US20050166551A1 - Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer - Google Patents

Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer Download PDF

Info

Publication number
US20050166551A1
US20050166551A1 US10/770,339 US77033904A US2005166551A1 US 20050166551 A1 US20050166551 A1 US 20050166551A1 US 77033904 A US77033904 A US 77033904A US 2005166551 A1 US2005166551 A1 US 2005166551A1
Authority
US
United States
Prior art keywords
layer
shrink film
shrink
monovinylarene
conjugated diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/770,339
Inventor
J. Keane
Dale Gange
J. Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLEXSOL PACKAGING CORP
Chevron Phillips Chemical Co LP
Original Assignee
FLEXSOL PACKAGING CORP
Chevron Phillips Chemical Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLEXSOL PACKAGING CORP, Chevron Phillips Chemical Co LP filed Critical FLEXSOL PACKAGING CORP
Priority to US10/770,339 priority Critical patent/US20050166551A1/en
Assigned to FLEXSOL PACKAGING CORP. reassignment FLEXSOL PACKAGING CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GANGE, DALE E.
Assigned to CHEVRON PHILLIPS CHEMICAL COMPANY LP reassignment CHEVRON PHILLIPS CHEMICAL COMPANY LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, K. MARK, KEANE, J. ALEX
Publication of US20050166551A1 publication Critical patent/US20050166551A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction

Definitions

  • the present invention relates generally to the field of monovinylarene-conjugated diene block copolymers. More particularly, it concerns multilayer shrink films comprising such copolymers and polyethylenes.
  • shrink films have been available for the packaging industry.
  • a film is wrapped around the group of objects and then heat is applied, typically in a heat tunnel, and the film shrinks, unitizing the contents and providing rigidity and protection during handling.
  • the film used In bundling a group of objects, the film used generally only substantially shrinks in one direction, and thus the ends of bundled packages are only enclosed by the shrinking of the loose film edges, which produces what the industry calls a “bullseye.”
  • Also known is fully enclosing a group of objects, which involves generally the same technique, with a difference in using a film which generally shrinks in both directions.
  • PET films known commercially for bundling a group of objects or fully enclosing a group of objects include monolayer polyethylene (PE) films, which have limitations of clarity and gloss due to the nature of the polyethylene molecule.
  • PE monolayer polyethylene
  • Various types and grades of ethylene homo- and copolymers have been used.
  • LDPE films low density polyethylene (LDPE) films.
  • LDPE films do not have sufficient strength and puncture resistance for some packaging applications.
  • LDPE+LLDPE film generally has increased strength relative to an LDPE film, but often have reduced clarity and shrink.
  • the increased strength of an LDPE+LLDPE film has allowed reductions in the thickness of the films, which may improve clarity and reduce film costs, but reduces film stiffness.
  • LDPE low density polyethylene
  • LLDPE low density polyethylene
  • HDPE high density polyethylene
  • polyethylene films The current state of the art regarding polyethylene films involves the use of coextruded polyethylene films. These films may comprise LDPE outer layers and blends of LLDPE+HDPE in the core. Such films are reasonably glossy and clear, and have the stiffness to process in commonly available shrink bundling machinery.
  • the present invention relates to a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer.
  • a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the present invention relates to a method of bundling a group of objects, comprising wrapping the group of objects with a shrink film as described above, wherein the shrink film has a higher shrink in a first direction than in a second direction, to yield a wrapped group of objects, and heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a bundled group of objects.
  • the present invention relates to a method of fully enclosing a group of objects, comprising wrapping the group of objects with a shrink film as described above, wherein the shrink film has substantially similar shrink in both a first direction and a second direction, to yield a wrapped group of objects, and heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a fully enclosed group of objects.
  • the present invention can provide shrink films having visual properties (such as gloss and haze), physical properties (such as strength and stiffness), or shrink properties comparable to or superior to known shrink films of the same or similar thickness, such as shrink films having an LDPE/LLDPE+HDPE/LDPE three-layer structure.
  • FIG. 1 shows a cross-sectional view of a portion of a film according to one embodiment of a shrink film according to the present invention.
  • FIG. 2 shows a cross-sectional view of a portion of a film according to another embodiment of a shrink film according to the present invention.
  • the present invention relates to a shrink film, comprising:
  • a first layer comprising a monovinylarene-conjugated diene copolymer
  • a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and
  • a third layer comprising a monovinylarene-conjugated diene copolymer
  • the second layer is disposed between the first layer and the third layer.
  • the word “or” has the inclusive meaning.
  • the adjectives “first,” “second,” and so forth are not to be construed as limiting the modified subjects to a particular order in time, space, or both, unless specified to the contrary or apparent from the plain meaning of a phrase.
  • a “copolymer” is used herein to refer to any polymer comprising at least two types of units, e.g., two types of units, three types of units, etc.
  • “Monovinylarene,” as used herein, refers to an organic compound containing a single carbon-carbon double bond, at least one aromatic moiety, and a total of 8 to 18 carbon atoms, such as 8 to 12 carbon atoms.
  • Exemplary monovinylarenes include, but are not limited to, styrene, alpha-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 4-n-propylstyrene, 4-t-butylstyrene, 2,4-dimethylstyrene, 4-cyclohexylstyrene, 4-decylstyrene, 2-ethyl-4-benzylstyrene, 4-(4-phenyl-n-butyl)styrene, 1-vinyln
  • Conjugated diene refers to an organic compound containing conjugated carbon-carbon double bonds and a total of 4 to 12 carbon atoms, such as 4 to 8 carbon atoms.
  • exemplary conjugated dienes include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-butyl-1,3-octadiene, and mixtures thereof.
  • the conjugated diene can be 1,3-butadiene or isoprene.
  • a unit of polymer, wherein the unit is derived from polymerization of a conjugate diene monomer, is a “conjugated diene unit.”
  • a “monovinylarene-conjugated diene copolymer” is a polymer comprising monovinylarene units and conjugated diene units.
  • the polymer can be a block copolymer, that is, can comprise one or more blocks, wherein each block comprises monovinylarene units or conjugated diene units. Any particular block can comprise either or both monovinylarene units or conjugated diene units. If it comprises both, it can be a random block, a tapered block, a stepwise block, or any other type of block.
  • a block is “random” when the mole fractions of conjugated diene units and monovinylarene units in a section of the block are substantially the same as the mole fractions of conjugated diene units and monovinylarene units in the entire block. This does not preclude the possibility of sections of the block having regularity (i.e., appearing non-random), but such regular sections will typically be present at no more than about the level expected by chance.
  • a block is “tapered” when both (a) the mole fraction of conjugated diene units in a first section of the block is higher than the mole fraction of conjugated diene units in a second section of the block, wherein the second section of the block is closer to a given end of the block and (b) condition (a) is true for substantially all sections of the block. (Depending on the size of the sections being considered, condition (a) may not be true for all sections, but if so, will be not true at no more than about the level expected by chance).
  • a block is “stepwise” when a first section of the block contains substantially all monovinylarene units of the block and a second section of the block contains substantially all conjugated diene units of the block.
  • the monovinylarene-conjugated diene copolymer is a block copolymer comprising styrene blocks and butadiene blocks (a “styrene-butadiene block copolymer”).
  • styrene-butadiene block copolymer a block copolymer comprising styrene blocks and butadiene blocks
  • Exemplary styrene-butadiene copolymers are commercially available under the name K-Resin® (Chevron Phillips Chemical Co., The Woodlands, Tex.).
  • the monovinylarene-conjugated diene copolymer can have any proportion of monovinylarene units and conjugated diene units.
  • the monovinylarene-conjugated diene copolymer has from about 50 wt %:50 wt % monovinylarene units:conjugated diene units to about 90 wt %: 10 wt % monovinylarene units:conjugated diene units.
  • the monovinylarene-conjugated diene copolymer can further comprise other units known in the art for inclusion in monovinylarene-conjugated diene copolymers.
  • each block is formed by polymerizing the monomer or mixture of monomers from which the desired units of the block are derived.
  • the polymerization process will generally be amenable to a relative lack of change in process parameters between different blocks, but the skilled artisan, having the benefit of the present disclosure, may make some minor changes in process parameters between different blocks as a matter of routine experimentation.
  • the following descriptions of the polymerization process will generally apply to the formation of all types of blocks in the inventive polymer, although certain descriptions may be of more or less value to forming one or more of the types of blocks in the inventive polymer.
  • the polymerization process can be carried out in a hydrocarbon diluent at any suitable temperature in the range of from about ⁇ 100° C. to about 150° C., such as from about 0° C. to about 150° C., and at a pressure sufficient to maintain the reaction mixture substantially in the liquid phase.
  • the hydrocarbon diluent can be a linear or cyclic paraffin, or mixtures thereof.
  • Exemplary linear or cyclic paraffms include, but are not limited to, pentane, hexane, octane, cyclopentane, cyclohexane, and mixtures thereof, among others.
  • the paraffin is cyclohexane.
  • the polymerization process can be carried out in the substantial absence of oxygen and water, such as under an inert gas atmosphere.
  • the polymerization process can be performed in the presence of an initiator.
  • the initiator can be any organomonoalkali metal compound known for use as an initiator.
  • the initiator can have the formula RM, wherein R is an alkyl, cycloalkyl, or aryl radical containing 4 to 8 carbon atoms, such as an n-butyl radical, and M is an alkali metal, such as lithium.
  • the initiator is n-butyl lithium.
  • the amount of initiator employed depends upon the desired polymer or block molecular weight, as is known in the art and is readily determinable, making due allowance for traces of poisons in the feed streams.
  • the polymerization process can further involve the inclusion of a randomizer.
  • the randomizer can be a polar organic compound, such as an ether, a thioether, or a tertiary amine.
  • the randomizer can be a potassium salt or a sodium salt of an alcohol.
  • the randomizer can be included in the hydrocarbon diluent to improve the effectiveness of the initiator, to randomize at least part of the monovinylarene monomer in a mixed monomer charge, or both.
  • the inclusion of a randomizer can be of value when forming a random or tapered monovinylarene-conjugated diene block of the present polymer.
  • Exemplary randomizers include, but are not limited to, dimethyl ether, diethyl ether, ethyl methyl ether, ethyl propyl ether, di-n-propyl ether, di-n-octyl ether, anisole, dioxane, 1,2-dimetboxyethane, dibenzyl ether, diphenyl ether, 1,2-dimethoxybenzene, tetramethylene oxide (tetrahydrofuran or THF), potassium tert-amylate (KTA), dimethyl sulfide, diethyl sulfide, di-n-propyl sulfide, di-n-butyl sulfide, methyl ethyl sulfide, dimethylethylamine, tri-n-ethylamine, tri-n-propylamine, tri-n-butylamine, trimethylanine, triethylamine, tetramethylethylene
  • a block will typically form either de novo or by addition to the end of an unterminated, previously-formed, block. Further not to be bound by theory, if an initiator is not included in a charge, a block will typically only form by addition to the end of an unterminated, previously-formed, block.
  • a coupling agent can be added after polymerization is complete.
  • Suitable coupling agents include, but are not limited to, di- or multivinylarene compounds; di- or multiepoxides; di- or multiisocyanates; di- or multiimines; di- or multialdehydes; di- or multiketones; alkoxytin compounds; di- or multihalides, such as silicon halides and halosilanes; mono-, di-, or multianhydrides; di- or multiesters, such as the esters of monoalcohols with polycarboxylic acids; diesters which are esters of monohydric alcohols with dicarboxylic acids; diesters which are esters of monobasic acids with polyalcohols such as glycerol; and mixtures of two or more such compounds, among others.
  • Useful multifunctional coupling agents include, but are not limited to, epoxidized vegetable oils such as epoxidized soybean oil, epoxidized linseed oil, and mixtures thereof, among others.
  • the coupling agent is epoxidized soybean oil.
  • Epoxidized vegetable oils are commercially available under the trademark Vikoflex® from Atofina Chemicals (Philadelphia, Pa.).
  • any effective amount of the coupling agent can be employed.
  • a stoichiometric amount of the coupling agent relative to active polymer alkali metal tends to promote maximum coupling.
  • more or less than stoichiometric amounts can be used for varying coupling efficiency where desired for particular products.
  • the polymerization reaction mixture can be treated with a terminating agent such as water, carbon dioxide, alcohol, phenols, or linear saturated aliphatic mono-dicarboxylic acids, to remove alkali metal from the block copolymer or for color control.
  • a terminating agent such as water, carbon dioxide, alcohol, phenols, or linear saturated aliphatic mono-dicarboxylic acids
  • the polymer cement (polymer in polymerization solvent) usually contains about 10 to 40 weight percent solids, more usually 20 to 35 weight percent solids.
  • the polymer cement can be flashed to evaporate a portion of the solvent so as to increase the solids content to a concentration of about 50 to about 99 weight percent solids, followed by vacuum oven or devolatilizing extruder drying to remove the remaining solvent.
  • the block copolymer can be recovered and worked into a desired shape, such as by milling, extrusion, or injection molding.
  • the block copolymer can also contain additives such as antioxidants, antiblocking agents, release agents, slip agents, fillers, extenders, dyes, or the like.
  • the antiblocking agent is a high impact polystyrene (HIPS), by which is meant a composition comprising any graft copolymer of styrene and butadiene.
  • HIPS high impact polystyrene
  • graft copolymer polystyrene produced by polymerizing styrene in the presence of an unsaturated rubber wherein the rubber becomes dispersed throughout the polystyrene in the form of discrete domains.
  • unsaturated rubber is polybutadiene.
  • the monovinylarene-conjugated diene copolymer can be monomodal, that is, a population of copolymer molecules can have one peak in a histogram of the population's molecular weight distribution, or it can be polymodal, that is, have two or more peaks in a histogram of the copolymer molecules' population's molecular weight distribution.
  • the monovinylarene-conjugated diene copolymer can be coupled or uncoupled, as described above.
  • the first layer and the third layer comprise a monovinylarene-conjugated diene copolymer.
  • either or both of the first layer or the third layer can further comprise polystyrene (PS).
  • PS polystyrene
  • polystyrene refers to any homo- or copolymer comprising styrene units.
  • the first layer and the third layer can each independently comprise from 0 wt % PS to about 75 wt % PS. In one embodiment, the first layer and the third layer can each independently comprise from 0 wt % PS to about 50 wt % PS.
  • the monovinylarene-conjugated diene block copolymer can have any number of tapered blocks. In one embodiment, the monovinylarene-conjugated diene block copolymer has zero tapered blocks. In another embodiment, the monovinylarene-conjugated diene block copolymer has at least one tapered block.
  • the first layer and the third layer can be identical in composition, or can differ in composition, such as by use of different monovinylarene-conjugated diene copolymers, different proportions of monovinylarene units and conjugated diene units in the copolymers, the presence or absence of different additives (such as PS), or other differences as will be apparent to the skilled artisan having the benefit of the present disclosure.
  • the shrink film also comprises a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE).
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the LDPE in the second layer can be any branched homopolymer containing ethylene units.
  • the LDPE has a density of from about 0.922 g/cm 3 to about 0.924 g/cm 3 and a melt index (MI) from about 0.25 g/10 min to about 2.0 g/10 min (ASTM D1238).
  • MI melt index
  • LDPE can be made by any process known in the art.
  • the LDPE is a clarity-grade LDPE.
  • clarity-grade is meant an LDPE having an MI greater than about 1.0 g/10 min and a haze less than about 5% for a 1 mil thick film consisting of the LDPE.
  • the LLDPE in the second layer can be any linear copolymer comprising ethylene units and ⁇ -olefin units.
  • LLDPEs have densities of from about 0.915 g/cm 3 to about 0.924 g/cm 3 and MI values from about 0.5 g/10 min to about 1.5 g/10 min (ASTM D1238), although this is an observation and not a statement limiting the present invention.
  • the a-olefin is selected from the group consisting of 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • the LLDPE can be produced by any technique, such as Ziegler-Natta polymerization or metallocene-catalyzed polymerization, both of which are known in the art.
  • the LLDPE is produced by metallocene-catalyzed polymerization.
  • a metallocene-catalyzed LLDPE can be referred to herein as “mLLDPE.”
  • mLLDPE metallocene-catalyzed LLDPE
  • the second layer comprises greater than about 50 wt % LDPE.
  • the second layer can also comprise other materials, such as other polymers, for example, high density polyethylene (HDPE; an ethylene homopolymer having a density greater than about 0.940 g/cm 3 and an MI of from about 0.25 g.10 min to about 1.5 g/10min (ASTM D1238)), very low density polyethylene (VLDPE; a copolymer of ethylene and an ⁇ -olefin having a density less than about 0.912 g/cm 3 ), or other polyethylenes, as well as other additives.
  • HDPE high density polyethylene
  • VLDPE very low density polyethylene
  • the first layer and the third layer together can comprise from about 10 wt % to about 40 wt % of the shrink film. This wt % is the total over both layers.
  • the first layer and the third layer can comprise equal weight portions of the shrink film, or they can comprise unequal weight portions of the shrink film.
  • the second layer can comprise from about 30 wt % to about 80 wt % of the shrink film.
  • the total wt % of the three layers cannot exceed 100 wt % of the shrink film. In the event the total wt % of the three layers is less than 100 wt %, it will be apparent that the shrink film comprises one or more additional layers.
  • the second layer is disposed between the first layer and the third layer. It can be directly disposed therebetween, or a tie layer or layers can be used to facilitate adhesion between the second layer and either or both of the first layer and the third layer.
  • FIG. 1 A cross-sectional view of a portion of a shrink film according to one embodiment of the present invention is shown in FIG. 1 .
  • the first layer 10 and the third layer 12 sandwich the second layer 14 (i.e., the second layer 14 is directly disposed between the first layer 10 and the third layer 12 ).
  • FIG. 1 is not necessarily to scale.
  • FIG. 1 A cross-sectional view of a portion of a shrink film according to another embodiment of the present invention is shown in FIG. 1 .
  • tie layer 20 facilitates adhesion between the first layer 10 and the second layer 14
  • tie layer 22 facilitates adhesion between the third layer 12 and the second layer 14 .
  • FIG. 2 is not necessarily to scale.
  • the shrink film further comprises a first tie layer between the first layer and the second layer, a second tie layer between the third layer and the second layer, or both.
  • the tie layer or each tie layer can independently comprise an ethylene-vinyl acetate copolymer (EVA) or an anhydride-modified EVA.
  • EVA ethylene-vinyl acetate copolymer
  • An exemplary anhydride-modified EVA is Bynel® (Dupont, Wilmington, Del.).
  • the shrink film can be produced by any technique known in the art of monolayer and coextruded film making. Such techniques include milling, coextrusion, blow molding, injection molding, or cast molding. Generally, the shrink film can be produced by blown or cast film techniques. For example, the shrink film can be produced using conventional extrusion techniques such as a coextruded cast film. In coextrusion, two or more polymers are simultaneously extruded through one die. Two or more extruders are used simultaneously to feed the die. In this process, various polymer melts are introduced into the die under conditions of laminar flow such that there is no intermixing, but bonding occurs at the interface between the film layers.
  • orientation can be introduced into the film by stretching the film prior to winding on the final drum. In another embodiment, orientation can be introduced by stretching as the material is pulled from the die.
  • the die and downstream are different.
  • the die In the blown film process, the die is annular (circular) and typically points upward. This produces a cylindrical tube, which can then be closed at the top (collapsed), resulting in a flattened tube; or the tube can be inflated and stretched to introduce orientation. This tube can have its edges removed and then be wound into separate rolls of film.
  • the shrink film can have a machine direction (the direction in which the shrink film comes off the production apparatus) and a transverse direction (the direction perpendicular to the machine direction).
  • the shrink film can be oriented, that is, stretched in at least one direction.
  • One example of orienting is post-resin conversion on a tentering frame, although other techniques can be used. If stretched in one direction, the film can be stretched in either the machine direction or the transverse direction.
  • a cast film typically has a higher shrink in the machine direction than in the transverse direction, but this is solely an observation of typical films, and not a limiting description of the invention.
  • a typical shrink film according to the present invention can have a thickness of about 0.5 mil to about 3.0 mil, and at such a thickness it can have visual properties (such as gloss and haze), physical properties (such as strength and stiffness), or shrink properties comparable to or superior to known shrink films of the same or similar thickness and not comprising monovinylarene-conjugated diene copolymers.
  • the present invention relates to a method of bundling a group of objects, comprising:
  • a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has a higher shrink in a first direction than in a second direction, to yield a wrapped group of objects, and
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the shrink film can be as described above.
  • the shrink film has a higher shrink in a first direction than in a second direction. If oriented in one direction, the first direction can be the machine direction or the transverse direction. The second direction would then be the other of the machine direction or the transverse direction.
  • the group of objects is a group of bottles, cans, or other discrete objects, optionally contained in a tray.
  • the shrink film is disposed in a substantially cylindrical manner around the group of objects.
  • the direction of disposing can be chosen as a routine matter for the skilled artisan having the benefit of the present disclosure, depending on the objects, the structure of the shrink film, and the desired structure of the bundled group of objects.
  • the result of the wrapping step is a wrapped group of objects.
  • the wrapped group of objects can be heated to a temperature and for a duration sufficient to shrink the shrink film.
  • the temperature and the duration are a matter of routine experimentation for the skilled artisan having the benefit of the present disclosure. Because the shrink film of this embodiment has a higher shrink in a first direction than a second direction, the shrink film will typically only shrink in the first direction. In one embodiment, the shrink in the first direction is at least about 40%. Shrinking will typically proceed until the film has shrunk in the first direction to contact the group of objects.
  • the present invention relates to a method of fully enclosing a group of objects, comprising:
  • a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has substantially similar shrink in both a first direction and a second direction, to yield a wrapped group of objects, and
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the group of objects can be any group of objects for which full enclosure is desired.
  • the shrink film can be as described above.
  • the wrapping step can be as described above.
  • the heating step can be as described above. Because the shrink film of this embodiment has substantially similar shrink in both a first direction and a second direction, the shrink film will typically shrink in both directions. (“Substantially similar shrink” in this embodiment means the shrink in the first direction is no more or no less than about 2-fold greater or less than the shrink in the second direction). In one embodiment, the shrink in the first direction is at least about 40% and the shrink in the second direction is at least about 40%. Shrinking will typically proceed until the film has shrunk in both directions to contact the package.
  • the example films comprised an A/B/A structure, wherein the A layers comprised styrene-butadiene block copolymer (K-Resin®, Chevron Phillips) and polystyrene, and the B layers comprised LDPE and an mLLDPE.
  • the films were oriented after production.
  • “MD” refers to machine direction
  • “TD” refers to transverse direction.
  • Example 1B was evaluated and found to completely and satisfactorily shrink full cases of bottled water.
  • Example 1C Thickness (mil) 1.6 Secant Modulus (psi) MD 69,000 TD 65,000 Shrink Ratio % MD 66% TD 17% Gloss % (45 degree) 101% Haze % 5%
  • Comparative Examples were generally C/D/C structures, wherein the C layers comprised LDPE and the D layers contained blends of LLDPE and HDPE.
  • the Examples generally had higher gloss and lower haze than the Comparative Examples, as well as higher toughness at lower thickness.
  • the stiffness of the Examples (secant modulus between 65,000 and 96,000) exceeds the Comparative Examples (secant modulus between 33,000 and 59,000).
  • Gloss was about 69-74% in the Comparative Examples, versus a much higher gloss from 101% to 106% for the Examples.
  • Haze in the Comparative Examples was about 10-12%, versus the much lower gloss of about 5% in the Examples.
  • the shrink film of the Examples had superior visual properties and physical properties to the LDPE/LLDPE+HDPE/LDPE shrink films of the Comparative Examples known in the art.
  • compositions, articles, and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions, articles, and methods of this invention have been described in terms of particular embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions, articles, and methods described herein without departing from the concept, spirit and scope of the invention. All such variations apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Abstract

We disclose a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer. We also disclose methods of using the shrink film to prepare bundled or fully enclosed groups of objects.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates generally to the field of monovinylarene-conjugated diene block copolymers. More particularly, it concerns multilayer shrink films comprising such copolymers and polyethylenes.
  • A variety of shrink films have been available for the packaging industry. In bundling a group of objects, a film is wrapped around the group of objects and then heat is applied, typically in a heat tunnel, and the film shrinks, unitizing the contents and providing rigidity and protection during handling. In bundling a group of objects, the film used generally only substantially shrinks in one direction, and thus the ends of bundled packages are only enclosed by the shrinking of the loose film edges, which produces what the industry calls a “bullseye.” Also known is fully enclosing a group of objects, which involves generally the same technique, with a difference in using a film which generally shrinks in both directions.
  • Films known commercially for bundling a group of objects or fully enclosing a group of objects include monolayer polyethylene (PE) films, which have limitations of clarity and gloss due to the nature of the polyethylene molecule. Various types and grades of ethylene homo- and copolymers have been used.
  • Among the clearest known PE films are low density polyethylene (LDPE) films. However, LDPE films do not have sufficient strength and puncture resistance for some packaging applications.
  • In order to overcome the lower strength of LDPE films, films containing a blend of both LDPE and linear low density polyethylene (LLDPE) have also been used commercially. An LDPE+LLDPE film generally has increased strength relative to an LDPE film, but often have reduced clarity and shrink. The increased strength of an LDPE+LLDPE film has allowed reductions in the thickness of the films, which may improve clarity and reduce film costs, but reduces film stiffness.
  • In order to increase the stiffness and strength of thinner films, triblends of LDPE, LLDPE, and high density polyethylene (HDPE) have been used commercially. While an LDPE+LLDPE+HDPE film does have increased stiffness relative to an LDPE+LLDPE film, it generally has both lower clarity and lower gloss. It is the nature of HDPE to produce a film with higher haze and poorer gloss.
  • The current state of the art regarding polyethylene films involves the use of coextruded polyethylene films. These films may comprise LDPE outer layers and blends of LLDPE+HDPE in the core. Such films are reasonably glossy and clear, and have the stiffness to process in commonly available shrink bundling machinery.
  • However, in the interests of reducing cost, reducing materials consumption, and providing improved products, a need remains for materials with good visual properties (i.e., high gloss and low haze), good physical properties (i.e., higher strength and stiffness), good shrink properties, or some combination thereof.
  • SUMMARY OF THE INVENTION
  • In one embodiment, the present invention relates to a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer.
  • In another embodiment, the present invention relates to a method of bundling a group of objects, comprising wrapping the group of objects with a shrink film as described above, wherein the shrink film has a higher shrink in a first direction than in a second direction, to yield a wrapped group of objects, and heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a bundled group of objects.
  • In an additional embodiment, the present invention relates to a method of fully enclosing a group of objects, comprising wrapping the group of objects with a shrink film as described above, wherein the shrink film has substantially similar shrink in both a first direction and a second direction, to yield a wrapped group of objects, and heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a fully enclosed group of objects.
  • The present invention can provide shrink films having visual properties (such as gloss and haze), physical properties (such as strength and stiffness), or shrink properties comparable to or superior to known shrink films of the same or similar thickness, such as shrink films having an LDPE/LLDPE+HDPE/LDPE three-layer structure.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-sectional view of a portion of a film according to one embodiment of a shrink film according to the present invention.
  • FIG. 2 shows a cross-sectional view of a portion of a film according to another embodiment of a shrink film according to the present invention.
  • DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In one embodiment, the present invention relates to a shrink film, comprising:
  • a first layer comprising a monovinylarene-conjugated diene copolymer;
  • a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and
  • a third layer comprising a monovinylarene-conjugated diene copolymer;
  • wherein the second layer is disposed between the first layer and the third layer.
  • Unless specified to the contrary or apparent from the plain meaning of a phrase, the word “or” has the inclusive meaning. The adjectives “first,” “second,” and so forth are not to be construed as limiting the modified subjects to a particular order in time, space, or both, unless specified to the contrary or apparent from the plain meaning of a phrase. A “copolymer” is used herein to refer to any polymer comprising at least two types of units, e.g., two types of units, three types of units, etc.
  • The basic starting materials and polymerization conditions for preparing monovinylarene-conjugated diene copolymers are disclosed in, e.g., U.S. Pat. Nos. 4,091,053; 4,584,346; 4,704,434; 4,704,435; 5,227,419; 6,265,484; and 6,265,485.
  • “Monovinylarene,” as used herein, refers to an organic compound containing a single carbon-carbon double bond, at least one aromatic moiety, and a total of 8 to 18 carbon atoms, such as 8 to 12 carbon atoms. Exemplary monovinylarenes include, but are not limited to, styrene, alpha-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 4-n-propylstyrene, 4-t-butylstyrene, 2,4-dimethylstyrene, 4-cyclohexylstyrene, 4-decylstyrene, 2-ethyl-4-benzylstyrene, 4-(4-phenyl-n-butyl)styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, and mixtures thereof. In one embodiment, the monovinylarene is styrene. A unit of polymer, wherein the unit is derived from polymerization of a monovinylarene monomer, is a “monovinylarene unit.”
  • “Conjugated diene,” as used herein, refers to an organic compound containing conjugated carbon-carbon double bonds and a total of 4 to 12 carbon atoms, such as 4 to 8 carbon atoms. Exemplary conjugated dienes include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-butyl-1,3-octadiene, and mixtures thereof. In one embodiment, the conjugated diene can be 1,3-butadiene or isoprene. A unit of polymer, wherein the unit is derived from polymerization of a conjugate diene monomer, is a “conjugated diene unit.”
  • A “monovinylarene-conjugated diene copolymer” is a polymer comprising monovinylarene units and conjugated diene units. The polymer can be a block copolymer, that is, can comprise one or more blocks, wherein each block comprises monovinylarene units or conjugated diene units. Any particular block can comprise either or both monovinylarene units or conjugated diene units. If it comprises both, it can be a random block, a tapered block, a stepwise block, or any other type of block.
  • A block is “random” when the mole fractions of conjugated diene units and monovinylarene units in a section of the block are substantially the same as the mole fractions of conjugated diene units and monovinylarene units in the entire block. This does not preclude the possibility of sections of the block having regularity (i.e., appearing non-random), but such regular sections will typically be present at no more than about the level expected by chance.
  • A block is “tapered” when both (a) the mole fraction of conjugated diene units in a first section of the block is higher than the mole fraction of conjugated diene units in a second section of the block, wherein the second section of the block is closer to a given end of the block and (b) condition (a) is true for substantially all sections of the block. (Depending on the size of the sections being considered, condition (a) may not be true for all sections, but if so, will be not true at no more than about the level expected by chance).
  • A block is “stepwise” when a first section of the block contains substantially all monovinylarene units of the block and a second section of the block contains substantially all conjugated diene units of the block.
  • In one embodiment, the monovinylarene-conjugated diene copolymer is a block copolymer comprising styrene blocks and butadiene blocks (a “styrene-butadiene block copolymer”). Exemplary styrene-butadiene copolymers are commercially available under the name K-Resin® (Chevron Phillips Chemical Co., The Woodlands, Tex.).
  • The monovinylarene-conjugated diene copolymer can have any proportion of monovinylarene units and conjugated diene units. In one embodiment, the monovinylarene-conjugated diene copolymer has from about 50 wt %:50 wt % monovinylarene units:conjugated diene units to about 90 wt %: 10 wt % monovinylarene units:conjugated diene units.
  • The monovinylarene-conjugated diene copolymer can further comprise other units known in the art for inclusion in monovinylarene-conjugated diene copolymers.
  • Generally, each block is formed by polymerizing the monomer or mixture of monomers from which the desired units of the block are derived. The polymerization process will generally be amenable to a relative lack of change in process parameters between different blocks, but the skilled artisan, having the benefit of the present disclosure, may make some minor changes in process parameters between different blocks as a matter of routine experimentation. The following descriptions of the polymerization process will generally apply to the formation of all types of blocks in the inventive polymer, although certain descriptions may be of more or less value to forming one or more of the types of blocks in the inventive polymer.
  • The polymerization process can be carried out in a hydrocarbon diluent at any suitable temperature in the range of from about −100° C. to about 150° C., such as from about 0° C. to about 150° C., and at a pressure sufficient to maintain the reaction mixture substantially in the liquid phase. In one embodiment, the hydrocarbon diluent can be a linear or cyclic paraffin, or mixtures thereof. Exemplary linear or cyclic paraffms include, but are not limited to, pentane, hexane, octane, cyclopentane, cyclohexane, and mixtures thereof, among others. In one embodiment, the paraffin is cyclohexane.
  • The polymerization process can be carried out in the substantial absence of oxygen and water, such as under an inert gas atmosphere.
  • The polymerization process can be performed in the presence of an initiator. In one embodiment, the initiator can be any organomonoalkali metal compound known for use as an initiator. In a further embodiment, the initiator can have the formula RM, wherein R is an alkyl, cycloalkyl, or aryl radical containing 4 to 8 carbon atoms, such as an n-butyl radical, and M is an alkali metal, such as lithium. In a particular embodiment, the initiator is n-butyl lithium.
  • The amount of initiator employed depends upon the desired polymer or block molecular weight, as is known in the art and is readily determinable, making due allowance for traces of poisons in the feed streams.
  • The polymerization process can further involve the inclusion of a randomizer. In one embodiment, the randomizer can be a polar organic compound, such as an ether, a thioether, or a tertiary amine. In another embodiment, the randomizer can be a potassium salt or a sodium salt of an alcohol. The randomizer can be included in the hydrocarbon diluent to improve the effectiveness of the initiator, to randomize at least part of the monovinylarene monomer in a mixed monomer charge, or both. The inclusion of a randomizer can be of value when forming a random or tapered monovinylarene-conjugated diene block of the present polymer.
  • Exemplary randomizers include, but are not limited to, dimethyl ether, diethyl ether, ethyl methyl ether, ethyl propyl ether, di-n-propyl ether, di-n-octyl ether, anisole, dioxane, 1,2-dimetboxyethane, dibenzyl ether, diphenyl ether, 1,2-dimethoxybenzene, tetramethylene oxide (tetrahydrofuran or THF), potassium tert-amylate (KTA), dimethyl sulfide, diethyl sulfide, di-n-propyl sulfide, di-n-butyl sulfide, methyl ethyl sulfide, dimethylethylamine, tri-n-ethylamine, tri-n-propylamine, tri-n-butylamine, trimethylanine, triethylamine, tetramethylethylenediamine, tetraethylethylenediamine, N,N-di-methylaniline, N-methyl-N-ethylaniline, N-methylmorpholine, and mixtures thereof, among others.
  • When forming a particular block, each monomer charge or monomer mixture charge can be polymerized under solution polymerization conditions such that the polymerization of each monomer charge or monomer mixture charge, to form the particular block, is substantially complete before charging a subsequent charge. “Charging,” as used herein, refers to the introduction of a compound to a reaction zone, such as the interior of a reactor vessel.
  • Though not to be bound by theory, if an initiator is included in a charge, a block will typically form either de novo or by addition to the end of an unterminated, previously-formed, block. Further not to be bound by theory, if an initiator is not included in a charge, a block will typically only form by addition to the end of an unterminated, previously-formed, block.
  • A coupling agent can be added after polymerization is complete. Suitable coupling agents include, but are not limited to, di- or multivinylarene compounds; di- or multiepoxides; di- or multiisocyanates; di- or multiimines; di- or multialdehydes; di- or multiketones; alkoxytin compounds; di- or multihalides, such as silicon halides and halosilanes; mono-, di-, or multianhydrides; di- or multiesters, such as the esters of monoalcohols with polycarboxylic acids; diesters which are esters of monohydric alcohols with dicarboxylic acids; diesters which are esters of monobasic acids with polyalcohols such as glycerol; and mixtures of two or more such compounds, among others.
  • Useful multifunctional coupling agents include, but are not limited to, epoxidized vegetable oils such as epoxidized soybean oil, epoxidized linseed oil, and mixtures thereof, among others. In one embodiment, the coupling agent is epoxidized soybean oil. Epoxidized vegetable oils are commercially available under the trademark Vikoflex® from Atofina Chemicals (Philadelphia, Pa.).
  • If coupling is to be performed, any effective amount of the coupling agent can be employed. In one embodiment, a stoichiometric amount of the coupling agent relative to active polymer alkali metal tends to promote maximum coupling. However, more or less than stoichiometric amounts can be used for varying coupling efficiency where desired for particular products.
  • Following completion of the coupling reaction, if any, the polymerization reaction mixture can be treated with a terminating agent such as water, carbon dioxide, alcohol, phenols, or linear saturated aliphatic mono-dicarboxylic acids, to remove alkali metal from the block copolymer or for color control.
  • After termination, if any, the polymer cement (polymer in polymerization solvent) usually contains about 10 to 40 weight percent solids, more usually 20 to 35 weight percent solids. The polymer cement can be flashed to evaporate a portion of the solvent so as to increase the solids content to a concentration of about 50 to about 99 weight percent solids, followed by vacuum oven or devolatilizing extruder drying to remove the remaining solvent.
  • The block copolymer can be recovered and worked into a desired shape, such as by milling, extrusion, or injection molding. The block copolymer can also contain additives such as antioxidants, antiblocking agents, release agents, slip agents, fillers, extenders, dyes, or the like.
  • In one embodiment, the antiblocking agent is a high impact polystyrene (HIPS), by which is meant a composition comprising any graft copolymer of styrene and butadiene. By “graft copolymer” is meant polystyrene produced by polymerizing styrene in the presence of an unsaturated rubber wherein the rubber becomes dispersed throughout the polystyrene in the form of discrete domains. In one embodiment the unsaturated rubber is polybutadiene.
  • In the present invention, the monovinylarene-conjugated diene copolymer can be monomodal, that is, a population of copolymer molecules can have one peak in a histogram of the population's molecular weight distribution, or it can be polymodal, that is, have two or more peaks in a histogram of the copolymer molecules' population's molecular weight distribution.
  • In the present invention, the monovinylarene-conjugated diene copolymer can be coupled or uncoupled, as described above.
  • As stated above, the first layer and the third layer comprise a monovinylarene-conjugated diene copolymer. In a further embodiment, either or both of the first layer or the third layer can further comprise polystyrene (PS). As used herein, “polystyrene” refers to any homo- or copolymer comprising styrene units. The first layer and the third layer can each independently comprise from 0 wt % PS to about 75 wt % PS. In one embodiment, the first layer and the third layer can each independently comprise from 0 wt % PS to about 50 wt % PS.
  • In the present invention, the monovinylarene-conjugated diene block copolymer can have any number of tapered blocks. In one embodiment, the monovinylarene-conjugated diene block copolymer has zero tapered blocks. In another embodiment, the monovinylarene-conjugated diene block copolymer has at least one tapered block.
  • The first layer and the third layer can be identical in composition, or can differ in composition, such as by use of different monovinylarene-conjugated diene copolymers, different proportions of monovinylarene units and conjugated diene units in the copolymers, the presence or absence of different additives (such as PS), or other differences as will be apparent to the skilled artisan having the benefit of the present disclosure.
  • The shrink film also comprises a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE).
  • The LDPE in the second layer can be any branched homopolymer containing ethylene units. Typically, the LDPE has a density of from about 0.922 g/cm3 to about 0.924 g/cm3 and a melt index (MI) from about 0.25 g/10 min to about 2.0 g/10 min (ASTM D1238). LDPE can be made by any process known in the art.
  • In one embodiment, the LDPE is a clarity-grade LDPE. By “clarity-grade” is meant an LDPE having an MI greater than about 1.0 g/10 min and a haze less than about 5% for a 1 mil thick film consisting of the LDPE.
  • The LLDPE in the second layer can be any linear copolymer comprising ethylene units and α-olefin units. Typically, LLDPEs have densities of from about 0.915 g/cm3 to about 0.924 g/cm3 and MI values from about 0.5 g/10 min to about 1.5 g/10 min (ASTM D1238), although this is an observation and not a statement limiting the present invention. In one embodiment, the a-olefin is selected from the group consisting of 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • The LLDPE can be produced by any technique, such as Ziegler-Natta polymerization or metallocene-catalyzed polymerization, both of which are known in the art. In one embodiment, the LLDPE is produced by metallocene-catalyzed polymerization. A metallocene-catalyzed LLDPE can be referred to herein as “mLLDPE.” We have observed that mLLDPE typically has a narrower distribution of polymer molecular weights and lower haze than LLDPEs prepared by other techniques, although this is an observation, and not a statement limiting the present invention.
  • Any proportion of LDPE to LLDPE can be used in the second layer. In one embodiment, the second layer comprises greater than about 50 wt % LDPE.
  • The second layer can also comprise other materials, such as other polymers, for example, high density polyethylene (HDPE; an ethylene homopolymer having a density greater than about 0.940 g/cm3 and an MI of from about 0.25 g.10 min to about 1.5 g/10min (ASTM D1238)), very low density polyethylene (VLDPE; a copolymer of ethylene and an α-olefin having a density less than about 0.912 g/cm3), or other polyethylenes, as well as other additives.
  • In the shrink film, the first layer and the third layer together can comprise from about 10 wt % to about 40 wt % of the shrink film. This wt % is the total over both layers. The first layer and the third layer can comprise equal weight portions of the shrink film, or they can comprise unequal weight portions of the shrink film. The second layer can comprise from about 30 wt % to about 80 wt % of the shrink film. As will be apparent to the skilled artisan having the benefit of the present disclosure, the total wt % of the three layers cannot exceed 100 wt % of the shrink film. In the event the total wt % of the three layers is less than 100 wt %, it will be apparent that the shrink film comprises one or more additional layers.
  • As stated above, the second layer is disposed between the first layer and the third layer. It can be directly disposed therebetween, or a tie layer or layers can be used to facilitate adhesion between the second layer and either or both of the first layer and the third layer.
  • A cross-sectional view of a portion of a shrink film according to one embodiment of the present invention is shown in FIG. 1. The first layer 10 and the third layer 12 sandwich the second layer 14 (i.e., the second layer 14 is directly disposed between the first layer 10 and the third layer 12). FIG. 1 is not necessarily to scale.
  • A cross-sectional view of a portion of a shrink film according to another embodiment of the present invention is shown in FIG. 1. In this embodiment, tie layer 20 facilitates adhesion between the first layer 10 and the second layer 14, and tie layer 22 facilitates adhesion between the third layer 12 and the second layer 14. FIG. 2 is not necessarily to scale.
  • In one embodiment, the shrink film further comprises a first tie layer between the first layer and the second layer, a second tie layer between the third layer and the second layer, or both. The tie layer or each tie layer, if more than one, can independently comprise an ethylene-vinyl acetate copolymer (EVA) or an anhydride-modified EVA. An exemplary anhydride-modified EVA is Bynel® (Dupont, Wilmington, Del.).
  • The shrink film can be produced by any technique known in the art of monolayer and coextruded film making. Such techniques include milling, coextrusion, blow molding, injection molding, or cast molding. Generally, the shrink film can be produced by blown or cast film techniques. For example, the shrink film can be produced using conventional extrusion techniques such as a coextruded cast film. In coextrusion, two or more polymers are simultaneously extruded through one die. Two or more extruders are used simultaneously to feed the die. In this process, various polymer melts are introduced into the die under conditions of laminar flow such that there is no intermixing, but bonding occurs at the interface between the film layers.
  • In a cast process, molten material flows from a flat die across the width of the line and onto a chilled drum, which cools the molten material. It is then trimmed and wound on a final drum into rolls of film. In one embodiment, orientation can be introduced into the film by stretching the film prior to winding on the final drum. In another embodiment, orientation can be introduced by stretching as the material is pulled from the die.
  • In a blown film process, while the extrusion process upstream of the die is similar to the cast process, the die and downstream are different. In the blown film process, the die is annular (circular) and typically points upward. This produces a cylindrical tube, which can then be closed at the top (collapsed), resulting in a flattened tube; or the tube can be inflated and stretched to introduce orientation. This tube can have its edges removed and then be wound into separate rolls of film.
  • Generally, the shrink film can have a machine direction (the direction in which the shrink film comes off the production apparatus) and a transverse direction (the direction perpendicular to the machine direction).
  • During or after preparation of the shrink film, it can be oriented, that is, stretched in at least one direction. One example of orienting is post-resin conversion on a tentering frame, although other techniques can be used. If stretched in one direction, the film can be stretched in either the machine direction or the transverse direction. Typically, a cast film has a higher shrink in the machine direction than in the transverse direction, but this is solely an observation of typical films, and not a limiting description of the invention.
  • In one embodiment, a typical shrink film according to the present invention can have a thickness of about 0.5 mil to about 3.0 mil, and at such a thickness it can have visual properties (such as gloss and haze), physical properties (such as strength and stiffness), or shrink properties comparable to or superior to known shrink films of the same or similar thickness and not comprising monovinylarene-conjugated diene copolymers.
  • In another embodiment, the present invention relates to a method of bundling a group of objects, comprising:
  • wrapping the group of objects with a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has a higher shrink in a first direction than in a second direction, to yield a wrapped group of objects, and
  • heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a bundled group of objects.
  • The shrink film can be as described above. In this embodiment, the shrink film has a higher shrink in a first direction than in a second direction. If oriented in one direction, the first direction can be the machine direction or the transverse direction. The second direction would then be the other of the machine direction or the transverse direction.
  • Any group of objects for which bundling is desired can be used in this method. In one embodiment, the group of objects is a group of bottles, cans, or other discrete objects, optionally contained in a tray.
  • In the wrapping step, the shrink film is disposed in a substantially cylindrical manner around the group of objects. The direction of disposing can be chosen as a routine matter for the skilled artisan having the benefit of the present disclosure, depending on the objects, the structure of the shrink film, and the desired structure of the bundled group of objects.
  • The result of the wrapping step is a wrapped group of objects.
  • After wrapping, the wrapped group of objects can be heated to a temperature and for a duration sufficient to shrink the shrink film. The temperature and the duration are a matter of routine experimentation for the skilled artisan having the benefit of the present disclosure. Because the shrink film of this embodiment has a higher shrink in a first direction than a second direction, the shrink film will typically only shrink in the first direction. In one embodiment, the shrink in the first direction is at least about 40%. Shrinking will typically proceed until the film has shrunk in the first direction to contact the group of objects.
  • In another embodiment, the present invention relates to a method of fully enclosing a group of objects, comprising:
  • wrapping the group of objects with a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has substantially similar shrink in both a first direction and a second direction, to yield a wrapped group of objects, and
  • heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a fully enclosed group of objects.
  • The group of objects can be any group of objects for which full enclosure is desired. The shrink film can be as described above.
  • The wrapping step can be as described above.
  • The heating step can be as described above. Because the shrink film of this embodiment has substantially similar shrink in both a first direction and a second direction, the shrink film will typically shrink in both directions. (“Substantially similar shrink” in this embodiment means the shrink in the first direction is no more or no less than about 2-fold greater or less than the shrink in the second direction). In one embodiment, the shrink in the first direction is at least about 40% and the shrink in the second direction is at least about 40%. Shrinking will typically proceed until the film has shrunk in both directions to contact the package.
  • The following examples are included to demonstrate specific embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
  • EXAMPLE 1
  • Several example and comparative films were produced. The example films comprised an A/B/A structure, wherein the A layers comprised styrene-butadiene block copolymer (K-Resin®, Chevron Phillips) and polystyrene, and the B layers comprised LDPE and an mLLDPE. The films were oriented after production. In the following tables, “MD” refers to machine direction and “TD” refers to transverse direction.
    Example 1A
    Thickness (mil) 2.4
    Secant Modulus (psi) MD 96,000
    TD 87,000
    Shrink Ratio % MD  65%
    TD  0%
    Gloss % (45 degree) 102%
    Haze %  5%
    Example 1B
    Thickness (mil) 2.43
    Secant Modulus (psi) MD 72,000
    TD 68,000
    Shrink Ratio % MD  69%
    TD  5%
    Gloss % (45 degree) 106%
    Haze %  5%
  • Example 1B was evaluated and found to completely and satisfactorily shrink full cases of bottled water.
    Example 1C
    Thickness (mil) 1.6
    Secant Modulus (psi) MD 69,000
    TD 65,000
    Shrink Ratio % MD  66%
    TD  17%
    Gloss % (45 degree) 101%
    Haze %  5%
  • Comparative Examples were generally C/D/C structures, wherein the C layers comprised LDPE and the D layers contained blends of LLDPE and HDPE. The Examples generally had higher gloss and lower haze than the Comparative Examples, as well as higher toughness at lower thickness.
    Comparative Example C1A Comparative Example C1B
    Thickness (mil) 2.5 Thickness (mil) 2.59
    Secant Modulus (psi) MD 33,000 Secant Modulus (psi) MD 46,000
    TD 38,000 TD 57,000
    Shrink Ratio % MD 70% Shrink Ratio % MD 75%
    TD
    10% TD  0%
    Gloss % (45 degree) 69% Gloss % (45 degree) 74%
    Haze % 11% Haze % 12%
    Comparative Example C1C Comparative Example C1D
    Thickness (mil) 2.95 Thickness (mil) 2
    Secant Modulus (psi) MD 41,000 Secant Modulus (psi) MD 36,000
    TD 47,000 TD 43,000
    Shrink Ratio % MD 76% Shrink Ratio % MD 65%
    TD  0% TD 15%
    Gloss % (45 degree) 69% Gloss % (45 degree) 70%
    Haze % 11% Haze % 10%
  • The data shows that the shrink films of the Examples had increased stiffness while maintaining strength, allowing them to be produced at thinner gauges. The stiffness of the Examples (secant modulus between 65,000 and 96,000) exceeds the Comparative Examples (secant modulus between 33,000 and 59,000). Gloss was about 69-74% in the Comparative Examples, versus a much higher gloss from 101% to 106% for the Examples. Haze in the Comparative Examples was about 10-12%, versus the much lower gloss of about 5% in the Examples.
  • In summary, the shrink film of the Examples had superior visual properties and physical properties to the LDPE/LLDPE+HDPE/LDPE shrink films of the Comparative Examples known in the art.
  • All of the compositions, articles, and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions, articles, and methods of this invention have been described in terms of particular embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions, articles, and methods described herein without departing from the concept, spirit and scope of the invention. All such variations apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims (19)

1. A shrink film, comprising:
a first layer comprising a monovinylarene-conjugated diene copolymer;
a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and
a third layer comprising a monovinylarene-conjugated diene copolymer;
wherein the second layer is disposed between the first layer and the third layer.
2. The shrink film of claim 1, wherein the first layer and the third layer together comprise from about 10 wt % to about 40 wt % of the shrink film, and the second layer comprises from about 30 wt % to about 80 wt % of the shrink film.
3. The shrink film of claim 1, further comprising a first tie layer between the first layer and the second layer, a second tie layer between the third layer and the second layer, or both.
4. The shrink film of claim 3, wherein the first tie layer comprises an ethylene-vinyl acetate copolymer (EVA) or an anhydride-modified EVA.
5. The shrink film of claim 3, wherein the second tie layer comprises an ethylene-vinyl acetate copolymer (EVA) or an anhydride-modified EVA.
6. The shrink film of claim 1, wherein the monovinylarene-conjugated diene copolymer is a styrene-butadiene block copolymer.
7. The shrink film of claim 1, wherein the first layer, the third layer, or both further comprise polystyrene (PS).
8. The shrink film of claim 1, wherein the first layer, the third layer, or both further comprise an antiblock agent, a slip agent, or both.
9. The shrink film of claim 8, wherein the antiblock agent is a high impact polystyrene (PS).
10. The shrink film of claim 1, wherein the LDPE is a clarity-grade LDPE.
11. The shrink film of claim 1, wherein the LLDPE is a metallocene-catalyzed LLDPE (mLLDPE).
12. A method of bundling a group of objects, comprising:
wrapping the group of objects with a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has a higher shrink in a first direction than in a second direction, to yield a wrapped group of objects, and
heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a bundled group of objects.
13. The method of claim 12, wherein in the shrink film the first layer and the third layer together comprise from about 10 wt % to about 40 wt % of the shrink film, and the second layer comprises from about 30 wt % to about 80 wt % of the shrink film.
14. The method of claim 12, wherein the shrink film further comprises a first tie layer between the first layer and the second layer, a second tie layer between the third layer and the second layer, or both.
15. The method of claim 12, wherein in the shrink film the monovinylarene-conjugated diene copolymer is a styrene-butadiene block copolymer.
16. A method of fully enclosing a group of objects, comprising:
wrapping the group of objects with a shrink film comprising a first layer comprising a monovinylarene-conjugated diene copolymer; a second layer comprising low density polyethylene (LDPE) and linear low density polyethylene (LLDPE); and a third layer comprising a monovinylarene-conjugated diene copolymer; wherein the second layer is disposed between the first layer and the third layer and the shrink film has substantially similar shrink in both a first direction and a second direction, to yield a wrapped group of objects, and
heating the wrapped group of objects to a temperature and for a duration sufficient to shrink the shrink film, to yield a fully enclosed group of objects.
17. The method of claim 16, wherein in the shrink film the first layer and the third layer together comprise from about 10 wt % to about 40 wt % of the shrink film, and the second layer comprises from about 30 wt % to about 80 wt % of the shrink film.
18. The method of claim 16, wherein the shrink film further comprises a first tie layer between the first layer and the second layer, a second tie layer between the third layer and the second layer, or both.
19. The method of claim 16, wherein in the shrink film the monovinylarene-conjugated diene copolymer is a styrene-butadiene block copolymer.
US10/770,339 2004-02-02 2004-02-02 Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer Abandoned US20050166551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/770,339 US20050166551A1 (en) 2004-02-02 2004-02-02 Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/770,339 US20050166551A1 (en) 2004-02-02 2004-02-02 Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer

Publications (1)

Publication Number Publication Date
US20050166551A1 true US20050166551A1 (en) 2005-08-04

Family

ID=34808308

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/770,339 Abandoned US20050166551A1 (en) 2004-02-02 2004-02-02 Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer

Country Status (1)

Country Link
US (1) US20050166551A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134642A1 (en) * 2006-12-11 2008-06-12 John Mark Brown Styrene Butadiene Block Copolymers for Film Applications
US9174377B2 (en) 2011-05-12 2015-11-03 Chevron Phillips Chemical Company Lp Multilayer blown films for shrink applications
WO2017066656A1 (en) * 2015-10-14 2017-04-20 First Quality Tissue, Llc Bundled product and system and method for forming the same
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
WO2019145255A1 (en) * 2018-01-26 2019-08-01 Rkw Se Collation shrink film printable with a digital printing process
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152030A (en) * 1959-06-15 1964-10-06 Mystik Tape Inc Fused poly-laminate adhesive tape and method of making same
US3176052A (en) * 1960-08-08 1965-03-30 Du Pont Blends of polyethylene and ethylene copolymers
US3686365A (en) * 1970-11-16 1972-08-22 Robert M Sequeira Block copolymer compositions
US3687148A (en) * 1971-06-25 1972-08-29 Vitold Kruka Process of reducing friction loss in flowing hydrocarbon liquids and compositions thereof
US3853796A (en) * 1972-09-07 1974-12-10 Firestone Tire & Rubber Co High stress-low elongation rubber composition
US3855189A (en) * 1972-02-11 1974-12-17 Phillips Petroleum Co Polar compounds improve effectiveness of polyvinyl aromatic compounds
US3859382A (en) * 1972-01-19 1975-01-07 Firestone Tire & Rubber Co Method of making nylon constituent block copolymers of predetermined pliability at low temperatures
US3875260A (en) * 1970-12-17 1975-04-01 Sterling Moulding Materials Polymeric compositions
US3910856A (en) * 1972-04-10 1975-10-07 Shell Oil Co Process of reducing friction loss in flowing hydrocarbon liquids and compositions thereof
US3916969A (en) * 1973-10-26 1975-11-04 Goodyear Tire & Rubber Method of building a radial tire
US3928255A (en) * 1971-02-22 1975-12-23 Cpc International Inc Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3980625A (en) * 1970-05-25 1976-09-14 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing novel rubbery polymers from diene monomers
US3994856A (en) * 1973-11-09 1976-11-30 General Electric Company Composition of a polyphenylene ether and a block copolymer of a vinyl aromatic compound and a conjugated diene
US4067942A (en) * 1976-02-23 1978-01-10 Phillips Petroleum Company Heat treatment of resinous block copolymer to improve clarity
US4085168A (en) * 1971-02-22 1978-04-18 Cpc International Inc. Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US4088813A (en) * 1975-09-25 1978-05-09 Phillips Petroleum Company Promoters in the polymerization of monovinyl-aromatic compounds with primary lithium initiators
US4089913A (en) * 1974-01-10 1978-05-16 Sumitomo Chemical Company, Limited Process for producing transparent block copolymer resin
US4091053A (en) * 1976-06-24 1978-05-23 Phillips Petroleum Company Coupled resinous diene copolymer with good integral hinge flex life and high hardness
US4116862A (en) * 1976-04-30 1978-09-26 Essilor International (Compagnie Generale D'optique) New photochromic materials and method for their preparation
US4129541A (en) * 1977-10-26 1978-12-12 Phillips Petroleum Company Asphaltic compositions containing conjugated diene-monovinyl-substituted aromatic hydrocarbon copolymers of particular structures
US4151222A (en) * 1975-05-05 1979-04-24 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4162985A (en) * 1973-10-01 1979-07-31 The Lubrizol Corporation Multigrade lubricants containing interpolymers
US4226671A (en) * 1976-08-30 1980-10-07 Phillips Petroleum Company Venting of gases
US4242471A (en) * 1979-08-27 1980-12-30 The Goodyear Tire & Rubber Company Selectively cyclized block copolymers
US4248981A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4248982A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4248986A (en) * 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4284735A (en) * 1980-06-23 1981-08-18 Arco Polymers, Inc. Polyphenylene oxide blend with rubber-maleimide-styrene copolymer
US4294942A (en) * 1979-01-16 1981-10-13 The Goodyear Tire & Rubber Company Rubbery copolymers of 2,3-dimethyl 1,3-butadiene
US4298707A (en) * 1975-05-05 1981-11-03 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4299932A (en) * 1975-05-05 1981-11-10 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4301259A (en) * 1980-05-27 1981-11-17 The Goodyear Tire & Rubber Company Linear organo carbonate coupling agents for living polymers of conjugated dienes
US4321186A (en) * 1980-04-09 1982-03-23 Phillips Petroleum Company Foundry refractory binder
US4335221A (en) * 1979-10-09 1982-06-15 Basf Aktiengesellschaft Preparation of mixtures of linear three-block copolymers, and moldings produced therefrom
US4340691A (en) * 1980-05-27 1982-07-20 The Goodyear Tire & Rubber Company Linear organo carbonate coupling agents for living polymers of conjugated dienes
US4359551A (en) * 1979-12-26 1982-11-16 Asahi Kasei Kogyo Kabushiki Kaisha Hot-melt pressure-sensitive adhesive composition containing an acid grafted block copolymer
US4371663A (en) * 1979-11-30 1983-02-01 The Dow Chemical Company Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends
US4376190A (en) * 1979-11-26 1983-03-08 Minnesota Mining And Manufacturing Company Cation complexes between cation guests and polymer hosts that contain cyclic ether units
US4403074A (en) * 1982-01-13 1983-09-06 Phillips Petroleum Company Clear haze-free impact-resistant resinous polymers
US4405754A (en) * 1982-01-13 1983-09-20 Phillips Petroleum Company Haze-free, clear, impact-resistant resinous polymers
US4418180A (en) * 1980-08-30 1983-11-29 Basf Aktiengesellschaft Preparation of branched block copolymers
US4450259A (en) * 1981-12-22 1984-05-22 Enoxy Chimica, S.P.A. Multifunctional anionic initiators and their use
US4474924A (en) * 1983-01-27 1984-10-02 Exxon Research & Engineering Co. Stabilized slurries of isoolefin polymers
US4584346A (en) * 1984-02-29 1986-04-22 Phillips Petroleum Company Craze-resistant transparent resinous polymodal block copolymers
US4631314A (en) * 1985-06-26 1986-12-23 The Dow Chemical Company Block copolymers utilizing a mixture of cis and trans-isomers of 1,3-pentadiene
US4645796A (en) * 1985-03-15 1987-02-24 The Dow Chemical Company Polyblends of styrene/α-methylstyrene copolymers with reinforcing interpolymerized styrene-grafted rubber concentrates
US4659776A (en) * 1979-11-30 1987-04-21 The Dow Chemical Company Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends
US4661383A (en) * 1986-05-04 1987-04-28 Allied Corporation Method for grafting polymers to polytetrafluoroethylene, and grafted composites thereof
US4680407A (en) * 1983-12-05 1987-07-14 Enichem Elastomeri S.P.A. Certain alkali metal bis-phenethyl or tris-phenethyl-pyridines useful as multifunctional anionic initiators
US4704434A (en) * 1986-03-24 1987-11-03 Phillips Petroleum Company Craze-resistant polymodal linear block copolymers with terminal tapered blocks
US4704435A (en) * 1986-03-24 1987-11-03 Phillips Petroleum Company Craze-resistant polymodal linear block copolymers with resinous terminal blocks
US4792584A (en) * 1986-05-02 1988-12-20 Asahi Kasei Kogyo Kabushiki Kaisha Adhesive compositions
US4814253A (en) * 1987-10-29 1989-03-21 Xerox Corporation Toner compositions with release agents therein
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US4904730A (en) * 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US4904731A (en) * 1987-09-04 1990-02-27 Shell Oil Company Polymeric composition
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US4925899A (en) * 1986-07-17 1990-05-15 Montedipe S.P.A. Bimodal star-block copolymers, showing excellent optical properties and resilience, and process for their manufacture
US4939207A (en) * 1987-05-14 1990-07-03 Montedipe S.P.A. Blends based on vinyl-aromatic polymers endowed with high tenacity and chemical resistance
US4965327A (en) * 1989-10-23 1990-10-23 The Goodyear Tire & Rubber Company Synthesis of polydiene rubber by high solids solution polymerization
US5001009A (en) * 1987-09-02 1991-03-19 Sterilization Technical Services, Inc. Lubricious hydrophilic composite coated on substrates
US5039752A (en) * 1989-01-06 1991-08-13 The University Of Southern Mississippi Star-branched thermoplastic ionomers
US5071913A (en) * 1987-12-11 1991-12-10 Exxon Chemical Patents Inc. Rubbery isoolefin polymers exhibiting improved processability
US5089368A (en) * 1990-01-19 1992-02-18 Fuji Photo Film Co., Ltd. Electrophotographic light-sensitive material
US5094806A (en) * 1989-11-06 1992-03-10 The Dow Chemical Company Blow molding of thermoplastic polymeric compositions containing a fluorinated olefin
US5094930A (en) * 1988-11-15 1992-03-10 Konica Corporation Electrophotographic photoreceptor
US5100547A (en) * 1991-03-04 1992-03-31 Monsanto Company Chromatography supports consisting of an inorganic susbstrate coated with polybutadiene with alkyl side chains
US5104759A (en) * 1990-01-09 1992-04-14 Fuji Photo Film Co., Ltd. Electrophotographic light-sensitive material
US5130377A (en) * 1990-01-02 1992-07-14 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5158836A (en) * 1991-02-21 1992-10-27 W. R. Grace & Co.-Conn. Oriented film of high clarity and gloss
US5219666A (en) * 1990-03-23 1993-06-15 W.R. Grace & Co.-Conn. Oriented film of high clarity and gloss
US5227419A (en) * 1990-12-20 1993-07-13 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5256736A (en) * 1991-05-08 1993-10-26 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes
US5270396A (en) * 1990-07-06 1993-12-14 Phillips Petroleum Company Sequential coupling in formation of resinous block copolymers
US5290875A (en) * 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5319033A (en) * 1990-01-02 1994-06-07 Phillips Petroleum Company Tapered block monovinyl aromatic/conjugated diene copolymer
US5331048A (en) * 1992-08-03 1994-07-19 Phillips Petroleum Company Blends of vinylaromatic-conjugated diene block copolymers and polybutenes
US5369174A (en) * 1992-04-02 1994-11-29 Phillips Petroleum Company Blends for enhancing properties of vinyl aromatic-conjugated diene block copolymers
US5399628A (en) * 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
US5436298A (en) * 1993-09-30 1995-07-25 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
US5438103A (en) * 1994-03-23 1995-08-01 Phillips Petroleum Company Block copolymers of monovinylaromatic and conjugated diene monomers
US5545690A (en) * 1993-11-15 1996-08-13 Phillips Petroleum Company Tapered block copolymers of monovinylarenes and conjugated dienes
US5756577A (en) * 1995-03-27 1998-05-26 Grupo Cydsa, S.A. De C.V. Styrene butadiene copolymer and polyolefin resins based shrink films
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5777030A (en) * 1996-09-27 1998-07-07 Phillips Petroleum Company Blends of a styrenic polymer and monovinylaren/conjugated diene block copolymers
US5824746A (en) * 1995-01-24 1998-10-20 Acushnet Company Golf balls incorporating foamed metallocene catalyzed polymer
US5885530A (en) * 1996-06-28 1999-03-23 Dpc Cirrus, Inc. Automated immunoassay analyzer
US6096828A (en) * 1995-08-29 2000-08-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers, methods for preparing same, and polymer blends
US6127487A (en) * 1998-10-14 2000-10-03 Phillips Petroleum Company Process to produce coupled block copolymers and said copolymers
US6239218B1 (en) * 1997-04-09 2001-05-29 Asahi Kasei Kogyo Kabushiki Kaisha Hydrogenated block copolymer and composition of the same
US6265484B1 (en) * 1993-11-15 2001-07-24 Phillips Petroleum Company Tapered block copolymers of monovinylarenes and conjugated dienes
US20040072001A1 (en) * 2001-02-05 2004-04-15 Markus Hamulski Packaging film in particular twist-wrapping film and method for production thereof

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152030A (en) * 1959-06-15 1964-10-06 Mystik Tape Inc Fused poly-laminate adhesive tape and method of making same
US3176052A (en) * 1960-08-08 1965-03-30 Du Pont Blends of polyethylene and ethylene copolymers
US3980625A (en) * 1970-05-25 1976-09-14 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing novel rubbery polymers from diene monomers
US3686365A (en) * 1970-11-16 1972-08-22 Robert M Sequeira Block copolymer compositions
US3875260A (en) * 1970-12-17 1975-04-01 Sterling Moulding Materials Polymeric compositions
US3928255A (en) * 1971-02-22 1975-12-23 Cpc International Inc Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US4085168A (en) * 1971-02-22 1978-04-18 Cpc International Inc. Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3687148A (en) * 1971-06-25 1972-08-29 Vitold Kruka Process of reducing friction loss in flowing hydrocarbon liquids and compositions thereof
US3859382A (en) * 1972-01-19 1975-01-07 Firestone Tire & Rubber Co Method of making nylon constituent block copolymers of predetermined pliability at low temperatures
US3855189A (en) * 1972-02-11 1974-12-17 Phillips Petroleum Co Polar compounds improve effectiveness of polyvinyl aromatic compounds
US3910856A (en) * 1972-04-10 1975-10-07 Shell Oil Co Process of reducing friction loss in flowing hydrocarbon liquids and compositions thereof
US3853796A (en) * 1972-09-07 1974-12-10 Firestone Tire & Rubber Co High stress-low elongation rubber composition
US4162985A (en) * 1973-10-01 1979-07-31 The Lubrizol Corporation Multigrade lubricants containing interpolymers
US3916969A (en) * 1973-10-26 1975-11-04 Goodyear Tire & Rubber Method of building a radial tire
US3994856A (en) * 1973-11-09 1976-11-30 General Electric Company Composition of a polyphenylene ether and a block copolymer of a vinyl aromatic compound and a conjugated diene
US4089913A (en) * 1974-01-10 1978-05-16 Sumitomo Chemical Company, Limited Process for producing transparent block copolymer resin
US4151222A (en) * 1975-05-05 1979-04-24 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4299932A (en) * 1975-05-05 1981-11-10 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4298707A (en) * 1975-05-05 1981-11-03 The Firestone Tire & Rubber Company Amine terminated polymers and the formation of block copolymers
US4088813A (en) * 1975-09-25 1978-05-09 Phillips Petroleum Company Promoters in the polymerization of monovinyl-aromatic compounds with primary lithium initiators
US4067942A (en) * 1976-02-23 1978-01-10 Phillips Petroleum Company Heat treatment of resinous block copolymer to improve clarity
US4116862A (en) * 1976-04-30 1978-09-26 Essilor International (Compagnie Generale D'optique) New photochromic materials and method for their preparation
US4091053A (en) * 1976-06-24 1978-05-23 Phillips Petroleum Company Coupled resinous diene copolymer with good integral hinge flex life and high hardness
US4226671A (en) * 1976-08-30 1980-10-07 Phillips Petroleum Company Venting of gases
US4129541A (en) * 1977-10-26 1978-12-12 Phillips Petroleum Company Asphaltic compositions containing conjugated diene-monovinyl-substituted aromatic hydrocarbon copolymers of particular structures
US4294942A (en) * 1979-01-16 1981-10-13 The Goodyear Tire & Rubber Company Rubbery copolymers of 2,3-dimethyl 1,3-butadiene
US4248981A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4248982A (en) * 1979-04-30 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4248986A (en) * 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4242471A (en) * 1979-08-27 1980-12-30 The Goodyear Tire & Rubber Company Selectively cyclized block copolymers
US4335221A (en) * 1979-10-09 1982-06-15 Basf Aktiengesellschaft Preparation of mixtures of linear three-block copolymers, and moldings produced therefrom
US4376190A (en) * 1979-11-26 1983-03-08 Minnesota Mining And Manufacturing Company Cation complexes between cation guests and polymer hosts that contain cyclic ether units
US4659776A (en) * 1979-11-30 1987-04-21 The Dow Chemical Company Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends
US4371663A (en) * 1979-11-30 1983-02-01 The Dow Chemical Company Physically-ameliorated styrene polymer/thermoplastic elastomer polyblends
US4359551A (en) * 1979-12-26 1982-11-16 Asahi Kasei Kogyo Kabushiki Kaisha Hot-melt pressure-sensitive adhesive composition containing an acid grafted block copolymer
US4321186A (en) * 1980-04-09 1982-03-23 Phillips Petroleum Company Foundry refractory binder
US4301259A (en) * 1980-05-27 1981-11-17 The Goodyear Tire & Rubber Company Linear organo carbonate coupling agents for living polymers of conjugated dienes
US4340691A (en) * 1980-05-27 1982-07-20 The Goodyear Tire & Rubber Company Linear organo carbonate coupling agents for living polymers of conjugated dienes
US4301259B1 (en) * 1980-05-27 1984-10-02
US4284735A (en) * 1980-06-23 1981-08-18 Arco Polymers, Inc. Polyphenylene oxide blend with rubber-maleimide-styrene copolymer
US4418180A (en) * 1980-08-30 1983-11-29 Basf Aktiengesellschaft Preparation of branched block copolymers
US4450259A (en) * 1981-12-22 1984-05-22 Enoxy Chimica, S.P.A. Multifunctional anionic initiators and their use
US4403074A (en) * 1982-01-13 1983-09-06 Phillips Petroleum Company Clear haze-free impact-resistant resinous polymers
US4405754A (en) * 1982-01-13 1983-09-20 Phillips Petroleum Company Haze-free, clear, impact-resistant resinous polymers
US4474924A (en) * 1983-01-27 1984-10-02 Exxon Research & Engineering Co. Stabilized slurries of isoolefin polymers
US4680407A (en) * 1983-12-05 1987-07-14 Enichem Elastomeri S.P.A. Certain alkali metal bis-phenethyl or tris-phenethyl-pyridines useful as multifunctional anionic initiators
US4584346A (en) * 1984-02-29 1986-04-22 Phillips Petroleum Company Craze-resistant transparent resinous polymodal block copolymers
US4645796A (en) * 1985-03-15 1987-02-24 The Dow Chemical Company Polyblends of styrene/α-methylstyrene copolymers with reinforcing interpolymerized styrene-grafted rubber concentrates
US4631314A (en) * 1985-06-26 1986-12-23 The Dow Chemical Company Block copolymers utilizing a mixture of cis and trans-isomers of 1,3-pentadiene
US4704434A (en) * 1986-03-24 1987-11-03 Phillips Petroleum Company Craze-resistant polymodal linear block copolymers with terminal tapered blocks
US4704435A (en) * 1986-03-24 1987-11-03 Phillips Petroleum Company Craze-resistant polymodal linear block copolymers with resinous terminal blocks
US4792584A (en) * 1986-05-02 1988-12-20 Asahi Kasei Kogyo Kabushiki Kaisha Adhesive compositions
US4661383A (en) * 1986-05-04 1987-04-28 Allied Corporation Method for grafting polymers to polytetrafluoroethylene, and grafted composites thereof
US4925899A (en) * 1986-07-17 1990-05-15 Montedipe S.P.A. Bimodal star-block copolymers, showing excellent optical properties and resilience, and process for their manufacture
US4939207A (en) * 1987-05-14 1990-07-03 Montedipe S.P.A. Blends based on vinyl-aromatic polymers endowed with high tenacity and chemical resistance
US5001009A (en) * 1987-09-02 1991-03-19 Sterilization Technical Services, Inc. Lubricious hydrophilic composite coated on substrates
US4904731A (en) * 1987-09-04 1990-02-27 Shell Oil Company Polymeric composition
US4814253A (en) * 1987-10-29 1989-03-21 Xerox Corporation Toner compositions with release agents therein
US5071913A (en) * 1987-12-11 1991-12-10 Exxon Chemical Patents Inc. Rubbery isoolefin polymers exhibiting improved processability
US4904730A (en) * 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US4923914A (en) * 1988-04-14 1990-05-08 Kimberly-Clark Corporation Surface-segregatable, melt-extrudable thermoplastic composition
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US5057262A (en) * 1988-04-14 1991-10-15 Kimberly-Clark Corporation Process for melt extruding a surface-segregatable thermoplastic composition
US5094930A (en) * 1988-11-15 1992-03-10 Konica Corporation Electrophotographic photoreceptor
US5039752A (en) * 1989-01-06 1991-08-13 The University Of Southern Mississippi Star-branched thermoplastic ionomers
US4965327A (en) * 1989-10-23 1990-10-23 The Goodyear Tire & Rubber Company Synthesis of polydiene rubber by high solids solution polymerization
US5094806A (en) * 1989-11-06 1992-03-10 The Dow Chemical Company Blow molding of thermoplastic polymeric compositions containing a fluorinated olefin
US5319033A (en) * 1990-01-02 1994-06-07 Phillips Petroleum Company Tapered block monovinyl aromatic/conjugated diene copolymer
US5130377A (en) * 1990-01-02 1992-07-14 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5104759A (en) * 1990-01-09 1992-04-14 Fuji Photo Film Co., Ltd. Electrophotographic light-sensitive material
US5089368A (en) * 1990-01-19 1992-02-18 Fuji Photo Film Co., Ltd. Electrophotographic light-sensitive material
US5219666A (en) * 1990-03-23 1993-06-15 W.R. Grace & Co.-Conn. Oriented film of high clarity and gloss
US5270396A (en) * 1990-07-06 1993-12-14 Phillips Petroleum Company Sequential coupling in formation of resinous block copolymers
US5227419A (en) * 1990-12-20 1993-07-13 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5158836A (en) * 1991-02-21 1992-10-27 W. R. Grace & Co.-Conn. Oriented film of high clarity and gloss
US5100547A (en) * 1991-03-04 1992-03-31 Monsanto Company Chromatography supports consisting of an inorganic susbstrate coated with polybutadiene with alkyl side chains
US5256736A (en) * 1991-05-08 1993-10-26 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes
US5369174A (en) * 1992-04-02 1994-11-29 Phillips Petroleum Company Blends for enhancing properties of vinyl aromatic-conjugated diene block copolymers
US5331048A (en) * 1992-08-03 1994-07-19 Phillips Petroleum Company Blends of vinylaromatic-conjugated diene block copolymers and polybutenes
US5393838A (en) * 1992-11-30 1995-02-28 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5290875A (en) * 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5436298A (en) * 1993-09-30 1995-07-25 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
US5705569A (en) * 1993-09-30 1998-01-06 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
US5910546A (en) * 1993-11-15 1999-06-08 Phillips Petroleum Company Tapered block copolymers of monivinylarenes and conjugated dienes
US5545690A (en) * 1993-11-15 1996-08-13 Phillips Petroleum Company Tapered block copolymers of monovinylarenes and conjugated dienes
US6265485B1 (en) * 1993-11-15 2001-07-24 Phillips Petroleum Company Tapered block copolymers of monovinylarenes and conjugated dienes
US6265484B1 (en) * 1993-11-15 2001-07-24 Phillips Petroleum Company Tapered block copolymers of monovinylarenes and conjugated dienes
US5399628A (en) * 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
US5438103A (en) * 1994-03-23 1995-08-01 Phillips Petroleum Company Block copolymers of monovinylaromatic and conjugated diene monomers
US5756578A (en) * 1995-01-11 1998-05-26 Phillips Petroleum Company Blends of poly (ethylene terephthalate) and monovinylarene/conjugated diene block copolymers
US5824746A (en) * 1995-01-24 1998-10-20 Acushnet Company Golf balls incorporating foamed metallocene catalyzed polymer
US5756577A (en) * 1995-03-27 1998-05-26 Grupo Cydsa, S.A. De C.V. Styrene butadiene copolymer and polyolefin resins based shrink films
US6096828A (en) * 1995-08-29 2000-08-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers, methods for preparing same, and polymer blends
US6420486B1 (en) * 1995-08-29 2002-07-16 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers, methods for preparing same, and polymer blends
US6444755B1 (en) * 1995-08-29 2002-09-03 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers blends
US5885530A (en) * 1996-06-28 1999-03-23 Dpc Cirrus, Inc. Automated immunoassay analyzer
US5777030A (en) * 1996-09-27 1998-07-07 Phillips Petroleum Company Blends of a styrenic polymer and monovinylaren/conjugated diene block copolymers
US6239218B1 (en) * 1997-04-09 2001-05-29 Asahi Kasei Kogyo Kabushiki Kaisha Hydrogenated block copolymer and composition of the same
US6127487A (en) * 1998-10-14 2000-10-03 Phillips Petroleum Company Process to produce coupled block copolymers and said copolymers
US20040072001A1 (en) * 2001-02-05 2004-04-15 Markus Hamulski Packaging film in particular twist-wrapping film and method for production thereof

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134642A1 (en) * 2006-12-11 2008-06-12 John Mark Brown Styrene Butadiene Block Copolymers for Film Applications
US8415429B2 (en) * 2006-12-11 2013-04-09 Chervron Phillips Chemical Company LP Styrene butadiene block copolymers for film applications
TWI511989B (en) * 2006-12-11 2015-12-11 Chevron Phillips Chemical Co Styrene butadiene block copolymers for film applications
US9174377B2 (en) 2011-05-12 2015-11-03 Chevron Phillips Chemical Company Lp Multilayer blown films for shrink applications
US9718230B2 (en) 2011-05-12 2017-08-01 Chevron Phillips Chemical Company Lp Multilayer blown films for shrink applications
US10570570B2 (en) 2012-08-03 2020-02-25 First Quality Tissue, Llc Soft through air dried tissue
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US10190263B2 (en) 2012-08-03 2019-01-29 First Quality Tissue, Llc Soft through air dried tissue
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US11807992B2 (en) 2014-11-24 2023-11-07 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10900176B2 (en) 2014-11-24 2021-01-26 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US11959226B2 (en) 2014-11-24 2024-04-16 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US11752688B2 (en) 2014-12-05 2023-09-12 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10675810B2 (en) 2014-12-05 2020-06-09 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US11242656B2 (en) 2015-10-13 2022-02-08 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10954636B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10954635B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US11577906B2 (en) 2015-10-14 2023-02-14 First Quality Tissue, Llc Bundled product and system
WO2017066656A1 (en) * 2015-10-14 2017-04-20 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11220394B2 (en) 2015-10-14 2022-01-11 First Quality Tissue, Llc Bundled product and system
US10787767B2 (en) 2016-02-11 2020-09-29 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11028534B2 (en) 2016-02-11 2021-06-08 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11634865B2 (en) 2016-02-11 2023-04-25 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10858786B2 (en) 2016-04-27 2020-12-08 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10844548B2 (en) 2016-04-27 2020-11-24 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10941525B2 (en) 2016-04-27 2021-03-09 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11674266B2 (en) 2016-04-27 2023-06-13 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11668052B2 (en) 2016-04-27 2023-06-06 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10982392B2 (en) 2016-08-26 2021-04-20 Structured I, Llc Absorbent structures with high wet strength, absorbency, and softness
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US11725345B2 (en) 2016-08-26 2023-08-15 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11098448B2 (en) 2016-09-12 2021-08-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11913170B2 (en) 2016-09-12 2024-02-27 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11286622B2 (en) 2017-08-23 2022-03-29 Structured I, Llc Tissue product made using laser engraved structuring belt
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
WO2019145255A1 (en) * 2018-01-26 2019-08-01 Rkw Se Collation shrink film printable with a digital printing process
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same

Similar Documents

Publication Publication Date Title
US20050166551A1 (en) Multilayer high clarity shrink film comprising monovinylarene-conjugated diene copolymer
US9550869B2 (en) Styrene butadiene block copolymers for film applications
CA2556017C (en) Binary and ternary blends comprising monovinylarene/conjugated diene block copolymers and monovinylarene/alkyl (meth)acrylate copolymers
US6107411A (en) Block copolymer, block copolymer composition and heat shrinkable films made thereof
WO2006047665A1 (en) Composition comprising a monovinylarene-conjugated diene copolymer and an acrylate terpolymer and shrink films made thereof
KR101930569B1 (en) Resin composition and heat-shrinkable film thereof
JP4896306B2 (en) Heat shrinkable multilayer film
WO2023036918A1 (en) Organoleptically improved, low film-blocking styrene butadiene block copolymers
WO2023036920A1 (en) Sbc polymer compositions with improved organoleptic and low film-blocking properties
JP6513488B2 (en) Resin composition for shrink film, container fitted with shrink film and shrink film
JP2011157512A (en) Block copolymer composition and heat shrinkable film for packaging
WO2022208918A1 (en) Block copolymer composition, heat-shrinkable film, and container
JPS6042029B2 (en) Method of manufacturing multilayer composite molded products

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON PHILLIPS CHEMICAL COMPANY LP, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEANE, J. ALEX;BROWN, K. MARK;REEL/FRAME:015493/0522;SIGNING DATES FROM 20040609 TO 20040615

Owner name: FLEXSOL PACKAGING CORP., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GANGE, DALE E.;REEL/FRAME:015493/0573

Effective date: 20040608

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION