US20050175473A1 - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
US20050175473A1
US20050175473A1 US11/028,647 US2864705A US2005175473A1 US 20050175473 A1 US20050175473 A1 US 20050175473A1 US 2864705 A US2864705 A US 2864705A US 2005175473 A1 US2005175473 A1 US 2005175473A1
Authority
US
United States
Prior art keywords
sealed container
hermetically sealed
disposed
absorbing
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/028,647
Inventor
Jong Park
Joon Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, JONG JIN, PARK, JOON WOO
Publication of US20050175473A1 publication Critical patent/US20050175473A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0044Pulsation and noise damping means with vibration damping supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/127Mounting of a cylinder block in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/067Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/57Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a linear compressor, and more particularly to a linear compressor wherein specific components are disposed outside a hermetically sealed container so as to reduce the size of the hermetically sealed container, whereby a linear compressor is miniaturized.
  • a linear compressor is constructed such that a linear driving force from a linear motor is transmitted to a piston, which is linearly reciprocated in a cylinder, whereby a fluid is introduced, compressed, and discharged.
  • FIG. 1 is a longitudinal sectional view showing a conventional linear compressor.
  • the conventional linear compressor comprises a cylinder block 12 and a back cover 15 mounted inside a hermetically sealed container 10 .
  • the cylinder block 12 has a cylinder 13 formed therein, and the back cover 15 has a fluid inlet port 16 formed therein.
  • the cylinder block 12 and the back cover 15 are disposed in the hermetically sealed container 10 in such a manner that shocks applied to the cylinder block 12 and the back cover 15 are absorbed by means of a first damper 17 and a second damper 18 , respectively.
  • a linear motor 20 that generates a driving force which is necessary to compress a fluid.
  • a piston 30 that is linearly reciprocated in the cylinder 13 to compress a fluid introduced into the cylinder 13 .
  • the linear motor 20 comprises a stator and a mover.
  • the stator comprises: a laminated outer core 21 ; a laminated inner core 22 disposed such that the inner core 22 is spaced apart from the outer core 21 by a prescribed distance; and a coil 23 wound on the outer core 21 for generating a magnetic field.
  • the mover comprises: a magnet 25 disposed between the outer core 21 and the inner core 22 such that the magnet 25 is linearly moved by a magnetic force of the coil 23 ; and a magnet frame 27 connected to the piston 30 for transmitting a linear moving force to the piston.
  • the magnet 25 is fixed to the magnet frame 27 .
  • the piston 30 is provided at the rear part thereof with a flange 32 , which is fixed to the magnet frame 27 .
  • the piston 30 is elastically supported by means of a first spring 28 disposed between the flange 32 and the cylinder block 12 and a second spring 28 disposed between the flange 32 and the back cover 15 .
  • the piston 30 has a fluid flow channel 33 formed therein.
  • the front end of the piston 30 is closed.
  • At the closed front end of the piston are formed a plurality of inlet holes 34 .
  • an inlet valve 35 In front of the piston 30 is disposed an inlet valve 35 that opens and closes the inlet holes 34 .
  • the inlet valve 35 has a valve plate 36 that is fixed to the piston 30 by means of a bolt.
  • the valve plate 36 is elastically bent on the basis of the difference in pressure at both sides thereof for opening or closing the inlet holes 34 .
  • a discharging unit 40 comprises: an inner outlet cover 41 mounted to the cylinder block 12 in front of a compression chamber C of the cylinder 13 , the inner outlet cover 41 having a fluid outlet hole formed at one side thereof; a valve body 45 supported against the inner outlet cover 41 by means of a spring 43 for opening and closing the compression chamber C of the cylinder 13 ; and an outer outlet cover 47 disposed at the outside of the inner outlet cover 41 such that a predetermined space is defined between the inner outlet cover 41 and the outer outlet cover 47 .
  • reference numeral 1 indicates an inlet connection pipe connected to the hermetically sealed container 10 while penetrating the hermetically sealed container 10 such that a fluid is introduced into the hermetically sealed container 10 through the inlet connection pipe
  • reference numeral 2 indicates an outlet pipe connected to the outer outlet cover 47 of the discharging unit 40 such that a fluid having passed through the discharging unit 40 is discharged through the outlet pipe
  • reference numeral 4 indicates a loop pipe having one end connected to the outlet pipe 4
  • reference numeral 6 indicates an outlet connection pipe having one end connected to the loop pipe 4 .
  • the outlet connection pipe 6 penetrates the hermetically sealed container 10 such that the outlet connection pipe 6 extends out of the hermetically sealed container 10 .
  • the magnet 25 is linearly reciprocated by means of a magnetic field generated around the coil 23 .
  • the reciprocating movement of the magnet 25 is transmitted to the piston 30 via the magnet frame 27 .
  • the piston 30 is continuously reciprocated between the valve body 45 of the discharging unit 40 and the back cover 15 .
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a linear compressor wherein a discharging unit and vibration-absorbing components are disposed outside a hermetically sealed container to reduce the size of the hermetically sealed container, whereby the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • a linear compressor comprising: a hermetically sealed container having an inlet port and an outlet port formed therein; a linear motor fixed to the inside of the hermetically sealed container for generating a linear moving force; a cylinder fixed to the inside of the hermetically sealed container adjacent to the outlet port; a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly; a piston connected to the linear motor such that the piston is linearly reciprocated in the cylinder for compressing a fluid introduced into the cylinder; main springs connected to the front and rear sides of the piston, respectively, while being supported inside the hermetically sealed container for providing elastic forces to facilitate the reciprocating movement of the piston when the piston is reciprocated; and a shock-absorbing support unit disposed at the outside of the hermetically sealed container for supporting the hermitically sealed container such that shocks applied to the
  • the shock-absorbing support unit comprises: a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
  • the inlet port is disposed at the rear end of the hermitically sealed container such that an inlet pipe is inserted through the inlet port
  • the outlet assembly is disposed at the front end of the hermetically sealed container
  • the linear compressor further comprises: spring seats formed around the inlet port of the hermetically sealed container and at the discharging unit assembly, respectively, such that the shock-absorbing means are mounted to the spring seats, respectively.
  • the discharging unit assembly comprises: an outlet cover mounted to the outside of the hermetically sealed container for absorbing shocks generated from the fluid discharged through the outlet port; an outlet valve disposed in the outlet cover for opening and closing the outlet port; and an outlet spring supported against the outlet cover for providing an elastic force to the outlet valve.
  • the linear compressor further comprises: sealing means disposed, at the outlet port side of the hermetically sealed container, between the cylinder and the hermetically sealed container and between the outlet cover and the hermetically sealed container.
  • the piston is provided at the rear part thereof with a spring-supporting body such that the main springs are attached to the front and rear sides of the spring-supporting body.
  • the hermetically sealed container is provided at the inside thereof with spring-supporting blocks such that one end of each of the main springs is supported against the corresponding one of the spring-supporting blocks.
  • the linear compressor further comprises: a silencer disposed at the rear of the piston for reducing inlet noise.
  • the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated.
  • the container-supporting stand comprises: a horizontal supporting stand disposed horizontally in the longitudinal direction of the hermetically sealed container; and vertical supporting stands connected to both ends of the horizontal supporting stand while being perpendicular to the horizontal supporting stand for supporting the shock-absorbing means.
  • the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated, and the shock-absorbing means are further disposed at the outer circumference of the hermetically sealed container while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container.
  • the shock-absorbing means comprise: shock-absorbing springs disposed at the front and rear ends of the hermetically sealed container, respectively; and vibration-absorbing members disposed at the upper and lower sides of the hermetically sealed container, respectively.
  • a linear compressor comprising: a hermetically sealed container having an inlet port and an outlet port formed at both ends thereof, the hermetically sealed container containing a compression unit to compress and discharge a fluid therein, the compression unit comprising a linear motor, a cylinder, and a piston disposed in the cylinder such that the piston is linearly reciprocated in the cylinder by means of the linear motor; a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly; a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
  • the discharging unit assembly and the shock-absorbing support unit are disposed at the outside of the hermetically sealed container to reduce the size of the hermetically sealed container. Consequently, the present invention has the effect that the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • the present invention has the effect of supporting the hermetically sealed container while absorbing shocks applied to hermetically sealed container.
  • FIG. 1 is a longitudinal sectional view showing a conventional linear compressor
  • FIG. 2 is a longitudinal sectional view showing a linear compressor according to the present invention
  • FIG. 3 is a sectional view showing the linear compressor according to the present invention with a sealing structure of a discharging unit;
  • FIG. 4 is a perspective view showing the linear compressor with a supporting structure according to a first preferred embodiment of the present invention
  • FIG. 5 is a perspective view showing the linear compressor with a supporting structure according to a second preferred embodiment of the present invention.
  • FIG. 6 is a perspective view showing the linear compressor with a supporting structure according to a third preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a linear compressor according to a preferred embodiment of the present invention.
  • the linear compressor includes: a hermetically sealed container 50 having an inlet port 51 and an outlet port 53 formed therein; a linear motor 60 fixed to the inside of the hermetically sealed container 50 for generating a linear moving force; a cylinder 80 fixed to the inside of the hermetically sealed container 50 adjacent to the outlet port 53 ; a discharging unit assembly 82 disposed in front of the outlet port 53 at the outside of the hermetically sealed container 50 such that a fluid compressed in the cylinder 80 is discharged through the discharging unit assembly 82 ; a piston 70 connected to the linear motor 60 such that the piston 70 is linearly reciprocated in the cylinder 80 for compressing a fluid introduced into the cylinder; main springs 68 and 69 connected to the front and rear sides of the piston 70 , respectively, while being supported inside the hermetically sealed container 50 for providing elastic forces to facilitate the reciprocating movement of the piston when the piston is reciprocated; and a shock-absorbing support unit 90 disposed at the outside of the hermet
  • the hermitically sealed container 50 is formed in the shape of a cylinder.
  • the inlet port 51 is disposed at the rear end of the hermitically sealed container 50 such that an inlet pipe 77 is inserted through the inlet port 51 .
  • the outlet assembly 82 is disposed at the front end of the hermetically sealed container 50 .
  • the linear motor 60 comprises a stator and a mover.
  • the stator comprises: a laminated outer core 61 ; a laminated inner core 62 disposed such that the inner core 62 is spaced apart from the outer core 61 by a prescribed distance; and a coil 63 wound on the outer core 61 for generating a magnetic field.
  • the mover comprises: a magnet 65 disposed between the outer core 61 and the inner core 62 such that the magnet 65 is linearly moved by a magnetic force created around the coil 63 ; and a magnet frame 66 connected to the piston 70 for transmitting a linear moving force to the piston 70 .
  • the magnet 65 is fixed to the magnet frame 66 .
  • the piston 70 is provided at the rear part thereof with a flange 72 , which is fixed to the magnet frame 66 .
  • a spring-supporting body 67 To the flange 72 is attached a spring-supporting body 67 , at the front and rear sides of which are disposed the main springs 68 and 69 to provide elastic forces to the piston such that vibrations are successively applied to the piston in both directions.
  • the spring-supporting block 55 supports one end of the main spring 68
  • the spring-supporting block 56 supports one end of the main spring 69 .
  • a silencer 78 which is connected to the inlet pipe 77 for reducing inlet noise.
  • inlet holes 74 At the front end of the piston 70 are formed a plurality of inlet holes 74 , which are opened and closed by means of a inlet valve 74 attached to the front end of the piston 70 .
  • the discharging unit assembly 82 comprises: an outlet cover 83 mounted to the outside of the hermetically sealed container 50 by means of bolts for absorbing shocks generated from the fluid discharged through the outlet port 53 and allowing the fluid having been discharged through the outlet port 53 to be discharged through an outlet pipe 86 ; an outlet valve 84 disposed at the exit of the cylinder 80 in the outlet cover 83 for opening and closing the outlet port 53 ; and an outlet spring 85 supported against the outlet cover 83 for providing an elastic force to the outlet valve 84 .
  • a sealing structure of the discharging unit assembly 82 will be described hereinafter with reference to FIG. 3 .
  • a sealing member to prevent leakage of fluid from the inside of the hermetically sealed container 50
  • another sealing member to prevent leakage of fluid from the outside of the hermetically sealed container 50 .
  • the discharging unit assembly 82 is a double-sealed structure.
  • a ring-shaped gasket 87 is disposed, at the outlet port side of the hermetically sealed container 50 , between an inner step groove part 52 of the hermetically sealed container 50 and an extension 81 of the cylinder 50
  • an O-ring 88 is disposed, at the outlet port side of the hermetically sealed container 50 , between a ring groove 54 of the hermetically sealed container 50 and the flange of the outlet cover 83 .
  • the shock-absorbing support unit 90 comprises: a container-supporting stand 91 to support the hermetically sealed container 50 at the outside of the hermetically sealed container 50 , the container-supporting stand 91 being formed in the shape of a “[”; and shock-absorbing springs 95 and 96 disposed between the container-supporting stand 91 and both ends of the hermetically sealed container 50 for performing shock-absorbing operations.
  • the container-supporting stand 91 comprises: a horizontal supporting stand 92 disposed horizontally in the longitudinal direction of the hermetically sealed container 50 ; and vertical supporting stands 93 connected to both ends of the horizontal supporting stand 92 while being perpendicular to the horizontal supporting stand 92 for supporting the shock-absorbing springs 95 and 96 .
  • the shock-absorbing springs 95 and 96 are disposed at the front and rear ends of the hermetically sealed container 50 , respectively, for absorbing vibrations generated in the direction in which the linear motor 60 and the piston 70 are moved.
  • a plurality of shock-absorbing springs 95 and 96 may be disposed at the front and rear ends of the hermetically sealed container 50 , respectively.
  • the vertical supporting stands 93 have openings formed therein, respectively.
  • spring seats 93 a Around the openings of the vertical supporting stands 93 are formed spring seats 93 a, to which the shock-absorbing springs 95 and 96 are mounted.
  • FIG. 5 Another supporting structure of the hermetically sealed container 50 according to a second preferred embodiment of the present invention will be described with reference to FIG. 5 .
  • the shock-absorbing springs 95 and 96 are disposed at the front and rear ends of the hermetically sealed container 50 for absorbing vibrations generated in the direction in which the linear motor 60 is operated.
  • vibration-absorbing members 97 and 98 are attached to the outer circumference of the hermetically sealed container 50 while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container 50 .
  • the vibration-absorbing members 97 and 98 may be made of a material having vibration-absorbing ability, such as a spring or a sponge.
  • the vibration-absorbing members 97 and 98 are disposed at the upper and lower sides of the hermetically sealed container 50 , respectively.
  • the container-supporting stand 91 comprises: horizontal supporting stands 92 a and 92 b disposed above and below the hermetically sealed container 50 while the horizontal supporting stands 92 a and 92 b are horizontally arranged in parallel with each other for supporting the vibration-absorbing members 97 and 98 ; and vertical supporting stands 93 connected to both ends of the horizontal supporting stands 92 a and 92 b while being perpendicular to the horizontal supporting stands 92 a and 92 b for supporting the shock-absorbing springs 95 and 96 .
  • FIG. 6 Yet another supporting structure of the hermetically sealed container 50 according to a third preferred embodiment of the present invention will be described with reference to FIG. 6 .
  • a shock-absorbing spring 95 is disposed at the front end of the hermetically sealed container 50 and another shock-absorbing spring 96 is disposed at the rear end of the hermetically sealed container 50 for absorbing vibrations generated in the direction in which the linear motor 60 is operated.
  • a plurality of shock-absorbing springs 95 ′ and 96 ′ are attached to at least one of the front and rear ends of the hermetically sealed container 50 .
  • the shock-absorbing springs 95 ′ and 96 ′ are disposed at the front and rear ends of the hermetically sealed container 50 , respectively, such that the shock-absorbing springs 95 ′ are spaced apart from each other by 120 degrees, and the shock-absorbing springs 96 ′ are spaced apart from each other by 120 degrees.
  • the construction of the container-supporting stand 91 according to the third preferred embodiment of the present invention is identical to that of the first preferred embodiment of the present invention except that the compressor is vertically mounted.
  • the magnet 65 is linearly reciprocated by means of a magnetic field generated around the coil 63 .
  • the reciprocating movement of the magnet 65 is transmitted to the piston 70 via the magnet frame 66 .
  • the piston 70 is continuously reciprocated in the cylinder 80 for compressing the fluid introduced into the cylinder 80 and discharging the compressed fluid.
  • the gasket 87 and the O-ring 88 are disposed at the outlet port 53 of the hermetically sealed container 50 .
  • the hermetically sealed container 50 has a double sealing structure. Consequently, fluid, such as refrigerant gas, is prevented from leaking without the provision of an additional outer case at the outside of the hermetically sealed container 50 .
  • the shock-absorbing support unit 90 is disposed at the outside of the hermetically sealed container 50 such that vibrations generated in the direction in which the linear motor 60 and the piston 70 are moved and vibrations generated in the radial and rotating directions of the hermetically sealed container 50 are effectively absorbed by means of the shock-absorbing support unit 90 when the compressor is operated. Consequently, the inner structure of the hermetically sealed container 50 is simplified while a sufficient shock-absorbing support structure is obtained, whereby the linear compressor is miniaturized.
  • the present invention provides a linear compressor wherein a discharging unit assembly and a shock-absorbing support unit are disposed at the outside of a hermetically sealed container to reduce the size of the hermetically sealed container. Consequently, the present invention has the effect that the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • the present invention has the effect of supporting the hermetically sealed container while absorbing shocks applied to hermetically sealed container.

Abstract

Disclosed herein is a linear compressor. The linear compressor comprises a hermetically sealed container having an inlet port and an outlet port formed at both ends thereof. In the hermetically sealed container is mounted a compression unit to compress and discharge a fluid. The compression unit comprises a linear motor, a cylinder, and a piston disposed in the cylinder such that the piston is linearly reciprocated in the cylinder by means of the linear motor. The linear compressor further comprises a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly, a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container, and shock-absorbing springs disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations. According to the present invention, the size of the hermetically sealed container is reduced, whereby the linear compressor is miniaturized, and thus the linear compressor is designed without limits.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a linear compressor, and more particularly to a linear compressor wherein specific components are disposed outside a hermetically sealed container so as to reduce the size of the hermetically sealed container, whereby a linear compressor is miniaturized.
  • 2. Description of the Related Art
  • Generally, a linear compressor is constructed such that a linear driving force from a linear motor is transmitted to a piston, which is linearly reciprocated in a cylinder, whereby a fluid is introduced, compressed, and discharged.
  • FIG. 1 is a longitudinal sectional view showing a conventional linear compressor. As shown in FIG. 1, the conventional linear compressor comprises a cylinder block 12 and a back cover 15 mounted inside a hermetically sealed container 10. The cylinder block 12 has a cylinder 13 formed therein, and the back cover 15 has a fluid inlet port 16 formed therein. The cylinder block 12 and the back cover 15 are disposed in the hermetically sealed container 10 in such a manner that shocks applied to the cylinder block 12 and the back cover 15 are absorbed by means of a first damper 17 and a second damper 18, respectively.
  • Between the cylinder block 12 and the back cover 15 is disposed a linear motor 20 that generates a driving force which is necessary to compress a fluid. To the linear motor 20 is connected a piston 30 that is linearly reciprocated in the cylinder 13 to compress a fluid introduced into the cylinder 13.
  • The linear motor 20 comprises a stator and a mover. The stator comprises: a laminated outer core 21; a laminated inner core 22 disposed such that the inner core 22 is spaced apart from the outer core 21 by a prescribed distance; and a coil 23 wound on the outer core 21 for generating a magnetic field.
  • The mover comprises: a magnet 25 disposed between the outer core 21 and the inner core 22 such that the magnet 25 is linearly moved by a magnetic force of the coil 23; and a magnet frame 27 connected to the piston 30 for transmitting a linear moving force to the piston. The magnet 25 is fixed to the magnet frame 27.
  • The piston 30 is provided at the rear part thereof with a flange 32, which is fixed to the magnet frame 27. The piston 30 is elastically supported by means of a first spring 28 disposed between the flange 32 and the cylinder block 12 and a second spring 28 disposed between the flange 32 and the back cover 15.
  • The piston 30 has a fluid flow channel 33 formed therein. The front end of the piston 30 is closed. At the closed front end of the piston are formed a plurality of inlet holes 34. In front of the piston 30 is disposed an inlet valve 35 that opens and closes the inlet holes 34. The inlet valve 35 has a valve plate 36 that is fixed to the piston 30 by means of a bolt. The valve plate 36 is elastically bent on the basis of the difference in pressure at both sides thereof for opening or closing the inlet holes 34.
  • A discharging unit 40 comprises: an inner outlet cover 41 mounted to the cylinder block 12 in front of a compression chamber C of the cylinder 13, the inner outlet cover 41 having a fluid outlet hole formed at one side thereof; a valve body 45 supported against the inner outlet cover 41 by means of a spring 43 for opening and closing the compression chamber C of the cylinder 13; and an outer outlet cover 47 disposed at the outside of the inner outlet cover 41 such that a predetermined space is defined between the inner outlet cover 41 and the outer outlet cover 47.
  • In FIG. 1, reference numeral 1 indicates an inlet connection pipe connected to the hermetically sealed container 10 while penetrating the hermetically sealed container 10 such that a fluid is introduced into the hermetically sealed container 10 through the inlet connection pipe, reference numeral 2 indicates an outlet pipe connected to the outer outlet cover 47 of the discharging unit 40 such that a fluid having passed through the discharging unit 40 is discharged through the outlet pipe, reference numeral 4 indicates a loop pipe having one end connected to the outlet pipe 4, and reference numeral 6 indicates an outlet connection pipe having one end connected to the loop pipe 4. The outlet connection pipe 6 penetrates the hermetically sealed container 10 such that the outlet connection pipe 6 extends out of the hermetically sealed container 10.
  • The operation of the conventional linear compressor with the above-stated construction will now be described.
  • As the linear motor 20 is operated, the magnet 25 is linearly reciprocated by means of a magnetic field generated around the coil 23. The reciprocating movement of the magnet 25 is transmitted to the piston 30 via the magnet frame 27. As a result, the piston 30 is continuously reciprocated between the valve body 45 of the discharging unit 40 and the back cover 15.
  • When the piston 30 is moved forward, i.e., toward the discharging unit 40, the inlet valve 35 is closed due to the difference in pressure between the fluid flow channel 33 and the compression chamber C. As a result, the fluid in the compression chamber C is compressed, and is then discharged through the discharging unit 40. The fluid outside the back cover 15 is introduced through the fluid inlet port 16.
  • When the piston 30 is moved backward, on the other hand, the inlet valve 35 is opened due to the difference in pressure between the fluid flow channel 33 and the compression chamber C. As a result, the fluid in the fluid flow channel 33 of the piston 30 is introduced into the compression chamber C through the inlet holes 34. As the piston 30 is subsequently moved forward, the fluid in the compression chamber C is compressed, and is then discharged. The above-described operation is repetitively carried out.
  • In the above-mentioned conventional linear compressor, however, not only operating components necessary to compress fluid but also supporting components necessary to support the operating components and vibration-absorbing components necessary to absorb vibrations generated from the operating components are disposed in the hermetically sealed container 10. As a result, it is difficult to miniaturize the linear compressor, and thus the linear compressor is designed within the limits.
  • SUMMARY OF THE INVENTION
  • Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a linear compressor wherein a discharging unit and vibration-absorbing components are disposed outside a hermetically sealed container to reduce the size of the hermetically sealed container, whereby the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • In accordance with one aspect of the present invention, the above and other objects can be accomplished by the provision of a linear compressor comprising: a hermetically sealed container having an inlet port and an outlet port formed therein; a linear motor fixed to the inside of the hermetically sealed container for generating a linear moving force; a cylinder fixed to the inside of the hermetically sealed container adjacent to the outlet port; a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly; a piston connected to the linear motor such that the piston is linearly reciprocated in the cylinder for compressing a fluid introduced into the cylinder; main springs connected to the front and rear sides of the piston, respectively, while being supported inside the hermetically sealed container for providing elastic forces to facilitate the reciprocating movement of the piston when the piston is reciprocated; and a shock-absorbing support unit disposed at the outside of the hermetically sealed container for supporting the hermitically sealed container such that shocks applied to the hermitically sealed container are absorbed by means of shock-absorbing support unit.
  • Preferably, the shock-absorbing support unit comprises: a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
  • Preferably, the inlet port is disposed at the rear end of the hermitically sealed container such that an inlet pipe is inserted through the inlet port, and the outlet assembly is disposed at the front end of the hermetically sealed container, and the linear compressor further comprises: spring seats formed around the inlet port of the hermetically sealed container and at the discharging unit assembly, respectively, such that the shock-absorbing means are mounted to the spring seats, respectively.
  • Preferably, the discharging unit assembly comprises: an outlet cover mounted to the outside of the hermetically sealed container for absorbing shocks generated from the fluid discharged through the outlet port; an outlet valve disposed in the outlet cover for opening and closing the outlet port; and an outlet spring supported against the outlet cover for providing an elastic force to the outlet valve.
  • Preferably, the linear compressor further comprises: sealing means disposed, at the outlet port side of the hermetically sealed container, between the cylinder and the hermetically sealed container and between the outlet cover and the hermetically sealed container.
  • Preferably, the piston is provided at the rear part thereof with a spring-supporting body such that the main springs are attached to the front and rear sides of the spring-supporting body.
  • Preferably, the hermetically sealed container is provided at the inside thereof with spring-supporting blocks such that one end of each of the main springs is supported against the corresponding one of the spring-supporting blocks.
  • Preferably, the linear compressor further comprises: a silencer disposed at the rear of the piston for reducing inlet noise.
  • According to a preferred embodiment of the present invention, the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated. The container-supporting stand comprises: a horizontal supporting stand disposed horizontally in the longitudinal direction of the hermetically sealed container; and vertical supporting stands connected to both ends of the horizontal supporting stand while being perpendicular to the horizontal supporting stand for supporting the shock-absorbing means.
  • According to another preferred embodiment of the present invention, the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated, and the shock-absorbing means are further disposed at the outer circumference of the hermetically sealed container while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container. The shock-absorbing means comprise: shock-absorbing springs disposed at the front and rear ends of the hermetically sealed container, respectively; and vibration-absorbing members disposed at the upper and lower sides of the hermetically sealed container, respectively.
  • In accordance with another aspect of the present invention, there is provided a linear compressor comprising: a hermetically sealed container having an inlet port and an outlet port formed at both ends thereof, the hermetically sealed container containing a compression unit to compress and discharge a fluid therein, the compression unit comprising a linear motor, a cylinder, and a piston disposed in the cylinder such that the piston is linearly reciprocated in the cylinder by means of the linear motor; a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly; a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
  • In the linear compressor according to the present invention, the discharging unit assembly and the shock-absorbing support unit are disposed at the outside of the hermetically sealed container to reduce the size of the hermetically sealed container. Consequently, the present invention has the effect that the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • According to the supporting structure of the hermetically sealed container according to the present invention, vibrations generated in the direction in which the linear motor is operated and vibrations generated in the radial and rotating directions of the hermetically sealed container are effectively absorbed. Consequently, the present invention has the effect of supporting the hermetically sealed container while absorbing shocks applied to hermetically sealed container.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a longitudinal sectional view showing a conventional linear compressor;
  • FIG. 2 is a longitudinal sectional view showing a linear compressor according to the present invention;
  • FIG. 3 is a sectional view showing the linear compressor according to the present invention with a sealing structure of a discharging unit;
  • FIG. 4 is a perspective view showing the linear compressor with a supporting structure according to a first preferred embodiment of the present invention;
  • FIG. 5 is a perspective view showing the linear compressor with a supporting structure according to a second preferred embodiment of the present invention; and
  • FIG. 6 is a perspective view showing the linear compressor with a supporting structure according to a third preferred embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Now, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • It should be understood that linear compressors according to numerous preferred embodiments of the present invention may be proposed, although only the most preferred embodiments of the present invention will be hereinafter described.
  • FIG. 2 is a longitudinal sectional view showing a linear compressor according to a preferred embodiment of the present invention.
  • As shown in FIG. 2, the linear compressor according to the present invention includes: a hermetically sealed container 50 having an inlet port 51 and an outlet port 53 formed therein; a linear motor 60 fixed to the inside of the hermetically sealed container 50 for generating a linear moving force; a cylinder 80 fixed to the inside of the hermetically sealed container 50 adjacent to the outlet port 53; a discharging unit assembly 82 disposed in front of the outlet port 53 at the outside of the hermetically sealed container 50 such that a fluid compressed in the cylinder 80 is discharged through the discharging unit assembly 82; a piston 70 connected to the linear motor 60 such that the piston 70 is linearly reciprocated in the cylinder 80 for compressing a fluid introduced into the cylinder; main springs 68 and 69 connected to the front and rear sides of the piston 70, respectively, while being supported inside the hermetically sealed container 50 for providing elastic forces to facilitate the reciprocating movement of the piston when the piston is reciprocated; and a shock-absorbing support unit 90 disposed at the outside of the hermetically sealed container 50 for supporting the hermitically sealed container 50 such that shocks applied to the hermitically sealed container 50 are absorbed by means of the shock-absorbing support unit 90.
  • The hermitically sealed container 50 is formed in the shape of a cylinder. The inlet port 51 is disposed at the rear end of the hermitically sealed container 50 such that an inlet pipe 77 is inserted through the inlet port 51. The outlet assembly 82 is disposed at the front end of the hermetically sealed container 50.
  • The linear motor 60 comprises a stator and a mover. The stator comprises: a laminated outer core 61; a laminated inner core 62 disposed such that the inner core 62 is spaced apart from the outer core 61 by a prescribed distance; and a coil 63 wound on the outer core 61 for generating a magnetic field. The mover comprises: a magnet 65 disposed between the outer core 61 and the inner core 62 such that the magnet 65 is linearly moved by a magnetic force created around the coil 63; and a magnet frame 66 connected to the piston 70 for transmitting a linear moving force to the piston 70. The magnet 65 is fixed to the magnet frame 66.
  • The piston 70 is provided at the rear part thereof with a flange 72, which is fixed to the magnet frame 66. To the flange 72 is attached a spring-supporting body 67, at the front and rear sides of which are disposed the main springs 68 and 69 to provide elastic forces to the piston such that vibrations are successively applied to the piston in both directions.
  • Inside the hermetically sealed container 50 are spring-supporting blocks 55 and 56. The spring-supporting block 55 supports one end of the main spring 68, and the spring-supporting block 56 supports one end of the main spring 69.
  • At the rear of the piston 70 is disposed a silencer 78, which is connected to the inlet pipe 77 for reducing inlet noise.
  • At the front end of the piston 70 are formed a plurality of inlet holes 74, which are opened and closed by means of a inlet valve 74 attached to the front end of the piston 70.
  • The discharging unit assembly 82 comprises: an outlet cover 83 mounted to the outside of the hermetically sealed container 50 by means of bolts for absorbing shocks generated from the fluid discharged through the outlet port 53 and allowing the fluid having been discharged through the outlet port 53 to be discharged through an outlet pipe 86; an outlet valve 84 disposed at the exit of the cylinder 80 in the outlet cover 83 for opening and closing the outlet port 53; and an outlet spring 85 supported against the outlet cover 83 for providing an elastic force to the outlet valve 84.
  • A sealing structure of the discharging unit assembly 82 will be described hereinafter with reference to FIG. 3. Between the outlet port 53 and the cylinder 80 is disposed a sealing member to prevent leakage of fluid from the inside of the hermetically sealed container 50, and between the outer surface of the hermetically sealed container 50 and the flange of the outlet cover 83 is disposed another sealing member to prevent leakage of fluid from the outside of the hermetically sealed container 50. In other words, the discharging unit assembly 82 is a double-sealed structure.
  • Specifically, a ring-shaped gasket 87 is disposed, at the outlet port side of the hermetically sealed container 50, between an inner step groove part 52 of the hermetically sealed container 50 and an extension 81 of the cylinder 50, and an O-ring 88 is disposed, at the outlet port side of the hermetically sealed container 50, between a ring groove 54 of the hermetically sealed container 50 and the flange of the outlet cover 83.
  • Various supporting structures of the hermetically sealed container 50 with the above-described construction will now be described in detail with reference to FIGS. 4 to 6.
  • First, a supporting structure of the hermetically sealed container 50 according to a first preferred embodiment of the present invention will be described with reference to FIG. 4. As shown in FIG. 4, the shock-absorbing support unit 90 comprises: a container-supporting stand 91 to support the hermetically sealed container 50 at the outside of the hermetically sealed container 50, the container-supporting stand 91 being formed in the shape of a “[”; and shock-absorbing springs 95 and 96 disposed between the container-supporting stand 91 and both ends of the hermetically sealed container 50 for performing shock-absorbing operations.
  • The container-supporting stand 91 comprises: a horizontal supporting stand 92 disposed horizontally in the longitudinal direction of the hermetically sealed container 50; and vertical supporting stands 93 connected to both ends of the horizontal supporting stand 92 while being perpendicular to the horizontal supporting stand 92 for supporting the shock-absorbing springs 95 and 96.
  • The shock-absorbing springs 95 and 96 are disposed at the front and rear ends of the hermetically sealed container 50, respectively, for absorbing vibrations generated in the direction in which the linear motor 60 and the piston 70 are moved. A plurality of shock-absorbing springs 95 and 96 may be disposed at the front and rear ends of the hermetically sealed container 50, respectively.
  • Around the inlet port 51 of the hermetically sealed container 50 and at the outlet cover 83 of the discharging unit assembly 82 are formed spring seats 57 and 83 a (FIG. 2), to which the shock-absorbing springs 95 and 96 are mounted. The vertical supporting stands 93 have openings formed therein, respectively. Around the openings of the vertical supporting stands 93 are formed spring seats 93 a, to which the shock-absorbing springs 95 and 96 are mounted.
  • Another supporting structure of the hermetically sealed container 50 according to a second preferred embodiment of the present invention will be described with reference to FIG. 5. In the supporting structure according to the first preferred embodiment of the present invention shown in FIG. 4, the shock-absorbing springs 95 and 96 are disposed at the front and rear ends of the hermetically sealed container 50 for absorbing vibrations generated in the direction in which the linear motor 60 is operated. In the supporting structure according to the second preferred embodiment of the present invention shown in FIG. 5, vibration-absorbing members 97 and 98 are attached to the outer circumference of the hermetically sealed container 50 while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container 50.
  • The vibration-absorbing members 97 and 98 may be made of a material having vibration-absorbing ability, such as a spring or a sponge. Preferably, the vibration-absorbing members 97 and 98 are disposed at the upper and lower sides of the hermetically sealed container 50, respectively.
  • The container-supporting stand 91 comprises: horizontal supporting stands 92 a and 92 b disposed above and below the hermetically sealed container 50 while the horizontal supporting stands 92 a and 92 b are horizontally arranged in parallel with each other for supporting the vibration-absorbing members 97 and 98; and vertical supporting stands 93 connected to both ends of the horizontal supporting stands 92 a and 92 b while being perpendicular to the horizontal supporting stands 92 a and 92 b for supporting the shock-absorbing springs 95 and 96.
  • In the supporting structure with the above-stated construction according to the second preferred embodiment of the present invention, not only vibrations generated in the direction in which the linear motor is operated are absorbed by means of the shock-absorbing springs 95 and 96, but also vibrations generated in the radial direction of the hermetically sealed container 50 are absorbed by means of the vibration-absorbing members 97 and 98.
  • Yet another supporting structure of the hermetically sealed container 50 according to a third preferred embodiment of the present invention will be described with reference to FIG. 6. In the supporting structures according to the first and second preferred embodiments of the present invention shown in FIGS. 4 and 5, a shock-absorbing spring 95 is disposed at the front end of the hermetically sealed container 50 and another shock-absorbing spring 96 is disposed at the rear end of the hermetically sealed container 50 for absorbing vibrations generated in the direction in which the linear motor 60 is operated. In the supporting structure according to the third preferred embodiment of the present invention shown in FIG. 6, a plurality of shock-absorbing springs 95′ and 96′ are attached to at least one of the front and rear ends of the hermetically sealed container 50.
  • Preferably, the shock-absorbing springs 95′ and 96′ are disposed at the front and rear ends of the hermetically sealed container 50, respectively, such that the shock-absorbing springs 95′ are spaced apart from each other by 120 degrees, and the shock-absorbing springs 96′ are spaced apart from each other by 120 degrees. The construction of the container-supporting stand 91 according to the third preferred embodiment of the present invention is identical to that of the first preferred embodiment of the present invention except that the compressor is vertically mounted.
  • In the supporting structure with the above-stated construction according to the third preferred embodiment of the present invention, not only vibrations generated in the direction in which the linear motor 60 is operated are reduced, but also movement of the hermetically sealed container 50 in the rotating direction thereof, i.e., vibrations of the hermetically sealed container 50 is reduced.
  • The operation of the linear compressor with the above-stated construction according to the present invention will now be described.
  • As the linear motor 60 is operated, the magnet 65 is linearly reciprocated by means of a magnetic field generated around the coil 63. The reciprocating movement of the magnet 65 is transmitted to the piston 70 via the magnet frame 66. As a result, the piston 70 is continuously reciprocated in the cylinder 80 for compressing the fluid introduced into the cylinder 80 and discharging the compressed fluid.
  • When the piston 70 is moved forward, i.e., toward the discharging unit assembly 82, the inlet valve 75 is closed, and thus the fluid in the cylinder 80 is compressed. At this time, the outlet valve 84 is opened, and then the fluid is discharged out of the linear compressor through the outlet cover 83 and the outlet pipe 86.
  • When the piston 70 is moved backward, on the other hand, the inlet valve 75 is opened, and thus the fluid introduced into the piston 70 is guided into the cylinder 80 through the inlet holes 74. As the piston 30 is subsequently moved forward, the fluid in the cylinder 80 is compressed, and is then discharged. The above-described operation is repetitively carried out.
  • According to the present invention, the gasket 87 and the O-ring 88 are disposed at the outlet port 53 of the hermetically sealed container 50. In other words, the hermetically sealed container 50 has a double sealing structure. Consequently, fluid, such as refrigerant gas, is prevented from leaking without the provision of an additional outer case at the outside of the hermetically sealed container 50.
  • Also, the shock-absorbing support unit 90 is disposed at the outside of the hermetically sealed container 50 such that vibrations generated in the direction in which the linear motor 60 and the piston 70 are moved and vibrations generated in the radial and rotating directions of the hermetically sealed container 50 are effectively absorbed by means of the shock-absorbing support unit 90 when the compressor is operated. Consequently, the inner structure of the hermetically sealed container 50 is simplified while a sufficient shock-absorbing support structure is obtained, whereby the linear compressor is miniaturized.
  • As apparent from the above description, the present invention provides a linear compressor wherein a discharging unit assembly and a shock-absorbing support unit are disposed at the outside of a hermetically sealed container to reduce the size of the hermetically sealed container. Consequently, the present invention has the effect that the linear compressor is miniaturized, and the linear compressor is designed without limits.
  • According to the supporting structure of the hermetically sealed container according to the present invention, vibrations generated in the direction in which the linear motor is operated and vibrations generated in the radial and rotating directions of the hermetically sealed container are effectively absorbed. Consequently, the present invention has the effect of supporting the hermetically sealed container while absorbing shocks applied to hermetically sealed container.
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (20)

1. A linear compressor comprising:
a hermetically sealed container having an inlet port and an outlet port formed therein;
a linear motor fixed to the inside of the hermetically sealed container for generating a linear moving force;
a cylinder fixed to the inside of the hermetically sealed container adjacent to the outlet port;
a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly;
a piston connected to the linear motor such that the piston is linearly reciprocated in the cylinder for compressing fluid introduced into the cylinder;
main springs connected to the front and rear sides of the piston, respectively, while being supported inside the hermetically sealed container for providing elastic forces to facilitate the reciprocating movement of the piston when the piston is reciprocated; and
a shock-absorbing support unit disposed at the outside of the hermetically sealed container for supporting the hermitically sealed container such that shocks applied to the hermitically sealed container are absorbed by means of shock-absorbing support unit.
2. The compressor as set forth in claim 1, wherein the shock-absorbing support unit comprises:
a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and
shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
3. The compressor as set forth in claim 2, wherein the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated.
4. The compressor as set forth in claim 3, wherein the container-supporting stand comprises:
a horizontal supporting stand disposed horizontally in the longitudinal direction of the hermetically sealed container; and
vertical supporting stands connected to both ends of the horizontal supporting stand while being perpendicular to the horizontal supporting stand for supporting the shock-absorbing means.
5. The compressor as set forth in claim 2, wherein the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated, and the shock-absorbing means are further disposed at the outer circumference of the hermetically sealed container while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container.
6. The compressor as set forth in claim 5, wherein the shock-absorbing means comprise:
shock-absorbing springs disposed at the front and rear ends of the hermetically sealed container, respectively; and
vibration-absorbing members disposed at the upper and lower sides of the hermetically sealed container, respectively.
7. The compressor as set forth in claim 2, wherein the inlet port is disposed at the rear end of the hermitically sealed container such that an inlet pipe is inserted through the inlet port, and the outlet assembly is disposed at the front end of the hermetically sealed container, the compressor further comprising: spring seats formed around the inlet port of the hermetically sealed container and at the discharging unit assembly, respectively, such that the shock-absorbing means are mounted to the spring seats, respectively.
8. The compressor as set forth in claim 1, wherein the discharging unit assembly comprises:
an outlet cover mounted to the outside of the hermetically sealed container for absorbing shocks generated from the fluid discharged through the outlet port;
an outlet valve disposed in the outlet cover for opening and closing the outlet port; and
an outlet spring supported against the outlet cover for providing an elastic force to the outlet valve.
9. The compressor as set forth in claim 8, further comprising: sealing means disposed, at the outlet port side of the hermetically sealed container, between the cylinder and the hermetically sealed container and between the outlet cover and the hermetically sealed container.
10. A linear compressor comprising:
a hermetically sealed container having an inlet port and an outlet port formed at both ends thereof, the hermetically sealed container containing a compression unit to compress and discharge a fluid therein, the compression unit comprising a linear motor, a cylinder, and a piston disposed in the cylinder such that the piston is linearly reciprocated in the cylinder by means of the linear motor;
a discharging unit assembly disposed in front of the outlet port at the outside of the hermetically sealed container such that a fluid compressed in the cylinder is discharged through the discharging unit assembly;
a container-supporting stand to support the hermetically sealed container at the outside of the hermetically sealed container; and
shock-absorbing means disposed between the container-supporting stand and the hermetically sealed container for performing shock-absorbing operations.
11. The compressor as set forth in claim 10, wherein the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated.
12. The compressor as set forth in claim 11, wherein at least one of the shock-absorbing means disposed at the front and rear ends of the hermetically sealed container comprises a plurality of springs.
13. The compressor as set forth in claim 10, wherein the shock-absorbing means are disposed at the front and rear ends of the hermetically sealed container, respectively, for absorbing vibrations generated in the direction in which the linear motor is operated, and the shock-absorbing means are further disposed at the outer circumference of the hermetically sealed container while being diagonally opposite to each other for absorbing vibrations generated in the radial direction of the hermetically sealed container.
14. The compressor as set forth in claim 13, wherein the shock-absorbing means comprise:
shock-absorbing springs disposed at the front and rear ends of the hermetically sealed container, respectively; and
vibration-absorbing members disposed at the upper and lower sides of the hermetically sealed container, respectively.
15. The compressor as set forth in claim 14, wherein the container-supporting stand comprises:
horizontal supporting stands disposed above and below the hermetically sealed container while the horizontal supporting stands are horizontally arranged in parallel with each other for supporting the vibration-absorbing members; and
vertical supporting stands connected to both ends of the horizontal supporting stand while being perpendicular to the horizontal supporting stands for supporting the shock-absorbing springs.
16. The compressor as set forth in claim 10, wherein the inlet port is disposed at the rear end of the hermitically sealed container such that an inlet pipe is inserted through the inlet port, and the outlet assembly is disposed at the front end of the hermetically sealed container, the compressor further comprising: spring seats formed around the inlet port of the hermetically sealed container and at the discharging unit assembly, respectively, such that the shock-absorbing means are mounted to the spring seats, respectively.
17. The compressor as set forth in claim 16, further comprising:
a gasket disposed between the cylinder and the hermetically sealed container; and
an O-ring disposed between the outlet cover and the hermetically sealed container.
18. The compressor as set forth in claim 1, wherein the piston is provided at the rear part thereof with a spring-supporting body such that the main springs are attached to the front and rear sides of the spring-supporting body.
19. The compressor as set forth in claim 1, wherein the hermetically sealed container is provided at the inside thereof with spring-supporting blocks such that one-side ends of the main springs are supported against the spring-supporting blocks, respectively.
20. The compressor as set forth in claim 1, further comprising: a silencer disposed at the rear of the piston for reducing inlet noise.
US11/028,647 2004-01-06 2005-01-05 Linear compressor Abandoned US20050175473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2004-00647 2004-01-06
KR10-2004-0000647A KR100529933B1 (en) 2004-01-06 2004-01-06 Linear compressor

Publications (1)

Publication Number Publication Date
US20050175473A1 true US20050175473A1 (en) 2005-08-11

Family

ID=34588118

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/028,647 Abandoned US20050175473A1 (en) 2004-01-06 2005-01-05 Linear compressor

Country Status (5)

Country Link
US (1) US20050175473A1 (en)
EP (1) EP1553294B1 (en)
JP (1) JP2005195022A (en)
KR (1) KR100529933B1 (en)
CN (1) CN100386517C (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109733A1 (en) * 2001-02-13 2002-08-15 Mikio Watanabe Image sensing system
US20040262014A1 (en) * 1998-12-07 2004-12-30 Cook Robert Lance Mono-diameter wellbore casing
US20050166388A1 (en) * 2000-10-02 2005-08-04 Cook Robert L. Method and apparatus for forming a mono-diameter wellbore casing
US20050230104A1 (en) * 1998-12-07 2005-10-20 Shell Oil Co. Apparatus for expanding a tubular member
US20070041855A1 (en) * 2005-08-17 2007-02-22 Danfoss Compressors Gmbh Linear compressor, particularly refrigerant compressor
US20100154441A1 (en) * 2006-02-28 2010-06-24 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor With a Gas Spring
US20100172769A1 (en) * 2007-05-31 2010-07-08 Whirlpool S.A. Suspension system for a linear compressor
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US20100310396A1 (en) * 2007-12-18 2010-12-09 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US20120034114A1 (en) * 2009-12-08 2012-02-09 Hyo Jae Lee Linear compressor
US20170204841A1 (en) * 2016-01-19 2017-07-20 Lg Electronics Inc. Linear compressor
US20180195504A1 (en) * 2017-01-12 2018-07-12 Lg Electronics Inc. Linear compressor
US11255577B2 (en) * 2018-06-29 2022-02-22 Lg Electronics Inc. Linear compressor
US11530695B1 (en) 2021-07-01 2022-12-20 Haier Us Appliance Solutions, Inc. Suction muffler for a reciprocating compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680205B1 (en) * 2005-01-07 2007-02-08 엘지전자 주식회사 Linear compressor
EP1724907B1 (en) * 2005-05-17 2010-12-08 LG Electronics Inc. Linear motor
KR101238202B1 (en) * 2006-04-18 2013-03-06 엘지전자 주식회사 Reciprocating compressor
WO2009054627A2 (en) * 2007-10-24 2009-04-30 Lg Electronics, Inc. Linear compressor
BRPI1103647A2 (en) * 2011-07-07 2013-07-02 Whirlpool Sa arrangement between linear compressor components
CN104005931B (en) * 2013-02-21 2016-04-27 青岛海尔智能技术研发有限公司 Linearkompressor
CN104564599A (en) * 2013-10-10 2015-04-29 青岛海尔智能技术研发有限公司 Front flange of linear compressor and linear compressor comprising front flange
EP3473855B1 (en) 2017-09-28 2021-03-10 LG Electronics Inc. Linear compressor
EP3521617B1 (en) 2018-02-01 2021-03-24 Lg Electronics Inc. Linear compressor
KR102043153B1 (en) * 2018-02-01 2019-11-11 엘지전자 주식회사 Linear compressor
DE102019109928A1 (en) * 2019-04-15 2020-10-15 Alfmeier Präzision SE Pump housing, pump and seat
KR102228858B1 (en) * 2019-05-22 2021-03-17 엘지전자 주식회사 Linear compressor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385542A (en) * 1965-10-16 1968-05-28 Arne F. Enemark Motor compressor unit with spring suspension
US3573514A (en) * 1969-05-12 1971-04-06 Motorola Inc Reciprocating motor with excursion multiplication
US4705982A (en) * 1985-06-14 1987-11-10 Ecole Nationale Superieure De Mecanique Et Des Microtechniques Device for supporting a piezoelectric resonator inside a casing
US4860543A (en) * 1986-08-08 1989-08-29 Helix Technology Corporation Vibration isolation system for a linear reciprocating machine
US5979597A (en) * 1996-03-29 1999-11-09 Tecumseh Europe S.A. Suction silencer system for a refrigeration compressor
US6364605B1 (en) * 2000-08-25 2002-04-02 Corken, Inc. Regenerative turbine pump
US6501935B2 (en) * 1997-01-21 2002-12-31 Ricoh Company, Ltd. Belt-type fixing apparatus having a fixing roller provided with a soft foam layer
US6567265B1 (en) * 1995-11-20 2003-05-20 Matsushita Electric Industrial Co., Ltd. Apparatus having flexible mounting mechanism
US20040046298A1 (en) * 2002-09-05 2004-03-11 Seiya Takeshita Vibration-isolating bushing
US20050053489A1 (en) * 2003-08-11 2005-03-10 Lg Electronics Inc. Reciprocating compressor
US7306438B2 (en) * 2001-04-16 2007-12-11 Lg Electronics Inc. Suction gas guiding system for reciprocating compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139304A (en) * 1978-04-20 1979-10-29 Nec Corp Dial signal transmission system
JPH06117373A (en) * 1992-10-06 1994-04-26 Nippondenso Co Ltd Oscillation damping equipment
JPH06288353A (en) * 1993-04-02 1994-10-11 Mitsubishi Heavy Ind Ltd Elastic suspension device for horizontally installed compressor
AU681825B2 (en) * 1995-05-31 1997-09-04 Sawafuji Electric Co., Ltd. Vibrating compressor
JPH08331805A (en) * 1995-05-31 1996-12-13 Sawafuji Electric Co Ltd Vibrating type compressor
JPH11241685A (en) * 1998-02-26 1999-09-07 Toyota Motor Corp Compressed air supply device
JP2000265954A (en) * 1999-03-12 2000-09-26 Sanyo Electric Co Ltd Closed rotary compressor
US6467276B2 (en) * 2000-02-17 2002-10-22 Lg Electronics Inc. Pulse tube refrigerator
JP2001280242A (en) * 2000-03-30 2001-10-10 Sanyo Electric Co Ltd Refrigerating machine
JP4366849B2 (en) * 2000-08-31 2009-11-18 株式会社デンソー Linear compressor
JP2002115653A (en) * 2000-10-04 2002-04-19 Twinbird Corp Compressor
JP3863724B2 (en) * 2001-02-13 2006-12-27 三洋電機株式会社 Mechanical installation mechanism

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385542A (en) * 1965-10-16 1968-05-28 Arne F. Enemark Motor compressor unit with spring suspension
US3573514A (en) * 1969-05-12 1971-04-06 Motorola Inc Reciprocating motor with excursion multiplication
US4705982A (en) * 1985-06-14 1987-11-10 Ecole Nationale Superieure De Mecanique Et Des Microtechniques Device for supporting a piezoelectric resonator inside a casing
US4860543A (en) * 1986-08-08 1989-08-29 Helix Technology Corporation Vibration isolation system for a linear reciprocating machine
US6567265B1 (en) * 1995-11-20 2003-05-20 Matsushita Electric Industrial Co., Ltd. Apparatus having flexible mounting mechanism
US5979597A (en) * 1996-03-29 1999-11-09 Tecumseh Europe S.A. Suction silencer system for a refrigeration compressor
US6501935B2 (en) * 1997-01-21 2002-12-31 Ricoh Company, Ltd. Belt-type fixing apparatus having a fixing roller provided with a soft foam layer
US6364605B1 (en) * 2000-08-25 2002-04-02 Corken, Inc. Regenerative turbine pump
US7306438B2 (en) * 2001-04-16 2007-12-11 Lg Electronics Inc. Suction gas guiding system for reciprocating compressor
US20040046298A1 (en) * 2002-09-05 2004-03-11 Seiya Takeshita Vibration-isolating bushing
US20050053489A1 (en) * 2003-08-11 2005-03-10 Lg Electronics Inc. Reciprocating compressor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262014A1 (en) * 1998-12-07 2004-12-30 Cook Robert Lance Mono-diameter wellbore casing
US20050230104A1 (en) * 1998-12-07 2005-10-20 Shell Oil Co. Apparatus for expanding a tubular member
US20050166388A1 (en) * 2000-10-02 2005-08-04 Cook Robert L. Method and apparatus for forming a mono-diameter wellbore casing
US20050172473A1 (en) * 2000-10-02 2005-08-11 Cook Robert L. Method and apparatus for forming a mono-diameter wellbore casing
US20020109733A1 (en) * 2001-02-13 2002-08-15 Mikio Watanabe Image sensing system
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US20070041855A1 (en) * 2005-08-17 2007-02-22 Danfoss Compressors Gmbh Linear compressor, particularly refrigerant compressor
US8062005B2 (en) * 2005-08-17 2011-11-22 Secop Gmbh Linear compressor with spring arrangement for vibration suppression
US20100154441A1 (en) * 2006-02-28 2010-06-24 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor With a Gas Spring
US8371827B2 (en) * 2007-05-31 2013-02-12 Whirlpool S.A. Suspension system for a linear compressor
US20100172769A1 (en) * 2007-05-31 2010-07-08 Whirlpool S.A. Suspension system for a linear compressor
US20100310396A1 (en) * 2007-12-18 2010-12-09 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
US8360749B2 (en) * 2007-12-18 2013-01-29 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
US20120034114A1 (en) * 2009-12-08 2012-02-09 Hyo Jae Lee Linear compressor
US20170204841A1 (en) * 2016-01-19 2017-07-20 Lg Electronics Inc. Linear compressor
US10400757B2 (en) * 2016-01-19 2019-09-03 Lg Electronics Inc. Linear compressor
US20180195504A1 (en) * 2017-01-12 2018-07-12 Lg Electronics Inc. Linear compressor
US10865783B2 (en) * 2017-01-12 2020-12-15 Lg Electronics Inc. Linear compressor
US11255577B2 (en) * 2018-06-29 2022-02-22 Lg Electronics Inc. Linear compressor
US11530695B1 (en) 2021-07-01 2022-12-20 Haier Us Appliance Solutions, Inc. Suction muffler for a reciprocating compressor

Also Published As

Publication number Publication date
EP1553294B1 (en) 2013-05-22
CN100386517C (en) 2008-05-07
KR20050072267A (en) 2005-07-11
JP2005195022A (en) 2005-07-21
EP1553294A3 (en) 2012-02-01
KR100529933B1 (en) 2005-11-22
CN1637282A (en) 2005-07-13
EP1553294A2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US20050175473A1 (en) Linear compressor
US20060093498A1 (en) Linear compressor
US7614251B2 (en) Reciprocating compressor and refrigerator having the same
US20040247457A1 (en) Linear compressor
JP5173163B2 (en) Linear compressor
US20170314542A1 (en) Linear compressor
US20060060196A1 (en) Muffler of linear compressor
US10533546B2 (en) Linear compressor
JP2005195023A (en) Linear compressor having external vibration-proofing structure
KR101856280B1 (en) Reciprocating compressor
KR20060039621A (en) Linear compressor
KR20180090519A (en) Reciprocating compressor
US20050142014A1 (en) Compressor with vibration reducing apparatus
KR100624821B1 (en) Linear compressor
CN1752444B (en) Linear compressor
KR100700556B1 (en) Oil recovery device for linear compressor
KR102162335B1 (en) Linear compressor
KR100624820B1 (en) Linear compressor having symmetrical compressing part
KR102494486B1 (en) Compressor
KR100565532B1 (en) Structure of Discharge part for linear compressor
KR100529944B1 (en) Oil supply apparatus for linear compressor
KR20160138640A (en) Inhalation and ventilation valve for compressor
KR20230172243A (en) Reciprocating compressor
KR20050072266A (en) Suction part structure for linear compressor
KR20230174534A (en) Reciprocating compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, JONG JIN;PARK, JOON WOO;REEL/FRAME:016467/0377

Effective date: 20041228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION