US20050157675A1 - Method and apparatus for cellular communication over data networks - Google Patents

Method and apparatus for cellular communication over data networks Download PDF

Info

Publication number
US20050157675A1
US20050157675A1 US10/884,203 US88420304A US2005157675A1 US 20050157675 A1 US20050157675 A1 US 20050157675A1 US 88420304 A US88420304 A US 88420304A US 2005157675 A1 US2005157675 A1 US 2005157675A1
Authority
US
United States
Prior art keywords
network
signals
data
cellular
packets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/884,203
Inventor
Peretz Feder
Jungsang Kim
Zhengxiang Ma
Anatoli Olkhovets
Arnold Siegel
Theodore Sizer
Michael Zierdt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Priority to US10/884,203 priority Critical patent/US20050157675A1/en
Assigned to LUCENT TECHNOLOGIES INC. reassignment LUCENT TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FEDER, PERETZ MOSHES, KIM, JUNGSANG, SIEGEL, ARNOLD B., SIZER, THEODORE, II, MA, ZHENGXIANG, OLKHOVETS, ANATOLI, ZIERDT, MICHAEL GEORGE
Publication of US20050157675A1 publication Critical patent/US20050157675A1/en
Priority to US11/435,665 priority patent/US7929487B2/en
Priority to US13/089,351 priority patent/US8194597B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention is related generally to wireless communications in buildings.
  • Wireless communications systems are becoming an increasingly integral aspect of modern communications.
  • recent trends show that an increasing number of users are replacing all wire-line methods of communications with their wireless counterparts such as, for example, cellular telephones in place of traditional wire-line telephones.
  • cellular telephones are essentially radios
  • signal quality between a cellular base station and a handset degrades under certain circumstances.
  • the most significant source of degradation occurs when a user moves from an outside location to an indoor location where the radio signals are required to pass through or around various obstructions. Since many users place the majority of cellular calls from within buildings or other structures, achieving high quality consistent indoor coverage is becoming more essential.
  • a DAS uses a base station and a repeater or a power amplifier that is typically located within a building to retransmit within the building a signal received at an external antenna.
  • a signal 103 is transmitted from an antenna in a cellular communications network, such as antenna 101 (e.g., an antenna in a cellular communications network), antenna 113 , which is external to building 111 , receives signal 103 .
  • connection 104 which is, illustratively, a coaxial cable, to component 105 which is, in this example, a radio repeater.
  • Repeater 105 forwards the signal to amplifiers 106 a, 107 a, 108 a and 109 a. These amplifiers amplify the signal which is then transmitted over in-building antennas 106 , 107 , 108 and 109 .
  • the result is that cellular telephone 102 receives the signal transmitted from antenna 113 via antenna 109 .
  • DAS systems are advantageous in many aspects, they are limited in certain regards. For example, in order to install a DAS, cabling (such as coaxial cabling) must be installed throughout the building at each location where an in-building antenna is desired. Thus, installation expense is relatively high. Additionally, such systems are not flexibly expandable and there is typically no mechanism for reprovisioning or reallocating the bandwidth available to different locations within the building.
  • cabling such as coaxial cabling
  • BTSs base transceiver stations
  • pico-cells cells with a short range
  • a mini-BTS system is relatively cost-prohibitive and complex to install and maintain.
  • cellular signals or other wireless signals/messages are introduced into a building by transmitting packetized messages corresponding to those messages over a shared or dedicated data network to designated locations within the building. Once the designated destination is reached, the packet headers are stripped from the packets and the wireless message is then broadcast over the air to an intended recipient.
  • base station interface cards are used in place of RF generating equipment in a base station such as that used in a cellular communications network (e.g., a CDMA network).
  • a BSI receives coded baseband signals from a processor, such as a CDMA Modem Unit (CMU) in a CDMA system
  • the BSI then buffers the baseband signals and periodically creates data packets each containing a plurality of coded baseband signals.
  • the BSI then forwards the data packets over a high-speed data network, such as a gigabit Ethernet network, to one or more illustrative Gigabit switches.
  • These switches duplicate and route the packets to one or more specific ports corresponding to a cellular CDMA sector which in turn corresponds to one or more radio transceivers, at least one of which corresponds to the address of the intended recipient of the message.
  • the radio transceivers contain equipment that extracts the baseband signals from the packets, process the base band signal, convert to RF format, amplify the signals, and broadcast the signals to an intended recipient over associated antennas.
  • the radio transceivers receive uplink signals from a mobile user, the transceivers convert it to a digital format and generate packets of the coded signals and forward them through the network to the aforementioned switches and then to the BSI and CMU for transmission through the traditional wireless network to an intended recipient.
  • one or more special summing nodes sum the base band data in incoming uplink packets in order to reduce the number of packet streams passing through the BSI to the CMU. Since the signals are coded (e.g., with Walsh codes), the CMU can differentiate between the signals in the summed data packets and forward those signals to an intended destination in the wireless network.
  • These summing nodes can be separate units, integrated with switches, or their functionality can be integrated into one or more of the radio transceivers.
  • FIG. 1 shows a prior art distributed antenna system (DAS);
  • FIG. 2 shows an in-building cellular network in accordance with the principles of the present invention.
  • FIG. 3 shows how uplink signals in the network of FIG. 2 are aggregated.
  • FIG. 2 shows an in-building communications network in accordance with the principles of the present invention.
  • base station 201 sends and receives messages from a wireless network via path 206 .
  • Base station 201 is, for example, similar to a base station used in a traditional CDMA network such as a OneBTS base station manufactured by Lucent Technologies, Murray Hill, N.J.
  • a base station traditionally has three main components: 1) a network interface for interfacing with the other components of the cellular network (e.g., a radio network controller (RNC)); 2) a digital baseband shelf typically having a processor (e.g., a CDMA modem unit (CMU)) for coding and decoding incoming and outgoing message traffic, as well as a radio (e.g., a Universal CDMA Radio (UCR)) for modulating/demodulating the coded digital message traffic onto/from a carrier signal; and 3) an RF shelf for amplifying the modulated signal and transmitting that signal over the air to a mobile user.
  • a network interface for interfacing with the other components of the cellular network
  • RNC radio network controller
  • CMU CDMA modem unit
  • UTR Universal CDMA Radio
  • base station 201 of FIG. 2 in accordance with the principles of the present invention is similar to a traditional CDMA base station, there are some differences. Specifically, in accordance with the principles of the present invention, both the RF shelf and external base station antenna functions are not used in the in-building base station 201 .
  • This modified base station 201 may be physically located within a building to be serviced by the base station or, alternatively, external to that building.
  • the UCR of the digital baseband shelf 202 in base station 201 is replaced by a component herein referred to as a base station interface card (BSI) 203 .
  • BSI base station interface card
  • the illustrative BSI 203 may be a component of similar form factor to the UCR and illustratively plugs into the same physical slot in the digital shelf traditionally occupied by the UCR.
  • the BSI 203 in base station 201 instead of receiving and transmitting coded cellular radio signals over the air, the BSI 203 in base station 201 functions to forward mobile user-coded baseband signals over a high-speed data network, such as illustrative gigabit Ethernet network 208 to a switch/summing node, also referred to herein referred to as a Radio Distributor/Aggregator 210 (RDA), and subsequently to a desired end destination where the baseband signals are converted to RF and then broadcast over the air to a message recipient, such as mobile terminal 219 .
  • a Radio Distributor/Aggregator 210 RDA
  • a user when again such as mobile terminal 219 , transmits messages from, for example, a cellular telephone, those messages are transmitted via the illustrative RDA 210 and illustrative gigabit Ethernet network 208 to the BSI 203 and CMU 204 for further processing and distribution via the network interface equipment 205 and the wireless network via path 206 .
  • the below illustrative example specifically discusses one implementation of the present invention in a CDMA network.
  • One skilled in the art will recognize that the principles of the invention as herein described will be equally applicable to a GSM, UMTS or other wireless communications networks.
  • the illustrative BSI 203 receives digital I and Q baseband signals generated by the CMU 204 and stores them in a buffer.
  • I and Q signals are received every 0 . 5 microseconds.
  • the BSI 203 forms an Ethernet packet of those signals having a destination address (e.g., a MAC address) corresponding to a sector in which an intended recipient is present, such as a sector that is distinguished by the time offset of the pseudorandom number (PN) code of a pilot channel to which the mobile terminal 219 is tuned.
  • a destination address e.g., a MAC address
  • PN pseudorandom number
  • the BSI can be a separate component that connects to a digital, radio frequency (RF), or intermediate frequency (IF) port.
  • the BSI may receive digital coded baseband signals, as described above or, alternatively, may receive RF or IF signals and then convert those signals to digital form for buffering and packetizing.
  • the packets are then sent via gigabit Ethernet from the BSI to the RDA 210 over, illustratively, gigabit Ethernet.
  • the RDA acts essentially as a switch having, illustratively, a plurality of ports.
  • Each port on the RDA illustratively corresponds to an addressable sector for the routing of messages.
  • each port of an RDA may be identified as a separate sector or, if a greater coverage area is desired, for example, then multiple ports may be designated as corresponding to a single sector.
  • Each sector corresponds to a one or more radio transceivers, referred to herein as remote radio heads (RRHs), such as RRHs 211 , 212 , 213 , 214 , 215 and 216 corresponding to an area of wireless coverage within a building.
  • RRHs remote radio heads
  • RDAs can be connected as flexibly as regular data switches: multiple RDAs may be used in a cascaded fashion to facilitate greater control over the routing of messages to end recipients and to permit more granularity in the management of bandwidth allocation, or no RDA may be necessary for a point-to-point link between the BSI and a particular RRH.
  • a single RRH on a single port of the RDA may suffice to serve a relatively large sector.
  • the number of RRHs necessary to provide coverage to a sector will depend upon environmental factors such as, illustratively, the number of obstructions (e.g., walls or other such obstacles) in proximity to the RRH.
  • the RDA 210 When the RDA 210 receives a message from the BSI 203 having a particular address (for example a Medium Access Control (MAC) address) corresponding to a particular sector, the RDA 210 compares that address to, for example, a look-up table to identify which ports on the RDA 210 correspond to the designated sector.
  • This look-up procedure can use a variety of existing Ethernet protocols, such as using special multicast addresses, or having all RRHs belonging to a particular sector be a part of the same virtual LAN (VLAN), and broadcasting packets on that VLAN.
  • VLAN virtual LAN
  • each RRH 211 - 216 has, illustratively, network interface equipment, timing and frequency synchronization equipment, signal processing elements, a power amplifier and one or more antennas.
  • the network interface equipment of the destination RRH such as, in this case, RRH 211 corresponding to mobile user 219 , receives the packets from the network and removes the headers from the packets.
  • the I and Q baseband signals are then forwarded to the timing and synchronization equipment where the signals are buffered. As described more fully below, the signals are then processed, converted to RF format and played out to the power amplifier and broadcast over the air via the antenna(s) to a recipient end mobile user.
  • CDMA networks and Ethernet networks were designed for different uses (i.e., CDMA was designed for circuit switched voice applications and Ethernet was designed for packet switched data applications), manners of transmitting data across those networks differ relative to one another.
  • One of the more critical differences is in how frequency and timing are managed in the different networks.
  • CDMA networks were designed with a tight timing/jitter tolerance of less than 2-3 microseconds using a synchronous frequency as required by the air-interface.
  • Ethernet on the other hand, was designed with a loose timing/jitter tolerance and an asynchronous frequency that is adequate for packet-switched data networking in, for example, a star network configuration. Overcoming these timing and frequency differences to achieve synchronization is critical to passing timely packets of CDMA data over an Ethernet network.
  • timing synchronization is especially crucial for downlink traffic since the offsets in the pilot channels are used to identify the base station sectors in the network.
  • timing synchronization is important, one skilled in the art will recognize that it is sufficient to assure a certain, fixed delay among the uplink signals from the RRHs 211 - 216 —precisely synchronizing the exact time is not necessary.
  • timing synchronization may illustratively be achieved by first determining the minimum feasible time that a packet will spend transiting the data network between the BSI 203 and the RRH 210 , hereinafter referred to as the minimum packet delay, ⁇ min .
  • This minimum packet delay is, for example, measured as a function of delays in buffering baseband signals in the BSI 203 to form the packets, transmission through the gigabit Ethernet MAC, the physical layer and the switches in the RDA 210 , as well as the delay experienced traveling over cables.
  • ⁇ min is a basic, illustrative reference time between the BSI 203 and the RRH 210 for a given Ethernet network topology.
  • This minimum reference time ⁇ min is not the time typically experienced by a packet transiting the data network, only the feasible minimum based on known delays.
  • the actual timing delays of packets through the data network are a function of, in part, queuing delays in the presence of other data traffic in the data network. This actual timing delay may vary from one packet to the next and, over a given number of packets, a spread in the timing delay, ⁇ , can be determined. Over a sufficient number of packets, the spread ⁇ can be 1 o measured such that a maximum timing delay of ⁇ min+ ⁇ may be determined.
  • a timing delay can illustratively be introduced into the RRH broadcast such that each successive packet is guaranteed to be present at the RRH and ready for broadcast at its appointed time. Specifically, if the RRH broadcast delay is established at a time greater than ⁇ min+ ⁇ , with, illustratively, an additional timing tolerance delay added to ⁇ min to manage additional timing jitter, then each packet will be at the RRH when it is scheduled for broadcast.
  • the timing delay and spread can be determined by either a hardware or a software solution, or a combination of both.
  • the timing delay can be calculated through knowledge of the topology of the network and the delay properties of the routing equipment and cables. By setting higher priority to CDMA packets, and knowing maximum allowable packet length (for example, 1500 bytes), one can predict the maximum delay spread ⁇ .
  • timing delays and spread can be directly measured using a variety of software methods, such as methods involving an exchange of time stamps between endpoints and using statistical techniques to determine the time delay and spread.
  • NTP Network Time Protocol
  • Frequency synchronization is achieved in accordance with the principles of the present invention by either a hardware solution or a software solution.
  • An illustrative hardware solution to frequency synchronization is achieved by using the physical layer in Gigabit Ethernet networks to synchronize the CDMA signals.
  • a frequency oscillator is illustratively used in each RRH as a frequency reference for all the frequency synthesizers in the RRH. These frequency oscillators are locked, using well known clock and data recovery methods, to the clock rate of the data coming in on the Ethernet connection. This clock rate, in turn, is set by the clock which BSI 203 uses to encode the Ethernet signals.
  • the BSI 203 can use, for example, a stable and accurate stand-alone reference oscillator to generate all its clocks or, alternatively, may derive its reference from the base station clock.
  • a stable and accurate stand-alone reference oscillator to generate all its clocks or, alternatively, may derive its reference from the base station clock.
  • frequency synchronization will require forwarding a frequency reference from each network node, thus requiring additional overhead to maintain synchronization in this manner.
  • similar synchronization techniques may be used in other network transport methods.
  • a timestamp is illustratively applied by the BSI 203 to each downlink CDMA packet marking the time it is transmitted from BSI 203 .
  • the arrival time of each CDMA packet is recorded using a local clock and the difference between the embedded time stamp and the measured arrival time is calculated as the delay D. If the illustrative clocks at the BSI and RRH are synchronized, then D should be held constant. Thus the local RRH clock can be adjusted to the remote BSI 203 clock using well-known statistical methods.
  • a number of timestamp-minus-local-clock measurements corresponding to multiple packets can be used to calculate the frequency deviation over time. Over a desired period of time, the frequency error can be inferred from the total delay change that is detected. A frequency correction corresponding to this frequency error is used compensate for the frequency deviation.
  • the software controls the RRH 210 local clock by tracking and correcting the frequency in relation to the BSI 203 clock. Furthermore, to reduce the packet arrival jitter, and thus the accuracy of the frequency tracking mechanism, only specific packets can be used for frequency tracking. More particularly, in this example, the delay is recorded over a selected number of packets and is used for software synchronization.
  • Uplink signals are transmitted in a similar fashion as described above in association with downlink signals.
  • an uplink signal is received by an RRH, such as RRH 211 , from, for example, illustrative mobile terminal 219 , that RRH is will convert the signal to a digital format and will buffer the digital signals and packetize them at a predetermined time interval or until a predetermined buffer fill level reached.
  • the RRH 211 will then send the packets of digital signals to the corresponding RDA 210 to which it is attached.
  • each RDA 210 can have a plurality of ports associated with a plurality of addressable sectors. And, as also discussed above, multiple RDAs can be cascaded to in a way such that numerous RDA ports can be addressed to even more numerous remote radio heads.
  • the CMU 204 typically can only accept a smaller, limited number of signal channels (e.g., 6 channels). This is not an issue on the downlink as the RDAs simply replicate the downlink packets and retransmit identical packets to multiple addresses.
  • the packets flowing into the RDAs to the BSI 203 and CMU 204 are not identical—they are potentially each from different mobile users. Thus, a problem arises as to how to reduce the potential relatively large number of unique uplink packet data streams into the limited number of channels acceptable to the CMU 204 .
  • an illustrative processor at each RDA in a cascaded structure of RDAs such as RDA 210 , strips the headers off the packets corresponding to a unique sector, sums the data in those packets, and repacketizes the data before forwarding it to another RDA or the BSI 203 .
  • this processor may not be located within the RDA and that it may also be located in an independent unit attached to the RDA. Alternatively, the functionality of this processor may be located within one or more of the RRHs.
  • each RDA in the cascade will accomplish this summing function until the packets flowing to from a particular RDA 210 to the BSI 203 on the uplink correspond only to one of the channels of the CMU. While summing the data in packets traditionally would result in irreparably destroying the packets (i.e., because reconstruction of the original packets would be impossible), the data in the packets of the present invention correspond to coded baseband signals of all the traffic on a particular sector. Thus, using traditional processing well known in the art, the CMU can process and identify signals in the summed packets corresponding to a uniquely CDMA coded mobile user. These unique signals are then forwarded to end destinations within the cellular network.
  • FIG. 3 shows an in-building network having two illustrative sectors, 307 and 308 , each comprising two RRHs, each of which supports two traffic carriers (frequencies).
  • the downlink data packets 301 - 304 are transmitted by BSI 203 in direction 305 to RDA 210 .
  • the RDA uses the addresses on each of those packets to determine to which sector (and in turn to which RRHs) a packet is routed.
  • packets 302 and 304 are, illustratively, encode information for traffic carriers in sector 307 .
  • RDA 210 replicates packets 302 and 304 and multicasts those packets in direction 306 to both RRH 212 and RRH 218 for radiation.
  • packets 301 and 303 are multicast in direction 309 to RRH 215 and RRH 216 which in turn will radiate these traffic carriers in sector 308 .
  • the RDA 210 acts as a summing node and aggregates the uplink data packets. Specifically, when RRHs support several mobile carriers (frequencies), those RRHs will each buffer the packets and forward them to RDA 210 . Thus, for example, RRHs 218 and 212 will send out packets 310 and 311 in direction 312 to RDA 210 and RRH 215 will illustratively send packets 314 and 315 in direction 313 to RDA 210 . When those packets arrive at the RDA, the headers of the packets are removed and the data in any packets in the same sector are summed together.
  • the RDA 210 then interleaves all unique baseband signals together and forwards out a single data stream containing packets of baseband signals from all sectors of the RDA 210 . In a cascade of RDAs, this process is repeated at each RDA so that only a desired number of data streams containing packets of baseband symbols arrive at the BSI 203 in FIG. 2 and the CMU 204 in FIG. 2 in the base station.
  • a summing function is illustrative and may not be necessary depending upon the particular implementation of the network described herein. Additionally, if such a summing function is used, one skilled in the art will realize that this function can be performed at network nodes other than the RDA, such as at an RRH.
  • a network controller may be used (e.g., incorporated into the BSI) to dynamically assign ports on each RDA to a sector within the building.
  • individual ports could each be assigned to individual sectors or, alternatively, any number of ports of the RDA could be assigned to an individual sector.
  • wireless cellular network coverage can be extended by adapting an existing base station to broadcast coded cellular baseband signals over gigabit Ethernet networks using existing cabling within buildings.
  • the network of the present invention could be used to transmit and receive various other wireless network protocols in a similar fashion.
  • WiFi 802.11
  • the network of the present invention could be used in a similar fashion as described above to distribute 802.11 protocol signals to desired destinations.
  • Ethernet can also provide power to network devices (i.e., via the Power-over-Ethernet 802.3af standard), the cost of installing the aforementioned radios and other equipment can be further reduced by supplying power to such components without an independent power source connection.
  • the network of the present invention could be used in place of a DAS in a “hoteling” arrangement associated with one or more remote antennas in an outdoor environment, such as that used in the aforementioned dense urban areas to provide increased coverage in such environments.

Abstract

Cellular signals or other wireless signals/messages are introduced into a building or to an outside location by transmitting packets corresponding to those signals over a data network and low cost cables to designated locations within the data network. Once the designated packets containing the signals reach the destination, they are then broadcast over the air to a terminal capable of receiving the wireless message. In a first embodiment, an in-building gigabit Ethernet network, such as that currently existing presently in many buildings, is used to distribute radio signals indoors. Instead of transmitting the radio signals over the air from a repeater connected to a base station, coded baseband signals generated by the coding processor (e.g., a CDMA Modem Unit) in the base station are packetized and sent over the Ethernet network to radio processing equipment and antennas distributed throughout the building. The radio processing equipment strips the packet headers from the baseband signal packets so those signals can be broadcast via the antennas to one or more mobile terminals.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 60/536871 filed Jan. 16, 2004.
  • FIELD OF THE INVENTION
  • The present invention is related generally to wireless communications in buildings.
  • BACKGROUNDS OF THE INVENTION
  • Wireless communications systems are becoming an increasingly integral aspect of modern communications. In fact, recent trends show that an increasing number of users are replacing all wire-line methods of communications with their wireless counterparts such as, for example, cellular telephones in place of traditional wire-line telephones. Since such cellular telephones are essentially radios, it is well known that signal quality between a cellular base station and a handset degrades under certain circumstances. The most significant source of degradation occurs when a user moves from an outside location to an indoor location where the radio signals are required to pass through or around various obstructions. Since many users place the majority of cellular calls from within buildings or other structures, achieving high quality consistent indoor coverage is becoming more essential.
  • Several methods for achieving indoor cellular network coverage are known. For example, one method of achieving such coverage, known as a distributed antenna system (DAS), is illustratively shown in FIG. 1. A DAS uses a base station and a repeater or a power amplifier that is typically located within a building to retransmit within the building a signal received at an external antenna. Referring to the illustrative DAS of FIG. 1, when a signal 103 is transmitted from an antenna in a cellular communications network, such as antenna 101 (e.g., an antenna in a cellular communications network), antenna 113, which is external to building 111, receives signal 103. Signal 103 is then passed along connection 104 which is, illustratively, a coaxial cable, to component 105 which is, in this example, a radio repeater. Repeater 105 forwards the signal to amplifiers 106 a, 107 a, 108 a and 109 a. These amplifiers amplify the signal which is then transmitted over in- building antennas 106, 107, 108 and 109. Thus, the result is that cellular telephone 102 receives the signal transmitted from antenna 113 via antenna 109. By passing the signal along a wired connection from antenna to repeater 105 and rebroadcasting the signal over antennas 106-109, the problems associated with poor signal quality in buildings are alleviated.
  • While DAS systems are advantageous in many aspects, they are limited in certain regards. For example, in order to install a DAS, cabling (such as coaxial cabling) must be installed throughout the building at each location where an in-building antenna is desired. Thus, installation expense is relatively high. Additionally, such systems are not flexibly expandable and there is typically no mechanism for reprovisioning or reallocating the bandwidth available to different locations within the building.
  • Another method for achieving indoor cellular network coverage relies on the use of small in-building base transceiver stations (BTSs), which are smaller versions of well-known base stations such as are used in a traditional cellular network, to provide essentially an entire in-building cellular network. The result of using such small BTSs is a network of so-called pico-cells (cells with a short range) that operate similarly to a low-powered traditional cellular network in provisioning bandwidth and managing data and voice calls within one or more individual buildings. However, since such a system is essentially a miniaturized cellular network, management of a multitude of such BTSs within a building would be problematic as it would require network components (such as a Radio Network Controller (RNC) and/or a Mobile Switching Center (MSC) in a CDMA network) to provision bandwidth and manage calls across the large number of pico-cells. Hence, a mini-BTS system is relatively cost-prohibitive and complex to install and maintain.
  • As cellular usage increases there is a need to provide increased and cost effective capacity and coverage outdoors in dense urban areas, outdoor malls, or in business or academic campuses. Many of the same techniques that are used indoors can also be used in these environments. Typically a base station remotely serves a given outdoor location using DAS systems in an architecture known as “hoteling”. However, these architectures require the use of proprietary RF or fiber links to connect the base stations and the remote antennas.
  • SUMMARY OF THE INVENTION
  • The aforementioned problems related to in-building wireless communications are essentially solved by the present invention. In accordance with the principles of the present invention, cellular signals or other wireless signals/messages are introduced into a building by transmitting packetized messages corresponding to those messages over a shared or dedicated data network to designated locations within the building. Once the designated destination is reached, the packet headers are stripped from the packets and the wireless message is then broadcast over the air to an intended recipient.
  • In a first embodiment, base station interface cards (BSIs) are used in place of RF generating equipment in a base station such as that used in a cellular communications network (e.g., a CDMA network). For downlink signals, when a BSI receives coded baseband signals from a processor, such as a CDMA Modem Unit (CMU) in a CDMA system, the BSI then buffers the baseband signals and periodically creates data packets each containing a plurality of coded baseband signals. The BSI then forwards the data packets over a high-speed data network, such as a gigabit Ethernet network, to one or more illustrative Gigabit switches. These switches duplicate and route the packets to one or more specific ports corresponding to a cellular CDMA sector which in turn corresponds to one or more radio transceivers, at least one of which corresponds to the address of the intended recipient of the message. In one embodiment, the radio transceivers contain equipment that extracts the baseband signals from the packets, process the base band signal, convert to RF format, amplify the signals, and broadcast the signals to an intended recipient over associated antennas.
  • For uplink signals, the radio transceivers receive uplink signals from a mobile user, the transceivers convert it to a digital format and generate packets of the coded signals and forward them through the network to the aforementioned switches and then to the BSI and CMU for transmission through the traditional wireless network to an intended recipient. In another embodiment, lo in order to increase the possible number of available radio transceivers, one or more special summing nodes sum the base band data in incoming uplink packets in order to reduce the number of packet streams passing through the BSI to the CMU. Since the signals are coded (e.g., with Walsh codes), the CMU can differentiate between the signals in the summed data packets and forward those signals to an intended destination in the wireless network. These summing nodes can be separate units, integrated with switches, or their functionality can be integrated into one or more of the radio transceivers.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a prior art distributed antenna system (DAS);
  • FIG. 2 shows an in-building cellular network in accordance with the principles of the present invention; and
  • FIG. 3 shows how uplink signals in the network of FIG. 2 are aggregated.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 shows an in-building communications network in accordance with the principles of the present invention. In the network of FIG. 2, base station 201 sends and receives messages from a wireless network via path 206. Base station 201 is, for example, similar to a base station used in a traditional CDMA network such as a OneBTS base station manufactured by Lucent Technologies, Murray Hill, N.J. One skilled in the art will recognize that such a base station traditionally has three main components: 1) a network interface for interfacing with the other components of the cellular network (e.g., a radio network controller (RNC)); 2) a digital baseband shelf typically having a processor (e.g., a CDMA modem unit (CMU)) for coding and decoding incoming and outgoing message traffic, as well as a radio (e.g., a Universal CDMA Radio (UCR)) for modulating/demodulating the coded digital message traffic onto/from a carrier signal; and 3) an RF shelf for amplifying the modulated signal and transmitting that signal over the air to a mobile user.
  • While the base station 201 of FIG. 2 in accordance with the principles of the present invention is similar to a traditional CDMA base station, there are some differences. Specifically, in accordance with the principles of the present invention, both the RF shelf and external base station antenna functions are not used in the in-building base station 201. This modified base station 201 may be physically located within a building to be serviced by the base station or, alternatively, external to that building. Additionally, the UCR of the digital baseband shelf 202 in base station 201 is replaced by a component herein referred to as a base station interface card (BSI) 203. The illustrative BSI 203 may be a component of similar form factor to the UCR and illustratively plugs into the same physical slot in the digital shelf traditionally occupied by the UCR. For downlink signals, as described more fully below, instead of receiving and transmitting coded cellular radio signals over the air, the BSI 203 in base station 201 functions to forward mobile user-coded baseband signals over a high-speed data network, such as illustrative gigabit Ethernet network 208 to a switch/summing node, also referred to herein referred to as a Radio Distributor/Aggregator 210 (RDA), and subsequently to a desired end destination where the baseband signals are converted to RF and then broadcast over the air to a message recipient, such as mobile terminal 219. Similarly, as also discussed below, on the uplink, when a user, once again such as mobile terminal 219, transmits messages from, for example, a cellular telephone, those messages are transmitted via the illustrative RDA 210 and illustrative gigabit Ethernet network 208 to the BSI 203 and CMU 204 for further processing and distribution via the network interface equipment 205 and the wireless network via path 206. The below illustrative example specifically discusses one implementation of the present invention in a CDMA network. One skilled in the art, however, will recognize that the principles of the invention as herein described will be equally applicable to a GSM, UMTS or other wireless communications networks.
  • Specifically, on the downlink in a CDMA system, when a signal is addressed to a mobile terminal in a building, such as, referring to FIG. 1, mobile terminal 102 in building 111, the illustrative BSI 203, discussed above, receives digital I and Q baseband signals generated by the CMU 204 and stores them in a buffer. Illustratively, I and Q signals are received every 0.5 microseconds. Once the buffer reaches a predetermined level, or a predetermined amount of time has passed, the BSI 203 forms an Ethernet packet of those signals having a destination address (e.g., a MAC address) corresponding to a sector in which an intended recipient is present, such as a sector that is distinguished by the time offset of the pseudorandom number (PN) code of a pilot channel to which the mobile terminal 219 is tuned. One skilled in the art will recognize that other configurations and operations of the BSI are possible. For example, instead of connecting directly to the physical slot in the digital shelf, the BSI can be a separate component that connects to a digital, radio frequency (RF), or intermediate frequency (IF) port. In such a configuration, the BSI may receive digital coded baseband signals, as described above or, alternatively, may receive RF or IF signals and then convert those signals to digital form for buffering and packetizing.
  • The packets are then sent via gigabit Ethernet from the BSI to the RDA 210 over, illustratively, gigabit Ethernet. For downlink signals, the RDA acts essentially as a switch having, illustratively, a plurality of ports. Each port on the RDA illustratively corresponds to an addressable sector for the routing of messages. For example, each port of an RDA may be identified as a separate sector or, if a greater coverage area is desired, for example, then multiple ports may be designated as corresponding to a single sector. Each sector, in turn, corresponds to a one or more radio transceivers, referred to herein as remote radio heads (RRHs), such as RRHs 211, 212, 213, 214, 215 and 216 corresponding to an area of wireless coverage within a building. As one skilled in the art will recognize, RDAs can be connected as flexibly as regular data switches: multiple RDAs may be used in a cascaded fashion to facilitate greater control over the routing of messages to end recipients and to permit more granularity in the management of bandwidth allocation, or no RDA may be necessary for a point-to-point link between the BSI and a particular RRH. Alternatively, in some implementations, a single RRH on a single port of the RDA may suffice to serve a relatively large sector. One skilled in the art will recognize that the number of RRHs necessary to provide coverage to a sector will depend upon environmental factors such as, illustratively, the number of obstructions (e.g., walls or other such obstacles) in proximity to the RRH.
  • When the RDA 210 receives a message from the BSI 203 having a particular address (for example a Medium Access Control (MAC) address) corresponding to a particular sector, the RDA 210 compares that address to, for example, a look-up table to identify which ports on the RDA 210 correspond to the designated sector. This look-up procedure can use a variety of existing Ethernet protocols, such as using special multicast addresses, or having all RRHs belonging to a particular sector be a part of the same virtual LAN (VLAN), and broadcasting packets on that VLAN. Once the RDA 210 has identified the ports corresponding to the recipient sector(s), the RDA 210 will replicate the packet (if necessary to forward to multiple end destination RRHs) and forward a copy of the packet to the appropriate ports for further dissemination to the designated sectors and the corresponding RRHs 211-216. Each RRH 211-216 has, illustratively, network interface equipment, timing and frequency synchronization equipment, signal processing elements, a power amplifier and one or more antennas. The network interface equipment of the destination RRH such as, in this case, RRH 211 corresponding to mobile user 219, receives the packets from the network and removes the headers from the packets. The I and Q baseband signals are then forwarded to the timing and synchronization equipment where the signals are buffered. As described more fully below, the signals are then processed, converted to RF format and played out to the power amplifier and broadcast over the air via the antenna(s) to a recipient end mobile user.
  • Since CDMA networks and Ethernet networks were designed for different uses (i.e., CDMA was designed for circuit switched voice applications and Ethernet was designed for packet switched data applications), manners of transmitting data across those networks differ relative to one another. One of the more critical differences is in how frequency and timing are managed in the different networks. Specifically, CDMA networks were designed with a tight timing/jitter tolerance of less than 2-3 microseconds using a synchronous frequency as required by the air-interface. Ethernet, on the other hand, was designed with a loose timing/jitter tolerance and an asynchronous frequency that is adequate for packet-switched data networking in, for example, a star network configuration. Overcoming these timing and frequency differences to achieve synchronization is critical to passing timely packets of CDMA data over an Ethernet network.
  • More specifically, timing synchronization is especially crucial for downlink traffic since the offsets in the pilot channels are used to identify the base station sectors in the network. On the uplink, however, while timing synchronization is important, one skilled in the art will recognize that it is sufficient to assure a certain, fixed delay among the uplink signals from the RRHs 211-216—precisely synchronizing the exact time is not necessary. In both uplink and downlink scenarios, timing synchronization may illustratively be achieved by first determining the minimum feasible time that a packet will spend transiting the data network between the BSI 203 and the RRH 210, hereinafter referred to as the minimum packet delay, τmin. This minimum packet delay is, for example, measured as a function of delays in buffering baseband signals in the BSI 203 to form the packets, transmission through the gigabit Ethernet MAC, the physical layer and the switches in the RDA 210, as well as the delay experienced traveling over cables. Thus, τmin is a basic, illustrative reference time between the BSI 203 and the RRH 210 for a given Ethernet network topology.
  • This minimum reference time τmin, of course, is not the time typically experienced by a packet transiting the data network, only the feasible minimum based on known delays. The actual timing delays of packets through the data network are a function of, in part, queuing delays in the presence of other data traffic in the data network. This actual timing delay may vary from one packet to the next and, over a given number of packets, a spread in the timing delay, Δτ, can be determined. Over a sufficient number of packets, the spread Δτ can be 1o measured such that a maximum timing delay of τmin+Δτ may be determined.
  • Therefore, in order to broadcast packets from an RRH, such as RRH 210, to mobile 219, and ensure continuity between the packets transiting the network, a timing delay can illustratively be introduced into the RRH broadcast such that each successive packet is guaranteed to be present at the RRH and ready for broadcast at its appointed time. Specifically, if the RRH broadcast delay is established at a time greater than τmin+Δτ, with, illustratively, an additional timing tolerance delay added to τmin to manage additional timing jitter, then each packet will be at the RRH when it is scheduled for broadcast.
  • The timing delay and spread can be determined by either a hardware or a software solution, or a combination of both. In an exemplary hardware solution, the timing delay can be calculated through knowledge of the topology of the network and the delay properties of the routing equipment and cables. By setting higher priority to CDMA packets, and knowing maximum allowable packet length (for example, 1500 bytes), one can predict the maximum delay spread Δτ. Alternatively, timing delays and spread can be directly measured using a variety of software methods, such as methods involving an exchange of time stamps between endpoints and using statistical techniques to determine the time delay and spread. One illustrative example of such a software method is the well known Network Time Protocol (NTP). One skilled in the art will recognize that many such hardware and software methods may be used to determine the timing delay and spread.
  • As previously mentioned, in addition to timing synchronization, frequency synchronization across the network is also important. Frequency synchronization is achieved in accordance with the principles of the present invention by either a hardware solution or a software solution. An illustrative hardware solution to frequency synchronization is achieved by using the physical layer in Gigabit Ethernet networks to synchronize the CDMA signals. In order to achieve this synchronization, a frequency oscillator is illustratively used in each RRH as a frequency reference for all the frequency synthesizers in the RRH. These frequency oscillators are locked, using well known clock and data recovery methods, to the clock rate of the data coming in on the Ethernet connection. This clock rate, in turn, is set by the clock which BSI 203 uses to encode the Ethernet signals. The BSI 203 can use, for example, a stable and accurate stand-alone reference oscillator to generate all its clocks or, alternatively, may derive its reference from the base station clock. One skilled in the art will recognize that such a hardware implementation of frequency synchronization will require forwarding a frequency reference from each network node, thus requiring additional overhead to maintain synchronization in this manner. In addition, one skilled in the art will recognize that similar synchronization techniques may be used in other network transport methods.
  • On the other hand, if a software solution to frequency synchronization is used, a timestamp is illustratively applied by the BSI 203 to each downlink CDMA packet marking the time it is transmitted from BSI 203. At the RRH 210, the arrival time of each CDMA packet is recorded using a local clock and the difference between the embedded time stamp and the measured arrival time is calculated as the delay D. If the illustrative clocks at the BSI and RRH are synchronized, then D should be held constant. Thus the local RRH clock can be adjusted to the remote BSI 203 clock using well-known statistical methods. For example, a number of timestamp-minus-local-clock measurements corresponding to multiple packets can be used to calculate the frequency deviation over time. Over a desired period of time, the frequency error can be inferred from the total delay change that is detected. A frequency correction corresponding to this frequency error is used compensate for the frequency deviation. In this way, the software controls the RRH 210 local clock by tracking and correcting the frequency in relation to the BSI 203 clock. Furthermore, to reduce the packet arrival jitter, and thus the accuracy of the frequency tracking mechanism, only specific packets can be used for frequency tracking. More particularly, in this example, the delay is recorded over a selected number of packets and is used for software synchronization. By selectively using an 1o ensemble of packets with a measured delay, such as the smallest delay, the effect of switch jitters due to background traffic may be significantly reduced. Uplink signals are transmitted in a similar fashion as described above in association with downlink signals. When an uplink signal is received by an RRH, such as RRH 211, from, for example, illustrative mobile terminal 219, that RRH is will convert the signal to a digital format and will buffer the digital signals and packetize them at a predetermined time interval or until a predetermined buffer fill level reached. The RRH 211 will then send the packets of digital signals to the corresponding RDA 210 to which it is attached. As discussed above, each RDA 210 can have a plurality of ports associated with a plurality of addressable sectors. And, as also discussed above, multiple RDAs can be cascaded to in a way such that numerous RDA ports can be addressed to even more numerous remote radio heads. However, the CMU 204 typically can only accept a smaller, limited number of signal channels (e.g., 6 channels). This is not an issue on the downlink as the RDAs simply replicate the downlink packets and retransmit identical packets to multiple addresses. However, on the uplink, the packets flowing into the RDAs to the BSI 203 and CMU 204 are not identical—they are potentially each from different mobile users. Thus, a problem arises as to how to reduce the potential relatively large number of unique uplink packet data streams into the limited number of channels acceptable to the CMU 204.
  • This problem is overcome by the principles of the present invention. Specifically, referring to FIG. 3, in order for a large number of RDAs to communicate with the CMU in BSI 203, an illustrative processor at each RDA in a cascaded structure of RDAs, such as RDA 210, strips the headers off the packets corresponding to a unique sector, sums the data in those packets, and repacketizes the data before forwarding it to another RDA or the BSI 203. One skilled in the art will recognize that this processor may not be located within the RDA and that it may also be located in an independent unit attached to the RDA. Alternatively, the functionality of this processor may be located within one or more of the RRHs. In the case of cascaded RDAs each having such a processor, each RDA in the cascade will accomplish this summing function until the packets flowing to from a particular RDA 210 to the BSI 203 on the uplink correspond only to one of the channels of the CMU. While summing the data in packets traditionally would result in irreparably destroying the packets (i.e., because reconstruction of the original packets would be impossible), the data in the packets of the present invention correspond to coded baseband signals of all the traffic on a particular sector. Thus, using traditional processing well known in the art, the CMU can process and identify signals in the summed packets corresponding to a uniquely CDMA coded mobile user. These unique signals are then forwarded to end destinations within the cellular network.
  • More particularly, FIG. 3 shows an in-building network having two illustrative sectors, 307 and 308, each comprising two RRHs, each of which supports two traffic carriers (frequencies). As described above, on the downlink data packets 301-304 are transmitted by BSI 203 in direction 305 to RDA 210. The RDA then uses the addresses on each of those packets to determine to which sector (and in turn to which RRHs) a packet is routed. As shown in FIG. 3, packets 302 and 304 are, illustratively, encode information for traffic carriers in sector 307. Accordingly, RDA 210 replicates packets 302 and 304 and multicasts those packets in direction 306 to both RRH 212 and RRH 218 for radiation. Similarly, packets 301 and 303 are multicast in direction 309 to RRH 215 and RRH 216 which in turn will radiate these traffic carriers in sector 308.
  • On the uplink, however, and also as briefly discussed above, the RDA 210 acts as a summing node and aggregates the uplink data packets. Specifically, when RRHs support several mobile carriers (frequencies), those RRHs will each buffer the packets and forward them to RDA 210. Thus, for example, RRHs 218 and 212 will send out packets 310 and 311 in direction 312 to RDA 210 and RRH 215 will illustratively send packets 314 and 315 in direction 313 to RDA 210. When those packets arrive at the RDA, the headers of the packets are removed and the data in any packets in the same sector are summed together. The RDA 210 then interleaves all unique baseband signals together and forwards out a single data stream containing packets of baseband signals from all sectors of the RDA 210. In a cascade of RDAs, this process is repeated at each RDA so that only a desired number of data streams containing packets of baseband symbols arrive at the BSI 203 in FIG. 2 and the CMU 204 in FIG. 2 in the base station. One skilled in the art will recognize that such a summing function is illustrative and may not be necessary depending upon the particular implementation of the network described herein. Additionally, if such a summing function is used, one skilled in the art will realize that this function can be performed at network nodes other than the RDA, such as at an RRH.
  • One skilled in the art will recognize that the above network structure facilitates flexible bandwidth management. For example, a network controller may be used (e.g., incorporated into the BSI) to dynamically assign ports on each RDA to a sector within the building. Thus, depending on the desired coverage and network usage, individual ports could each be assigned to individual sectors or, alternatively, any number of ports of the RDA could be assigned to an individual sector. Thus, in accordance with the principles of the present invention, wireless cellular network coverage can be extended by adapting an existing base station to broadcast coded cellular baseband signals over gigabit Ethernet networks using existing cabling within buildings. In fact, recently gigabit-over-Ethernet has been implemented over a wide variety of types of cabling, such as fiber, coaxial cable, as well as low cost category 5, category 6, and category 7 networking cables. Thus, the expense of installing additional cabling may be avoided. Additionally, relatively inexpensive switches (RDAs) and low powered radio equipment at the RRHs are used to broadcast the baseband signals to designated recipients.
  • One skilled in the art will also recognize that, since standard networking protocols may be used according to the principles of the present invention, the network of the present invention could be used to transmit and receive various other wireless network protocols in a similar fashion. For example, by adding 802.11 (WiFi) access points to the remote radio heads, the network of the present invention could be used in a similar fashion as described above to distribute 802.11 protocol signals to desired destinations. Additionally, since Ethernet can also provide power to network devices (i.e., via the Power-over-Ethernet 802.3af standard), the cost of installing the aforementioned radios and other equipment can be further reduced by supplying power to such components without an independent power source connection. Finally, one skilled in the art will also recognize that the network of the present invention could be used in place of a DAS in a “hoteling” arrangement associated with one or more remote antennas in an outdoor environment, such as that used in the aforementioned dense urban areas to provide increased coverage in such environments.
  • The foregoing merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are within its spirit and scope. Furthermore, all examples and conditional language recited herein are intended expressly only to be for pedagogical purposes to aid the reader in understanding the principles of the invention and are to be construed as being without limitation to such specifically recited examples and conditions.

Claims (43)

1. A method for wireless communication comprising:
creating a first plurality of data packets, wherein each packet in said first plurality comprises a plurality of coded cellular signals;
addressing each of said first plurality of data packets to at least a first sector of a cellular network, said sector comprising at least one radio transceiver, wherein said at least one radio transceiver comprises an antenna adapted to broadcast said plurality of coded cellular signals;
transmitting said first plurality of data packets over a data network associated with said at least a first sector to said at least one radio transceiver; and
broadcasting said cellular signals over the air.
2. The method of claim 1 wherein said radio transceivers are located within a building.
3. The method of claim 1 wherein said at least a first sector is associated with a first port on a network switch.
4. The method of claim 1 wherein said at least a first sector is associated with a plurality of ports on at least a first network switch.
5. The method of claim 1 wherein said data network comprises a Gigabit Ethernet network.
6. The method of claim 5 further comprising:
transmitting a second plurality of data packets across said Gigabit Ethernet network; and
broadcasting said second plurality of data packets over the air in a signal conforming to at least a first IEEE 802.11 standard.
7. A method for transmitting a first plurality of data packets over a data network, each packet in said first plurality comprising a plurality of coded cellular signals, said data network comprising at least a first sector of a cellular network, said at least a first sector comprising at least a first radio transceiver, said method comprising:
addressing each of said packets in said plurality of data packets to a first address associated with said at least a first sector, wherein said at least a first radio transceiver in said at least a first sector is adapted to transmit and receive cellular signals.
8. The method of claim 7 further comprising:
addressing each packet in said plurality of data packets to at least a second address associated with said at least a first sector.
9. The method of claim 7 wherein said at least a first radio transceiver is located within a building.
10. The method of claim 7 wherein said at least a first sector is associated with a first port on a data network switch.
11. The method of claim 7 wherein said at least a first sector is associated with a plurality of ports on at least a first data network switch.
12. The method of claim 7 wherein said data network comprises a Gigabit Ethernet network.
13. The method of claim 12 further comprising:
transmitting a second plurality of data packets across said Gigabit Ethernet network; and
addressing each packet in said second plurality of data packets to said at least a first radio transceiver, wherein said at least a first radio transceiver is further adapted to transmit and receive wireless signals conforming to at least a first IEEE 802.11 standard.
14. A radio transceiver comprising:
means for receiving data packets, said data packets comprising coded cellular signals; and
means for transmitting said cellular signals.
15. The radio transceiver of claim 14 further comprising:
means for receiving cellular signals over the air;
means for generating a plurality of data packets comprising said received cellular signals;
means for addressing each packet in said plurality of data packets to at least a first summing device associated with at least a first sector of a cellular network; and
means for transmitting said first plurality of data packets over a data network associated with said at least a first sector to said summing device.
16. The radio transceiver of claim 14 wherein said means for transmitting comprises means for extracting said cellular signals from said packets.
17. The radio transceiver of claim 16 wherein said means for transmitting is adapted to transmit said cellular signals at a predetermined time relative to at least one other cellular signal.
18. The radio transceiver of claim 16 wherein said means for transmitting is adapted to transmit said cellular signals at a predetermined frequency.
19. The radio transceiver of claim 14 further comprising:
access equipment adapted to transmit and receive wireless signals conforming to at least a first IEEE 802.11 standard.
20. A network switch for use in a wireless communication system, said wireless communication system comprising at least a first sector, said network switch comprising:
means for receiving a plurality of data packets, said data packets comprising a plurality of coded cellular signals associated with said sector;
means for extracting the coded cellular signals from said data packets;
means for summing the coded cellular signals, thus forming a data stream comprising summed coded baseband signals; and
means for forming data packets containing said summed coded cellular signals.
21. A network switch for use in a wireless communication system, said network comprising at least a first sector, said network switch comprising:
means for receiving a first plurality of data packets, said data packets comprising a plurality of coded cellular signals associated with said sector;
means for duplicating said data packets, thus forming a second plurality of data packets;
means for transmitting said second plurality of data packets to at least a first destination in said data network.
22. A method for use in a wireless communication system, said network comprising at least a first sector, said method comprising:
receiving a first plurality of data packets, said first plurality of data packets comprising a plurality of coded cellular signals associated with said sector;
extracting the coded cellular signals from said first plurality-of data packets;
summing the coded cellular signals, thus forming a data stream comprising summed coded cellular signals; and
forming a second plurality of data packets containing said summed coded coded cellular signals.
23. The method of claim 22 further comprising:
transmitting said second plurality of data packets to a first node in said data network.
24. The method of claim 23 further comprising:
extracting said summed coded cellular signals; and
transmitting said coded cellular signals to at least a first destination within a cellular network.
25. Apparatus for interfacing a cellular network with a data network, said apparatus comprising:
means for receiving cellular signals from said cellular network;
means for creating a plurality of packets containing said cellular signals; and
means for transmitting said packets to at least a first destination within said data network.
26. The apparatus of claim 25 wherein said cellular signals comprise coded baseband signals.
27. The apparatus of claim 25 wherein said cellular signals comprise radio frequency signals.
28. The apparatus of claim 25 wherein said cellular signals comprise intermediate frequency signals.
29. The apparatus of claim 25 wherein said cellular signals comprise transmit diversity signals.
30. A method for interfacing a cellular network with a data network, said method comprising:
receiving cellular signals from said cellular network;
creating a plurality of packets containing said cellular signals; and
transmitting said packets to at least a first destination within said data network.
31. Apparatus for interfacing a cellular network with a data network, said apparatus comprising:
means for receiving packets from said data network, said packets comprising a plurality of cellular signals;
means for extracting said cellular signals from said packets; and
means for transmitting said cellular signals to at least a first destination within said cellular network.
32. The apparatus of claim 31 wherein said cellular signals comprise coded baseband signals.
33. The apparatus of claim 31 wherein said cellular signals comprise radio frequency signals.
34. The apparatus of claim 31 wherein said cellular signals comprise intermediate frequency signals.
35. The apparatus of claim 31 wherein said cellular signals comprise receive diversity signals.
36. A method for interfacing a cellular network with a data network, said method comprising:
receiving packets from said data network, said packets comprising a plurality of cellular, signals;
extracting said cellular signals from said packets; and
transmitting said cellular signals to at least a first destination within said cellular network.
37. A method for use in synchronizing the timing between a wireless network and a data network, said method comprising:
determining the minimum time for transmission between two points in said data network;
estimating a delay spread over a first plurality of data packets transmitted across said data network;
delaying the transmission of a second plurality of data packets from at least a first node in said data network.
38. The method of claim 37 wherein said step of estimating comprises measuring a delay spread over said first plurality of data packets.
39. The method of claim 37 wherein said node comprises a remote radio head.
40. A method for use in synchronizing the frequency between a wireless network and a data network, said method comprising:
forwarding to a remote radio head a frequency reference associated with a first clock, said first clock associated with a data network; and
locking the frequency associated with a second clock with said frequency reference, said second clock associated with said remote radio head.
41. A method for use in synchronizing the frequency between a wireless network and a data network, said method comprising:
applying a first indication of a time to at least a first data packet, said data packet comprising a plurality of coded cellular signals;
recording at a first node in said data network the arrival time of said at least a first data packet;
determining a difference between said first indication and said arrival time of said at least a first data packet; and
maintaining said difference between said first indication and said arrival time by altering a clock associated with said first node in said data network.
42. The method of claim 41 wherein said coded cellular signals comprise coded cellular baseband signals.
43. The method of claim 41 wherein said at least a first data packet is selected as having a small said difference between said first indication and said arrival time relative to the value of said difference for at least a second data packet in a plurality of data packets.
US10/884,203 2004-01-16 2004-06-30 Method and apparatus for cellular communication over data networks Abandoned US20050157675A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/884,203 US20050157675A1 (en) 2004-01-16 2004-06-30 Method and apparatus for cellular communication over data networks
US11/435,665 US7929487B2 (en) 2004-01-16 2006-05-17 Method and apparatus for cellular communication over data networks
US13/089,351 US8194597B2 (en) 2004-01-16 2011-04-19 Method and apparatus for cellular communication over data networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53687104P 2004-01-16 2004-01-16
US10/884,203 US20050157675A1 (en) 2004-01-16 2004-06-30 Method and apparatus for cellular communication over data networks

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/435,665 Continuation-In-Part US7929487B2 (en) 2004-01-16 2006-05-17 Method and apparatus for cellular communication over data networks
US13/089,351 Continuation US8194597B2 (en) 2004-01-16 2011-04-19 Method and apparatus for cellular communication over data networks

Publications (1)

Publication Number Publication Date
US20050157675A1 true US20050157675A1 (en) 2005-07-21

Family

ID=34753051

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/884,203 Abandoned US20050157675A1 (en) 2004-01-16 2004-06-30 Method and apparatus for cellular communication over data networks
US13/089,351 Expired - Fee Related US8194597B2 (en) 2004-01-16 2011-04-19 Method and apparatus for cellular communication over data networks

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/089,351 Expired - Fee Related US8194597B2 (en) 2004-01-16 2011-04-19 Method and apparatus for cellular communication over data networks

Country Status (1)

Country Link
US (2) US20050157675A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437353A (en) * 2006-03-27 2007-10-24 Charles Daniel Distributing data from a pc server through ethernet or wireless connections to portable network devices through low voltage conductors
US20080014948A1 (en) * 2006-07-14 2008-01-17 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
US20080058018A1 (en) * 2006-08-29 2008-03-06 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
US20080125187A1 (en) * 2006-11-03 2008-05-29 Yu-Chuan Chang Wireless transmission system suitable for large space and method thereof
US20080151846A1 (en) * 2006-12-22 2008-06-26 Stefan Scheinert System for and method of providing remote coverage area for wireless communications
US20080186945A1 (en) * 2007-02-06 2008-08-07 Lg Eletronics Inc. Wireless lan system and transmission method of data thereof
US20090061771A1 (en) * 2007-09-04 2009-03-05 Zhengxiang Ma Methods of reconfiguring sector coverage in in-building communications system
US20090180423A1 (en) * 2005-07-13 2009-07-16 Nokia Siemens Networks Gmbh & Co. Kg Transmission of Ethernet Packets Via CPRI Interface
US20090191891A1 (en) * 2008-01-29 2009-07-30 Lucent Technologies Inc. Method to support user location in in-structure coverage systems
EP2088806A1 (en) 2008-02-08 2009-08-12 Alcatel Lucent Method and a system of location of a mobile station within a radio coverage zone of a cell and to a radio cellular network implementing this system
KR100950342B1 (en) 2009-12-29 2010-03-31 인텔라 주식회사 Integrated repeater having application to internet network and compression algorithm
US7764978B1 (en) * 2005-01-26 2010-07-27 Nextel Communications Inc. System and method for providing in-building wireless network coverage
US7864816B1 (en) * 2005-01-07 2011-01-04 Marvell International Ltd. Integrated circuit for network delay and jitter testing
EP2271001A1 (en) 2009-06-29 2011-01-05 Alcatel Lucent Method and communication network for MIMO transmissions
WO2011023592A1 (en) * 2009-08-31 2011-03-03 International Business Machines Corporation Wireless communication system
US8005050B2 (en) 2007-03-23 2011-08-23 Lgc Wireless, Inc. Localization of a mobile device in distributed antenna communications system
US8010116B2 (en) 2007-06-26 2011-08-30 Lgc Wireless, Inc. Distributed antenna communications system
US20110223960A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited System and Method for Implementing Power Distribution
US20110222434A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited Method and Apparatus for Deploying a Wireless Network
US20110310941A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Remotely located radio transceiver for mobile communications network
US20110310839A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Handover in mobile communications networks
CN102958087A (en) * 2012-10-26 2013-03-06 大唐移动通信设备有限公司 Configuration method and configuration device of baseband board card
US20140146905A1 (en) * 2012-11-26 2014-05-29 Adc Telecommunications, Inc. Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US8774109B2 (en) 2010-06-17 2014-07-08 Kathrein-Werke Kg Mobile communications network with distributed processing resources
EP2793474A1 (en) * 2013-04-18 2014-10-22 Unitron NV Cascadable multiple dwelling satellite signal distribution device
US20140314061A1 (en) * 2013-02-26 2014-10-23 Dali Systems Co. Ltd. Method and system for wi-fi data transmission
US9112547B2 (en) 2007-08-31 2015-08-18 Adc Telecommunications, Inc. System for and method of configuring distributed antenna communications system
US20150236786A1 (en) * 2010-04-16 2015-08-20 Panasonic Corporation Communication System, Main Unit, Radio Access Unit And Communication Method
US20150271793A1 (en) * 2014-03-21 2015-09-24 Adc Telecommunications, Inc. Digital distributed antenna systems and methods for advanced cellular communication protocols
US20150382272A1 (en) * 2013-03-15 2015-12-31 Intel Corporation Unlicensed spectrum offload architecture for small-cell base stations
US9367828B2 (en) 2012-11-26 2016-06-14 Commscope Technologies Llc Forward-path digital summation in digital radio frequency transport
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9398464B2 (en) 2011-07-11 2016-07-19 Commscope Technologies Llc Base station router for distributed antenna systems
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US20160352393A1 (en) * 2014-02-26 2016-12-01 Corning Optical Communications Wireless Ltd Distributed antenna systems (das) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US9712343B2 (en) 2015-06-19 2017-07-18 Andrew Wireless Systems Gmbh Scalable telecommunications system
US20170238318A1 (en) * 2010-09-14 2017-08-17 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US9826410B2 (en) 2009-04-29 2017-11-21 Commscope Technologies Llc Distributed antenna system for wireless network systems
US9913147B2 (en) 2012-10-05 2018-03-06 Andrew Wireless Systems Gmbh Capacity optimization sub-system for distributed antenna system
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US20180097659A1 (en) * 2015-04-16 2018-04-05 Andrew Wireless Systems Gmbh Uplink signal combiners for mobile radio signal distribution systems using ethernet data networks
US10057916B2 (en) 2014-06-09 2018-08-21 Commscope Technologies Llc Radio access networks in which mobile devices in the same communication cell can be scheduled to use the same airlink resource
US10080178B2 (en) 2006-12-26 2018-09-18 Dali Wireless, Inc. Distributed antenna system
CN109618352A (en) * 2019-01-14 2019-04-12 普兴移动通讯设备有限公司 A kind of non line of sight relay communications system based on LTE
US10404329B2 (en) 2014-01-06 2019-09-03 Dali Systems Co. Ltd. Network switch for a distributed antenna network
US10659108B2 (en) 2013-12-19 2020-05-19 Dali Wireless, Inc. Digital transport of data over distributed antenna network
US10785791B1 (en) 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
US10798667B2 (en) 2018-06-08 2020-10-06 Commscope Technologies Llc Automatic transmit power control for radio points of a centralized radio access network that primarily provide wireless service to users located in an event area of a venue
WO2020243690A1 (en) * 2019-05-31 2020-12-03 View, Inc. Building antenna
WO2020227702A3 (en) * 2019-05-09 2021-01-07 View, Inc. Antenna systems for controlled coverage in buildings
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US11114742B2 (en) 2014-11-25 2021-09-07 View, Inc. Window antennas
US11159129B2 (en) 2002-05-01 2021-10-26 Dali Wireless, Inc. Power amplifier time-delay invariant predistortion methods and apparatus
US11205926B2 (en) 2009-12-22 2021-12-21 View, Inc. Window antennas for emitting radio frequency signals
CN114208102A (en) * 2019-07-02 2022-03-18 康普技术有限责任公司 Forwarding interface for use with cloud radio access networks
US11297603B2 (en) 2010-08-17 2022-04-05 Dali Wireless, Inc. Neutral host architecture for a distributed antenna system
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
US11342791B2 (en) 2009-12-22 2022-05-24 View, Inc. Wirelessly powered and powering electrochromic windows
US11395259B2 (en) 2018-05-16 2022-07-19 Commscope Technologies Llc Downlink multicast for efficient front-haul utilization in a C-RAN
US11418155B2 (en) 2002-05-01 2022-08-16 Dali Wireless, Inc. Digital hybrid mode power amplifier system
US11462814B2 (en) 2014-11-25 2022-10-04 View, Inc. Window antennas
US11496275B2 (en) 2012-11-26 2022-11-08 Commscope Technologies Llc Timeslot mapping and/or aggregation element for digital radio frequency transport architecture
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11627497B2 (en) 2018-09-04 2023-04-11 Commscope Technologies Llc Front-haul rate reduction for use in a centralized radio access network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
US11678358B2 (en) 2017-10-03 2023-06-13 Commscope Technologies Llc Dynamic downlink reuse in a C-RAN
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US11743071B2 (en) 2018-05-02 2023-08-29 View, Inc. Sensing and communications unit for optically switchable window systems
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11822159B2 (en) 2009-12-22 2023-11-21 View, Inc. Self-contained EC IGU
US11948015B2 (en) 2014-12-08 2024-04-02 View, Inc. Multiple interacting systems at a site
US11974269B2 (en) 2021-06-11 2024-04-30 Commscope Technologies Llc Radio access networks

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090248529A1 (en) * 2008-04-01 2009-10-01 Infosys Technologies Limited System and method for providing value added services via wireless access points
JP5455026B2 (en) * 2009-10-28 2014-03-26 京セラ株式会社 Radio base station and radio communication method
CN102291354B (en) * 2011-08-22 2013-08-21 宁波大学 Anti-interference digital radio broadcast signal transmission method
CN102291353B (en) * 2011-08-22 2013-08-21 宁波大学 Method for transmitting robust digital radio broadcast signal
CN102271118B (en) * 2011-08-22 2013-07-24 宁波大学 Robust multimedia wireless broadcast signal framing modulation method
CN102271114B (en) * 2011-08-22 2013-07-24 宁波大学 Transmission method for digital broadcast mobile signal
US9572197B1 (en) * 2011-09-22 2017-02-14 Sprint Communications Company L.P. Configuration of remote radio head antenna ports
KR101541262B1 (en) 2012-08-09 2015-07-31 악셀 와이어리스 리미티드 A digital capactiy centric distributed antenna system
WO2014109782A1 (en) 2013-01-14 2014-07-17 Andrew Llc Interceptor system for characterizing digital data in telecommunication system
US9137132B1 (en) 2013-09-25 2015-09-15 Sprint Communications Company L.P. Antenna monitoring system and method to monitor a distributed antenna system
US9750082B2 (en) 2013-10-07 2017-08-29 Commscope Technologies Llc Systems and methods for noise floor optimization in distributed antenna system with direct digital interface to base station
EP3198755B1 (en) 2014-09-23 2020-12-23 Axell Wireless Ltd. Automatic mapping and handling pim and other uplink interferences in digital distributed antenna systems
EP3238352A4 (en) 2014-12-23 2018-08-22 Axell Wireless Ltd. Harmonizing noise aggregation and noise management in distributed antenna system
WO2016127028A1 (en) 2015-02-05 2016-08-11 Commscope Technologies Llc Systems and methods for emulating uplink diversity signals
US10608919B2 (en) 2016-02-19 2020-03-31 Commscope Technologies Llc Passive intermodulation (PIM) testing in distributed base transceiver station architecture
US10609582B2 (en) 2016-09-08 2020-03-31 Commscope Technologies Llc Interference detection and identification in wireless network from RF or digitized signal

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020128009A1 (en) * 2001-02-20 2002-09-12 Erik Boch Transceiver for fixed wireless access network applications
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch
US20020194605A1 (en) * 2001-05-18 2002-12-19 T.M.T. Third Millenium Technologies Ltd. Cableran networking over coaxial cables
US20040136373A1 (en) * 2003-01-13 2004-07-15 Bareis Bernard F. Broadband multi-drop local network, interface and method for multimedia access
US20040143442A1 (en) * 2003-01-22 2004-07-22 Knight Erik A. Multiple-language audio information transmission system and device
US20040224637A1 (en) * 2002-11-04 2004-11-11 Silva Marcus Da Directed wireless communication
US20050025160A1 (en) * 2000-11-22 2005-02-03 Cisco Technology, Inc. System and method for grouping multiple VLANs into a single 802.11 IP multicast domain
US20050073964A1 (en) * 2003-07-24 2005-04-07 3E Technologies International, Inc. Method and system for fast setup of group voice over IP communications
US6985451B1 (en) * 1997-10-14 2006-01-10 Alvarion Israel (2003) Ltd. Method and apparatus for baseband transmission between a top floor unit and an outdoor unit in a terminal for a wireless metropolitan area network
US20060209752A1 (en) * 2004-01-16 2006-09-21 Wijngaarden Adriaan Jeroen D L Method and apparatus for cellular communication over data networks
US7415242B1 (en) * 2003-11-10 2008-08-19 Sprint Spectrum L.P. Method and system for proximity detection for an in-building wireless repeater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985451B1 (en) * 1997-10-14 2006-01-10 Alvarion Israel (2003) Ltd. Method and apparatus for baseband transmission between a top floor unit and an outdoor unit in a terminal for a wireless metropolitan area network
US20050025160A1 (en) * 2000-11-22 2005-02-03 Cisco Technology, Inc. System and method for grouping multiple VLANs into a single 802.11 IP multicast domain
US20020128009A1 (en) * 2001-02-20 2002-09-12 Erik Boch Transceiver for fixed wireless access network applications
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch
US20020194605A1 (en) * 2001-05-18 2002-12-19 T.M.T. Third Millenium Technologies Ltd. Cableran networking over coaxial cables
US20040224637A1 (en) * 2002-11-04 2004-11-11 Silva Marcus Da Directed wireless communication
US20040136373A1 (en) * 2003-01-13 2004-07-15 Bareis Bernard F. Broadband multi-drop local network, interface and method for multimedia access
US20040143442A1 (en) * 2003-01-22 2004-07-22 Knight Erik A. Multiple-language audio information transmission system and device
US20050073964A1 (en) * 2003-07-24 2005-04-07 3E Technologies International, Inc. Method and system for fast setup of group voice over IP communications
US7415242B1 (en) * 2003-11-10 2008-08-19 Sprint Spectrum L.P. Method and system for proximity detection for an in-building wireless repeater
US20060209752A1 (en) * 2004-01-16 2006-09-21 Wijngaarden Adriaan Jeroen D L Method and apparatus for cellular communication over data networks

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418155B2 (en) 2002-05-01 2022-08-16 Dali Wireless, Inc. Digital hybrid mode power amplifier system
US11159129B2 (en) 2002-05-01 2021-10-26 Dali Wireless, Inc. Power amplifier time-delay invariant predistortion methods and apparatus
US8619565B1 (en) 2005-01-07 2013-12-31 Marvell International Ltd. Integrated circuit for network delay and jitter testing
US8036123B1 (en) 2005-01-07 2011-10-11 Marvell International Ltd. Integrated circuit for network stress testing
US8854961B1 (en) 2005-01-07 2014-10-07 Marvell International Ltd. Integrated circuit for network stress testing
US7864816B1 (en) * 2005-01-07 2011-01-04 Marvell International Ltd. Integrated circuit for network delay and jitter testing
US7764978B1 (en) * 2005-01-26 2010-07-27 Nextel Communications Inc. System and method for providing in-building wireless network coverage
US20090180423A1 (en) * 2005-07-13 2009-07-16 Nokia Siemens Networks Gmbh & Co. Kg Transmission of Ethernet Packets Via CPRI Interface
GB2437353A (en) * 2006-03-27 2007-10-24 Charles Daniel Distributing data from a pc server through ethernet or wireless connections to portable network devices through low voltage conductors
US7844273B2 (en) 2006-07-14 2010-11-30 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
US20080014948A1 (en) * 2006-07-14 2008-01-17 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
US20080058018A1 (en) * 2006-08-29 2008-03-06 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
US7848770B2 (en) 2006-08-29 2010-12-07 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
US20080125187A1 (en) * 2006-11-03 2008-05-29 Yu-Chuan Chang Wireless transmission system suitable for large space and method thereof
EP3209087A1 (en) * 2006-12-22 2017-08-23 CommScope Technologies LLC System for and method of providing remote coverage area for wireless communications
US7817958B2 (en) 2006-12-22 2010-10-19 Lgc Wireless Inc. System for and method of providing remote coverage area for wireless communications
US20080151846A1 (en) * 2006-12-22 2008-06-26 Stefan Scheinert System for and method of providing remote coverage area for wireless communications
US10334499B2 (en) 2006-12-26 2019-06-25 Dali Wireless, Inc. Distributed antenna system
US11006343B2 (en) 2006-12-26 2021-05-11 Dali Wireless, Inc. Distributed antenna system
US10080178B2 (en) 2006-12-26 2018-09-18 Dali Wireless, Inc. Distributed antenna system
US11818642B2 (en) 2006-12-26 2023-11-14 Dali Wireless, Inc. Distributed antenna system
US20080186945A1 (en) * 2007-02-06 2008-08-07 Lg Eletronics Inc. Wireless lan system and transmission method of data thereof
US7990872B2 (en) * 2007-02-06 2011-08-02 Lg Electronics Inc. Wireless LAN system and transmission method of data thereof
US8005050B2 (en) 2007-03-23 2011-08-23 Lgc Wireless, Inc. Localization of a mobile device in distributed antenna communications system
USRE45505E1 (en) 2007-03-23 2015-05-05 Adc Telecommunications, Inc. Localization of a mobile device in distributed antenna communications system
US8010116B2 (en) 2007-06-26 2011-08-30 Lgc Wireless, Inc. Distributed antenna communications system
US8532698B2 (en) 2007-06-26 2013-09-10 Adc Telecommunications, Inc. Distributed antenna communications system
US8229497B2 (en) 2007-06-26 2012-07-24 Lgc Wireless, Llc Distributed antenna communications system
US9112547B2 (en) 2007-08-31 2015-08-18 Adc Telecommunications, Inc. System for and method of configuring distributed antenna communications system
US8010099B2 (en) 2007-09-04 2011-08-30 Alcatel Lucent Methods of reconfiguring sector coverage in in-building communications system
US20090061771A1 (en) * 2007-09-04 2009-03-05 Zhengxiang Ma Methods of reconfiguring sector coverage in in-building communications system
US8666428B2 (en) 2008-01-29 2014-03-04 Alcatel Lucent Method to support user location in in-structure coverage systems
US20090191891A1 (en) * 2008-01-29 2009-07-30 Lucent Technologies Inc. Method to support user location in in-structure coverage systems
US8515439B2 (en) * 2008-02-08 2013-08-20 Alcatel Lucent Determining location of a mobile station in a cellular communication coverage zone using time sequence correlation
WO2009098303A1 (en) * 2008-02-08 2009-08-13 Alcatel Lucent Method and a system of location of a mobile station within a radio coverage zone of a cell and to a radio cellular network implementing this system
EP2088806A1 (en) 2008-02-08 2009-08-12 Alcatel Lucent Method and a system of location of a mobile station within a radio coverage zone of a cell and to a radio cellular network implementing this system
KR101537212B1 (en) * 2008-02-08 2015-07-17 알까뗄 루슨트 Method and a system of location of a mobile station within a radio coverage zone of a cell and to a radio cellular network Implementing this system
US20110092218A1 (en) * 2008-02-08 2011-04-21 Alistair Urie Method and system of location of a mobile staton within a radio coverage zone of a cell and to a radio cellular network implementing this system
JP2011517375A (en) * 2008-02-08 2011-06-02 アルカテル−ルーセント Method and system for positioning a mobile station in a radio coverage zone of a cell, and a wireless cellular network implementing this system
US9826410B2 (en) 2009-04-29 2017-11-21 Commscope Technologies Llc Distributed antenna system for wireless network systems
US10499253B2 (en) 2009-04-29 2019-12-03 Commscope Technologies Llc Distributed antenna system for wireless network systems
EP2271001A1 (en) 2009-06-29 2011-01-05 Alcatel Lucent Method and communication network for MIMO transmissions
WO2011023592A1 (en) * 2009-08-31 2011-03-03 International Business Machines Corporation Wireless communication system
US8767710B2 (en) 2009-08-31 2014-07-01 International Business Machines Corporation Wireless communication system
US8780886B2 (en) 2009-08-31 2014-07-15 International Business Machines Corporation Wireless communication system
US11822159B2 (en) 2009-12-22 2023-11-21 View, Inc. Self-contained EC IGU
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US11205926B2 (en) 2009-12-22 2021-12-21 View, Inc. Window antennas for emitting radio frequency signals
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
US11342791B2 (en) 2009-12-22 2022-05-24 View, Inc. Wirelessly powered and powering electrochromic windows
KR100950342B1 (en) 2009-12-29 2010-03-31 인텔라 주식회사 Integrated repeater having application to internet network and compression algorithm
US20110223960A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited System and Method for Implementing Power Distribution
US8792933B2 (en) * 2010-03-10 2014-07-29 Fujitsu Limited Method and apparatus for deploying a wireless network
US20110223958A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited System and Method for Implementing Power Distribution
US9154193B2 (en) 2010-03-10 2015-10-06 Fujitsu Limited System and method for implementing power distribution
US9178575B2 (en) 2010-03-10 2015-11-03 Fujitsu Limited System and method for implementing power distribution
US20110223961A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited System and Method for Implementing Power Distribution
US20110222434A1 (en) * 2010-03-10 2011-09-15 Fujitsu Limited Method and Apparatus for Deploying a Wireless Network
US20150236786A1 (en) * 2010-04-16 2015-08-20 Panasonic Corporation Communication System, Main Unit, Radio Access Unit And Communication Method
US9485023B2 (en) * 2010-04-16 2016-11-01 Nokia Solutions And Networks Oy Communication system, main unit, radio access unit and communication method
US8774109B2 (en) 2010-06-17 2014-07-08 Kathrein-Werke Kg Mobile communications network with distributed processing resources
US20110310941A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Remotely located radio transceiver for mobile communications network
US20110310839A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Handover in mobile communications networks
US8649354B2 (en) * 2010-06-17 2014-02-11 Kathrein-Werke Kg Handover in mobile communications networks
US11297603B2 (en) 2010-08-17 2022-04-05 Dali Wireless, Inc. Neutral host architecture for a distributed antenna system
US11026232B2 (en) 2010-09-14 2021-06-01 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US10701695B2 (en) 2010-09-14 2020-06-30 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US20170238318A1 (en) * 2010-09-14 2017-08-17 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US11805504B2 (en) 2010-09-14 2023-10-31 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US11368957B2 (en) 2010-09-14 2022-06-21 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US9820171B2 (en) 2010-09-14 2017-11-14 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US20220295487A1 (en) 2010-09-14 2022-09-15 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US11013005B2 (en) 2010-09-14 2021-05-18 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US10743317B1 (en) 2010-09-14 2020-08-11 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US10159074B2 (en) * 2010-09-14 2018-12-18 Dali Wireless, Inc. Remotely reconfigurable distributed antenna system and methods
US9398464B2 (en) 2011-07-11 2016-07-19 Commscope Technologies Llc Base station router for distributed antenna systems
US9735843B2 (en) 2011-07-11 2017-08-15 Commscope Technologies Llc Base station router for distributed antenna systems
US10938450B2 (en) 2011-07-11 2021-03-02 Commscope Technologies Llc Base station router for distributed antenna systems
US10063287B2 (en) 2011-07-11 2018-08-28 Commscope Technologies Llc Base station router for distributed antenna systems
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US10412595B2 (en) 2012-10-05 2019-09-10 Andrew Wireless Systems Gmbh Capacity optimization sub-system for distributed antenna system
US9913147B2 (en) 2012-10-05 2018-03-06 Andrew Wireless Systems Gmbh Capacity optimization sub-system for distributed antenna system
CN102958087A (en) * 2012-10-26 2013-03-06 大唐移动通信设备有限公司 Configuration method and configuration device of baseband board card
US20140146905A1 (en) * 2012-11-26 2014-05-29 Adc Telecommunications, Inc. Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US9367828B2 (en) 2012-11-26 2016-06-14 Commscope Technologies Llc Forward-path digital summation in digital radio frequency transport
US9385797B2 (en) * 2012-11-26 2016-07-05 Commscope Technologies Llc Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US11496275B2 (en) 2012-11-26 2022-11-08 Commscope Technologies Llc Timeslot mapping and/or aggregation element for digital radio frequency transport architecture
KR102131909B1 (en) 2012-11-26 2020-07-08 콤스코프 테크놀로지스 엘엘씨 Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
KR20150091096A (en) * 2012-11-26 2015-08-07 에이디씨 텔레커뮤니케이션스 인코포레이티드 Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US10064072B2 (en) 2013-02-07 2018-08-28 Commscope Technologies Llc Radio access networks
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US10455597B2 (en) 2013-02-07 2019-10-22 Commscope Technologies Llc Radio access networks
US11122447B2 (en) 2013-02-07 2021-09-14 Commscope Technologies Llc Radio access networks
US11102663B2 (en) 2013-02-07 2021-08-24 Commscope Technologies Llc Radio access networks
US11445455B2 (en) 2013-02-07 2022-09-13 Commscope Technologies Llc Radio access networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US10142858B2 (en) 2013-02-07 2018-11-27 Commscope Technologies Llc Radio access networks
US10292175B2 (en) 2013-02-07 2019-05-14 Commscope Technologies Llc Radio access networks
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US11700602B2 (en) 2013-02-07 2023-07-11 Commscope Technologies Llc Radio access networks
US10764846B2 (en) 2013-02-07 2020-09-01 Commscope Technologies Llc Radio access networks
US11729758B2 (en) 2013-02-07 2023-08-15 Commscope Technologies Llc Radio access networks
US11706640B2 (en) 2013-02-07 2023-07-18 Commscope Technologies Llc Radio access networks
US20140314061A1 (en) * 2013-02-26 2014-10-23 Dali Systems Co. Ltd. Method and system for wi-fi data transmission
US9955361B2 (en) * 2013-02-26 2018-04-24 Dali Systems Co., Ltd. Method and system for WI-FI data transmission
US10681563B2 (en) 2013-02-26 2020-06-09 Dali Systems Co. Ltd. Method and system for Wi-Fi data transmission
US11395153B2 (en) 2013-02-26 2022-07-19 Dali Wireless, Inc. Method and system for Wi-Fi data transmission
US10080177B2 (en) * 2013-03-15 2018-09-18 Intel Corporation Unlicensed spectrum offload architecture for small-cell base stations
US20150382272A1 (en) * 2013-03-15 2015-12-31 Intel Corporation Unlicensed spectrum offload architecture for small-cell base stations
EP2793474A1 (en) * 2013-04-18 2014-10-22 Unitron NV Cascadable multiple dwelling satellite signal distribution device
WO2014170456A1 (en) * 2013-04-18 2014-10-23 Unitron Nv Cascadable multiple dwelling satellite signal distribution device
US10659108B2 (en) 2013-12-19 2020-05-19 Dali Wireless, Inc. Digital transport of data over distributed antenna network
US11277172B2 (en) 2013-12-19 2022-03-15 Dali Wireless, Inc. Digital transport of data over distributed antenna network
US10404329B2 (en) 2014-01-06 2019-09-03 Dali Systems Co. Ltd. Network switch for a distributed antenna network
US20160352393A1 (en) * 2014-02-26 2016-12-01 Corning Optical Communications Wireless Ltd Distributed antenna systems (das) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US10419078B2 (en) 2014-02-26 2019-09-17 Corning Optical Communications LLC Distributed antenna systems (DAS) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US9780841B2 (en) * 2014-02-26 2017-10-03 Corning Optical Communications Wireless Ltd Distributed antenna systems (DAS) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9722703B2 (en) * 2014-03-21 2017-08-01 Commscope Technologies Llc Digital distributed antenna systems and methods for advanced cellular communication protocols
US10505634B2 (en) 2014-03-21 2019-12-10 Commscope Technologies Llc Digital distributed antenna systems and methods for advanced cellular communication protocols
US10075243B2 (en) 2014-03-21 2018-09-11 Commscope Technologies Llc Digital distributed antenna systems and methods for advanced cellular communication protocols
US20150271793A1 (en) * 2014-03-21 2015-09-24 Adc Telecommunications, Inc. Digital distributed antenna systems and methods for advanced cellular communication protocols
US11082997B2 (en) 2014-06-09 2021-08-03 Commscope Technologies Llc Radio access networks in which mobile devices can be scheduled to use the same time-frequency resource
US10536959B2 (en) 2014-06-09 2020-01-14 Commscope Technologies Llc Radio access networks in which remote units are configured to perform at least some baseband processing
US10057916B2 (en) 2014-06-09 2018-08-21 Commscope Technologies Llc Radio access networks in which mobile devices in the same communication cell can be scheduled to use the same airlink resource
US11670833B2 (en) 2014-11-25 2023-06-06 View, Inc. Window antennas
US11114742B2 (en) 2014-11-25 2021-09-07 View, Inc. Window antennas
US11799187B2 (en) 2014-11-25 2023-10-24 View, Inc. Window antennas
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US11462814B2 (en) 2014-11-25 2022-10-04 View, Inc. Window antennas
US11948015B2 (en) 2014-12-08 2024-04-02 View, Inc. Multiple interacting systems at a site
US20180097659A1 (en) * 2015-04-16 2018-04-05 Andrew Wireless Systems Gmbh Uplink signal combiners for mobile radio signal distribution systems using ethernet data networks
US11444809B2 (en) * 2015-04-16 2022-09-13 Andrew Wireless Systems Gmbh Uplink signal combiners for mobile radio signal distribution systems using ethernet data networks
US10271380B2 (en) 2015-06-19 2019-04-23 Andrew Wireless Systems Gmbh Scalable telecommunications system
US9712343B2 (en) 2015-06-19 2017-07-18 Andrew Wireless Systems Gmbh Scalable telecommunications system
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US10785791B1 (en) 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
US11678358B2 (en) 2017-10-03 2023-06-13 Commscope Technologies Llc Dynamic downlink reuse in a C-RAN
US11743071B2 (en) 2018-05-02 2023-08-29 View, Inc. Sensing and communications unit for optically switchable window systems
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
US11395259B2 (en) 2018-05-16 2022-07-19 Commscope Technologies Llc Downlink multicast for efficient front-haul utilization in a C-RAN
US10798667B2 (en) 2018-06-08 2020-10-06 Commscope Technologies Llc Automatic transmit power control for radio points of a centralized radio access network that primarily provide wireless service to users located in an event area of a venue
US11627497B2 (en) 2018-09-04 2023-04-11 Commscope Technologies Llc Front-haul rate reduction for use in a centralized radio access network
CN109618352A (en) * 2019-01-14 2019-04-12 普兴移动通讯设备有限公司 A kind of non line of sight relay communications system based on LTE
WO2020227702A3 (en) * 2019-05-09 2021-01-07 View, Inc. Antenna systems for controlled coverage in buildings
WO2020243690A1 (en) * 2019-05-31 2020-12-03 View, Inc. Building antenna
US11516722B2 (en) 2019-07-02 2022-11-29 Commscope Technologies Llc Fronthaul interface for use with a cloud radio access network
US11496943B2 (en) 2019-07-02 2022-11-08 Commscope Technologies Llc Fronthaul interface for use with a cloud radio access network
US11438822B2 (en) * 2019-07-02 2022-09-06 Commscope Technologies Llc Deep packet inspection in a fronthaul network of a cloud radio access network
US20220256432A1 (en) * 2019-07-02 2022-08-11 Commscope Technologies Llc Deep packet inspection in a fronthaul network of a cloud radio access network
US11838749B2 (en) * 2019-07-02 2023-12-05 Commscope Technologies Llc Deep packet inspection in a fronthaul network of a cloud radio access network
US11838748B2 (en) 2019-07-02 2023-12-05 Commscope Technologies Llc Fronthaul interface for use with a cloud radio access network
CN114208102A (en) * 2019-07-02 2022-03-18 康普技术有限责任公司 Forwarding interface for use with cloud radio access networks
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11974269B2 (en) 2021-06-11 2024-04-30 Commscope Technologies Llc Radio access networks

Also Published As

Publication number Publication date
US20110194548A1 (en) 2011-08-11
US8194597B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
US8194597B2 (en) Method and apparatus for cellular communication over data networks
US7929487B2 (en) Method and apparatus for cellular communication over data networks
US11395153B2 (en) Method and system for Wi-Fi data transmission
EP2847921B1 (en) Timing synchronization for networks with radio links
US7860107B2 (en) Apparatus and method for determining timing for transmissions
US10341880B2 (en) Telecommunication systems with distributed base station functionality
US6983161B2 (en) Method for performing frequency synchronization of a base station and a network part
JP4509921B2 (en) Wireless communication system and wireless communication method
KR101010292B1 (en) Quasi synchronous transmission in cellular networks
US11005699B2 (en) Distributed antenna system-based on time sensitive network
US20120189074A1 (en) Diversity for Digital Distributed Antenna Systems
CA2723009A1 (en) Wireless mesh network and network node
CN111373691A (en) Synchronization and fault management in distributed antenna systems
KR102156545B1 (en) Distributed antenna systems based on time sensitive network
US7519021B1 (en) Third party access to Ethernet service from wireless base stations
US7773555B1 (en) Extension of an ethernet backhaul system for wireless base stations over a cable television distribution network
Ma et al. Radiostar: Providing wireless coverage over gigabit ethernet
WO2002098032A1 (en) Synchronisation of communication links

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEDER, PERETZ MOSHES;KIM, JUNGSANG;MA, ZHENGXIANG;AND OTHERS;REEL/FRAME:015961/0630;SIGNING DATES FROM 20040831 TO 20041025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION