US20050177615A1 - Bio-information sensor monitoring system and method - Google Patents

Bio-information sensor monitoring system and method Download PDF

Info

Publication number
US20050177615A1
US20050177615A1 US11/104,810 US10481005A US2005177615A1 US 20050177615 A1 US20050177615 A1 US 20050177615A1 US 10481005 A US10481005 A US 10481005A US 2005177615 A1 US2005177615 A1 US 2005177615A1
Authority
US
United States
Prior art keywords
bio
information
modem
communication
alert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/104,810
Inventor
Jeffrey Hawthorne
Michael Iiams
Glenn Tubb
Richard Stoll
Gary Shoffner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcohol Monitoring Systems Inc
Original Assignee
Alcohol Monitoring Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33450117&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050177615(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcohol Monitoring Systems Inc filed Critical Alcohol Monitoring Systems Inc
Priority to US11/104,810 priority Critical patent/US20050177615A1/en
Publication of US20050177615A1 publication Critical patent/US20050177615A1/en
Assigned to ALCOHOL MONITORING SYSTEMS, INC. reassignment ALCOHOL MONITORING SYSTEMS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ALCOHOL MONITORING SYSTEMS, LLC
Assigned to ALCOHOL MONITORING SYSTEMS, LLC reassignment ALCOHOL MONITORING SYSTEMS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHOFFNER, GARY ALAN, HAWTHORNE, JEFFREY SCOTT, IIAMS, MICHAEL LEONARD, STOLL, RICHARD A., TUBB, GLENN CHARLES
Assigned to ALCOHOL MONITORING SYSTEMS, INC. reassignment ALCOHOL MONITORING SYSTEMS, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT SERIAL NUMBERS 11441686, 11441692, AND 11441694 PREVIOUSLY RECORDED ON REEL 018132 FRAME 0295. ASSIGNOR(S) HEREBY CONFIRMS THE CERTIFICATE OF MERGER. Assignors: ALCOHOL MONITORING SYSTEMS, LLC
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCOHOL MONITORING SYSTEMS, INC.
Assigned to ALCOHOL MONITORING SYSTEMS, INC. reassignment ALCOHOL MONITORING SYSTEMS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics

Definitions

  • This invention relates to medical monitoring systems, and more particularly, relates to an improved passive method and system for monitoring bio-information of a subject.
  • monitors for the purpose of health management of chronic disease patients typically requires the patients to attach monitors of various kinds to their bodies, actuate the monitors to take various bio-information readings, and then hook up the monitor to a communication device, and then send the readings taken to a monitoring station or health care provider.
  • Various types of monitors may be used to gather bio-information data regarding the patient.
  • Such monitors may take the patient's blood pressure, temperature, pulse, SpO 2 , CO, ICG, ECG, respiration, blood glucose, and the like.
  • Such information can provide valuable feedback on the health status of the patient to the health care provider.
  • Current technology allows for patients to take regular measurements at home that get collected and transferred, typically via a standard telephone line, to a data collection system, or directly to a health care provider.
  • This methodology is a significant improvement over techniques that require patients to keep written logs of measurements taken themselves. Such written logs are subject to errors or missing data, and are usually only reviewed by a healthcare provider during routine checkups. In addition, some patients do not want to cooperate and take the readings that are needed, posing an additional problem to the healthcare provider.
  • FIG. 1 shows a block diagram of the bio-information sensor monitoring system of the present invention.
  • FIG. 2 shows a block diagram of the Bio-Information Unit 100 of FIG. 1 .
  • FIG. 3 shows a block diagram of an embodiment of Bio-Information Modem 103 .
  • FIGS. 4A, 4B , 4 C, and 4 D show a top view and three elevation views of the modem in an embodiment of the present invention.
  • FIG. 5 shows a block diagram of the monitor network in an embodiment of the present invention.
  • FIG. 1 shows a block diagram of the bio-information sensor monitoring system of the present invention.
  • the system and method is designed to collect, store and forward the information measured, sensed, or otherwise captured by various bio-sensors to a central web-hosted database, where treatment providers can gain access to the data collected by the bio-sensors.
  • the system and method provides a portable means for the bio-information to be collected.
  • the system and method can be used to remotely monitor any biological data including, but not limited to, blood oxygen, blood carbon dioxide, insulin levels, heart rate, temperature, respiration, and any other biological data based on the specific bio-sensor(s) being used in the bio-information unit.
  • the system allows for the one or more portable bio-sensors to be worn, attached, or otherwise utilized by a subject for an extended period of time in an untethered fashion.
  • the data collected by the bio-information unit is wirelessly forwarded to a bio-information modem that in turn forwards the collected data to a central web-hosted database where treatment providers can easily access the data collected.
  • Bio-Information Unit 100 is worn, attached, or otherwise utilized by Subject 107 being monitored.
  • Bio-Information Unit 100 will take readings from the one or more bio-sensors associated with it at predetermined or random intervals 24 hours a day, 7 days a week, 365 days a year.
  • Periodically Subject 107 with Bio-Information Unit 100 comes within range of Bio-Information Modem 103 .
  • Bio-Information Unit 100 When Bio-Information Unit 100 is within range of Bio-Information Modem 103 , and the timer indicates that it is time to communicate with Bio-Information Modem 103 , the Bio-Information Unit 100 will transfer all the data taken from the readings collected and stored, along with any error indicators and any other diagnostic data stored to Bio-Information Modem 103 . Bio-Information Modem 103 then stores all of this information for transmission to Bio-Information Network 104 . After receiving all of the information from Bio-Information Unit 100 , Bio-Information Modem 103 will check the stored data for any readings or errors.
  • Bio-Information Modem 103 Either of these, or a trigger from a predetermined time interval, will cause Bio-Information Modem 103 to communicate with Bio-Information Network 104 , typically through the telephone system via Communication Link 106 .
  • Communication Link 106 Once Communication Link 106 is established between Bio-Information Modem 103 and Bio-Information Network 104 , Bio-Information Modem 103 will transfer all of the readings, errors, and any other diagnostic data it has stored to Bio-Information Network 104 .
  • Bio-Information Network 104 then analyzes the data received and separates and groups the data into a number of separate categories for reporting to Treatment Provider 105 . The data can then be accessed by the monitoring personnel of Treatment Provider 105 through the use of secured dedicated websites through the Internet 109 and Internet Connections 110 to Bio-Information Network 104 .
  • the communication link between Bio-Information Unit 100 and Bio-Information Modem 103 is established through a bi-directional radio frequency (“RF”) Communication Link 102 .
  • RF Communication Link 102 provides a means for Bio-Information Modem 103 to set up the appropriate reading schedules and communication schedules for Bio-Information Unit 100 .
  • the reading schedules and communications schedules are set up by Treatment Provider 105 through Bio-Information Network 104 .
  • RF Communication Link 102 also provides a means for Bio-Information Modem 103 to monitor the status of the operating program of Bio-Information Unit 100 , and to update this program when needed.
  • RF Communication Link 102 also provides a means for Bio-Information Unit 100 to upload its stored readings, errors, and diagnostic data to Bio-Information Modem 103 .
  • Bio-Information Modem 103 and Bio-Information Unit 100 are sent over RF Communication Link 102 in a proprietary RF encoded format. This format is similar to a standardized serial TCP/IP format with RF encoding. To ensure that the data being sent over RF Communication Link 102 is valid, each packet sent from Bio-Information Unit 100 to Bio-Information Modem 103 must be validated by Bio-Information Modem 103 before being erased from memory by Bio-Information Unit 100 . The validation process insures that no data will be lost during the transfer should the transfer be interrupted by some type of interference, or if Subject 107 moves out of range of Bio-Information Modem 103 during the transfer.
  • Bio-Information Modem 103 Once Bio-Information Modem 103 has received all of the data from Bio-Information Unit 100 , it stores the data and then checks to see if there is any information in the data received that needs to be transmitted immediately. If not, Bio-Information Modem 103 will transmit the data on scheduled times only. Bio-Information Modem 103 is equipped with a Real Time and date Clock (“RTC”) used to monitor the calendar date and the current time. This provides a means for Bio-Information Modem 103 to check on programmable schedules to see when the data should be transmitted to Bio-Information Network 104 .
  • RTC Real Time and date Clock
  • Bio-Information Modem 103 Once Bio-Information Modem 103 decides that it is time to transmit data to Bio-Information Network 104 , it will turn off RF Communication Link 102 if it is currently on. Bio-Information Modem 103 will then turn on Modem Chip Set 326 (see FIG. 3 ) which is connected via a telephone line to Communication Link 106 . Bio-Information Modem 103 will then check to see if a dial tone is available. If no dial tone is available, then Bio-Information Modem 103 will log an alarm indicating no dial tone, and wait a predetermined period of time, such as one minute, before attempting to dial again. Once a dial tone is established, Bio-Information Modem 103 will dial the number to connect to Bio-Information Network 104 . When Bio-Information Network 104 answers the call, Modem Chip Set 326 will establish a connection via Communication Link 106 . Bio-Information Network 104 will then establish communication with Bio-Information Modem 103 .
  • Bio-Information Network 104 will first execute a series of inquiries used to validate Bio-Information Modem 103 . Once Bio-Information Modem 103 is validated, Bio-Information Network 104 will then retrieve all of the information stored in Bio-Information Modem 103 . Each data packet sent from Bio-Information Modem 103 must be validated by Bio-Information Network 104 before it is erased from memory by Bio-Information Modem 103 . This validation process makes sure that no data will be lost during the transfer from Bio-Information Modem 103 to Bio-Information Network 104 if Communication Link 106 should be interrupted for whatever reason.
  • Bio-Information Network 104 will check the status of the program stored in Bio-Information Modem 103 , as well as the status of the program stored in Bio-Information Unit 100 . If either program is out of date, then Bio-Information Network 104 will send an updated program to Bio-Information Modem 103 , which will update the program stored in Bio-Information Unit 100 upon the next communication session with Bio-Information Unit 100 . Bio-Information Network 104 will then update all schedule information for Bio-Information Modem 103 and Bio-Information Unit 100 .
  • Bio-Information Network 104 will then sort all of the data into the appropriate categories and decide if any immediate notification action needs to be taken. If notification is needed, then Bio-Information Network 104 will perform the desired notification operations, such as sending out a page, an e-mail, a phone mail message, a fax, etc. to monitoring personnel at Treatment Provider 105 via Communication Link 108 .
  • Treatment Provider 105 can access the data which triggered the alert by accessing the Internet 109 through Internet Connections 110 and logging into the appropriate secure web site. From the secure web site, Treatment Provider 105 can then review the alert, print reports of the desired data, as well as change any schedules or make any adjustments to the equipment operation, or contact Subject 102 if necessary.
  • FIG. 2 shows a block diagram of the Bio-Information Unit 100 of FIG. 1 where thicker arrows represent power circuits, and thinner arrows represent signal circuits.
  • Bio-Information Unit 100 contains a micro-controller that functions as a Power Controller 205 .
  • Power Controller 205 controls all of the power in Bio-Information Unit 100 .
  • Stand By Power Source 210 which causes Bio-Information Unit 100 to operate at a low voltage level.
  • Power Controller 205 is initialized and running, it will turn on the main power to Bio-Information Unit 100 by activating Main Power Source 204 .
  • Power Controller 205 will then operate at the main power level with the rest of the circuits. Another function of Power Controller 205 is to monitor the output power level of Battery 211 that powers Bio-Information Unit 100 . This is accomplished by running the raw battery voltage through a resistive voltage divider and then connecting it directly to Power Controller 205 . Power Controller 205 also controls the power to the analog circuits and an optional analog board, (which may be present in some types of Bio-Information Units 100 ) through Analog Power Source 212 . The optional analog board provides a means of adapting Bio-Information Unit 100 to a large assortment of bio-medical equipment. Analog Power Source 212 in turn provides the power to the Analog to Digital (“A to D”) Interface Chip 213 and the Sensor Interface Circuits 216 , so that the circuits are not powered up the entire time that Bio-Information Unit 100 is turned on.
  • a to D Analog to Digital
  • Power Controller 205 Another function of Power Controller 205 is to provide a real time clock. The time and date are downloaded to CPU 201 from Bio-Information Modem 103 and are then communicated to Power Controller 205 . This Process synchronizes the Bio-Information Unit 100 with the Bio-Information Modem 103 . This process will occur every time the two devices communicate with each other. The Bio-Information Modem 103 also synchronizes it's time and date with the Bio-Information Network 104 each time that they communicate. Power Controller 205 will then keep track of the time and date and automatically turn on Main Power Source 204 at scheduled times, which can be programmed by CPU 201 .
  • Power Controller 205 monitors all of the inputs that can cause Bio-Information Unit 100 to wake up due to some kind of stimulant condition existing.
  • One condition is if a magnet is passed near Reed Relay 202 .
  • Passing a magnet near Reed Relay 202 is a method that may be employed to wake up Bio-Information Unit 100 in order to take a reading at an unscheduled time. Any such activation of Bio-Information Unit 100 is processed as an alert.
  • Monitoring personnel can note in the records that the alert event recorded was a result of Subject 107 actions, thereby providing a means of verifying that Subject 107 took a manual reading at the appropriate time.
  • Bio-Information Unit 100 also contains CPU 201 which is a stand alone processor which typically has no internal memory component. In another embodiment of the invention, CPU 201 and Integrated Memory 203 may be combined together in the same chip.
  • CPU 201 retrieves all of its instructions and data from Integrated Memory 203 .
  • Integrated Memory 203 is divided internally into several different memory segments. There is a small segment of the memory dedicated to the boot strap program.
  • the boot strap program is used to initialize Bio-Information Unit 100 when power is first applied.
  • the boot strap program is a very basic program that will initialize CPU 201 and then check the validity of the main operating program that is stored in a larger section of Integrated Memory 203 .
  • the boot strap program also has the capability of establishing communications through RF Communication Link 102 if the main program is not valid.
  • RF Communication Link 102 is established through the use of a serial to RF Transceiver 207 and RF Antenna 208 .
  • CPU 201 will command Power Controller 205 to turn on RF Power Source 209 .
  • Power Controller 205 will then activate RF Power Source 209 and supply all the RF components with low voltage.
  • CPU 201 is connected to RF Transceiver 207 through RF Interface 206 which allows the serial signal from CPU 201 to be converted to the proper voltage for the RF transceiver circuits.
  • RF Communication Link 102 the main program can then be downloaded into Bio-Information Unit 100 by Bio-Information Modem 103 if required.
  • the boot strap program Once the boot strap program has verified that the main program is valid, it will then switch operation to the main program segment in Integrated Memory 203 . If the main operating program was verified, then Bio-Information Unit 100 will switch operation to the main program segment in Integrated Memory 203 instead of establishing RF Communication Link 102 .
  • a to D Interface Chip 213 is a programmable A to D converter in that it allows for amplifier gain to be applied to the signals that are being monitored through the use of internal Amplifier Circuits 214 and software stored in Integrated Memory 203 , instead of using external hardware to amplify the signals.
  • CPU 201 can then use software stored in Integrated Memory 203 to change the gain of all the A to D channels at any time.
  • a to D Interface Chip 213 is used to convert data captured by Sensor Array 215 .
  • Sensor Array 215 may have one or more sensors designed to capture one or more types of bio-information as discussed above.
  • the signals from Sensor Array 215 are input to A to D Interface Chip 213 in analog format and are then converted to a digital signal and communicated through a serial link to CPU 201 .
  • Bio-Information Unit 100 After Bio-Information Unit 100 has been activated by Power Controller 205 , and it has confirmed all of the memory functions are good, it will read Sensor Array 215 and record all of the resulting data from each type of sensor that is being monitored at the time. After Bio-Information Unit 100 has completed reading Sensor Array 215 , it will then activate the RF circuits and wait to see if a RF signal is received from Bio-Information Modem 103 . If a signal is received from Bio-Information Modem 103 , Bio-Information Unit 100 will then retrieve all of the information stored in Integrated Memory 203 and transmit it to Bio-Information Modem 103 . If no signal is received then Bio-Information Unit 100 will turn off until the next scheduled wake up time.
  • FIG. 3 shows a block diagram of an embodiment of Bio-Information Modem 103 where thicker arrows represent power circuits, and thinner arrows represent signal circuits.
  • FIGS. 4A, 4B , 4 C, and 4 D show a top and three elevation views of an embodiment of Modem 104 .
  • Bio-Information Modem 103 is powered by an external dc power supply (not shown in FIG. 3 or FIGS. 4A, 4B , 4 C, and 4 D).
  • the dc power supply can be configured to plug into either a 115V AC supply or an international type power outlet.
  • Main Power Input 338 is connected to Main Power Input Circuits 321 .
  • Main Power Input Circuits 321 filter the power and make sure that the polarity of the power is correct and then distributes the power to Main Power Supply 322 , Modem Power Supply 325 , and RF Power Supply 328 .
  • Main Power Input Circuits 321 also monitor the power for AC power failures. This is accomplished by running the DC power input through a resistive divider and then into CPU 317 .
  • Main Power Supply 322 supplies the power to CPU 317 , RS232 Interface or Analog Modem Selector 329 , RS232 Interface 330 , Serial EE Prom 337 , Battery Backup Circuits 324 and JTAG Connector 319 . Battery Backup Circuits 324 supply the power to Integrated Memory 318 and Real Time Clock 323 .
  • the main power is applied as soon as Bio-Information Modem 103 is plugged in.
  • the fact that Bio-Information Modem 103 is on is reflected by at least one LED that is illuminated in LED's 336 .
  • LCD Display 320 is also used to display any special instructions or request of Subject 107 by the monitoring personnel. Test results and critical sensor information can also be displayed on LCD Display 320 .
  • LCD Display 320 will also display any schedule information that Subject 107 may need to be aware of.
  • Integrated Memory 318 is divided internally into several different memory segments. There is a small segment of the memory dedicated to the boot strap program.
  • the boot strap program is used to initialize Bio-Information Modem 103 when power is first applied.
  • the boot strap is a very basic program that will initialize CPU 317 and then check the validity of the main operating program that is stored in a larger section of Integrated Memory 318 .
  • Serial EE Prom 337 is used to store all of the critical information for Bio-Information Modem 103 such as the serial number, device identification information and the phone numbers that should be called to connect to Bio-Information Network 104 .
  • Bio-Information Modem 103 will retrieve and validate all of the critical information and will then validate the main operational program.
  • Bio-Information Modem 103 will check the input from the RS232 Interface or Analog Modem Selector 329 and see if there is a serial cable attached to Bio-Information Modem 103 at External RS232 Connector 332 , which is accessible by opening up the cover of Bio-Information Modem 103 . If there is, then Bio-Information Modem 103 will go into slave mode waiting for serial communications to come in through RS232 Interface 330 . This mode provides a means of manually issuing commands and loading programs and or data to Bio-Information Modem 103 . If there is no serial cable attached to Bio-Information Modem 103 , then CPU 317 will turn on Modem Power Supply 325 .
  • Modem Chip Set 326 After allowing Modem Chip Set 326 to power up and stabilize, CPU 317 will check for a dial tone. If no dial tone is identified, then CPU 317 will hang up and generate an alarm to indicate that the telephone line is not connected at External Phone Line Connector 327 . Bio-Information Modem 103 will then try again after a predefined delay period. External Hand Set Connector 331 receives the telephone wire that comes from the telephone hand set.
  • CPU 317 will dial the telephone number for Bio-Information Network 104 .
  • CPU 317 will then monitor Modem Chip Set 326 for an indication that a connection has been established with Bio-Information Network 104 . If CPU 317 determines that the telephone line is busy, or that there is no answer, then CPU 317 will hang up and log an alarm indicating that a connection could not be established.
  • Bio-Information Modem 103 will then wait a predefined delay period and try to make the connection again. Once the connection is established, Bio-Information Network 104 becomes the master and Bio-Information Modem 103 becomes the slave. Bio-Information Network 104 will then extract all of the pertinent information that it needs to validate Bio-Information Modem 103 and to update its status.
  • Bio-Information Modem 103 It will then update Real Time Clock 323 so that Bio-Information Modem 103 is set to the proper time for the time zone where Bio-Information Modem 103 is currently located.
  • Bio-Information Network 104 will then upload all data that has been stored in Bio-Information Modem 103 since the last upload.
  • Bio-Information Network 104 then has the ability to download any number of specific monitoring instructions that need to be sent to Bio-Information Unit 100 , along with all of the schedule information for Bio-Information Modem 103 and Bio-Information Unit 100 .
  • Bio-Information Network 104 will then tell Bio-Information Modem 103 to hang up and start operations.
  • CPU 317 will hang up and turn off the power to Modem Chip Set 326 .
  • CPU 317 will then activate the RF circuits and try to establish RF Communication Link 102 .
  • RF Communication Link 102 is established through the use of a serial to RF Transceiver 334 and the RF antenna 335 .
  • CPU 317 is connected to RF transceiver 334 through RF Interface 333 which allows the serial signal from CPU 317 to be converted to the proper voltage for the RF transceiver circuits.
  • CPU 317 will start sending a standard message out over the RF Communication Link 102 .
  • Bio-Information Unit 100 This message is addressed to Bio-Information Unit 100 , so if Bio-Information Unit 100 is within range of Bio-Information Modem 103 and Bio-Information Unit 100 is active, then Bio-Information Unit 100 will answer the message with a status message indicating that Bio-Information Unit 100 is active and operating. Bio-Information Modem 103 will then become the master and Bio-Information Unit 100 will become the slave. Bio-Information Modem 103 will extract all of the status information from Bio-Information Unit 100 and will validate the operating program and any pertinent operating data needed by Bio-Information Unit 100 . Bio-Information Modem 103 will then update the real time clock in Bio-Information Unit 100 so that Bio-Information Unit 100 and Bio-Information Modem 103 are on the same time.
  • Bio-Information Modem 103 will then extract any sensor reading information as well as any error information from Bio-Information Unit 100 . Bio-Information Modem 103 will then turn off the RF signal. When the RF signal is turned off, Bio-Information Unit 100 will turn itself off and return to normal monitoring mode.
  • CPU 317 will then scan through the data just received and determine if any of the data needs to be sent immediately to Bio-Information Network 104 . If not, then CPU 317 will wait a predefined delay period and then start the polling sequence again. If there is data that needs to be transmitted to Bio-Information Network 104 immediately, or if the time clock indicates that it is a scheduled time to call Bio-Information Network 104 , then Bio-Information Modem 103 will go through the connection process and connect to Bio-Information Network 104 .
  • FIG. 5 shows a more detailed block diagram of Bio-Information Network 104 .
  • Alert/sensor information is constantly being generated and monitored by the bio-information system components of the present invention. The following description will describe how and why the information is generated and how the information is handled and processed once it is generated.
  • Bio-Information Unit 100 Once Bio-Information Unit 100 has been adjusted properly for utilization by Subject 107 , the battery pack is inserted into Bio-Information Unit 100 . When the battery makes electrical contact upon being inserted into Bio-Information Unit 100 , an alert is generated indicating that power has been applied to Bio-Information Unit 100 . Normal occurrences of these alerts are generated each time Bio-Information Unit 100 is attached to Subject 107 or each time that the battery is changed. The power up alerts provide a means for the monitoring personnel to verify that the equipment is on Subject 107 at the appropriate times. If Subject 107 does not have the equipment on at the appropriate time the monitoring personnel can respond appropriately in case there is a problem with Subject 107 . Once Bio-Information Unit 100 is operational Subject 107 simply needs to wear or attach the sensor array required and go about their normal activities. The bio-information data will be collected continuously, and transmitted automatically to the Bio-Information Modem 103 .
  • the alert described previously will cause the Bio-Information Unit 100 to attempt to communicate with the Bio-Information Modem 103 as soon as possible, overriding the normal scheduled communications programmed in the Bio-Information Modem 103 and Bio-Information Unit 100 .
  • the bio-information system uses the scheduled communications times to ensure that all equipment is operational under normal conditions. During normal operation there should be no reason for the equipment to override the schedules, and it will only communicate when scheduled. If no schedules were used, there would be no communication and no validation that readings were being taken and stored by Bio-Information Unit 100 . If Bio-Information Unit 100 does not communicate at a scheduled communications time, Bio-Information Modem 103 will generate an alert that Bio-Information Unit 100 failed to communicate on schedule, along with the present time and date.
  • This alert will be labeled as a Communications Alert by Situation Analyzer 124 . If Bio-Information Unit 100 does not communicate with Bio-Information Modem 103 for a period of 24 hours, Bio-Information Modem 103 will generate a No Communications alert, along with the present time and date. This will also be labeled as a Communications Alert by Situation Analyzer 124 . Thus, the normal flow of communications between Bio-Information Unit 100 and Bio-Information Modem 103 must exist or there will be alerts generated to inform the treatment providers that something is wrong with the system.
  • Bio-Information Modem 103 communicates with Bio-Information Network 104 through Communication Server 126 .
  • the normal communication between these two devices is controlled by schedules programmed into the particular Bio-Information Modem 103 utilized with the particular Bio-Information Unit 100 .
  • Bio-Information network 104 also monitors these schedules. If Bio-Information Modem 103 fails to communicate when scheduled, Bio-Information Network 104 will generate a Communications Alert indicating that Bio-Information Modem 103 failed to communicate when scheduled. Thus, if the normal communications cycle between Bio-Information Modem 103 and Communication Server 126 is broken, then alerts will be generated to inform the supervising personnel that something is wrong with the system.
  • This type of system architecture provides the means for equipment at each level of the communications chain to generate alarms.
  • Bio-Information Unit 100 automatically collects the information from Sensor Array 215 and transmits it to Bio-Information Modem 103 whenever possible, or whenever scheduled, depending on which mode of operation is programmed into Bio-Information Unit 100 .
  • Treatment Provider/Subject Database 134 Data input and data management are handled by Treatment Provider/Subject Database 134 .
  • Treatment Provider/Subject Database 134 is actually a combination of databases that support all of the processes in the Bio-Information Network 104 .
  • Treatment Provider/Subject Database 134 includes input and management of the Bio-Information Network 104 data, the Treatment Provider/Subject data, and any specific information relating to Treatment Provider 105 , and the subject or patient data, including their individual monitoring and communications schedules and the device information for the Bio-Information Modems 103 and Bio-Information Units 100 assigned to them.
  • Bio-Information Unit 100 This information includes what type of sensor arrays are being monitored by Bio-Information Unit 100 , along with the special programs needed for Bio-Information Modem 103 and Bio-Information Unit 100 to operate correctly with the desired sensor configuration.
  • Bio-Information Network 104 By storing the programs in Bio-Information Network 104 , Bio-Information Unit 100 can be generic in nature until it is assigned to a Subject 107 and the specific sensors that are to be monitored are assigned. After assigning the sensors, Bio-Information Network 104 will then select the appropriate software program required for monitoring the sensors and use it to remotely re-program Bio-Information Unit 100 , there by specializing the unit for use with the appropriate sensors.
  • Treatment Provider/Subject Database 134 stores all of the readings, errors, and other information that is received from all Bio-Information Modems 103 and Bio-Information Units 100 as well as any device information that needs to be stored and monitored. Treatment Provider/Subject Database 134 provides a complete historical record of all readings and alerts for all Subjects 107 being monitored in the bio-information system.
  • the Situation Analyzer 124 is used to parse the data and apply a known set of rules and instructions for handling the raw data and parsing it into a limited number of categories. This includes applying any special instructions specific to the types of sensors being monitored. These categories can be broken down as follows:
  • Situation Analyzer 124 will make inquires to Workflow Instructions 128 to get direction on what is the default or specific action that should be applied to the message that was just received. Situation Analyzer 124 will then use those instructions and any historical data relating to similar messages to make a decision as to what to do with the message just received. Situation Analyzer 124 can also monitor historical data and escalate the severity of alert messages if there is a pattern emerging in the data that would require more immediate attention. Situation Analyzer 124 can also monitor historical data to detect trends in the data and then provide feedback to Subject 107 automatically by sending messages to Bio-information Modem 103 to display the feedback information on LCD Display 320 . Once Situation Analyzer 124 has made its decision, it will pass the message to Alert Manager 130 .
  • Alert Manager 130 will inquire to Workflow Instructions 128 for direction on what should be done with this message. Alert Manager 130 will then present the alert information to the monitoring personnel upon request and prompt them for some type of action required to address the alert.
  • the main categories of alert management can be broken down as:
  • Situation Analyzer 124 will then check to see if the message that is being dealt with requires any type of immediate notification of a treatment provider. If it does, then Situation Analyzer 124 will send the message to Notification Server 132 . Notification Server 132 will then inquire to Supervising Agency/Subject Database 134 to see what method of notification is preferred by the monitoring person, and then execute the notification method, such as sending an e-mail, sending a fax, sending a phone mail message, or sending a page to the appropriate person.
  • the method and system of the present invention offers multiple levels of alert ranging from alerts generated by Bio-Information Unit 100 , from Bio-Information Modem 103 , and from Bio-Information Network 104 .
  • the flexible and changeable scheduling at the Subject 107 level allows for more timely intervention for all of the Subjects 107 being monitored who are having problems.

Abstract

A bio-information monitoring system passively monitors a patient with a remote portable bio-information unit that takes various bio-information measurements at selected time intervals as well as at random times without patient intervention. The measurements are converted to digital signals which are transmitted from the bio-information unit to a modem when the bio-information unit is in proximity to the modem. The signals are stored in the modem and uploaded to a central monitoring network. Automatic alerts may be sent from the central monitoring network to a treatment provider. The treatment provider may also access the information through secured dedicated websites via the Internet.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of application Ser. No. 10/441,960, filed on May 19, 2003, titled “BIO-INFORMATION SENSOR MONITORING SYSTEM AND METHOD,” which is incorporated herein by reference in its entirety. This application is also related to a co-pending patent application Ser. No. 10/441,940 by Hawthorne et al. titled “METHOD AND APPARATUS FOR REMOTE BLOOD ALCOHOL MONITORING” and filed on May 19, 2003, which is owned by the same assignee of this invention.
  • FIELD OF THE INVENTION
  • This invention relates to medical monitoring systems, and more particularly, relates to an improved passive method and system for monitoring bio-information of a subject.
  • BACKGROUND OF THE INVENTION
  • In-home monitoring for the purpose of health management of chronic disease patients typically requires the patients to attach monitors of various kinds to their bodies, actuate the monitors to take various bio-information readings, and then hook up the monitor to a communication device, and then send the readings taken to a monitoring station or health care provider. Various types of monitors may be used to gather bio-information data regarding the patient. Such monitors may take the patient's blood pressure, temperature, pulse, SpO2, CO, ICG, ECG, respiration, blood glucose, and the like. Such information can provide valuable feedback on the health status of the patient to the health care provider. Current technology allows for patients to take regular measurements at home that get collected and transferred, typically via a standard telephone line, to a data collection system, or directly to a health care provider. This methodology is a significant improvement over techniques that require patients to keep written logs of measurements taken themselves. Such written logs are subject to errors or missing data, and are usually only reviewed by a healthcare provider during routine checkups. In addition, some patients do not want to cooperate and take the readings that are needed, posing an additional problem to the healthcare provider.
  • There is a need for a remote bio-information monitoring system which can be passively used by the patient that can take the various measurements at selected time intervals as well as at random times without patient intervention. There is also a need to be able to download the bio-information measurements to a monitoring station or healthcare provider without requiring any actions on the part of the patient being monitored, eliminating the need for the patient to personally record the measurements, or connect the monitoring device to a telephone line to download and transmit the data. The present invention meets these and other needs in the art.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a block diagram of the bio-information sensor monitoring system of the present invention.
  • FIG. 2 shows a block diagram of the Bio-Information Unit 100 of FIG. 1.
  • FIG. 3 shows a block diagram of an embodiment of Bio-Information Modem 103.
  • FIGS. 4A, 4B, 4C, and 4D show a top view and three elevation views of the modem in an embodiment of the present invention.
  • FIG. 5 shows a block diagram of the monitor network in an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a block diagram of the bio-information sensor monitoring system of the present invention. The system and method is designed to collect, store and forward the information measured, sensed, or otherwise captured by various bio-sensors to a central web-hosted database, where treatment providers can gain access to the data collected by the bio-sensors. The system and method provides a portable means for the bio-information to be collected. The system and method can be used to remotely monitor any biological data including, but not limited to, blood oxygen, blood carbon dioxide, insulin levels, heart rate, temperature, respiration, and any other biological data based on the specific bio-sensor(s) being used in the bio-information unit. The system allows for the one or more portable bio-sensors to be worn, attached, or otherwise utilized by a subject for an extended period of time in an untethered fashion. The data collected by the bio-information unit is wirelessly forwarded to a bio-information modem that in turn forwards the collected data to a central web-hosted database where treatment providers can easily access the data collected.
  • Referring now to FIG. 1, a portable Bio-Information Unit 100 is worn, attached, or otherwise utilized by Subject 107 being monitored. Bio-Information Unit 100 will take readings from the one or more bio-sensors associated with it at predetermined or random intervals 24 hours a day, 7 days a week, 365 days a year. Periodically Subject 107 with Bio-Information Unit 100 comes within range of Bio-Information Modem 103. When Bio-Information Unit 100 is within range of Bio-Information Modem 103, and the timer indicates that it is time to communicate with Bio-Information Modem 103, the Bio-Information Unit 100 will transfer all the data taken from the readings collected and stored, along with any error indicators and any other diagnostic data stored to Bio-Information Modem 103. Bio-Information Modem 103 then stores all of this information for transmission to Bio-Information Network 104. After receiving all of the information from Bio-Information Unit 100, Bio-Information Modem 103 will check the stored data for any readings or errors. Either of these, or a trigger from a predetermined time interval, will cause Bio-Information Modem 103 to communicate with Bio-Information Network 104, typically through the telephone system via Communication Link 106. Once Communication Link 106 is established between Bio-Information Modem 103 and Bio-Information Network 104, Bio-Information Modem 103 will transfer all of the readings, errors, and any other diagnostic data it has stored to Bio-Information Network 104. Bio-Information Network 104 then analyzes the data received and separates and groups the data into a number of separate categories for reporting to Treatment Provider 105. The data can then be accessed by the monitoring personnel of Treatment Provider 105 through the use of secured dedicated websites through the Internet 109 and Internet Connections 110 to Bio-Information Network 104.
  • The communication link between Bio-Information Unit 100 and Bio-Information Modem 103 is established through a bi-directional radio frequency (“RF”) Communication Link 102. RF Communication Link 102 provides a means for Bio-Information Modem 103 to set up the appropriate reading schedules and communication schedules for Bio-Information Unit 100. The reading schedules and communications schedules are set up by Treatment Provider 105 through Bio-Information Network 104. RF Communication Link 102 also provides a means for Bio-Information Modem 103 to monitor the status of the operating program of Bio-Information Unit 100, and to update this program when needed. RF Communication Link 102 also provides a means for Bio-Information Unit 100 to upload its stored readings, errors, and diagnostic data to Bio-Information Modem 103.
  • All of the communication between Bio-Information Modem 103 and Bio-Information Unit 100 is sent over RF Communication Link 102 in a proprietary RF encoded format. This format is similar to a standardized serial TCP/IP format with RF encoding. To ensure that the data being sent over RF Communication Link 102 is valid, each packet sent from Bio-Information Unit 100 to Bio-Information Modem 103 must be validated by Bio-Information Modem 103 before being erased from memory by Bio-Information Unit 100. The validation process insures that no data will be lost during the transfer should the transfer be interrupted by some type of interference, or if Subject 107 moves out of range of Bio-Information Modem 103 during the transfer.
  • Once Bio-Information Modem 103 has received all of the data from Bio-Information Unit 100, it stores the data and then checks to see if there is any information in the data received that needs to be transmitted immediately. If not, Bio-Information Modem 103 will transmit the data on scheduled times only. Bio-Information Modem 103 is equipped with a Real Time and date Clock (“RTC”) used to monitor the calendar date and the current time. This provides a means for Bio-Information Modem 103 to check on programmable schedules to see when the data should be transmitted to Bio-Information Network 104.
  • Once Bio-Information Modem 103 decides that it is time to transmit data to Bio-Information Network 104, it will turn off RF Communication Link 102 if it is currently on. Bio-Information Modem 103 will then turn on Modem Chip Set 326 (see FIG. 3) which is connected via a telephone line to Communication Link 106. Bio-Information Modem 103 will then check to see if a dial tone is available. If no dial tone is available, then Bio-Information Modem 103 will log an alarm indicating no dial tone, and wait a predetermined period of time, such as one minute, before attempting to dial again. Once a dial tone is established, Bio-Information Modem 103 will dial the number to connect to Bio-Information Network 104. When Bio-Information Network 104 answers the call, Modem Chip Set 326 will establish a connection via Communication Link 106. Bio-Information Network 104 will then establish communication with Bio-Information Modem 103.
  • Bio-Information Network 104 will first execute a series of inquiries used to validate Bio-Information Modem 103. Once Bio-Information Modem 103 is validated, Bio-Information Network 104 will then retrieve all of the information stored in Bio-Information Modem 103. Each data packet sent from Bio-Information Modem 103 must be validated by Bio-Information Network 104 before it is erased from memory by Bio-Information Modem 103. This validation process makes sure that no data will be lost during the transfer from Bio-Information Modem 103 to Bio-Information Network 104 if Communication Link 106 should be interrupted for whatever reason.
  • After all of the information has been received, Bio-Information Network 104 will check the status of the program stored in Bio-Information Modem 103, as well as the status of the program stored in Bio-Information Unit 100. If either program is out of date, then Bio-Information Network 104 will send an updated program to Bio-Information Modem 103, which will update the program stored in Bio-Information Unit 100 upon the next communication session with Bio-Information Unit 100. Bio-Information Network 104 will then update all schedule information for Bio-Information Modem 103 and Bio-Information Unit 100.
  • Bio-Information Network 104 will then sort all of the data into the appropriate categories and decide if any immediate notification action needs to be taken. If notification is needed, then Bio-Information Network 104 will perform the desired notification operations, such as sending out a page, an e-mail, a phone mail message, a fax, etc. to monitoring personnel at Treatment Provider 105 via Communication Link 108.
  • Treatment Provider 105 can access the data which triggered the alert by accessing the Internet 109 through Internet Connections 110 and logging into the appropriate secure web site. From the secure web site, Treatment Provider 105 can then review the alert, print reports of the desired data, as well as change any schedules or make any adjustments to the equipment operation, or contact Subject 102 if necessary.
  • FIG. 2 shows a block diagram of the Bio-Information Unit 100 of FIG. 1 where thicker arrows represent power circuits, and thinner arrows represent signal circuits. Referring now to FIG. 2, Bio-Information Unit 100 contains a micro-controller that functions as a Power Controller 205. Power Controller 205 controls all of the power in Bio-Information Unit 100. When the Battery 211 is inserted into Bio-Information Unit 100, Power Controller 205 is activated by Stand By Power Source 210, which causes Bio-Information Unit 100 to operate at a low voltage level. Once Power Controller 205 is initialized and running, it will turn on the main power to Bio-Information Unit 100 by activating Main Power Source 204. Power Controller 205 will then operate at the main power level with the rest of the circuits. Another function of Power Controller 205 is to monitor the output power level of Battery 211 that powers Bio-Information Unit 100. This is accomplished by running the raw battery voltage through a resistive voltage divider and then connecting it directly to Power Controller 205. Power Controller 205 also controls the power to the analog circuits and an optional analog board, (which may be present in some types of Bio-Information Units 100) through Analog Power Source 212. The optional analog board provides a means of adapting Bio-Information Unit 100 to a large assortment of bio-medical equipment. Analog Power Source 212 in turn provides the power to the Analog to Digital (“A to D”) Interface Chip 213 and the Sensor Interface Circuits 216, so that the circuits are not powered up the entire time that Bio-Information Unit 100 is turned on.
  • Another function of Power Controller 205 is to provide a real time clock. The time and date are downloaded to CPU 201 from Bio-Information Modem 103 and are then communicated to Power Controller 205. This Process synchronizes the Bio-Information Unit 100 with the Bio-Information Modem 103. This process will occur every time the two devices communicate with each other. The Bio-Information Modem 103 also synchronizes it's time and date with the Bio-Information Network 104 each time that they communicate. Power Controller 205 will then keep track of the time and date and automatically turn on Main Power Source 204 at scheduled times, which can be programmed by CPU 201.
  • Power Controller 205 monitors all of the inputs that can cause Bio-Information Unit 100 to wake up due to some kind of stimulant condition existing. One condition is if a magnet is passed near Reed Relay 202. Passing a magnet near Reed Relay 202 is a method that may be employed to wake up Bio-Information Unit 100 in order to take a reading at an unscheduled time. Any such activation of Bio-Information Unit 100 is processed as an alert. Monitoring personnel can note in the records that the alert event recorded was a result of Subject 107 actions, thereby providing a means of verifying that Subject 107 took a manual reading at the appropriate time.
  • Passing a magnet near Reed Relay 202 will cause it to open and close creating a pulsing effect at the power controllers monitoring input. When Power Controller 205 detects this pulsing input it will immediately turn on Main Power Source 204 and activate Bio-Information Unit 100.
  • Bio-Information Unit 100 also contains CPU 201 which is a stand alone processor which typically has no internal memory component. In another embodiment of the invention, CPU 201 and Integrated Memory 203 may be combined together in the same chip. CPU 201 retrieves all of its instructions and data from Integrated Memory 203. Integrated Memory 203 is divided internally into several different memory segments. There is a small segment of the memory dedicated to the boot strap program. The boot strap program is used to initialize Bio-Information Unit 100 when power is first applied. The boot strap program is a very basic program that will initialize CPU 201 and then check the validity of the main operating program that is stored in a larger section of Integrated Memory 203. The boot strap program also has the capability of establishing communications through RF Communication Link 102 if the main program is not valid.
  • RF Communication Link 102 is established through the use of a serial to RF Transceiver 207 and RF Antenna 208. CPU 201 will command Power Controller 205 to turn on RF Power Source 209. Power Controller 205 will then activate RF Power Source 209 and supply all the RF components with low voltage. CPU 201 is connected to RF Transceiver 207 through RF Interface 206 which allows the serial signal from CPU 201 to be converted to the proper voltage for the RF transceiver circuits. By establishing RF Communication Link 102 the main program can then be downloaded into Bio-Information Unit 100 by Bio-Information Modem 103 if required. Once the boot strap program has verified that the main program is valid, it will then switch operation to the main program segment in Integrated Memory 203. If the main operating program was verified, then Bio-Information Unit 100 will switch operation to the main program segment in Integrated Memory 203 instead of establishing RF Communication Link 102.
  • A to D Interface Chip 213 is a programmable A to D converter in that it allows for amplifier gain to be applied to the signals that are being monitored through the use of internal Amplifier Circuits 214 and software stored in Integrated Memory 203, instead of using external hardware to amplify the signals. CPU 201 can then use software stored in Integrated Memory 203 to change the gain of all the A to D channels at any time. A to D Interface Chip 213 is used to convert data captured by Sensor Array 215. Sensor Array 215 may have one or more sensors designed to capture one or more types of bio-information as discussed above. The signals from Sensor Array 215 are input to A to D Interface Chip 213 in analog format and are then converted to a digital signal and communicated through a serial link to CPU 201.
  • After Bio-Information Unit 100 has been activated by Power Controller 205, and it has confirmed all of the memory functions are good, it will read Sensor Array 215 and record all of the resulting data from each type of sensor that is being monitored at the time. After Bio-Information Unit 100 has completed reading Sensor Array 215, it will then activate the RF circuits and wait to see if a RF signal is received from Bio-Information Modem 103. If a signal is received from Bio-Information Modem 103, Bio-Information Unit 100 will then retrieve all of the information stored in Integrated Memory 203 and transmit it to Bio-Information Modem 103. If no signal is received then Bio-Information Unit 100 will turn off until the next scheduled wake up time.
  • FIG. 3 shows a block diagram of an embodiment of Bio-Information Modem 103 where thicker arrows represent power circuits, and thinner arrows represent signal circuits. FIGS. 4A, 4B, 4C, and 4D show a top and three elevation views of an embodiment of Modem 104. Referring now to FIG. 3 and FIGS. 4A, 4B, 4C, and 4D, Bio-Information Modem 103 is powered by an external dc power supply (not shown in FIG. 3 or FIGS. 4A, 4B, 4C, and 4D). The dc power supply can be configured to plug into either a 115V AC supply or an international type power outlet. The dc power supply is plugged into an external power source and then plugged into the back of Bio-Information Modem 103 at a Main Power Input 338. Main Power Input 338 is connected to Main Power Input Circuits 321. Main Power Input Circuits 321 filter the power and make sure that the polarity of the power is correct and then distributes the power to Main Power Supply 322, Modem Power Supply 325, and RF Power Supply 328. Main Power Input Circuits 321 also monitor the power for AC power failures. This is accomplished by running the DC power input through a resistive divider and then into CPU 317.
  • Main Power Supply 322 supplies the power to CPU 317, RS232 Interface or Analog Modem Selector 329, RS232 Interface 330, Serial EE Prom 337, Battery Backup Circuits 324 and JTAG Connector 319. Battery Backup Circuits 324 supply the power to Integrated Memory 318 and Real Time Clock 323. The main power is applied as soon as Bio-Information Modem 103 is plugged in. The fact that Bio-Information Modem 103 is on is reflected by at least one LED that is illuminated in LED's 336. LCD Display 320 is also used to display any special instructions or request of Subject 107 by the monitoring personnel. Test results and critical sensor information can also be displayed on LCD Display 320. LCD Display 320 will also display any schedule information that Subject 107 may need to be aware of.
  • Integrated Memory 318 is divided internally into several different memory segments. There is a small segment of the memory dedicated to the boot strap program. The boot strap program is used to initialize Bio-Information Modem 103 when power is first applied. The boot strap is a very basic program that will initialize CPU 317 and then check the validity of the main operating program that is stored in a larger section of Integrated Memory 318. There is also an additional RAM component that supplies extra data storage capabilities. Serial EE Prom 337 is used to store all of the critical information for Bio-Information Modem 103 such as the serial number, device identification information and the phone numbers that should be called to connect to Bio-Information Network 104. Bio-Information Modem 103 will retrieve and validate all of the critical information and will then validate the main operational program. If the main operational program is valid, Bio-Information Modem 103 will switch operation from the bootstrap program to the main operational program. Once the switch is made Bio-Information Modem 103 will contact Bio-Information Network 104 and report the latest power fail. If the main operational program is not valid than Bio-Information Modem 103 will try to contact Bio-Information Network 104 and get the main operational program downloaded to itself. The JTAG Connector 319 also provides a means of programming both the modem boot strap program and the main operational program into Integrated Memory 318.
  • To connect to Bio-Information Network 104, Bio-Information Modem 103 will check the input from the RS232 Interface or Analog Modem Selector 329 and see if there is a serial cable attached to Bio-Information Modem 103 at External RS232 Connector 332, which is accessible by opening up the cover of Bio-Information Modem 103. If there is, then Bio-Information Modem 103 will go into slave mode waiting for serial communications to come in through RS232 Interface 330. This mode provides a means of manually issuing commands and loading programs and or data to Bio-Information Modem 103. If there is no serial cable attached to Bio-Information Modem 103, then CPU 317 will turn on Modem Power Supply 325. After allowing Modem Chip Set 326 to power up and stabilize, CPU 317 will check for a dial tone. If no dial tone is identified, then CPU 317 will hang up and generate an alarm to indicate that the telephone line is not connected at External Phone Line Connector 327. Bio-Information Modem 103 will then try again after a predefined delay period. External Hand Set Connector 331 receives the telephone wire that comes from the telephone hand set.
  • Once a dial tone has been established, CPU 317 will dial the telephone number for Bio-Information Network 104. CPU 317 will then monitor Modem Chip Set 326 for an indication that a connection has been established with Bio-Information Network 104. If CPU 317 determines that the telephone line is busy, or that there is no answer, then CPU 317 will hang up and log an alarm indicating that a connection could not be established. Bio-Information Modem 103 will then wait a predefined delay period and try to make the connection again. Once the connection is established, Bio-Information Network 104 becomes the master and Bio-Information Modem 103 becomes the slave. Bio-Information Network 104 will then extract all of the pertinent information that it needs to validate Bio-Information Modem 103 and to update its status. It will then update Real Time Clock 323 so that Bio-Information Modem 103 is set to the proper time for the time zone where Bio-Information Modem 103 is currently located. Bio-Information Network 104 will then upload all data that has been stored in Bio-Information Modem 103 since the last upload. Bio-Information Network 104 then has the ability to download any number of specific monitoring instructions that need to be sent to Bio-Information Unit 100, along with all of the schedule information for Bio-Information Modem 103 and Bio-Information Unit 100. Bio-Information Network 104 will then tell Bio-Information Modem 103 to hang up and start operations.
  • CPU 317 will hang up and turn off the power to Modem Chip Set 326. CPU 317 will then activate the RF circuits and try to establish RF Communication Link 102. RF Communication Link 102 is established through the use of a serial to RF Transceiver 334 and the RF antenna 335. CPU 317 is connected to RF transceiver 334 through RF Interface 333 which allows the serial signal from CPU 317 to be converted to the proper voltage for the RF transceiver circuits. CPU 317 will start sending a standard message out over the RF Communication Link 102. This message is addressed to Bio-Information Unit 100, so if Bio-Information Unit 100 is within range of Bio-Information Modem 103 and Bio-Information Unit 100 is active, then Bio-Information Unit 100 will answer the message with a status message indicating that Bio-Information Unit 100 is active and operating. Bio-Information Modem 103 will then become the master and Bio-Information Unit 100 will become the slave. Bio-Information Modem 103 will extract all of the status information from Bio-Information Unit 100 and will validate the operating program and any pertinent operating data needed by Bio-Information Unit 100. Bio-Information Modem 103 will then update the real time clock in Bio-Information Unit 100 so that Bio-Information Unit 100 and Bio-Information Modem 103 are on the same time. Bio-Information Modem 103 will then extract any sensor reading information as well as any error information from Bio-Information Unit 100. Bio-Information Modem 103 will then turn off the RF signal. When the RF signal is turned off, Bio-Information Unit 100 will turn itself off and return to normal monitoring mode.
  • CPU 317 will then scan through the data just received and determine if any of the data needs to be sent immediately to Bio-Information Network 104. If not, then CPU 317 will wait a predefined delay period and then start the polling sequence again. If there is data that needs to be transmitted to Bio-Information Network 104 immediately, or if the time clock indicates that it is a scheduled time to call Bio-Information Network 104, then Bio-Information Modem 103 will go through the connection process and connect to Bio-Information Network 104.
  • FIG. 5 shows a more detailed block diagram of Bio-Information Network 104. Alert/sensor information is constantly being generated and monitored by the bio-information system components of the present invention. The following description will describe how and why the information is generated and how the information is handled and processed once it is generated.
  • Once Bio-Information Unit 100 has been adjusted properly for utilization by Subject 107, the battery pack is inserted into Bio-Information Unit 100. When the battery makes electrical contact upon being inserted into Bio-Information Unit 100, an alert is generated indicating that power has been applied to Bio-Information Unit 100. Normal occurrences of these alerts are generated each time Bio-Information Unit 100 is attached to Subject 107 or each time that the battery is changed. The power up alerts provide a means for the monitoring personnel to verify that the equipment is on Subject 107 at the appropriate times. If Subject 107 does not have the equipment on at the appropriate time the monitoring personnel can respond appropriately in case there is a problem with Subject 107. Once Bio-Information Unit 100 is operational Subject 107 simply needs to wear or attach the sensor array required and go about their normal activities. The bio-information data will be collected continuously, and transmitted automatically to the Bio-Information Modem 103.
  • The alert described previously will cause the Bio-Information Unit 100 to attempt to communicate with the Bio-Information Modem 103 as soon as possible, overriding the normal scheduled communications programmed in the Bio-Information Modem 103 and Bio-Information Unit 100. The bio-information system uses the scheduled communications times to ensure that all equipment is operational under normal conditions. During normal operation there should be no reason for the equipment to override the schedules, and it will only communicate when scheduled. If no schedules were used, there would be no communication and no validation that readings were being taken and stored by Bio-Information Unit 100. If Bio-Information Unit 100 does not communicate at a scheduled communications time, Bio-Information Modem 103 will generate an alert that Bio-Information Unit 100 failed to communicate on schedule, along with the present time and date. This alert will be labeled as a Communications Alert by Situation Analyzer 124. If Bio-Information Unit 100 does not communicate with Bio-Information Modem 103 for a period of 24 hours, Bio-Information Modem 103 will generate a No Communications alert, along with the present time and date. This will also be labeled as a Communications Alert by Situation Analyzer 124. Thus, the normal flow of communications between Bio-Information Unit 100 and Bio-Information Modem 103 must exist or there will be alerts generated to inform the treatment providers that something is wrong with the system.
  • Bio-Information Modem 103 communicates with Bio-Information Network 104 through Communication Server 126. The normal communication between these two devices is controlled by schedules programmed into the particular Bio-Information Modem 103 utilized with the particular Bio-Information Unit 100. Bio-Information network 104 also monitors these schedules. If Bio-Information Modem 103 fails to communicate when scheduled, Bio-Information Network 104 will generate a Communications Alert indicating that Bio-Information Modem 103 failed to communicate when scheduled. Thus, if the normal communications cycle between Bio-Information Modem 103 and Communication Server 126 is broken, then alerts will be generated to inform the supervising personnel that something is wrong with the system. This type of system architecture provides the means for equipment at each level of the communications chain to generate alarms. This guarantees that if a piece of equipment anywhere in the chain of communication fails, there will be an alarm to report it. This type of architecture also provides constant monitoring without any active participation by Subject 107 being monitored. Bio-Information Unit 100 automatically collects the information from Sensor Array 215 and transmits it to Bio-Information Modem 103 whenever possible, or whenever scheduled, depending on which mode of operation is programmed into Bio-Information Unit 100.
  • Data input and data management are handled by Treatment Provider/Subject Database 134. Treatment Provider/Subject Database 134 is actually a combination of databases that support all of the processes in the Bio-Information Network 104. Treatment Provider/Subject Database 134 includes input and management of the Bio-Information Network 104 data, the Treatment Provider/Subject data, and any specific information relating to Treatment Provider 105, and the subject or patient data, including their individual monitoring and communications schedules and the device information for the Bio-Information Modems 103 and Bio-Information Units 100 assigned to them. This information includes what type of sensor arrays are being monitored by Bio-Information Unit 100, along with the special programs needed for Bio-Information Modem 103 and Bio-Information Unit 100 to operate correctly with the desired sensor configuration. By storing the programs in Bio-Information Network 104, Bio-Information Unit 100 can be generic in nature until it is assigned to a Subject 107 and the specific sensors that are to be monitored are assigned. After assigning the sensors, Bio-Information Network 104 will then select the appropriate software program required for monitoring the sensors and use it to remotely re-program Bio-Information Unit 100, there by specializing the unit for use with the appropriate sensors.
  • Treatment Provider/Subject Database 134 stores all of the readings, errors, and other information that is received from all Bio-Information Modems 103 and Bio-Information Units 100 as well as any device information that needs to be stored and monitored. Treatment Provider/Subject Database 134 provides a complete historical record of all readings and alerts for all Subjects 107 being monitored in the bio-information system.
  • The Situation Analyzer 124 is used to parse the data and apply a known set of rules and instructions for handling the raw data and parsing it into a limited number of categories. This includes applying any special instructions specific to the types of sensors being monitored. These categories can be broken down as follows:
      • Reading Data: Includes all information that has been read by the sensor arrays.
      • Equipment Alert: Includes Power up alarms received from the Bio-Information Unit 100, equipment failure alerts and any type of sensor malfunction information or equipment failure that is received.
      • Communication Alerts: Includes No Modem Communication, No Bio-Information Unit Communication, Modem missed scheduled call-in time alerts, and Bio-Information Unit missed scheduled call-in time alerts.
      • Equipment Maintenance: Includes alerts for scheduled maintenance, non-scheduled maintenance, and software downloads.
      • Equipment Assignment: Includes alerts for equipment now assigned to a subject and equipment removed from a subject.
  • Situation Analyzer 124 will make inquires to Workflow Instructions 128 to get direction on what is the default or specific action that should be applied to the message that was just received. Situation Analyzer 124 will then use those instructions and any historical data relating to similar messages to make a decision as to what to do with the message just received. Situation Analyzer 124 can also monitor historical data and escalate the severity of alert messages if there is a pattern emerging in the data that would require more immediate attention. Situation Analyzer 124 can also monitor historical data to detect trends in the data and then provide feedback to Subject 107 automatically by sending messages to Bio-information Modem 103 to display the feedback information on LCD Display 320. Once Situation Analyzer 124 has made its decision, it will pass the message to Alert Manager 130. Alert Manager 130 will inquire to Workflow Instructions 128 for direction on what should be done with this message. Alert Manager 130 will then present the alert information to the monitoring personnel upon request and prompt them for some type of action required to address the alert. The main categories of alert management can be broken down as:
      • Review/Report the information.
      • Take Action: by monitoring personnel or some other person in a monitoring role.
      • Snooze the alert.
      • Log all action that is required for the alert.
      • Change the Status of the Alert: by taking the appropriate action the alert can now be resolved. Once resolved, the database will reflect this status and remove the Alert from the new information screens.
  • Situation Analyzer 124 will then check to see if the message that is being dealt with requires any type of immediate notification of a treatment provider. If it does, then Situation Analyzer 124 will send the message to Notification Server 132. Notification Server 132 will then inquire to Supervising Agency/Subject Database 134 to see what method of notification is preferred by the monitoring person, and then execute the notification method, such as sending an e-mail, sending a fax, sending a phone mail message, or sending a page to the appropriate person.
  • Thus, the method and system of the present invention offers multiple levels of alert ranging from alerts generated by Bio-Information Unit 100, from Bio-Information Modem 103, and from Bio-Information Network 104. The flexible and changeable scheduling at the Subject 107 level allows for more timely intervention for all of the Subjects 107 being monitored who are having problems.
  • Having described the present invention, it will be understood by those skilled in the art that many changes in construction and circuitry and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the present invention.

Claims (22)

1. A bio-information network for use with a bio-information modem and a continuous remote bio-information unit attached to a human subject, the bio-information network comprising:
a communication server, wherein said communication server receives raw data over a communication link from the bio-information modem, wherein said raw data is gathered by the continuous remote bio-information unit attached to the subject and transmitted to the bio-information modem;
a situation analyzer connectable to said communication server, wherein said situation analyzer parses said raw data through a predetermined set of rules into a plurality of messages;
a workflow instructions connectable to said situation analyzer, wherein said situation analyzer queries said workflow instructions for an action to be applied to each of said plurality of messages;
a treatment provider/subject database connectable to said situation analyzer for storing said raw data, for storing information on the human subject, treatment provider, and a monitoring personnel monitoring the human subject, and for storing a method of notification predetermined by said monitoring personnel; and
a notification server connectable to said situation analyzer, wherein when said situation analyzer determines that said action to be applied to a one of said plurality of messages requires an immediate notification of said monitoring personnel, said situation analyzer will communicate said one of said plurality of messages to said notification server, and further wherein said notification server queries said treatment provider/subject database to determine a predetermined notification method, and executes said predetermined notification method to communicate a one of said plurality of messages to said monitoring personnel.
2. The bio-information network according to claim 1 wherein said communication server, upon establishment of said communication link with the bio-information modem, executes a series of inquiries to validate said bio-information modem.
3. The bio-information network according to claim 1 further comprising:
an alert manager connectable to said situation analyzer and to said workflow instructions, wherein said situation analyzer passes each of said plurality of messages to said alert manager, and further wherein said alert manager categorizes each of said plurality of messages into a one of a plurality of alert management categories for presentation to a monitoring person at a monitoring station.
4. The bio-information network according to claim 3 wherein said plurality of alert management categories further comprises:
a review/report;
a take action;
a snooze alert;
a log action required; and
a change the status of alert.
5. The bio-information network according to claim 1 wherein said treatment provider/subject database further comprises:
a treatment center information for a treatment center associated with said treatment provider;
a historical record of all previously received raw data; and
a patient data for the human subject, said patient data further comprising a reading schedule, a communication schedule, a device information for the continuous remote bio-information unit, and a device information for the bio-information modem in communication with the continuous remote bio-information unit.
6. The bio-information network according to claim 1 wherein said situation analyzer categorizes said plurality of messages into a plurality of categories, said plurality of categories further comprising:
an equipment alert, including a power up alarm from the continuous remote bio-information unit, and an equipment failure alert;
a communication alert, including a no bio-information modem communication, a no continuous remote bio-information unit communication, a bio-information modem missed scheduled communication, and a continuous remote bio-information unit missed scheduled communication;
an equipment maintenance, including a scheduled maintenance, a non-scheduled maintenance, and a software download maintenance; and
an equipment assignment, including an equipment assigned and an equipment removed.
7. The bio-information network according to claim 6 wherein said situation analyzer, in categorizing said plurality of messages, analyzes historical data relating to similar messages in making categorization decisions.
8. The bio-information network according to claim 7 wherein said situation analyzer analyzes said historical data to detect data trends and provide feedback to the human subject by sending messages related to the data trends to the bio-information modem for output on an LCD display of the bio-information modem.
9. The bio-information network according to claim 1 wherein the continuous remote bio-information unit monitoring of a human subject is done twenty-four hours a day, seven days a week, 365 days a year.
10. The bio-information network according to claim 1 wherein said treatment provider/subject database further comprises:
a plurality of programs for monitoring a plurality of sensors in the continuous remote bio-information unit, wherein once a sensor configuration has been assigned to the continuous remote bio-information unit, said treatment provider/subject database selects from said plurality of programs a set of programs necessary for said sensor configuration, and downloads said set of programs to the bio-information modem, which in turn downloads said set of programs to the continuous remote bio-information unit.
11. A method for using a bio-information network to process raw data received via a bio-information modem from a continuous remote bio-information unit attached to a human subject, the method comprising the steps of:
(a) receiving in a communication server in the bio-information network the raw data over a communication link from the bio-information modem, wherein the raw data is gathered by the continuous remote bio-information unit attached to the subject and is transmitted to the bio-information modem;
(b) parsing with a situation analyzer said raw data through a predetermined set of rules into a plurality of messages;
(c) determining with a workflow instructions an action to be applied to each of said plurality of messages;
(d) storing in a treatment provider/subject database said raw data, an information on the human subject, an information on a treatment provider associated with the human subject, a predetermined notification method for notifying a monitoring personnel of said treatment provider associated with the human subject; and
(e) when said action to be applied to a one of said messages requires an immediate notification of said monitoring personnel, executing with a notification server said predetermined notification method to communicate a one of said plurality of messages to said monitoring personnel.
12. The method according to claim 11 wherein said receiving step further comprises:
upon establishing said communication link, validating by said communication server said bio-information modem by executing a series of inquiries to said bio-information modem.
13. The method according to claim 11 wherein said predetermined notification method is a one of an e-mail message, a facsimile transmission, a page to a pager, a text message, a call to a telephone, and a call to a cellular telephone.
14. The method according to claim 11 further comprising the step of:
categorizing by an alert manager each of said plurality of messages into a one of a plurality of alert management categories for presentation to said monitoring personnel at a monitoring station, wherein said plurality of alert management categories is a one of a review/report, a take action, a snooze alert, a log action required, and a change the status of alert.
15. The method according to claim 14 further comprising the steps of:
analyzing by said situation analyzer a current message together with a historical raw data related to said current message; and
escalating said current message to a higher one of said plurality of alert management categories when a pattern is detected by said analyzing step that would require more immediate attention.
16. The method according to claim 14 further comprising the steps of:
downloading by the bio-information network said reading schedule and said communication schedule to said bio-information modem;
downloading by said bio-information modem said reading schedule and said communication schedule to the continuous remote bio-information unit;
when a scheduled communication between said communication server and said bio-information modem fails to occur, generating by said communication server a communication alert; and
communicating said communication alert to said monitoring station.
17. The method according to claim 11 further comprising the step of:
storing in said treatment provider/subject database a treatment center information for a treatment center associated with said treatment provider, a historical record of all previously received raw data, and a patient data for the human subject, said patient data further comprising a reading schedule, a communication schedule, a device information for the continuous remote bio-information unit, and a device information for the bio-information modem in communication with the continuous remote bio-information unit.
18. The method according to claim 11 wherein said parsing with a situation analyzer step further comprises the step of:
categorizing each of said plurality of messages into a one of a plurality of categories, wherein said plurality of categories is a one of an equipment alert, including a power up alarm from the continuous remote bio-information unit and an equipment failure alert; a communication alert, including a no bio-information modem communication, a no continuous remote bio-information unit communication, a bio-information modem missed scheduled communication, and a continuous remote bio-information unit missed scheduled communication; an equipment maintenance, including a scheduled maintenance, a non-scheduled maintenance, and a software download maintenance; and an equipment assignment, including an equipment assigned and an equipment removed.
19. The method according to claim 18 wherein said categorizing each of said plurality of messages into a one of a plurality of categories step further comprises:
analyzing historical data relating to similar messages in making categorization decisions.
20. The method according to claim 19 wherein said analyzing historical data step further comprises:
analyzing said historical data to detect a data trend; and
based on said data trend, sending a message related to said data trend to the bio-information modem for output on an LCD display of the bio-information modem to provide feedback to the human subject.
21. The method according to claim 11 wherein steps (a) through (e) may be performed twenty-four hours a day, seven days a week, 365 days a year.
22. The method according to claim 11 further comprising the steps of:
assigning by said treatment provider/subject database a sensor configuration to the continuous remote bio-information unit for the human subject;
selecting by said treatment provider/subject database, based upon said sensor configuration, a set of programs from a plurality of programs stored in said treatment provider/subject database, wherein a plurality of sensors in the continuous remote bio-information unit are monitored by a one of said plurality of programs, and further wherein said set of programs are necessary for monitoring said sensor configuration;
downloading by said treatment provider/subject database said set of programs to the bio-information modem; and
downloading by the bio-information modem said set of programs to the continuous remote bio-information unit.
US11/104,810 2003-05-19 2005-04-13 Bio-information sensor monitoring system and method Abandoned US20050177615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/104,810 US20050177615A1 (en) 2003-05-19 2005-04-13 Bio-information sensor monitoring system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/441,960 US7311665B2 (en) 2003-05-19 2003-05-19 Bio-information sensor monitoring system and method
US11/104,810 US20050177615A1 (en) 2003-05-19 2005-04-13 Bio-information sensor monitoring system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/441,960 Division US7311665B2 (en) 2003-05-19 2003-05-19 Bio-information sensor monitoring system and method

Publications (1)

Publication Number Publication Date
US20050177615A1 true US20050177615A1 (en) 2005-08-11

Family

ID=33450117

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/441,960 Expired - Lifetime US7311665B2 (en) 2003-05-19 2003-05-19 Bio-information sensor monitoring system and method
US11/086,192 Active 2026-11-11 US9489487B2 (en) 2003-05-19 2005-03-22 Bio-information sensor monitoring system and method
US11/104,810 Abandoned US20050177615A1 (en) 2003-05-19 2005-04-13 Bio-information sensor monitoring system and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/441,960 Expired - Lifetime US7311665B2 (en) 2003-05-19 2003-05-19 Bio-information sensor monitoring system and method
US11/086,192 Active 2026-11-11 US9489487B2 (en) 2003-05-19 2005-03-22 Bio-information sensor monitoring system and method

Country Status (2)

Country Link
US (3) US7311665B2 (en)
WO (1) WO2004103163A2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163293A1 (en) * 2003-05-19 2005-07-28 Hawthorne Jeffrey S. Bio-information sensor monitoring system and method
US20060202836A1 (en) * 2003-05-19 2006-09-14 Alcohol Monitoring Systems, Llc Method and apparatus for remote blood alcohol monitoring
WO2007030877A1 (en) * 2005-09-12 2007-03-22 Resmed Ltd Network enabled flow generator
US20070124031A1 (en) * 2003-10-06 2007-05-31 Wakefield Theodore D Ii Method and apparatus for reprogramming a programmed controller of a power driven wheelchair
US20080077436A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Home based healthcare system and method
US20080076973A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Remote health care system with treatment verification
WO2008035211A2 (en) * 2006-06-01 2008-03-27 Rajiv Muradia Remote health care system with stethoscope
US20080091470A1 (en) * 2006-06-01 2008-04-17 Igeacare Systems Inc. Remote health care diagnostic tool
US20080106403A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for dynamic situational signal processing for target detection and classfication
US20080106401A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for power efficient situation aware seismic detection and classification
US20080109091A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Multilayered configurable data fusion systems and methods for power and bandwidth efficient sensor networks
US20080106402A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for situational feature set selection for target classification
US20090125331A1 (en) * 2007-09-13 2009-05-14 H. Lundbeck A/S Methods and systems for treating illnesses
US20090187421A1 (en) * 2006-04-28 2009-07-23 Koninklijke Philips Electronics N V Mobile healthcare data
US20100209897A1 (en) * 2004-05-28 2010-08-19 David Scott Utley Intraoral behavior monitoring and aversion devices and methods
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US9241661B2 (en) 2012-09-17 2016-01-26 TraceX, Inc. Apparatus and method for extra-corporal chemical detection and monitoring
US9420971B2 (en) 2009-10-24 2016-08-23 Carrot Sense, Inc. Extracorporeal devices and methods for facilitating cessation of undesired behaviors
AU2015224506B2 (en) * 2007-10-30 2017-03-09 Carrier Corporation Improvements in communication links
US9675275B2 (en) 2009-10-24 2017-06-13 Carrot Sense, Inc. Extracorporeal devices and methods for facilitating cessation of undesired behaviors
US9861126B2 (en) 2015-04-07 2018-01-09 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
CN107847142A (en) * 2015-07-10 2018-03-27 八乐梦床业有限公司 Patient's states decision maker, patient's states decision method and program
US10206572B1 (en) 2017-10-10 2019-02-19 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US11257583B2 (en) 2019-12-30 2022-02-22 Carrot, Inc. Systems and methods for assisting individuals in a behavioral-change program

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881723A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated Ventilator breath display and graphic user interface
ATE406627T1 (en) 2000-06-19 2008-09-15 Correlogic Systems Inc HEURISTIC CLASSIFICATION METHOD
US20050119580A1 (en) 2001-04-23 2005-06-02 Eveland Doug C. Controlling access to a medical monitoring system
US6694177B2 (en) 2001-04-23 2004-02-17 Cardionet, Inc. Control of data transmission between a remote monitoring unit and a central unit
US6665385B2 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Medical monitoring system having multipath communications capability
CA2683198C (en) * 2003-11-26 2016-03-22 Cardionet, Inc. System and method for processing and presenting arrhythmia information to facilitate heart arrhythmia identification and treatment
JP4774534B2 (en) 2003-12-11 2011-09-14 アングーク ファーマシューティカル カンパニー,リミティド A diagnostic method for biological status through the use of a centralized adaptive model and remotely manipulated sample processing
US20090224889A1 (en) * 2003-12-12 2009-09-10 Abhinav Aggarwal System and method for universal identity verification of biological humans
US7194300B2 (en) * 2004-01-21 2007-03-20 Cardionet, Inc. Cardiac monitoring
US7587237B2 (en) 2004-02-02 2009-09-08 Cardionet, Inc. Biological signal management
US20060247505A1 (en) * 2005-04-28 2006-11-02 Siddiqui Waqaas A Wireless sensor system
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
CN101287411B (en) 2005-04-28 2013-03-06 普罗秋斯生物医学公司 Pharma-informatics system
US8781847B2 (en) * 2005-05-03 2014-07-15 Cardiac Pacemakers, Inc. System and method for managing alert notifications in an automated patient management system
US20090041307A1 (en) * 2005-05-13 2009-02-12 Kenji Iwano Biometric information transfer system
US8764654B2 (en) 2008-03-19 2014-07-01 Zin Technologies, Inc. Data acquisition for modular biometric monitoring system
US8951190B2 (en) 2005-09-28 2015-02-10 Zin Technologies, Inc. Transfer function control for biometric monitoring system
US20070197881A1 (en) * 2006-02-22 2007-08-23 Wolf James L Wireless Health Monitor Device and System with Cognition
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
CN105468895A (en) 2006-05-02 2016-04-06 普罗透斯数字保健公司 Patient customized therapeutic regimens
EP2023800B1 (en) * 2006-05-16 2012-04-04 Koninklijke Philips Electronics N.V. Communication system for monitoring the health status of a patient, communication device and method
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
SG175681A1 (en) 2006-10-25 2011-11-28 Proteus Biomedical Inc Controlled activation ingestible identifier
US7656288B2 (en) * 2006-11-07 2010-02-02 Harris Corporation Systems and methods for automatic proactive pattern recognition at a control center database
CA2676407A1 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
CN101636865B (en) 2007-02-14 2012-09-05 普罗秋斯生物医学公司 In-body power source having high surface area electrode
WO2008103827A1 (en) 2007-02-22 2008-08-28 Welldoc Communications, Inc. System and method for providing treatment recommendations based on models
US10872686B2 (en) 2007-02-22 2020-12-22 WellDoc, Inc. Systems and methods for disease control and management
US10860943B2 (en) 2007-02-22 2020-12-08 WellDoc, Inc. Systems and methods for disease control and management
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
CN101855553B (en) 2007-06-29 2014-06-11 韩国安国药品株式会社 Predictive markers for ovarian cancer
JP4968586B2 (en) * 2007-10-29 2012-07-04 横河電機株式会社 Network control system, network control system controller, network control system network control and network control system controlled plant
US20090287109A1 (en) * 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US9672471B2 (en) 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090326340A1 (en) * 2008-06-30 2009-12-31 Hui Wang Patient Monitor Alarm System And Method
SG10201702853UA (en) 2008-07-08 2017-06-29 Proteus Digital Health Inc Ingestible event marker data framework
DE102008034234A1 (en) * 2008-07-23 2010-02-04 Dräger Medical AG & Co. KG Medical workplace with integrated support of process steps
US8843948B2 (en) 2008-09-19 2014-09-23 The Nielsen Company (Us), Llc Methods and apparatus to detect carrying of a portable audience measurement device
US8040237B2 (en) * 2008-10-29 2011-10-18 The Nielsen Company (Us), Llc Methods and apparatus to detect carrying of a portable audience measurement device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
SG196787A1 (en) 2009-01-06 2014-02-13 Proteus Digital Health Inc Ingestion-related biofeedback and personalized medical therapy method and system
US8200319B2 (en) 2009-02-10 2012-06-12 Cardionet, Inc. Locating fiducial points in a physiological signal
US8515529B2 (en) * 2009-02-12 2013-08-20 Braemar Manufacturing, Llc Detecting sleep disorders using heart activity
US9655518B2 (en) 2009-03-27 2017-05-23 Braemar Manufacturing, Llc Ambulatory and centralized processing of a physiological signal
US10588527B2 (en) * 2009-04-16 2020-03-17 Braemar Manufacturing, Llc Cardiac arrhythmia report
SG10201810784SA (en) 2009-04-28 2018-12-28 Proteus Digital Health Inc Highly Reliable Ingestible Event Markers And Methods For Using The Same
EP2433554A4 (en) * 2009-05-21 2015-10-07 Lenovo Innovations Ltd Hong Kong Biological information management device, health management system using a biological information management device, method for browsing health management information in said system, and biological information management program
WO2010141922A1 (en) 2009-06-04 2010-12-09 Abbott Diabetes Care Inc. Method and system for updating a medical device
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
CN102946798A (en) 2010-02-01 2013-02-27 普罗秋斯数字健康公司 Data gathering system
TWI638652B (en) 2010-04-07 2018-10-21 波提亞斯數位康健公司 Miniature ingestible device
US9633168B2 (en) * 2010-04-14 2017-04-25 Sleep Science Partners, Inc. Biometric identity validation for use with unattended tests for medical conditions
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
CA2814657A1 (en) 2010-10-12 2012-04-19 Kevin J. Tanis Medical device
US11096577B2 (en) * 2010-11-03 2021-08-24 Nxgn Management, Llc Proactive patient health care inference engines and systems
WO2012071280A2 (en) 2010-11-22 2012-05-31 Proteus Biomedical, Inc. Ingestible device with pharmaceutical product
WO2012093319A1 (en) 2011-01-06 2012-07-12 Koninklijke Philips Electronics N.V. Patient monitoring system and method for monitoring the physiological status of a patient
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CN103827914A (en) 2011-07-21 2014-05-28 普罗秋斯数字健康公司 Mobile communication device, system, and method
GB201201617D0 (en) * 2012-01-31 2012-03-14 Eseye Ltd GSM signalling for M2M comumunications
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9801541B2 (en) 2012-12-31 2017-10-31 Dexcom, Inc. Remote monitoring of analyte measurements
US9730620B2 (en) 2012-12-31 2017-08-15 Dexcom, Inc. Remote monitoring of analyte measurements
TWI659994B (en) 2013-01-29 2019-05-21 美商普羅托斯數位健康公司 Highly-swellable polymeric films and compositions comprising the same
US8878669B2 (en) 2013-01-31 2014-11-04 KHN Solutions, Inc. Method and system for monitoring intoxication
US9788772B2 (en) 2013-01-31 2017-10-17 KHN Solutions, Inc. Wearable system and method for monitoring intoxication
US9192334B2 (en) 2013-01-31 2015-11-24 KHN Solutions, Inc. Method and system for monitoring intoxication
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
JP6498177B2 (en) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド Identity authentication system and method
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
EP3047618B1 (en) 2013-09-20 2023-11-08 Otsuka Pharmaceutical Co., Ltd. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US20150127738A1 (en) * 2013-11-05 2015-05-07 Proteus Digital Health, Inc. Bio-language based communication system
US9250228B2 (en) * 2014-01-22 2016-02-02 KHN Solutions, Inc. Method and system for remotely monitoring intoxication
CN111081345B (en) 2014-09-02 2023-10-10 苹果公司 Physical activity and fitness monitor
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9836083B2 (en) 2015-03-12 2017-12-05 Flextronics Ap, Llc Complete wearable ecosystem
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US9706269B2 (en) * 2015-07-24 2017-07-11 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-powered and battery-assisted CMOS wireless bio-sensing IC platform
WO2017030646A1 (en) 2015-08-20 2017-02-23 Apple Inc. Exercise-based watch face and complications
AU2015411394B2 (en) 2015-10-07 2021-07-08 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10488398B2 (en) 2015-12-17 2019-11-26 #1 A Lifesafer, Inc. Chemical impairment detection system with an integrated, multi-function breath chamber
WO2017116692A1 (en) 2015-12-28 2017-07-06 Dexcom, Inc. Systems and methods for remote and host monitoring communications
US10346406B2 (en) * 2016-03-28 2019-07-09 International Business Machines Corporation Decentralized autonomous edge compute coordinated by smart contract on a blockchain
CA3023932A1 (en) 2016-05-13 2017-11-16 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
DK201770423A1 (en) 2016-06-11 2018-01-15 Apple Inc Activity and workout updates
KR102051875B1 (en) 2016-07-22 2019-12-04 프로테우스 디지털 헬스, 인코포레이티드 Electromagnetic detection and detection of ingestible event markers
US10736543B2 (en) 2016-09-22 2020-08-11 Apple Inc. Workout monitor interface
EP3519002A2 (en) 2016-09-29 2019-08-07 Smith & Nephew, Inc Construction and protection of components in negative pressure wound therapy systems
AU2017348094B2 (en) 2016-10-26 2022-10-13 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US10845955B2 (en) * 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
WO2019014141A1 (en) 2017-07-10 2019-01-17 Smith & Nephew, Inc. Systems and methods for directly interacting with communications module of wound therapy apparatus
DK201870599A1 (en) * 2018-03-12 2019-10-16 Apple Inc. User interfaces for health monitoring
US11006895B2 (en) 2018-03-22 2021-05-18 KHN Solutions, Inc. Method and system for transdermal alcohol monitoring
US11324449B2 (en) 2018-03-22 2022-05-10 KHN Solutions, Inc. Method and system for transdermal alcohol monitoring
DK201870380A1 (en) 2018-05-07 2020-01-29 Apple Inc. Displaying user interfaces associated with physical activities
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
GB201820668D0 (en) 2018-12-19 2019-01-30 Smith & Nephew Inc Systems and methods for delivering prescribed wound therapy
DK201970532A1 (en) 2019-05-06 2021-05-03 Apple Inc Activity trends and workouts
US11228835B2 (en) 2019-06-01 2022-01-18 Apple Inc. User interfaces for managing audio exposure
US11234077B2 (en) 2019-06-01 2022-01-25 Apple Inc. User interfaces for managing audio exposure
US11209957B2 (en) 2019-06-01 2021-12-28 Apple Inc. User interfaces for cycle tracking
US11152100B2 (en) 2019-06-01 2021-10-19 Apple Inc. Health application user interfaces
EP4004702A1 (en) 2019-09-09 2022-06-01 Apple Inc. Research study user interfaces
DK202070616A1 (en) 2020-02-14 2022-01-14 Apple Inc User interfaces for workout content
US11816193B2 (en) * 2020-04-20 2023-11-14 Cisco Technology, Inc. Secure automated issue detection
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
DK181037B1 (en) 2020-06-02 2022-10-10 Apple Inc User interfaces for health applications
US11698710B2 (en) 2020-08-31 2023-07-11 Apple Inc. User interfaces for logging user activities
US11602306B2 (en) 2021-01-12 2023-03-14 KHN Solutions, Inc. Method and system for remote transdermal alcohol monitoring
US11938376B2 (en) 2021-05-15 2024-03-26 Apple Inc. User interfaces for group workouts
US20230390627A1 (en) 2022-06-05 2023-12-07 Apple Inc. User interfaces for physical activity information

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845226A (en) * 1953-04-27 1958-07-29 Harry D Cummings Wrist type totalizer
US3439596A (en) * 1967-01-18 1969-04-22 Eastman Kodak Co Retractile lens camera with automatic exposure control system and battery preserving switch
US4749553A (en) * 1987-04-08 1988-06-07 Life Loc, Inc. Breath alcohol detector with improved compensation for environmental variables
US4885571A (en) * 1986-04-15 1989-12-05 B. I. Incorperated Tag for use with personnel monitoring system
US4999613A (en) * 1987-04-21 1991-03-12 Guardian Technologies, Inc. Remote confinement system
US5115223A (en) * 1990-09-20 1992-05-19 Moody Thomas O Personnel location monitoring system and method
US5220919A (en) * 1991-08-23 1993-06-22 Safety Technology Partners, Ltd. Blood alcohol monitor
US5408520A (en) * 1992-11-09 1995-04-18 Compaq Computer Corporation Modem for tight coupling between a computer and a cellular telephone
US5543780A (en) * 1995-06-16 1996-08-06 Secure Care Products, Inc. Monitoring tag with removal detection
US5627520A (en) * 1995-07-10 1997-05-06 Protell Systems International, Inc. Tamper detect monitoring device
US5678562A (en) * 1995-11-09 1997-10-21 Burdick, Inc. Ambulatory physiological monitor with removable disk cartridge and wireless modem
US5823409A (en) * 1997-03-06 1998-10-20 Timex Corporation Expandable strap for a wrist instrument
US5944661A (en) * 1997-04-16 1999-08-31 Giner, Inc. Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
US5982281A (en) * 1998-05-02 1999-11-09 Pro Tech Monitoring, Inc. Offender and victim collision avoidance and advanced warning system
US6093146A (en) * 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US6364834B1 (en) * 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US6497655B1 (en) * 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US20030114735A1 (en) * 2000-05-15 2003-06-19 Silver James H. Implantable, retrievable sensors and immunosensors
US20030172940A1 (en) * 2002-03-13 2003-09-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
US6639516B1 (en) * 2002-05-14 2003-10-28 Shaun Michael Copley Personal tracking device
US20040019503A1 (en) * 2000-09-25 2004-01-29 France Telecom Modular home medical service terminal
US20040122486A1 (en) * 2002-12-18 2004-06-24 Stahmann Jeffrey E. Advanced patient management for acquiring, trending and displaying health-related parameters
US6805667B2 (en) * 2000-02-04 2004-10-19 Medtronic, Inc. Information remote monitor (IRM) medical device
US6924750B2 (en) * 2000-05-17 2005-08-02 Omega Patents, L.L.C. Vehicle tracking unit for controlling operable vehicle devices using a vehicle data bus and related methods
USRE38838E1 (en) * 1997-09-10 2005-10-18 Taylor Jr John E Monitoring system
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20070100666A1 (en) * 2002-08-22 2007-05-03 Stivoric John M Devices and systems for contextual and physiological-based detection, monitoring, reporting, entertainment, and control of other devices
US7285090B2 (en) * 2000-06-16 2007-10-23 Bodymedia, Inc. Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173971A (en) * 1977-08-29 1979-11-13 Karz Allen E Continuous electrocardiogram monitoring method and system for cardiac patients
GB8614515D0 (en) * 1986-06-14 1986-07-23 Lion Lab Ltd Alcohol detecting devices
US4916435A (en) * 1988-05-10 1990-04-10 Guardian Technologies, Inc. Remote confinement monitoring station and system incorporating same
US5033293A (en) * 1990-03-09 1991-07-23 Calsonic Corporation Alcohol concentration detecting device
US5303575A (en) * 1993-06-01 1994-04-19 Alcotech Research Inc. Apparatus and method for conducting an unsupervised blood alcohol content level test
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5836993A (en) * 1996-05-16 1998-11-17 Heartstream, Inc. Electrotherapy device control system and method
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6524239B1 (en) * 1999-11-05 2003-02-25 Wcr Company Apparatus for non-instrusively measuring health parameters of a subject and method of use thereof
US6409675B1 (en) * 1999-11-10 2002-06-25 Pacesetter, Inc. Extravascular hemodynamic monitor
US6443890B1 (en) * 2000-03-01 2002-09-03 I-Medik, Inc. Wireless internet bio-telemetry monitoring system
US6726636B2 (en) * 2000-04-12 2004-04-27 Loran Technologies, Inc. Breathalyzer with voice recognition
WO2002012883A1 (en) 2000-08-08 2002-02-14 Robert Payne A breathalysing system and a mobile breathalysing device therefor
US20020156650A1 (en) * 2001-02-17 2002-10-24 Klein Michael V. Secure distribution of digital healthcare data using an offsite internet file server
US6801137B2 (en) * 2001-04-23 2004-10-05 Cardionet, Inc. Bidirectional communication between a sensor unit and a monitor unit in patient monitoring
US7051120B2 (en) * 2001-12-28 2006-05-23 International Business Machines Corporation Healthcare personal area identification network method and system
US20030126593A1 (en) * 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
US7311665B2 (en) * 2003-05-19 2007-12-25 Alcohol Monitoring Systems, Inc. Bio-information sensor monitoring system and method
US7462149B2 (en) * 2003-05-19 2008-12-09 Alcohol Monitoring Systems, Inc. Method and apparatus for remote blood alcohol monitoring

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845226A (en) * 1953-04-27 1958-07-29 Harry D Cummings Wrist type totalizer
US3439596A (en) * 1967-01-18 1969-04-22 Eastman Kodak Co Retractile lens camera with automatic exposure control system and battery preserving switch
US4885571A (en) * 1986-04-15 1989-12-05 B. I. Incorperated Tag for use with personnel monitoring system
US4749553A (en) * 1987-04-08 1988-06-07 Life Loc, Inc. Breath alcohol detector with improved compensation for environmental variables
US4999613A (en) * 1987-04-21 1991-03-12 Guardian Technologies, Inc. Remote confinement system
US5115223A (en) * 1990-09-20 1992-05-19 Moody Thomas O Personnel location monitoring system and method
US5220919A (en) * 1991-08-23 1993-06-22 Safety Technology Partners, Ltd. Blood alcohol monitor
US5408520A (en) * 1992-11-09 1995-04-18 Compaq Computer Corporation Modem for tight coupling between a computer and a cellular telephone
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5543780A (en) * 1995-06-16 1996-08-06 Secure Care Products, Inc. Monitoring tag with removal detection
US5627520A (en) * 1995-07-10 1997-05-06 Protell Systems International, Inc. Tamper detect monitoring device
US5678562A (en) * 1995-11-09 1997-10-21 Burdick, Inc. Ambulatory physiological monitor with removable disk cartridge and wireless modem
US6364834B1 (en) * 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5823409A (en) * 1997-03-06 1998-10-20 Timex Corporation Expandable strap for a wrist instrument
US5944661A (en) * 1997-04-16 1999-08-31 Giner, Inc. Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
USRE38838E1 (en) * 1997-09-10 2005-10-18 Taylor Jr John E Monitoring system
US5982281A (en) * 1998-05-02 1999-11-09 Pro Tech Monitoring, Inc. Offender and victim collision avoidance and advanced warning system
US6093146A (en) * 1998-06-05 2000-07-25 Matsushita Electric Works, Ltd. Physiological monitoring
US6497655B1 (en) * 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6805667B2 (en) * 2000-02-04 2004-10-19 Medtronic, Inc. Information remote monitor (IRM) medical device
US20030114735A1 (en) * 2000-05-15 2003-06-19 Silver James H. Implantable, retrievable sensors and immunosensors
US6924750B2 (en) * 2000-05-17 2005-08-02 Omega Patents, L.L.C. Vehicle tracking unit for controlling operable vehicle devices using a vehicle data bus and related methods
US7285090B2 (en) * 2000-06-16 2007-10-23 Bodymedia, Inc. Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
US20040019503A1 (en) * 2000-09-25 2004-01-29 France Telecom Modular home medical service terminal
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030172940A1 (en) * 2002-03-13 2003-09-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
US6639516B1 (en) * 2002-05-14 2003-10-28 Shaun Michael Copley Personal tracking device
US20070100666A1 (en) * 2002-08-22 2007-05-03 Stivoric John M Devices and systems for contextual and physiological-based detection, monitoring, reporting, entertainment, and control of other devices
US20040122486A1 (en) * 2002-12-18 2004-06-24 Stahmann Jeffrey E. Advanced patient management for acquiring, trending and displaying health-related parameters

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8317697B2 (en) 2003-05-19 2012-11-27 Alcohol Monitoring Systems, Inc. Method and apparatus for remote blood alcohol monitoring
US20060202836A1 (en) * 2003-05-19 2006-09-14 Alcohol Monitoring Systems, Llc Method and apparatus for remote blood alcohol monitoring
US20060202838A1 (en) * 2003-05-19 2006-09-14 Alcohol Monitoring Systems, Llc Method and apparatus for remote blood alcohol monitoring
US20050163293A1 (en) * 2003-05-19 2005-07-28 Hawthorne Jeffrey S. Bio-information sensor monitoring system and method
US7641611B2 (en) * 2003-05-19 2010-01-05 Alcohol Monitoring Systems, Inc. Method and apparatus for remote blood alcohol monitoring
US9489487B2 (en) 2003-05-19 2016-11-08 Alcohol Monitoring Systems, Inc. Bio-information sensor monitoring system and method
US20070124031A1 (en) * 2003-10-06 2007-05-31 Wakefield Theodore D Ii Method and apparatus for reprogramming a programmed controller of a power driven wheelchair
US20080269959A1 (en) * 2003-10-06 2008-10-30 Invacare Corporation Method and apparatus for reprogramming a programmed controller of a power driven wheelchair
US8489251B2 (en) * 2003-10-06 2013-07-16 Invacare Corporation Method and apparatus for reprogramming a programmed controller of a power driven wheelchair
US20100209897A1 (en) * 2004-05-28 2010-08-19 David Scott Utley Intraoral behavior monitoring and aversion devices and methods
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
WO2007030877A1 (en) * 2005-09-12 2007-03-22 Resmed Ltd Network enabled flow generator
US20090187421A1 (en) * 2006-04-28 2009-07-23 Koninklijke Philips Electronics N V Mobile healthcare data
US8655678B2 (en) 2006-04-28 2014-02-18 Koninklijke Philips N.V. Mobile healthcare data
US20080091470A1 (en) * 2006-06-01 2008-04-17 Igeacare Systems Inc. Remote health care diagnostic tool
WO2008035211A2 (en) * 2006-06-01 2008-03-27 Rajiv Muradia Remote health care system with stethoscope
US20080076973A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Remote health care system with treatment verification
WO2008035211A3 (en) * 2006-06-01 2011-03-03 Rajiv Muradia Remote health care system with stethoscope
US20080077436A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Home based healthcare system and method
US20080106402A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for situational feature set selection for target classification
US9461846B2 (en) 2006-11-07 2016-10-04 Harris Corporation Multilayered configurable data fusion systems and methods for power and bandwidth efficient sensor networks
US7710265B2 (en) 2006-11-07 2010-05-04 Harris Corporation Systems and methods for dynamic situational signal processing for target detection and classification
US7710264B2 (en) 2006-11-07 2010-05-04 Harris Corporation Systems and methods for power efficient situation aware seismic detection and classification
US7714714B2 (en) 2006-11-07 2010-05-11 Harris Corporation Systems and methods for situational feature set selection for target classification
US20080109091A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Multilayered configurable data fusion systems and methods for power and bandwidth efficient sensor networks
US20080106401A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for power efficient situation aware seismic detection and classification
US20080106403A1 (en) * 2006-11-07 2008-05-08 Harris Corporation Systems and methods for dynamic situational signal processing for target detection and classfication
US20090125331A1 (en) * 2007-09-13 2009-05-14 H. Lundbeck A/S Methods and systems for treating illnesses
AU2015224506B2 (en) * 2007-10-30 2017-03-09 Carrier Corporation Improvements in communication links
US9420971B2 (en) 2009-10-24 2016-08-23 Carrot Sense, Inc. Extracorporeal devices and methods for facilitating cessation of undesired behaviors
US9675275B2 (en) 2009-10-24 2017-06-13 Carrot Sense, Inc. Extracorporeal devices and methods for facilitating cessation of undesired behaviors
US11653878B2 (en) 2009-10-24 2023-05-23 Pivot Health Technologies Inc. Systems and methods for quantification of, and prediction of smoking behavior
US9241661B2 (en) 2012-09-17 2016-01-26 TraceX, Inc. Apparatus and method for extra-corporal chemical detection and monitoring
US9861126B2 (en) 2015-04-07 2018-01-09 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US10306922B2 (en) 2015-04-07 2019-06-04 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US10674761B2 (en) 2015-04-07 2020-06-09 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US11412784B2 (en) 2015-04-07 2022-08-16 Pivot Health Technologies Inc. Systems and methods for quantification of, and prediction of smoking behavior
CN107847142A (en) * 2015-07-10 2018-03-27 八乐梦床业有限公司 Patient's states decision maker, patient's states decision method and program
US10206572B1 (en) 2017-10-10 2019-02-19 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US10335032B2 (en) 2017-10-10 2019-07-02 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US10674913B2 (en) 2017-10-10 2020-06-09 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US11278203B2 (en) 2017-10-10 2022-03-22 Carrot, Inc. Systems and methods for quantification of, and prediction of smoking behavior
US11257583B2 (en) 2019-12-30 2022-02-22 Carrot, Inc. Systems and methods for assisting individuals in a behavioral-change program
US11568980B2 (en) 2019-12-30 2023-01-31 Pivot Health Technologies Inc. Systems and methods for assisting individuals in a behavioral-change program

Also Published As

Publication number Publication date
US20040236189A1 (en) 2004-11-25
WO2004103163A3 (en) 2005-11-03
WO2004103163A2 (en) 2004-12-02
US20050163293A1 (en) 2005-07-28
US9489487B2 (en) 2016-11-08
US7311665B2 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
US7311665B2 (en) Bio-information sensor monitoring system and method
US6893396B2 (en) Wireless internet bio-telemetry monitoring system and interface
US7462149B2 (en) Method and apparatus for remote blood alcohol monitoring
US6443890B1 (en) Wireless internet bio-telemetry monitoring system
EP1410206A4 (en) Wireless internet bio-telemetry monitoring system and interface
US6720887B1 (en) Flexible, reconfigurable wireless sensor system
US6622043B1 (en) Method of data interrogation in implant after-care
US6336900B1 (en) Home hub for reporting patient health parameters
EP1229821B1 (en) In-home patient monitoring system
US6574509B1 (en) Apparatus for the transmission of data in particular from an electromedical implant
US6470215B1 (en) Method of data transmission in implant monitoring
US7791467B2 (en) Repeater providing data exchange with a medical device for remote patient care and method thereof
US20030009088A1 (en) Monitoring system for patients
US20070156626A1 (en) Patient initiated on-demand remote medical service with integrated knowledge base and computer assisted diagnosing characteristics
US20140278552A1 (en) Modular centralized patient monitoring system
US20070219823A1 (en) Patient monitoring device for remote patient monitoring
US7552101B2 (en) Health monitoring system implementing medical diagnosis
US20040044545A1 (en) Home care monitor systems
JP2009172398A (en) Blood pressure data management system and blood pressure data management method
GB2436934A (en) A system and method of remote patient care by on-line monitoring
US20050185799A1 (en) Method of monitoring equipment and alert device
KR100561041B1 (en) System and method for remote taking care of diabetic
HU222052B1 (en) Apparatus system for remote controlled medical examinations
US20230260643A1 (en) System and process for monitoring a patient

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCOHOL MONITORING SYSTEMS, INC.,COLORADO

Free format text: MERGER;ASSIGNOR:ALCOHOL MONITORING SYSTEMS, LLC;REEL/FRAME:018132/0295

Effective date: 20040107

Owner name: ALCOHOL MONITORING SYSTEMS, INC., COLORADO

Free format text: MERGER;ASSIGNOR:ALCOHOL MONITORING SYSTEMS, LLC;REEL/FRAME:018132/0295

Effective date: 20040107

AS Assignment

Owner name: ALCOHOL MONITORING SYSTEMS, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAWTHORNE, JEFFREY SCOTT;IIAMS, MICHAEL LEONARD;TUBB, GLENN CHARLES;AND OTHERS;REEL/FRAME:022811/0431;SIGNING DATES FROM 20031120 TO 20031124

Owner name: ALCOHOL MONITORING SYSTEMS, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAWTHORNE, JEFFREY SCOTT;IIAMS, MICHAEL LEONARD;TUBB, GLENN CHARLES;AND OTHERS;SIGNING DATES FROM 20031120 TO 20031124;REEL/FRAME:022811/0431

AS Assignment

Owner name: ALCOHOL MONITORING SYSTEMS, INC.,COLORADO

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT SERIAL NUMBERS 11441686, 11441692, AND 11441694 PREVIOUSLY RECORDED ON REEL 018132 FRAME 0295. ASSIGNOR(S) HEREBY CONFIRMS THE CERTIFICATE OF MERGER;ASSIGNOR:ALCOHOL MONITORING SYSTEMS, LLC;REEL/FRAME:024483/0611

Effective date: 20040107

Owner name: ALCOHOL MONITORING SYSTEMS, INC., COLORADO

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT SERIAL NUMBERS 11441686, 11441692, AND 11441694 PREVIOUSLY RECORDED ON REEL 018132 FRAME 0295. ASSIGNOR(S) HEREBY CONFIRMS THE CERTIFICATE OF MERGER;ASSIGNOR:ALCOHOL MONITORING SYSTEMS, LLC;REEL/FRAME:024483/0611

Effective date: 20040107

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE

Free format text: SECURITY INTEREST;ASSIGNOR:ALCOHOL MONITORING SYSTEMS, INC.;REEL/FRAME:034529/0616

Effective date: 20141216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: ALCOHOL MONITORING SYSTEMS, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:056359/0089

Effective date: 20210430