US20050142990A1 - Texturing of magnetic disk substrates - Google Patents

Texturing of magnetic disk substrates Download PDF

Info

Publication number
US20050142990A1
US20050142990A1 US11/063,805 US6380505A US2005142990A1 US 20050142990 A1 US20050142990 A1 US 20050142990A1 US 6380505 A US6380505 A US 6380505A US 2005142990 A1 US2005142990 A1 US 2005142990A1
Authority
US
United States
Prior art keywords
substrate
magnetic
particles
magnetic layer
texturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/063,805
Inventor
Andrew Homola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/063,805 priority Critical patent/US20050142990A1/en
Publication of US20050142990A1 publication Critical patent/US20050142990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • This invention pertains to methods for texturing magnetic disk substrates and the resulting substrates. This invention also pertains to methods for manufacturing magnetic data storage media and the resulting media.
  • Magnetic disks are manufactured by a) polishing a substrate; b) texturing the substrate; and c) depositing a set of layers on the substrate, e.g. by sputtering or other vacuum deposition technique.
  • the substrate typically comprises an aluminum alloy 2 coated with an electroless-plated nickel phosphorus (“NiP”) alloy 3 .
  • the layers can comprise one or more seed and/or underlayers 4 (e.g. Cr or a Cr alloy underlayer), one or more magnetic layers 5 (e.g. a Co alloy layer), and one or more protective overcoats 6 (e.g. one or more carbon protective overcoat layers).
  • the texture typically comprises scratches in the circumferential direction (or generally in the circumferential direction) formed using polycrystalline or mionocrystalline diamond particles having a size of about 0.05 to 0.5 ⁇ m in diameter.
  • the texture typically accomplishes several functions, including facilitating the flying of a read-write held above the magnetic disk.
  • the texture causes the magnetic characteristics of the disk to become anisotropic.
  • the coercivity Hc of the magnetic layer is higher in the circumferential direction than the radial direction.
  • the magnetic remanence Mr is higher in the circumferential direction than the radial direction.
  • the diamond particles of texturing slurries have highly variable sizes. Because of this, the resulting texture scratches have highly variable sizes (i.e. variable widths and depths). This, in turn, can cause a) magnetic defects (e.g. because the effective flying height between the read-write head and magnetic layer increases at locations where the texture scratches are too deep); and b) reliability problems caused by the fact that deep scratches can make it difficult to passivate the disk. Further, the presence of oversized particles in the texturing slurry results in poor glide characteristics because excessively high ridges can be formed adjacent excessively deep scratches.
  • nano-sized particles are used to texture a substrate.
  • the particles are typically diamond, and typically have a diameter less than about 20 nm. In one embodiment, the particle diameters are less than about 10 nm.
  • the particle diameters are typically greater than about 1 nm, and in one embodiment greater than about 2 nm. In one embodiment, they are between 3 and 8 nm. (The word “diameter” as used herein does not require that the particles are spherical.)
  • the particles are typically monocrystalline. In one embodiment, they are used to form scratch lines having a density greater than 50 lines per micron.
  • one or more layers are deposited on the substrate, including a magnetic alloy layer (e.g. a Co or Fe based alloy layer) to thereby form a magnetic data storage medium.
  • a magnetic alloy layer e.g. a Co or Fe based alloy layer
  • nano-sized particles e.g. nano-sized diamond particles
  • the slurry has generally uniform particle sizes (e.g. between 3 and 8 nm). Because of this, the texture lines formed by the slurry will have uniform widths and depths. This is important because it is desirable to avoid gouges (e.g. to avoid magnetic defect and passivation problems discussed above) and to avoid forming high ridges (e.g. to thereby avoid glide height problems). Further, the nano-sized diamond particles also result in a reduction of large low frequency texture lines. Also, the scratch size and density of scratch lines help one to control the magnetic layer grain size. (It is desirable to form a magnetic layer comprising small uniform grain sizes.)
  • the nano-sized particles are free abrasive particles, e.g. within a liquid (for example an aqueous slurry).
  • the nano-sized particles are fixed abrasive particles, e.g. bound to an abrasive cloth or other structure.
  • FIG. 1 schematically illustrates in cross section a prior art magnetic disk.
  • FIGS. 2A and 2B schematically illustrate in plan view and cross-section apparatus for texturing a magnetic disk substrate.
  • FIG. 3 illustrates the relationship between MrT OR (the MrT orientation ratio) vs. roughness Ra for disks comprising substrates textured with conventional diamond particles and nano-sized diamond particles.
  • FIG. 3 also illustrates the relationship between SNR and roughness Ra for disks comprising substrates textured with conventional diamond particles and nano-sized diamond particles.
  • FIGS. 4A, 4B and 4 C are SEM photographs of prior art diamond texturing particles.
  • FIGS. 5A and 5B are SEM photographs of nano-sized diamond particles used during a method in accordance with the present invention.
  • FIG. 6A is an AFM photograph of a first substrate textured using prior art diamond texturing particles.
  • FIG. 6B is a cross section AFM scan of the substrate of FIG. 6A .
  • FIG. 6A ′ is an AFM photograph of a second substrate textured using prior art diamond texturing particles.
  • FIG. 6B ′ is a cross section AFM scan of the substrate of FIG. 6A ′.
  • FIG. 7A is an AFM photograph of a substrate textured using nano-sized diamond texturing particles.
  • FIG. 7B is a cross section AFM scan of the substrate of FIG. 6A .
  • FIG. 8 illustrates a magnetic disk drive comprising a disk formed using a method in accordance with our invention.
  • FIGS. 2A and 2B illustrate apparatus 11 for texturing a substrate 12 .
  • Apparatus 11 is not novel in and of itself.
  • a motor (not shown) rotates substrate 12 while a sheet 13 of material (typically nylon) is pushed against substrate 12 .
  • Sheet 13 moves off of a supply reel 14 , around a roller 15 , and onto a take-up reel 16 (see arrow B).
  • Roller 15 urges sheet 13 against substrate 12 , e.g. with a force between 1 and 10 pounds. In one embodiment, the force is between 2.5 and 5 pounds.
  • a slurry comprising nano-sized diamond particles (described below) is introduced between sheet 13 and substrate 12 .
  • sheet 13 and roller 15 reciprocate, moving back and forth in a direction A.
  • substrate 12 can reciprocate instead of sheet 13 and roller 15 .
  • the diamond particles form texture scratches that are non-random, and are in a generally circumferential direction in substrate 12 . Because of the motion of sheet 13 and roller 15 in the direction of arrow A, the resulting texture exhibits a cross-hatch. (The texture lines therefore intersect, e.g. at an angle between 0 and 20 degrees, and in one embodiment a range of 2 to 6 degrees, although these values are merely exemplary.)
  • apparatus 11 is device model no. 1800, available from EDC Corporation located in California.
  • the slurry flow rate is typically between 0.1 and 1 ml/second.
  • the above-described apparatus and parameters are merely exemplary. Other types of texturing apparatus and parameters can also be used.
  • the slurry comprises a commercial coolant or lubricant and between 0.4 to 1 gram/liter of diamond particles, e.g. about 0.4 grams per liter of diamond particles.
  • the diamond particles can have a diameter from 2 to 8 nm.
  • the size and spacing of the texture marks depend at least in part on the size of the diamond particles. Using particles having sizes greater than or equal to 2 nm helps ensure a certain minimum grain size in the subsequently formed magnetic layer. (if the grains are too small, their magnetization state may be thermally unstable. However, in other embodiments, diamond particles less than 2 nm in size can be used.
  • the particles can be formed using a method as described by Vereschagin et al. in U.S. Pat. No. 5,861,349, incorporated herein by reference. Such particles are available from Ultradiamond Technologies, Inc. of Somerville, Mass. (e.g. product no. UD90). Alternatively, the particles can be of the type available from PlasmaChem of Mainz, Germany. They are typically formed at a high temperature and pressure with an explosion. In one embodiment, the diamond particles comprise about 90% or more of diamond, with some ash and/or oxidatable carbon making up the remainder.
  • underlayers, magnetic layers and protective overcoats are applied to the disk.
  • the underlayers and magnetic layers can be as described in U.S. patent application Ser. No. 10/075,123, filed by Bertero et al. and incorporated herein by reference or U.S. Pat. No. 6,150,015, issued to Bertero at al. and also incorporated herein by reference.
  • the overcoat layers can be as described in U.S. patent application Ser. No. 09/604,490, filed by Lairson et al. or German patent document DE 101 30 942 A1, each being incorporated herein by reference.
  • the specific processes described by Bertero and Lairson are merely exemplary, and other processes could also be used.
  • ferromagnetic layers e.g. Co or Fe based magnetic layers
  • a vacuum deposition process e.g. sputtering
  • other types of layers can be deposited on the substrate during the disk manufacturing process.
  • a magnetic disk manufactured using nano-sized diamond particles exhibits several surprising and unique characteristics.
  • substrates were textured using diamond particles having a diameter between 0.05 and 0.5 ⁇ m.
  • FIG. 3 illustrates the relationship between the MrT orientation ratio (MrT OR) for disks comprising substrates manufactured using such particles.
  • MrT equals magnetic remanence times thickness of the magnetic layer.
  • Curve 22 shows the MrT OR for disks manufactured using diamond particles in accordance with the prior art
  • curve 24 shows the MrT OR for disks manufactured using nano-sized diamond particles (in this case having diameters between 3 and 8 nm with an average diameter of 5 nm).
  • FIG. 3 also shows that for a magnetic disk textured with the prior art diamond particles, when the Ra dropped below 2.2 ⁇ , the SNR dropped precipitously. (See curve 26 .) Surprisingly, when one textures the substrates with nano-sized diamond particles, even at a Ra of about 1.4 to 1.5 ⁇ , the SNR remained high—about 0.45 dB. (See curve 28 .) Again, this result was completely unexpected.
  • FIGS. 4A, 4B and 4 C are SEM photographs of prior art diamond texturing particles at 60,000 ⁇ , 300,000 ⁇ and 500,000 ⁇ magnification, respectively
  • FIGS. 5A and 5B are SEM photographs of nano-sized diamond texturing particles used during a texturing method in accordance with the invention at magnifications of 60,000 and 500,000 ⁇ , respectively.
  • the prior art particles are larger than the nano-sized particles.
  • FIGS. 5A and 5B are SEM photographs of nano-sized diamond particles used to texture magnetic disks in accordance with the present invention. As can be seen, the particles are small, have roughly the same size. As discussed above, the small size and uniformity of particles permits one to form small, uniform scratch marks.
  • FIGS. 6 A and 6 A′ are AFM photographs of first and second substrates textured using prior art diamond particles.
  • FIGS. 6 B and 6 B′ are AFM cross section scans of the substrates of FIGS. 6 A and 6 A′, respectively.
  • FIGS. 7A and 7B are an AFM photograph and cross section scan, respectively, of a substrate textured using nano-sized diamond particles. Table 1 below lists various parameters relating to the surface finish of the substrates of FIGS. 6 . 6 ′ and 7 . TABLE I (Distances in angstroms) Distance between Distance between mean surface mean surface Substrate AFM Ra and peaks and valleys 3.9 16.8 32.0
  • FIG. 6A ′, 6B′ 2.8 14.9 23.9 1.6 8.2 13.2
  • the scratch lines of the substrate of FIGS. 7A and 7B are shallower and more regular compared to the scratch lines of FIGS. 6A, 6B , 6 A′ and 6 B′.
  • this has the following advantages: a) the effective flying height of a read-write head with respect to the magnetic layer is reduced; b) there are fewer or no deep gouges for causing magnetic defects; c) the substrate of FIGS. 7A and 7B is easier to passivate; d) there are fewer or no ridges for a read-write head to collide with; and e) the texture grooves of FIGS. 7A and 7B facilitate forming smaller magnetic grains.
  • the texture scratch lines formed using a method in accordance with the invention have a density greater than or equal to 50 per micron and less than or equal to 150 per micron. In one embodiment, the scratch density is between about 50 and 120 per micron, e.g. about 80 per micron. (Typically, the minimum scratch density is inversely proportional to the particle diameter, whereas the maximum scratch density is inversely proportional to ⁇ fraction (1/10) ⁇ of the particle diameter.)
  • Magnetic disks are incorporated into disk drives, e.g. disk drive 30 of FIG. 8 .
  • disk 32 is mounted on a spindle 33 , which is rotated by a motor 34 .
  • a pair of read-write heads 35 a , 35 b are held on suspensions 36 a , 36 b , which in turn are mounted on an actuator 38 for moving heads 35 a , 35 b over the various tracks of disk 32 .
  • heads 35 a , 35 b “fly” above disk 32 , and are used to read data from or write data to disk 32 .
  • both sides of disk 32 are textured, and the various layers used to manufacture a magnetic disk are formed on both sides of disk 32 , although in other embodiments, one can texture and deposit these layers on only one side of disk 32 .
  • the substrate can be an aluminum alloy disk coated with a nickel phosphorus alloy.
  • materials other than NiP and aluminum alloys can be used (e.g. glass or glass ceramic substrates), and substrate shapes other than disks can be used (e.g. for media that is not disk-shaped).
  • Different types of texturing apparatuses, with different parameters, can also be used.
  • Different sized particles e.g. having a size from 0.5 to 20 nm) can be used.
  • the method of the present invention can be used to manufacture disks used in longitudinal magnetic recording, the method can also be used to form disks used in vertical recording. (As mentioned above, controlling the scratch sizes can be used to control or influence the magnetic layer grain size. This is useful in both longitudinal and vertical recording.)
  • the method of the present invention can also be used to form isotropic media. While the texturing particles are typically diamond, other hard materials can also be used. Accordingly, all such changes come within the invention.

Abstract

A method for texturing a substrate for a magnetic disk comprises abrading the substrate using nano-sized diamond particles (e.g. having a diameter less than or equal to 20 nm). A magnetic layer is then deposited over the substrate. Even when the texture is extremely smooth (e.g. less than about 2.2 Å Ra), the disk still exhibits good Hc and MrT orientation ratios, SNR and PW50.

Description

    BACKGROUND OF THE INVENTION
  • This invention pertains to methods for texturing magnetic disk substrates and the resulting substrates. This invention also pertains to methods for manufacturing magnetic data storage media and the resulting media.
  • Magnetic disks (e.g. disk 1 of FIG. 1) are manufactured by a) polishing a substrate; b) texturing the substrate; and c) depositing a set of layers on the substrate, e.g. by sputtering or other vacuum deposition technique. The substrate typically comprises an aluminum alloy 2 coated with an electroless-plated nickel phosphorus (“NiP”) alloy 3. The layers can comprise one or more seed and/or underlayers 4 (e.g. Cr or a Cr alloy underlayer), one or more magnetic layers 5 (e.g. a Co alloy layer), and one or more protective overcoats 6 (e.g. one or more carbon protective overcoat layers). The texture typically comprises scratches in the circumferential direction (or generally in the circumferential direction) formed using polycrystalline or mionocrystalline diamond particles having a size of about 0.05 to 0.5 μm in diameter. The texture typically accomplishes several functions, including facilitating the flying of a read-write held above the magnetic disk. However, more importantly, the texture causes the magnetic characteristics of the disk to become anisotropic. For example, the coercivity Hc of the magnetic layer is higher in the circumferential direction than the radial direction. Also, the magnetic remanence Mr is higher in the circumferential direction than the radial direction.
  • It has been a trend in magnetic disk manufacturing that disks have been getting smoother and smoother. This is in part because it is necessary to permit the read-write head to fly closer and closer to the magnetic layer. Current disks have a Ra of about 3 to 5 Å as measured by an atomic force microscope (“AFM”). (Ra is a well-known measure of roughness.) Unfortunately, as disks become smoother, and as the Ra drops below 5 Å, the magnetic anisotropy of the disk drops. Further, other magnetic characteristics of the disk are degraded, e.g. the signal to noise ratio (“SNR”) and the pulse width PW50.
  • In prior art diamond texturing, the diamond particles of texturing slurries have highly variable sizes. Because of this, the resulting texture scratches have highly variable sizes (i.e. variable widths and depths). This, in turn, can cause a) magnetic defects (e.g. because the effective flying height between the read-write head and magnetic layer increases at locations where the texture scratches are too deep); and b) reliability problems caused by the fact that deep scratches can make it difficult to passivate the disk. Further, the presence of oversized particles in the texturing slurry results in poor glide characteristics because excessively high ridges can be formed adjacent excessively deep scratches.
  • SUMMARY
  • During a method in accordance with the present invention, “nano-sized” particles are used to texture a substrate. The particles are typically diamond, and typically have a diameter less than about 20 nm. In one embodiment, the particle diameters are less than about 10 nm. The particle diameters are typically greater than about 1 nm, and in one embodiment greater than about 2 nm. In one embodiment, they are between 3 and 8 nm. (The word “diameter” as used herein does not require that the particles are spherical.) The particles are typically monocrystalline. In one embodiment, they are used to form scratch lines having a density greater than 50 lines per micron.
  • After texturing, one or more layers are deposited on the substrate, including a magnetic alloy layer (e.g. a Co or Fe based alloy layer) to thereby form a magnetic data storage medium.
  • We have discovered that by using “nano-sized particles” (e.g. nano-sized diamond particles) for texturing a magnetic disk we can form extremely smooth textures without sacrificing such magnetic characteristics as anisotropy, SNR and FW50.
  • In one embodiment, the slurry has generally uniform particle sizes (e.g. between 3 and 8 nm). Because of this, the texture lines formed by the slurry will have uniform widths and depths. This is important because it is desirable to avoid gouges (e.g. to avoid magnetic defect and passivation problems discussed above) and to avoid forming high ridges (e.g. to thereby avoid glide height problems). Further, the nano-sized diamond particles also result in a reduction of large low frequency texture lines. Also, the scratch size and density of scratch lines help one to control the magnetic layer grain size. (It is desirable to form a magnetic layer comprising small uniform grain sizes.)
  • In one embodiment, the nano-sized particles are free abrasive particles, e.g. within a liquid (for example an aqueous slurry). In another embodiment, the nano-sized particles are fixed abrasive particles, e.g. bound to an abrasive cloth or other structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically illustrates in cross section a prior art magnetic disk.
  • FIGS. 2A and 2B schematically illustrate in plan view and cross-section apparatus for texturing a magnetic disk substrate.
  • FIG. 3 illustrates the relationship between MrT OR (the MrT orientation ratio) vs. roughness Ra for disks comprising substrates textured with conventional diamond particles and nano-sized diamond particles. FIG. 3 also illustrates the relationship between SNR and roughness Ra for disks comprising substrates textured with conventional diamond particles and nano-sized diamond particles.
  • FIGS. 4A, 4B and 4C are SEM photographs of prior art diamond texturing particles.
  • FIGS. 5A and 5B are SEM photographs of nano-sized diamond particles used during a method in accordance with the present invention.
  • FIG. 6A is an AFM photograph of a first substrate textured using prior art diamond texturing particles.
  • FIG. 6B is a cross section AFM scan of the substrate of FIG. 6A.
  • FIG. 6A′ is an AFM photograph of a second substrate textured using prior art diamond texturing particles.
  • FIG. 6B′ is a cross section AFM scan of the substrate of FIG. 6A′.
  • FIG. 7A is an AFM photograph of a substrate textured using nano-sized diamond texturing particles.
  • FIG. 7B is a cross section AFM scan of the substrate of FIG. 6A.
  • FIG. 8 illustrates a magnetic disk drive comprising a disk formed using a method in accordance with our invention.
  • DETAILED DESCRIPTION
  • FIGS. 2A and 2B illustrate apparatus 11 for texturing a substrate 12. (Apparatus 11 is not novel in and of itself.) In FIGS. 2A and 2B, a motor (not shown) rotates substrate 12 while a sheet 13 of material (typically nylon) is pushed against substrate 12. (Sheet 13 moves off of a supply reel 14, around a roller 15, and onto a take-up reel 16 (see arrow B).) Roller 15 urges sheet 13 against substrate 12, e.g. with a force between 1 and 10 pounds. In one embodiment, the force is between 2.5 and 5 pounds. A slurry comprising nano-sized diamond particles (described below) is introduced between sheet 13 and substrate 12. Simultaneously, sheet 13 and roller 15 reciprocate, moving back and forth in a direction A. (Alternatively, substrate 12 can reciprocate instead of sheet 13 and roller 15.) The diamond particles form texture scratches that are non-random, and are in a generally circumferential direction in substrate 12. Because of the motion of sheet 13 and roller 15 in the direction of arrow A, the resulting texture exhibits a cross-hatch. (The texture lines therefore intersect, e.g. at an angle between 0 and 20 degrees, and in one embodiment a range of 2 to 6 degrees, although these values are merely exemplary.) In one embodiment, apparatus 11 is device model no. 1800, available from EDC Corporation located in California. The slurry flow rate is typically between 0.1 and 1 ml/second. The above-described apparatus and parameters are merely exemplary. Other types of texturing apparatus and parameters can also be used.
  • In one embodiment, the slurry comprises a commercial coolant or lubricant and between 0.4 to 1 gram/liter of diamond particles, e.g. about 0.4 grams per liter of diamond particles. As mentioned above, the diamond particles can have a diameter from 2 to 8 nm.
  • As mentioned above, the size and spacing of the texture marks depend at least in part on the size of the diamond particles. Using particles having sizes greater than or equal to 2 nm helps ensure a certain minimum grain size in the subsequently formed magnetic layer. (if the grains are too small, their magnetization state may be thermally unstable. However, in other embodiments, diamond particles less than 2 nm in size can be used.)
  • Description of Types of Nano-Diamond Particles Used With the Invention
  • In one embodiment, the particles can be formed using a method as described by Vereschagin et al. in U.S. Pat. No. 5,861,349, incorporated herein by reference. Such particles are available from Ultradiamond Technologies, Inc. of Somerville, Mass. (e.g. product no. UD90). Alternatively, the particles can be of the type available from PlasmaChem of Mainz, Germany. They are typically formed at a high temperature and pressure with an explosion. In one embodiment, the diamond particles comprise about 90% or more of diamond, with some ash and/or oxidatable carbon making up the remainder.
  • Manufacture of a Magnetic Disk Comprising a Substrate Textured Using the Present Invention
  • After texturing, one of more underlayers, magnetic layers and protective overcoats are applied to the disk. In one embodiment, the underlayers and magnetic layers can be as described in U.S. patent application Ser. No. 10/075,123, filed by Bertero et al. and incorporated herein by reference or U.S. Pat. No. 6,150,015, issued to Bertero at al. and also incorporated herein by reference. The overcoat layers can be as described in U.S. patent application Ser. No. 09/604,490, filed by Lairson et al. or German patent document DE 101 30 942 A1, each being incorporated herein by reference. However, the specific processes described by Bertero and Lairson are merely exemplary, and other processes could also be used. For example, other disk manufacturing processes in which one or more ferromagnetic layers (e.g. Co or Fe based magnetic layers) are deposited by a vacuum deposition process (e.g. sputtering) can be used. Also, other types of layers can be deposited on the substrate during the disk manufacturing process.
  • Properties of a Magnetic Disk Using a Substrate Textured With Nano-Diamond Particles
  • A magnetic disk manufactured using nano-sized diamond particles exhibits several surprising and unique characteristics. As mentioned above, prior to the present invention, substrates were textured using diamond particles having a diameter between 0.05 and 0.5 μm. FIG. 3 illustrates the relationship between the MrT orientation ratio (MrT OR) for disks comprising substrates manufactured using such particles. (MrT equals magnetic remanence times thickness of the magnetic layer.) Curve 22 shows the MrT OR for disks manufactured using diamond particles in accordance with the prior art, whereas curve 24 shows the MrT OR for disks manufactured using nano-sized diamond particles (in this case having diameters between 3 and 8 nm with an average diameter of 5 nm). As can be seen, when using the prior art texturing particles (curve 22), MrT OR dropped precipitously when the Ra dropped below about 2.2 Å. Thus, one skilled in the art, using these particles, would be led to believe that one could not use a Ra less than 2.2 Å without sacrificing MrT OR. However, as demonstrated in curve 24, we have discovered that when using nano-sized diamond particles, one can maintain MrT OR high (e.g. about 1.6) even for Ra's of 1.4 to 1.5 Å. This is an important and surprising discovery.
  • FIG. 3 also shows that for a magnetic disk textured with the prior art diamond particles, when the Ra dropped below 2.2 Å, the SNR dropped precipitously. (See curve 26.) Surprisingly, when one textures the substrates with nano-sized diamond particles, even at a Ra of about 1.4 to 1.5 Å, the SNR remained high—about 0.45 dB. (See curve 28.) Again, this result was completely unexpected.
  • FIGS. 4A, 4B and 4C are SEM photographs of prior art diamond texturing particles at 60,000 ×, 300,000 × and 500,000 × magnification, respectively, whereas FIGS. 5A and 5B are SEM photographs of nano-sized diamond texturing particles used during a texturing method in accordance with the invention at magnifications of 60,000 and 500,000 ×, respectively. As can be seen, the prior art particles are larger than the nano-sized particles. Further, there is considerable size variation in the prior art particles, and the prior art particles have numerous jagged and irregular facets. This leads to highly variable and undesirable scratch characteristics.
  • As mentioned above, FIGS. 5A and 5B are SEM photographs of nano-sized diamond particles used to texture magnetic disks in accordance with the present invention. As can be seen, the particles are small, have roughly the same size. As discussed above, the small size and uniformity of particles permits one to form small, uniform scratch marks.
  • FIGS. 6A and 6A′ are AFM photographs of first and second substrates textured using prior art diamond particles. FIGS. 6B and 6B′ are AFM cross section scans of the substrates of FIGS. 6A and 6A′, respectively. FIGS. 7A and 7B are an AFM photograph and cross section scan, respectively, of a substrate textured using nano-sized diamond particles. Table 1 below lists various parameters relating to the surface finish of the substrates of FIGS. 6. 6′ and 7.
    TABLE I
    (Distances in angstroms)
    Distance between Distance between
    mean surface mean surface
    Substrate AFM Ra and peaks and valleys
    3.9 16.8 32.0
    FIG. 6A′, 6B′ 2.8 14.9 23.9
    1.6 8.2 13.2
  • As can be seen, the scratch lines of the substrate of FIGS. 7A and 7B are shallower and more regular compared to the scratch lines of FIGS. 6A, 6B, 6A′ and 6B′. As mentioned above, this has the following advantages: a) the effective flying height of a read-write head with respect to the magnetic layer is reduced; b) there are fewer or no deep gouges for causing magnetic defects; c) the substrate of FIGS. 7A and 7B is easier to passivate; d) there are fewer or no ridges for a read-write head to collide with; and e) the texture grooves of FIGS. 7A and 7B facilitate forming smaller magnetic grains.
  • In one embodiment, the texture scratch lines formed using a method in accordance with the invention have a density greater than or equal to 50 per micron and less than or equal to 150 per micron. In one embodiment, the scratch density is between about 50 and 120 per micron, e.g. about 80 per micron. (Typically, the minimum scratch density is inversely proportional to the particle diameter, whereas the maximum scratch density is inversely proportional to {fraction (1/10)} of the particle diameter.)
  • INDUSTRIAL APPLICATION
  • Magnetic disks are incorporated into disk drives, e.g. disk drive 30 of FIG. 8. Referring to FIG. 8, disk 32 is mounted on a spindle 33, which is rotated by a motor 34. A pair of read-write heads 35 a, 35 b are held on suspensions 36 a, 36 b, which in turn are mounted on an actuator 38 for moving heads 35 a, 35 b over the various tracks of disk 32. During use, heads 35 a, 35 b “fly” above disk 32, and are used to read data from or write data to disk 32. (It will be appreciated that both sides of disk 32 are textured, and the various layers used to manufacture a magnetic disk are formed on both sides of disk 32, although in other embodiments, one can texture and deposit these layers on only one side of disk 32.)
  • While the invention has been described with respect to specific embodiments, those skilled in the art will appreciate that changes can be made in form and detail without departing from the spirit and scope of the invention. For example, different types of substrates can be textured using the above-described techniques. Thus, the substrate can be an aluminum alloy disk coated with a nickel phosphorus alloy. However, materials other than NiP and aluminum alloys can be used (e.g. glass or glass ceramic substrates), and substrate shapes other than disks can be used (e.g. for media that is not disk-shaped). Different types of texturing apparatuses, with different parameters, can also be used. Different sized particles (e.g. having a size from 0.5 to 20 nm) can be used.
  • While the method of the present invention can be used to manufacture disks used in longitudinal magnetic recording, the method can also be used to form disks used in vertical recording. (As mentioned above, controlling the scratch sizes can be used to control or influence the magnetic layer grain size. This is useful in both longitudinal and vertical recording.) The method of the present invention can also be used to form isotropic media. While the texturing particles are typically diamond, other hard materials can also be used. Accordingly, all such changes come within the invention.

Claims (19)

1-28. (canceled)
29. A method comprising texturing a substrate with particles having a size less than or equal to about 20 nm to texture said substrate, said texturing resulting in a Ra of said substrate less than 2.2 Å.
30. Method of claim 29 wherein said particles comprise diamond.
31. Method of claim 29 further comprising forming a magnetic layer above said substrate.
32. Method of claim 31 further comprising forming one or more intermediate layers between said substrate and said magnetic layer.
33. Method of claim 32 wherein said abrasive particles have a diameter greater than or equal to 2 nm.
34. Method of claim 32 wherein said texture causes said magnetic layer to exhibit anisotropic magnetic characteristics.
35. Method of claim 32 further comprising mounting said substrate with said magnetic layer formed thereon in a disk drive.
36. A method comprising texturing a magnetic data storage medium substrate with particles being sufficiently small to form a texture Ra less than 2.2 Å while inducing magnetic anisotropy in a magnetic layer deposited over said substrate, said texturing resulting in a Ra of said substrate less than 2.2 Å.
37. Method of claim 36 further comprising depositing said magnetic layer over said substrate.
38. Method of claim 37 further comprising one or more intermediate layers between said substrate and said magnetic layer.
39. Method of claim 38 further comprising mounting said substrate with said magnetic layer formed thereon in a disk drive.
40. Structure comprising:
a substrate textured with abrasive particles having a size less than or equal to about 20 nm and having a Ra less than 2.2 angstroms.
41. Structure of claim 40 further comprising a magnetic recording layer formed above said substrate, said magnetic recording layer exhibiting anisotropy.
42. Structure of claim 41 further comprising one or more intermediate layers formed between said substrate and said magnetic layer.
43. A magnetic disk drive comprising the structure of claim 41.
44. A magnetic data storage medium substrate textured with abrasive particles sufficiently small to leave a Ra less than 2.2 angstroms while permitting a magnetic layer deposited over said substrate to exhibit magnetic anisotropy.
45. Structure of claim 44 further comprising a magnetic layer formed over said substrate, said layer exhibiting magnetic anisotropy.
46. Structure of claim 45 further comprising one or more intermediate layers formed between said substrate and said magnetic layer.
US11/063,805 2002-11-18 2005-02-23 Texturing of magnetic disk substrates Abandoned US20050142990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/063,805 US20050142990A1 (en) 2002-11-18 2005-02-23 Texturing of magnetic disk substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/299,028 US6972135B2 (en) 2002-11-18 2002-11-18 Texturing of magnetic disk substrates
US11/063,805 US20050142990A1 (en) 2002-11-18 2005-02-23 Texturing of magnetic disk substrates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/299,028 Continuation US6972135B2 (en) 2002-11-18 2002-11-18 Texturing of magnetic disk substrates

Publications (1)

Publication Number Publication Date
US20050142990A1 true US20050142990A1 (en) 2005-06-30

Family

ID=32229838

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/299,028 Expired - Fee Related US6972135B2 (en) 2002-11-18 2002-11-18 Texturing of magnetic disk substrates
US11/063,805 Abandoned US20050142990A1 (en) 2002-11-18 2005-02-23 Texturing of magnetic disk substrates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/299,028 Expired - Fee Related US6972135B2 (en) 2002-11-18 2002-11-18 Texturing of magnetic disk substrates

Country Status (4)

Country Link
US (2) US6972135B2 (en)
JP (1) JP2004171756A (en)
DE (1) DE10349317A1 (en)
MY (1) MY137879A (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097604A1 (en) * 2008-03-31 2011-04-28 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium
US20110097603A1 (en) * 2008-03-26 2011-04-28 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
US20110171495A1 (en) * 2010-01-08 2011-07-14 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium
US8658578B2 (en) 2010-12-29 2014-02-25 Industrial Technology Research Institute Lubricating oil composition and method for manufacturing the same
US8828566B2 (en) 2010-05-21 2014-09-09 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disc
US8867322B1 (en) 2013-05-07 2014-10-21 WD Media, LLC Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US8877359B2 (en) 2008-12-05 2014-11-04 Wd Media (Singapore) Pte. Ltd. Magnetic disk and method for manufacturing same
US8908315B2 (en) 2010-03-29 2014-12-09 Wd Media (Singapore) Pte. Ltd. Evaluation method of magnetic disk, manufacturing method of magnetic disk, and magnetic disk
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
US8951651B2 (en) 2010-05-28 2015-02-10 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disk
US8980076B1 (en) 2009-05-26 2015-03-17 WD Media, LLC Electro-deposited passivation coatings for patterned media
US8995078B1 (en) 2014-09-25 2015-03-31 WD Media, LLC Method of testing a head for contamination
US8993134B2 (en) 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates
US9001630B1 (en) 2011-03-08 2015-04-07 Western Digital Technologies, Inc. Energy assisted magnetic recording medium capable of suppressing high DC readback noise
US9005782B2 (en) 2008-03-30 2015-04-14 WD Media, LLC Magnetic disk and method of manufacturing the same
US9025264B1 (en) 2011-03-10 2015-05-05 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US9028985B2 (en) 2011-03-31 2015-05-12 WD Media, LLC Recording media with multiple exchange coupled magnetic layers
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9034492B1 (en) 2013-01-11 2015-05-19 WD Media, LLC Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording
US9042053B1 (en) 2014-06-24 2015-05-26 WD Media, LLC Thermally stabilized perpendicular magnetic recording medium
US9047880B1 (en) 2011-12-20 2015-06-02 WD Media, LLC Heat assisted magnetic recording method for media having moment keeper layer
US9064521B1 (en) 2011-03-25 2015-06-23 WD Media, LLC Manufacturing of hard masks for patterning magnetic media
US9082447B1 (en) 2014-09-22 2015-07-14 WD Media, LLC Determining storage media substrate material type
US9093100B2 (en) 2008-03-17 2015-07-28 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium including tailored exchange coupling layer and manufacturing method of the same
US9093122B1 (en) 2013-04-05 2015-07-28 WD Media, LLC Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives
US9142241B2 (en) 2009-03-30 2015-09-22 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and method of manufacturing the same
US9153268B1 (en) 2013-02-19 2015-10-06 WD Media, LLC Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure
US9159350B1 (en) 2014-07-02 2015-10-13 WD Media, LLC High damping cap layer for magnetic recording media
US9177586B2 (en) 2008-09-30 2015-11-03 WD Media (Singapore), LLC Magnetic disk and manufacturing method thereof
US9177585B1 (en) 2013-10-23 2015-11-03 WD Media, LLC Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording
US9183867B1 (en) 2013-02-21 2015-11-10 WD Media, LLC Systems and methods for forming implanted capping layers in magnetic media for magnetic recording
US9190094B2 (en) 2013-04-04 2015-11-17 Western Digital (Fremont) Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer
US9218850B1 (en) 2014-12-23 2015-12-22 WD Media, LLC Exchange break layer for heat-assisted magnetic recording media
US9227324B1 (en) 2014-09-25 2016-01-05 WD Media, LLC Mandrel for substrate transport system with notch
US9240204B2 (en) 2010-05-21 2016-01-19 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disc
US9257134B1 (en) 2014-12-24 2016-02-09 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US9275669B1 (en) 2015-03-31 2016-03-01 WD Media, LLC TbFeCo in PMR media for SNR improvement
US9280998B1 (en) 2015-03-30 2016-03-08 WD Media, LLC Acidic post-sputter wash for magnetic recording media
US9296082B1 (en) 2013-06-11 2016-03-29 WD Media, LLC Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US9339978B1 (en) 2009-11-06 2016-05-17 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US9349404B2 (en) 2010-05-28 2016-05-24 Wd Media (Singapore) Pte. Ltd Perpendicular magnetic recording disc
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
US9389135B2 (en) 2013-09-26 2016-07-12 WD Media, LLC Systems and methods for calibrating a load cell of a disk burnishing machine
US9401300B1 (en) 2014-12-18 2016-07-26 WD Media, LLC Media substrate gripper including a plurality of snap-fit fingers
US9406330B1 (en) 2013-06-19 2016-08-02 WD Media, LLC Method for HDD disk defect source detection
US9406329B1 (en) 2015-11-30 2016-08-02 WD Media, LLC HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US9431045B1 (en) 2014-04-25 2016-08-30 WD Media, LLC Magnetic seed layer used with an unbalanced soft underlayer
US9449633B1 (en) 2014-11-06 2016-09-20 WD Media, LLC Smooth structures for heat-assisted magnetic recording media
US9447368B1 (en) 2014-02-18 2016-09-20 WD Media, LLC Detergent composition with low foam and high nickel solubility
US9472227B2 (en) 2010-06-22 2016-10-18 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording media and methods for producing the same
US9542968B1 (en) 2010-08-20 2017-01-10 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
US9558778B2 (en) 2009-03-28 2017-01-31 Wd Media (Singapore) Pte. Ltd. Lubricant compound for magnetic disk and magnetic disk
US9581510B1 (en) 2013-12-16 2017-02-28 Western Digital Technologies, Inc. Sputter chamber pressure gauge with vibration absorber
US9607646B2 (en) 2013-07-30 2017-03-28 WD Media, LLC Hard disk double lubrication layer
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US9818442B2 (en) 2014-12-01 2017-11-14 WD Media, LLC Magnetic media having improved magnetic grain size distribution and intergranular segregation
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
US9990940B1 (en) 2014-12-30 2018-06-05 WD Media, LLC Seed structure for perpendicular magnetic recording media
US10054363B2 (en) 2014-08-15 2018-08-21 WD Media, LLC Method and apparatus for cryogenic dynamic cooling
US10083715B2 (en) 2010-05-28 2018-09-25 WD Media (Singapore) Pte.Ltd. Method of manufacturing a perpendicular magnetic disc
US10115428B1 (en) 2013-02-15 2018-10-30 Wd Media, Inc. HAMR media structure having an anisotropic thermal barrier layer
US10121506B1 (en) 2015-12-29 2018-11-06 WD Media, LLC Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen
US10236026B1 (en) 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US11074934B1 (en) 2015-09-25 2021-07-27 Western Digital Technologies, Inc. Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227590A1 (en) * 2004-04-09 2005-10-13 Chien-Min Sung Fixed abrasive tools and associated methods
JP4595703B2 (en) * 2005-06-22 2010-12-08 富士電機デバイステクノロジー株式会社 Longitudinal magnetic recording medium and manufacturing method thereof
JP4936424B2 (en) * 2005-10-31 2012-05-23 日本ミクロコーティング株式会社 Abrasive and manufacturing method thereof
JP2007149203A (en) * 2005-11-28 2007-06-14 Nihon Micro Coating Co Ltd Texture working method and working slurry
JP4795831B2 (en) * 2006-03-31 2011-10-19 Hoya株式会社 Magnetic recording medium
JP4982810B2 (en) * 2006-07-03 2012-07-25 コニカミノルタアドバンストレイヤー株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method
JP4838703B2 (en) * 2006-12-26 2011-12-14 富士電機株式会社 Method for manufacturing disk substrate for magnetic recording medium, disk substrate for magnetic recording medium, method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording apparatus
JP5297321B2 (en) * 2008-10-07 2013-09-25 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
MY167830A (en) * 2009-12-29 2018-09-26 Hoya Corp Glass substrate for magnetic disk and manufacturing method thereof
CN102530842A (en) * 2012-01-18 2012-07-04 广西大学 Method for preparing nano texture through local anodic oxidation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815343A (en) * 1993-07-22 1998-09-29 Hitachi, Ltd. Magnetic recording medium, process for producing the same and magnetic recording system
US6274063B1 (en) * 1998-11-06 2001-08-14 Hmt Technology Corporation Metal polishing composition
US6533644B1 (en) * 2000-07-17 2003-03-18 Nihon Microcoating Co., Ltd. Method of texturing and agent therefor
US20030110803A1 (en) * 2001-09-04 2003-06-19 Nippon Sheet Glass Co., Ltd. Method of manufacturing glass substrate for magnetic disks, and glass substrate for magnetic disks
US6743529B2 (en) * 2000-12-18 2004-06-01 Nippon Sheet Glass Co., Ltd. Process for producing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium obtained by the same
US6803117B2 (en) * 2001-09-26 2004-10-12 Fujitsu Limited Magnetic recording medium with an exchange layer structure including a CoCrPtB ferromagnetic layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2051092C1 (en) 1991-12-25 1995-12-27 Научно-производственное объединение "Алтай" Diamond-containing substance and a method of its preparing
RU2041165C1 (en) 1993-02-12 1995-08-09 Научно-производственное объединение "Алтай" Diamond-carbon substance and method of its production
JP2001155341A (en) * 1999-11-24 2001-06-08 Sanyo Electric Co Ltd Disk recorder
US6669983B2 (en) * 2001-10-25 2003-12-30 Tdk Corporation Manufacturing method of thin-film magnetic head with magnetoresistive effect element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815343A (en) * 1993-07-22 1998-09-29 Hitachi, Ltd. Magnetic recording medium, process for producing the same and magnetic recording system
US6274063B1 (en) * 1998-11-06 2001-08-14 Hmt Technology Corporation Metal polishing composition
US6533644B1 (en) * 2000-07-17 2003-03-18 Nihon Microcoating Co., Ltd. Method of texturing and agent therefor
US6743529B2 (en) * 2000-12-18 2004-06-01 Nippon Sheet Glass Co., Ltd. Process for producing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium obtained by the same
US20030110803A1 (en) * 2001-09-04 2003-06-19 Nippon Sheet Glass Co., Ltd. Method of manufacturing glass substrate for magnetic disks, and glass substrate for magnetic disks
US6803117B2 (en) * 2001-09-26 2004-10-12 Fujitsu Limited Magnetic recording medium with an exchange layer structure including a CoCrPtB ferromagnetic layer

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093100B2 (en) 2008-03-17 2015-07-28 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium including tailored exchange coupling layer and manufacturing method of the same
US20110097603A1 (en) * 2008-03-26 2011-04-28 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
US9047903B2 (en) 2008-03-26 2015-06-02 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
US9005782B2 (en) 2008-03-30 2015-04-14 WD Media, LLC Magnetic disk and method of manufacturing the same
US20110097604A1 (en) * 2008-03-31 2011-04-28 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium
US9984715B2 (en) 2008-09-30 2018-05-29 WD Media, LLC Magnetic disk and manufacturing method thereof
US9177586B2 (en) 2008-09-30 2015-11-03 WD Media (Singapore), LLC Magnetic disk and manufacturing method thereof
US8877359B2 (en) 2008-12-05 2014-11-04 Wd Media (Singapore) Pte. Ltd. Magnetic disk and method for manufacturing same
US9558778B2 (en) 2009-03-28 2017-01-31 Wd Media (Singapore) Pte. Ltd. Lubricant compound for magnetic disk and magnetic disk
US9142241B2 (en) 2009-03-30 2015-09-22 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and method of manufacturing the same
US8980076B1 (en) 2009-05-26 2015-03-17 WD Media, LLC Electro-deposited passivation coatings for patterned media
US9339978B1 (en) 2009-11-06 2016-05-17 WD Media, LLC Press system with interleaved embossing foil holders for nano-imprinting of recording media
US9330685B1 (en) 2009-11-06 2016-05-03 WD Media, LLC Press system for nano-imprinting of recording media with a two step pressing method
US8859118B2 (en) 2010-01-08 2014-10-14 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium
US20110171495A1 (en) * 2010-01-08 2011-07-14 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium
US8908315B2 (en) 2010-03-29 2014-12-09 Wd Media (Singapore) Pte. Ltd. Evaluation method of magnetic disk, manufacturing method of magnetic disk, and magnetic disk
US9240204B2 (en) 2010-05-21 2016-01-19 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disc
US8828566B2 (en) 2010-05-21 2014-09-09 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disc
US8951651B2 (en) 2010-05-28 2015-02-10 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disk
US10083715B2 (en) 2010-05-28 2018-09-25 WD Media (Singapore) Pte.Ltd. Method of manufacturing a perpendicular magnetic disc
US9349404B2 (en) 2010-05-28 2016-05-24 Wd Media (Singapore) Pte. Ltd Perpendicular magnetic recording disc
US9472227B2 (en) 2010-06-22 2016-10-18 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording media and methods for producing the same
US9542968B1 (en) 2010-08-20 2017-01-10 WD Media, LLC Single layer small grain size FePT:C film for heat assisted magnetic recording media
US8658578B2 (en) 2010-12-29 2014-02-25 Industrial Technology Research Institute Lubricating oil composition and method for manufacturing the same
US9001630B1 (en) 2011-03-08 2015-04-07 Western Digital Technologies, Inc. Energy assisted magnetic recording medium capable of suppressing high DC readback noise
US9025264B1 (en) 2011-03-10 2015-05-05 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US9064521B1 (en) 2011-03-25 2015-06-23 WD Media, LLC Manufacturing of hard masks for patterning magnetic media
US9028985B2 (en) 2011-03-31 2015-05-12 WD Media, LLC Recording media with multiple exchange coupled magnetic layers
US9047880B1 (en) 2011-12-20 2015-06-02 WD Media, LLC Heat assisted magnetic recording method for media having moment keeper layer
US9029308B1 (en) 2012-03-28 2015-05-12 WD Media, LLC Low foam media cleaning detergent
US9269480B1 (en) 2012-03-30 2016-02-23 WD Media, LLC Systems and methods for forming magnetic recording media with improved grain columnar growth for energy assisted magnetic recording
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US8993134B2 (en) 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates
US9034492B1 (en) 2013-01-11 2015-05-19 WD Media, LLC Systems and methods for controlling damping of magnetic media for heat assisted magnetic recording
US10115428B1 (en) 2013-02-15 2018-10-30 Wd Media, Inc. HAMR media structure having an anisotropic thermal barrier layer
US9153268B1 (en) 2013-02-19 2015-10-06 WD Media, LLC Lubricants comprising fluorinated graphene nanoribbons for magnetic recording media structure
US9183867B1 (en) 2013-02-21 2015-11-10 WD Media, LLC Systems and methods for forming implanted capping layers in magnetic media for magnetic recording
US9196283B1 (en) 2013-03-13 2015-11-24 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a chemical buffer
US9190094B2 (en) 2013-04-04 2015-11-17 Western Digital (Fremont) Perpendicular recording media with grain isolation initiation layer and exchange breaking layer for signal-to-noise ratio enhancement
US9093122B1 (en) 2013-04-05 2015-07-28 WD Media, LLC Systems and methods for improving accuracy of test measurements involving aggressor tracks written to disks of hard disk drives
US8947987B1 (en) 2013-05-03 2015-02-03 WD Media, LLC Systems and methods for providing capping layers for heat assisted magnetic recording media
US8867322B1 (en) 2013-05-07 2014-10-21 WD Media, LLC Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US9296082B1 (en) 2013-06-11 2016-03-29 WD Media, LLC Disk buffing apparatus with abrasive tape loading pad having a vibration absorbing layer
US9406330B1 (en) 2013-06-19 2016-08-02 WD Media, LLC Method for HDD disk defect source detection
US9607646B2 (en) 2013-07-30 2017-03-28 WD Media, LLC Hard disk double lubrication layer
US9389135B2 (en) 2013-09-26 2016-07-12 WD Media, LLC Systems and methods for calibrating a load cell of a disk burnishing machine
US9177585B1 (en) 2013-10-23 2015-11-03 WD Media, LLC Magnetic media capable of improving magnetic properties and thermal management for heat-assisted magnetic recording
US9581510B1 (en) 2013-12-16 2017-02-28 Western Digital Technologies, Inc. Sputter chamber pressure gauge with vibration absorber
US9382496B1 (en) 2013-12-19 2016-07-05 Western Digital Technologies, Inc. Lubricants with high thermal stability for heat-assisted magnetic recording
US9824711B1 (en) 2014-02-14 2017-11-21 WD Media, LLC Soft underlayer for heat assisted magnetic recording media
US9447368B1 (en) 2014-02-18 2016-09-20 WD Media, LLC Detergent composition with low foam and high nickel solubility
US9431045B1 (en) 2014-04-25 2016-08-30 WD Media, LLC Magnetic seed layer used with an unbalanced soft underlayer
US9042053B1 (en) 2014-06-24 2015-05-26 WD Media, LLC Thermally stabilized perpendicular magnetic recording medium
US9159350B1 (en) 2014-07-02 2015-10-13 WD Media, LLC High damping cap layer for magnetic recording media
US10054363B2 (en) 2014-08-15 2018-08-21 WD Media, LLC Method and apparatus for cryogenic dynamic cooling
US9082447B1 (en) 2014-09-22 2015-07-14 WD Media, LLC Determining storage media substrate material type
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
US8995078B1 (en) 2014-09-25 2015-03-31 WD Media, LLC Method of testing a head for contamination
US9227324B1 (en) 2014-09-25 2016-01-05 WD Media, LLC Mandrel for substrate transport system with notch
US9449633B1 (en) 2014-11-06 2016-09-20 WD Media, LLC Smooth structures for heat-assisted magnetic recording media
US9818442B2 (en) 2014-12-01 2017-11-14 WD Media, LLC Magnetic media having improved magnetic grain size distribution and intergranular segregation
US9401300B1 (en) 2014-12-18 2016-07-26 WD Media, LLC Media substrate gripper including a plurality of snap-fit fingers
US9218850B1 (en) 2014-12-23 2015-12-22 WD Media, LLC Exchange break layer for heat-assisted magnetic recording media
US9257134B1 (en) 2014-12-24 2016-02-09 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
US9990940B1 (en) 2014-12-30 2018-06-05 WD Media, LLC Seed structure for perpendicular magnetic recording media
US9280998B1 (en) 2015-03-30 2016-03-08 WD Media, LLC Acidic post-sputter wash for magnetic recording media
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US9275669B1 (en) 2015-03-31 2016-03-01 WD Media, LLC TbFeCo in PMR media for SNR improvement
US11074934B1 (en) 2015-09-25 2021-07-27 Western Digital Technologies, Inc. Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
US10236026B1 (en) 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US9406329B1 (en) 2015-11-30 2016-08-02 WD Media, LLC HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US10121506B1 (en) 2015-12-29 2018-11-06 WD Media, LLC Magnetic-recording medium including a carbon overcoat implanted with nitrogen and hydrogen

Also Published As

Publication number Publication date
JP2004171756A (en) 2004-06-17
US6972135B2 (en) 2005-12-06
DE10349317A1 (en) 2004-05-27
US20040096705A1 (en) 2004-05-20
MY137879A (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US6972135B2 (en) Texturing of magnetic disk substrates
US5750230A (en) Magnetic recording media and magnetic recording system using the same
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
US9177589B2 (en) Magnetic recording medium and a method of manufacturing the same
CN101111889B (en) Perpendicular magnetic recording media, production process thereof, and perpendicular magnetic recording and reproducing apparatus
US5989674A (en) Thin film disk with acicular magnetic grains
KR20000070208A (en) Magnetic recording medium
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP3554476B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP3473847B2 (en) Magnetic recording medium and method of manufacturing the same
US6727010B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate
US6878439B2 (en) Magnetic recording medium, its production process and magnetic recording device
US8697260B2 (en) Method and manufacture process for exchange decoupled first magnetic layer
US6764738B1 (en) Magnetic recording medium with patterned substrate
JP2004086936A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP3869380B2 (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP3600767B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP4352324B2 (en) Disk substrate for perpendicular magnetic recording medium, method for producing the substrate, and perpendicular magnetic recording medium using the substrate
JP2002032909A (en) Substrate for magnetic recording medium, magnetic recording medium, method for manufacturing substrate for magnetic recording medium and method for manufacturing magnetic recording medium
KR100629034B1 (en) Magnetic recording medium with patterned substrate
JPH06243451A (en) Magnetic recording medium and magnetic recorder
Kogure et al. Isotropic thin film texture for alternative substrates
JPH07244845A (en) Manufacture of magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION