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, and a conditioning agent;
so that in combination the components total 100% by weight of said cohesive coating.
30. The cohesive coating of claim 29 wherein said anti-foam agent is selected from the group consisting of an emulsified silicone, a mineral oil based product and a glycol ester/polyol.
31. The cohesive coating of claim 29 wherein said anti-foam agent is a glycol ester/polyol.
32. The cohesive coating of claim 29 wherein said ammonia is selected from the group consisting of ammonium hydroxide and aqueous ammonia.
33. The cohesive coating of claim 29 wherein said surfactant is selected from the group consisting of a fatty acid ester, a nonionic ethoxylate and an anionic sulfosuccinate.
34. The cohesive coating of claim 29 wherein said surfactant is an anionic sulfosuccinate.
35. The cohesive coating of claim 29 wherein said anti-blocking agent is selected from the group consisting of fumed silica, clay and calcium carbonate.
36. The cohesive coating of claim 29 wherein said anti-blocking agent is fumed silica.
37. The cohesive coating of claim 29 wherein said coating contains about 0.01% to about 5% by weight of the anti-foam agent.
38. The cohesive coating of claim 29 wherein said coating contains about 0.01% to about 5% by weight of ammonia.
39. The cohesive coating of claim 29 wherein said coating contains about 0.01% to about 5% by weight of the surfactant.
40. The cohesive coating of claim 29 wherein said coating contains about 0.01% to about 5% by weight of the anti-blocking agent.
41. The cohesive coating of claim 29 wherein said non-self-crosslinking acrylic emulsion is selected from the group consisting of styrene acrylic, nitrile acrylic and all-acrylic.
42. The cohesive coating of claim 29 wherein said non-self-crosslinking acrylic emulsion is a styrene-acrylic emulsion.
43. A water based cold seal cohesive coating for bonding one or more substrates together to form a flexible package to contain an article, said cohesive coating comprised of the following components:
about 68% by weight of a natural rubber latex emulsion;
about 30% by weight of a non-self-crosslinking acrylic emulsion;
about 1.2% by weight water;
about 0.4% by weight of an anti-foam agent;
about 0.2% by weight of ammonia;
about 0.1% by weight of a surfactant; and
about 0.1% by weight of an anti-blocking agent.
44. The cohesive coating of claim 43 wherein said anti-foam agent is selected from the group consisting of an emulsified silicone, a mineral oil based product and a glycol ester/polyol.
45. The cohesive coating of claim 43 wherein said anti-foam agent is a glycol ester/polyol.
46. The cohesive coating of claim 43 wherein said ammonia is selected from the group consisting of ammonium hydroxide and aqueous ammonia.
47. The cohesive coating of claim 43 wherein said surfactant is selected from the group consisting of a fatty acid ester, a nonionic ethoxylate and an anionic sulfosuccinate.
48. The cohesive coating of claim 43 wherein said surfactant is an anionic sulfosuccinate.
49. The cohesive coating of claim 43 wherein said anti-blocking agent is selected from the group consisting of fumed silica, clay and calcium carbonate.
50. The cohesive coating of claim 43 wherein said anti-blocking agent is fumed silica.
51. The cohesive coating of claim 43 wherein said non-self-crosslinking acrylic emulsion is selected from the group consisting of styrene acrylic, nitrile acrylic and all-acrylic.
52. The cohesive coating of claim 43 wherein said non-self-crosslinking acrylic emulsion is a styrene-acrylic emulsion.
53. A flexible packaging material for containing a food article, comprising:
a substrate in the form of a flexible sheet of material having opposite longitudinal edges; and
a water based cold seal cohesive coating disposed on at least one of said longitudinal edges, said cohesive coating comprised of the following components:
about 25% to about 90% by weight of a natural rubber latex emulsion;
about 10% to about 75% by weight of a non-self-crosslinking acrylic emulsion;
about 0.01% to about 10% by weight water; and
one or more ingredient selected from an anti-foam agent, ammonia, a surfactant, an anti-blocking agent, an inert filler, a conditioning agent, and a stabilizer;
so that in combination the components total 100% by weight of said cohesive coating.
54. The flexible packaging material of claim 53 wherein said substrate is selected from the group consisting of a polyester film, a high density polyethylene film, a polypropylene film, a foil, a primed foil and a primed polyolefin film.
55. The flexible packaging material of claim 53 wherein said cohesive coating includes:
about 50% to about 90% by weight of the natural rubber latex emulsion; and
about 10% to about 50% by weight of the non-self-crosslinking acrylic emulsion.
56. The flexible packaging material of claim 53 wherein said cohesive coating includes:
about 60% to about 80% by weight of the natural rubber latex emulsion; and
about 20% to about 40% by weight of the non-self-crosslinking acrylic emulsion.
57. The flexible packaging material of claim 53 wherein said cohesive coating includes:
about 65% to about 70% by weight of the natural rubber latex emulsion; and
about 25% to about 35% by weight of the non-self-crosslinking acrylic emulsion.
58. The flexible packaging material of claim 53 wherein said cohesive coating comprises:
about 68% by weight of the natural rubber latex emulsion;
about 30% by weight of the non-self-crosslinking acrylic emulsion;
about 1.2% by weight water;
about 0.4% by weight of the anti-foam agent;
about 0.2% by weight of ammonia;
about 0.1% by weight of the surfactant; and
about 0.1% by weight of the anti-blocking agent.
59. The flexible packaging material of claim 53 wherein said anti-foam agent is selected from the group consisting of an emulsified silicone, a mineral oil based product and a glycol ester/polyol.
60. The flexible packaging material of claim 53 wherein said anti-foam agent is a glycol ester/polyol.
61. The flexible packaging material of claim 53 wherein said ammonia is selected from the group consisting of ammonium hydroxide and aqueous ammonia.
62. The flexible packaging material of claim 53 wherein said surfactant is selected from the group consisting of a fatty acid ester, a nonionic ethoxylate and an anionic sulfosuccinate.
63. The flexible packaging material of claim 53 wherein said surfactant is an anionic sulfosuccinate.
64. The flexible packaging material of claim 53 wherein said anti-blocking agent is selected from the group consisting of fumed silica, clay and calcium carbonate.
65. The flexible packaging material of claim 53 wherein said anti-blocking agent is fumed silica.
66. The cohesive coating of claim 53 wherein said coating contains about 0.01% to about 5% by weight of the anti-foam agent.
67. The cohesive coating of claim 53 wherein said coating contains about 0.01% to about 5% by weight of ammonia.
68. The cohesive coating of claim 53 wherein said coating contains about 0.01% to about 5% by weight of the surfactant.
69. The cohesive coating of claim 53 wherein said coating contains about 0.01% to about 5% by weight of the anti-blocking agent.
70. The flexible packaging material of claim 53 wherein said non-self-crosslinking acrylic emulsion is selected from the group consisting of styrene acrylic, nitrile acrylic and all-acrylic.
71. The flexible packaging material of claim 53 wherein said non-self-crosslinking acrylic emulsion is a styrene-acrylic emulsion.
72. A method of making a cold seal flexible package comprising the steps of:
applying a cold seal cohesive coating in accordance with claim 1 to selected areas of one side of a substrate in the form of a flexible sheet of material;
forming said substrate into a package; and
applying pressure to said selected areas to seal said package.
73. The method of claim 72 wherein the step of forming said substrate into a package comprises folding said substrate so that the cohesive coating on different portions of said selected areas of said substrate contact each other.
74. The method of claim 72 wherein the step of forming said substrate into a package comprises contacting different portions of said selected areas of the cohesive coating on said substrate with a separate substrate.
75. A method of making a cold seal flexible package comprising the steps of:
applying a cold seal cohesive coating in accordance with claim 15 to selected areas of one side of a substrate in the form of a flexible sheet of material;
forming said substrate into a package; and
applying pressure to said selected areas to seal said package.
76. The cohesive coating of claim 75 wherein the step of forming said substrate into a package comprises folding said substrate so that the cohesive coating on different portions of said selected areas of said substrate contact each other.
77. The cohesive coating of claim 75 wherein the step of forming said substrate into a package comprises contacting different portions of said selected areas of the cohesive coating on said substrate with a separate substrate.
78. A method of making a cold seal flexible package comprising the steps of:
applying a cold seal cohesive coating in accordance with claim 29 to selected areas of one side of a substrate in the form of a flexible sheet of material;
forming said substrate into a package; and
applying pressure to said selected areas to seal said package.
79. The method of claim 78 wherein the step of forming said substrate into a package comprises folding said substrate so that the cohesive coating on different portions of said selected areas of said substrate contact each other.
80. The method of claim 78 wherein the step of forming said substrate into a package comprises contacting different portions of said selected areas of the cohesive coating on said substrate with a separate substrate.
81. A method of making a cold seal flexible package comprising the steps of:
applying a cold seal cohesive coating in accordance with claim 43 to selected areas of one side of a substrate in the form of a flexible sheet of material;
forming said substrate into a package; and
applying pressure to said selected areas to seal said package.
82. The method of claim 81 wherein the step of forming said substrate into a package comprises folding said substrate so that the cohesive coating on different portions of said selected areas of said substrate contact each other.
83. The method of claim 81 wherein the step of forming said substrate into a package comprises contacting different portions of said selected areas of the cohesive coating on said substrate with a separate substrate.
US10/780,524 2004-02-17 2004-02-17 Cohesive coating for snack food packaging Expired - Lifetime US7235294B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US10/780,524 US7235294B2 (en) 2004-02-17 2004-02-17 Cohesive coating for snack food packaging
JP2006554133A JP5248018B2 (en) 2004-02-17 2005-02-11 Sticky paint for snack food packaging
EP20050713278 EP1725627B1 (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging
AT05713278T ATE409734T1 (en) 2004-02-17 2005-02-11 COHESIVE COATING FOR SNACKFOOD PACKAGING
AU2005214330A AU2005214330B2 (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging
CN201410174358.6A CN103923580B (en) 2004-02-17 2005-02-11 cohesive coating for snack food packaging
BRPI0507770-2A BRPI0507770B1 (en) 2004-02-17 2005-02-11 COHESE, COLD, WATER-BASED SEAL COATINGS AND FLEXIBLE PACKAGING MATERIAL
MXPA06009639A MXPA06009639A (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging.
CNA2005800116100A CN1946824A (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging
PCT/US2005/004233 WO2005080519A1 (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging
DE200560010057 DE602005010057D1 (en) 2004-02-17 2005-02-11 COHESIVE COATING FOR SNACKFOOD PACKAGING
ES05713278T ES2315846T3 (en) 2004-02-17 2005-02-11 COHESIVE COATING FOR PACKAGING OF APPETIZERS.
CA 2556466 CA2556466C (en) 2004-02-17 2005-02-11 Cohesive coating for snack food packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/780,524 US7235294B2 (en) 2004-02-17 2004-02-17 Cohesive coating for snack food packaging

Publications (2)

Publication Number Publication Date
US20050181205A1 true US20050181205A1 (en) 2005-08-18
US7235294B2 US7235294B2 (en) 2007-06-26

Family

ID=34838619

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/780,524 Expired - Lifetime US7235294B2 (en) 2004-02-17 2004-02-17 Cohesive coating for snack food packaging

Country Status (12)

Country Link
US (1) US7235294B2 (en)
EP (1) EP1725627B1 (en)
JP (1) JP5248018B2 (en)
CN (2) CN103923580B (en)
AT (1) ATE409734T1 (en)
AU (1) AU2005214330B2 (en)
BR (1) BRPI0507770B1 (en)
CA (1) CA2556466C (en)
DE (1) DE602005010057D1 (en)
ES (1) ES2315846T3 (en)
MX (1) MXPA06009639A (en)
WO (1) WO2005080519A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090101534A1 (en) * 2007-10-17 2009-04-23 Quality Packing, Inc. Recyclable Blister Pack and Process of Making
US7681732B2 (en) 2008-01-11 2010-03-23 Cryovac, Inc. Laminated lidstock
US20120006710A1 (en) * 2009-03-24 2012-01-12 Lintec Corporation Package material for adhesive bandage and packaged adhesive bandage
US9096780B2 (en) 2010-02-26 2015-08-04 Intercontinental Great Brands Llc Reclosable fasteners, packages having reclosable fasteners, and methods for creating reclosable fasteners
WO2016014052A1 (en) 2014-07-23 2016-01-28 Bemis Company, Inc. Pell-open package
CN114179458A (en) * 2021-11-30 2022-03-15 河南墨道石墨烯科技有限公司 Graphene-based heating cloth for far infrared underwear, and preparation method and application thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576149B2 (en) * 2006-05-31 2009-08-18 Xerox Corporation Varnish
EP2086757A1 (en) * 2006-12-01 2009-08-12 Akzo Nobel N.V. Packaging laminate
DE602006005507D1 (en) 2006-12-29 2009-04-16 Kraft Foods R & D Inc Resealable packaging
US20090078590A1 (en) 2008-01-21 2009-03-26 Smith Dennis R Ultrasecure card package
CN101225286B (en) * 2008-01-31 2010-06-02 常州市塑料彩印有限公司 Self-sticky cold-seal adhesive and preparation method thereof
DE102008062368A1 (en) * 2008-12-17 2010-06-24 Tesa Se Pressure-sensitive adhesives based on natural rubber and polyacrylates
JP5496810B2 (en) * 2010-07-29 2014-05-21 ヘンケルジャパン株式会社 Adhesive for packaging bags
CN102120922B (en) * 2010-10-11 2014-06-04 上海晶华粘胶制品发展有限公司 Adhesive for high-temperature-resistant masking tape and high-temperature-resistant masking tape
US9365003B1 (en) 2013-03-15 2016-06-14 Bryce Corporation Extrusion lamination with registered cold seal adhesive
US11167898B2 (en) 2014-03-12 2021-11-09 Bemis Company, Inc. Packaging film with product-release coating
CN105349065A (en) * 2015-12-04 2016-02-24 重庆江北工农化工有限责任公司 Emulsion adhesive
JP2017138180A (en) * 2016-02-03 2017-08-10 デュプロ精工株式会社 Folding and bonding device, bonding state detection method, and folding and bonding method
CN109952257B (en) * 2016-09-30 2021-12-07 普里吉斯创新包装有限责任公司 Connective protective packaging
FI128604B (en) * 2017-10-11 2020-08-31 Build Care Oy Method for producing an elastic coating and elastic coating
DE102020114211A1 (en) 2020-05-27 2021-12-02 Sprick Gmbh Bielefelder Papier- Und Wellpappenwerke & Co. Packaging material web, packaging bag, packaging material cutting and manufacturing process
CN111933376A (en) * 2020-06-29 2020-11-13 洛阳中赫非晶科技有限公司 Formula for ferrite magnetic core
DE102022113441A1 (en) 2022-05-27 2023-11-30 Sprick Gmbh Bielefelder Papier- Und Wellpappenwerke & Co. Packaging material sheet and packaging bag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804573A (en) * 1986-05-05 1989-02-14 Mccarthy Brian A Packaging materials
US6099682A (en) * 1998-02-09 2000-08-08 3M Innovative Properties Company Corporation Of Delaware Cold seal package and method for making the same
US20030113519A1 (en) * 1998-06-18 2003-06-19 Ato Findley, Inc. Synthetic based self seal adhesive system for packaging
US6613831B1 (en) * 1999-08-03 2003-09-02 Sovereign Holdings, Llc Cold sealable adhesive

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1052954A (en) * 1962-05-25 1966-12-30 Bx Plastics Ltd Sealing process
GB1067568A (en) * 1963-05-10 1967-05-03 Bx Plastics Ltd Adhesive compositions
GB9109576D0 (en) * 1991-05-02 1991-06-26 United Biscuits Ltd Improvements in and relating to wrapping food products
CA2220774A1 (en) * 1995-06-02 1996-12-05 Dennis Emmett Mcgee Heat sealable film
JP2000515568A (en) * 1997-06-17 2000-11-21 モービル・オイル・コーポレーション Cold sealable bonding polymer
JPH1135907A (en) * 1997-07-16 1999-02-09 Dainippon Printing Co Ltd Cold sealing agent and laminated material
JPH1135908A (en) * 1997-07-16 1999-02-09 Dainippon Printing Co Ltd Cold sealing-type packaging material in a roll form
JPH11245346A (en) * 1998-03-05 1999-09-14 Toray Ind Inc Laminated film for packaging and laminate for packaging
US6383653B1 (en) * 2000-02-22 2002-05-07 Moore North America, Inc. Pressure sensitive cohesive
US7279205B2 (en) * 2001-02-07 2007-10-09 Sonoco Development, Inc. Packaging material
CN1255491C (en) * 2002-10-23 2006-05-10 广东省造纸研究所 Cold-pressurized adhesive paper tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804573A (en) * 1986-05-05 1989-02-14 Mccarthy Brian A Packaging materials
US6099682A (en) * 1998-02-09 2000-08-08 3M Innovative Properties Company Corporation Of Delaware Cold seal package and method for making the same
US6290801B1 (en) * 1998-02-09 2001-09-18 3M Innovative Properties Company Cold seal package and method for making the same
US6436499B1 (en) * 1998-02-09 2002-08-20 3M Innovative Properties Company Cold seal package and method for making the same
US20030113519A1 (en) * 1998-06-18 2003-06-19 Ato Findley, Inc. Synthetic based self seal adhesive system for packaging
US6613831B1 (en) * 1999-08-03 2003-09-02 Sovereign Holdings, Llc Cold sealable adhesive

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090101534A1 (en) * 2007-10-17 2009-04-23 Quality Packing, Inc. Recyclable Blister Pack and Process of Making
US20120325712A2 (en) * 2007-10-17 2012-12-27 Quality Packaging, Inc. Recyclable Blister Pack and Process of Making
US8616372B2 (en) * 2007-10-17 2013-12-31 Quality Packaging, Inc. Recyclable blister pack and process of making
US7681732B2 (en) 2008-01-11 2010-03-23 Cryovac, Inc. Laminated lidstock
US20120006710A1 (en) * 2009-03-24 2012-01-12 Lintec Corporation Package material for adhesive bandage and packaged adhesive bandage
US8561796B2 (en) * 2009-03-24 2013-10-22 Lintec Corporation Package material for adhesive bandage and packaged adhesive bandage
US9096780B2 (en) 2010-02-26 2015-08-04 Intercontinental Great Brands Llc Reclosable fasteners, packages having reclosable fasteners, and methods for creating reclosable fasteners
WO2016014052A1 (en) 2014-07-23 2016-01-28 Bemis Company, Inc. Pell-open package
US10011086B2 (en) 2014-07-23 2018-07-03 Bemis Company, Inc. Peel-open package
EP3172045B1 (en) * 2014-07-23 2022-11-16 Amcor Flexibles North America, Inc. Peel-open package
CN114179458A (en) * 2021-11-30 2022-03-15 河南墨道石墨烯科技有限公司 Graphene-based heating cloth for far infrared underwear, and preparation method and application thereof

Also Published As

Publication number Publication date
ES2315846T3 (en) 2009-04-01
JP5248018B2 (en) 2013-07-31
US7235294B2 (en) 2007-06-26
WO2005080519A1 (en) 2005-09-01
CA2556466A1 (en) 2005-09-01
AU2005214330B2 (en) 2011-08-04
AU2005214330A1 (en) 2005-09-01
BRPI0507770B1 (en) 2019-04-24
MXPA06009639A (en) 2007-01-25
DE602005010057D1 (en) 2008-11-13
CA2556466C (en) 2012-07-10
CN1946824A (en) 2007-04-11
CN103923580B (en) 2017-01-11
EP1725627B1 (en) 2008-10-01
CN103923580A (en) 2014-07-16
EP1725627A1 (en) 2006-11-29
BRPI0507770A (en) 2007-07-10
JP2007525579A (en) 2007-09-06
ATE409734T1 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
EP1725627B1 (en) Cohesive coating for snack food packaging
US20080102232A1 (en) Synthetic Based Self Seal Adhesive System for Packaging
EP1090084B1 (en) A synthetic based self seal adhesive system for packaging
US4889884A (en) Synthetic based cold seal adhesives
CA2711405A1 (en) Coating compositions, coated substrates and hermetic seals made therefrom having improved low temperature sealing and hot tack properties
US4107380A (en) Non-blocking coating composition
US6613831B1 (en) Cold sealable adhesive
US4804573A (en) Packaging materials
CN111002666A (en) Cigarette inner packaging film and preparation method thereof
WO2000056829A1 (en) Method for the preparation of non-blocking adhesive coated substrates and cold seal bonded laminates therefrom
BR112012005600B1 (en) process of enhancing the gas barrier properties of a composite laminated material
US3340089A (en) Wrapping material having a wax-type coating with spaced protruding particles
WO2003046099A1 (en) Water-based adhesive compositions
US20030049438A1 (en) Adhesive containing amides and magnesium silicate
US4609571A (en) Primer system for grease repellant papers
KR20240052389A (en) High-performance anti-fog film
EP1008639A1 (en) Application of a cold watery contact glue containing at least 20% of a homopolymer, contact glue adapted for application, and preparation thereof and products made by use of the contactglue
JPH0826347A (en) Moisture-proof corrugated fiberboard box for cold insulation
JP2011225273A (en) Packaging material for ethyl alcohol evaporation packaging bag
UA108982C2 (en) POLYMER FOUNDATION WITH ADHESIVE LOW-ADHESIVE MATERIAL

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTIK FINDLEY, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STORY, HAROLD G.;REEL/FRAME:014986/0606

Effective date: 20040209

AS Assignment

Owner name: BOSTIK, INC., WISCONSIN

Free format text: CHANGE OF NAME;ASSIGNOR:BOSTIK FINDLEY, INC.;REEL/FRAME:015675/0279

Effective date: 20041103

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12