US20050134446A1 - Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system - Google Patents

Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system Download PDF

Info

Publication number
US20050134446A1
US20050134446A1 US11/030,837 US3083705A US2005134446A1 US 20050134446 A1 US20050134446 A1 US 20050134446A1 US 3083705 A US3083705 A US 3083705A US 2005134446 A1 US2005134446 A1 US 2005134446A1
Authority
US
United States
Prior art keywords
tire
tire monitor
detector
monitor
monitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/030,837
Inventor
William Stewart
Idir Boudaoud
Thomas Stephen McClelland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schrader Electronics Inc
Original Assignee
Schrader Bridgeport International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schrader Bridgeport International Inc filed Critical Schrader Bridgeport International Inc
Priority to US11/030,837 priority Critical patent/US20050134446A1/en
Priority to US11/104,699 priority patent/US7423532B2/en
Publication of US20050134446A1 publication Critical patent/US20050134446A1/en
Assigned to SCHRADER ELECTRONICS, INC. reassignment SCHRADER ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRADER-BRIDGEPORT INTERNATIONAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0444Antenna structures, control or arrangements thereof, e.g. for directional antennas, diversity antenna, antenna multiplexing or antennas integrated in fenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0437Means for detecting electromagnetic field changes not being part of the signal transmission per se, e.g. strength, direction, propagation or masking

Definitions

  • the present invention relates generally to a remote tire monitoring system. More particularly, the present invention relates to a method and apparatus for automatically updating position information for tire monitors in such a system.
  • Systems have been developed to monitor a characteristic such as tire pressure of a vehicle and to report the characteristic to a receiver at a central monitoring station using radio transmissions.
  • a monitor is located at each tire and periodically takes a measurement of the tire characteristic. The monitor then transmits the results of the measurement in a radio frequency transmission to the central monitoring station which produces an alarm or a display in response to the measurement.
  • the tire characteristic data is preferably associated with the tire which originated the measurement when presenting a display or alarm.
  • Each monitor includes identification information which can be transmitted with the measurement.
  • the tire monitor is preferably activated to produce this information and the information is then conveyed to the central station and associated with the position of the tire.
  • the tire monitors each include a reed switch or other magnetic device.
  • a magnet is passed near the reed switch, causing the monitor to transmit a radio frequency transmission that includes identification data.
  • a service technician repeats this process at each wheel and then loads the identification and position information into the central monitoring station.
  • Another method provides a printed bar code on each tire monitor which contains the identification information and which may be read with a suitable bar code reader.
  • an activation signal is provided from the central controller to a low frequency transmitter at each wheel well.
  • the transmitter generates a low frequency signal to activate the tire monitor.
  • the tire pressure monitor responds by generating a long wave identification signal and transmitting that signal with tire pressure and identification data directly to the control unit.
  • the long wave identification signal is used to identify the position of the tire by distinguishing this transmission from other transmissions received by the controller.
  • U.S. Pat. No. 5,883,305 discloses two-way communication of data by radio signals.
  • a tire pressure monitor is activated by a radio frequency signal transmitted by an antenna in the wheel well adjacent the tire.
  • the tire pressure monitor transmits a second radio frequency signal which is detected by the wheel well antenna.
  • the second signal is demodulated to detect that tire pressure data.
  • the magnetic programming technique may be subject to interference and crosstalk, for example in a factory where many such tire monitors are being assembled with tires and vehicles.
  • the bar code label system requires a label at each tire which can be lost or become dirty or illegible.
  • the apparatus for transmitting a long wave activation signal and generating a long wave identification signal therefrom is too expensive for some applications.
  • the two-way data communication techniques requires demodulation of the received radio signals at the wheel well and coaxial cabling back to the central controller, both of which add to the cost of the system.
  • a further limitation of some of these prior techniques is the manual operation requiring activation by a service technician.
  • a system is desired which automatically conveys wheel position data to the receiver. Such a system would be particularly useful after any change in tire position, such as tire rotation or replacement of a tire.
  • U.S. patent application Ser. No. 09/557,682 commonly assigned with the present application, discloses a system and method in which tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier.
  • Four small, inexpensive RF detectors are located near each wheel. Each RF detector is connected to the central control unit by a power line and a ground line.
  • a tire monitor transmits data by emitting an RF transmission
  • the RF detector that is closest to the transmitter will detect the burst of RF energy.
  • the RF detector responds to the RF energy by modulating the power line to the control unit with the envelope of the transmitted data.
  • the control unit detects this modulation on one of its power lines.
  • the RF receiver of the control unit receives and demodulates the data transmitted by the tire monitor.
  • the control unit associates the received data with the position indication provided by the modulation on the power line.
  • the control unit can determine the new position using the modulated power line in association with the tire monitor identifier in the transmitted data.
  • a remote tire monitor method and apparatus provide a central control unit in the cockpit or trunk of a vehicle.
  • the control unit includes a radio frequency (RF) receiver and a controller.
  • Tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier.
  • Two small radio frequency (RF) detectors are positioned in proximity to two wheels on the vehicle. The RF detectors give an indication of the location of a transmitting tire monitor to the controller.
  • the present embodiments of a tire monitor system and method rely on only two RF detectors mounted on the vehicle, one in close proximity to one of the front wheels and the other in close proximity to one of the rear wheels.
  • An RF detector can distinguish between its local transmitter and the other transmitter on the same axle by the amount of signal received. For example, if an RF detector is positioned in close proximity to the left rear wheel, then it can ideally expect to receive 100 percent reception from the transmitter on the left rear wheel and ideally around fifty percent reception from the right rear wheel's transmitter. The amount of false triggering from the front wheel transmitters is substantially zero. Every time the controller decodes transmitted RF data, the controller looks to see if and which RF detector has detected the transmission. The controller can then determine over a short period of time which sensor identifier belongs to which corner of the vehicle.
  • a method in accordance with one embodiment provides for detecting transmissions from two or more tire monitors at a detector. Then, based on a signal parameter associated with the transmission, the method provides for identifying a source tire monitor position. In one embodiment, the method further includes determining the amount of signal received from the two or more tire monitors and determining the signal parameter based thereon. In one example, a signal strength may be used as the signal parameter or to determine the signal parameter. In another, the number of transmissions received at a detector from two or more tire monitors may be used as the signal parameter or to determine the signal parameter. In another example, signal to noise ratio may be used as the signal parameter or to determine the signal parameter. In still another example, instead or in addition to the number of transmissions received, the rate of transmission reception may be used as the signal parameter or to determine the signal parameter.
  • the signal parameter may be determined for a first tire monitor and for a second tire monitor. The respective signal parameters may then be compared to determine the source tire monitor position.
  • transmissions are received at a central control unit of the vehicle and at the same time are detected either by a front RF detector positioned near one of the front wheels or a rear RF detector positioned near one of the rear wheels.
  • the number of transmissions received from each tire monitor are counted and counts are maintained. After receipt of a sufficient number of transmissions, the counts are compared to determine the position of each tire monitor in the system.
  • An RF detector will detect almost all the transmissions from an adjacent tire monitor (e.g., in the same wheel well) and some of the transmissions from a tire monitor at the same end (front or rear) of the vehicle, and substantially none of the transmissions from tire monitors at the other end of the car. Therefore, based on the number of received transmissions after a time and using the tire monitor identification embedded in the transmissions, the tire monitor positions can be deduced from the counts of the received transmissions.
  • FIG. 1 is a block diagram of one embodiment of a remote tire monitor system shown in conjunction with portions of a vehicle;
  • FIG. 2 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system of FIG. 1 ;
  • FIG. 3 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system of FIG. 1 ;
  • FIG. 4 is a block diagram of a vehicle with a remote tire monitor system
  • FIGS. 5 and 6 and are a flow diagram illustrating one embodiment of a remote tire monitor system.
  • the vehicle 102 includes in this example four tires 104 .
  • Other numbers of tires may be included, such as a fifth tire as a spare or additional tires if the vehicle is a truck, trailer or other multi-wheeled vehicle.
  • Each of the tire monitors 106 includes a battery powered, radio frequency (RF) transmitter. Any suitable tire monitor may be used.
  • RF radio frequency
  • U.S. patent application Ser. No. 09/245,938, entitled “Method And Apparatus For A Remote Tire Pressure Monitor System,” filed Feb. 5, 1999 in the name of McClelland et al., and commonly assigned with the present application is incorporated herein by reference and illustrates one suitable tire monitor for use in the remote tire pressure monitor system 100 .
  • Each tire monitor 106 includes a sensor such as a pressure sensor for measuring a tire characteristic. The tire monitor 106 converts the measured tire characteristic to tire data. The tire data is encoded for transmission from the tire monitor 106 .
  • the tire monitor further includes a transmitter configured to transmit RF signals including the tire data.
  • the transmissions are encoded or randomized to minimize clashes at a receiver.
  • U.S. patent application Ser. No. 09/245,577 entitled “Method For Communicating Data In A Remote Tire Pressure Monitoring System,” filed Feb. 5, 1999 in the name of Bailie, et al., and commonly assigned with the present application is incorporated herein by reference.
  • This application shows a technique in which data words are transmitted separated by a time delay. The time delay for each respective data word is defined according to a repeating pattern common to the tires so that data words are transmitted during a plurality of aperiodic time windows. Transmission parameters such as modulation techniques, transmission frequency and transmission power are chosen according to local regulations and to assure reliable reception of the RF signals.
  • the tire monitor 106 includes a motion switch 139 .
  • the motion switch 139 closes upon detection of movement of the vehicle 100 .
  • the motion switch 139 provides a signal to the processor 124 indicating closure of the switch 139 and motion of the vehicle.
  • the tire monitor system 100 begins operating, for example, by transmitting tire data.
  • the tire monitor 106 transmits supervisory tire pressure information once every minute. Any suitable motion switch may be used for the switch 139 .
  • the remote tire monitor system 100 includes a control unit 110 and a plurality of radio frequency (RF) detectors 112 .
  • the remote tire monitor system 100 additionally includes a user display for providing user information such as tire pressure information and low tire pressure alarms.
  • each RF detector 112 is mounted on the vehicle 102 proximate an associated tire monitor 106 to detect the RF signals from the associated tire monitor 106 and produce a transmission indication in response to detected RF signals.
  • Each of the RF detectors 112 is electrically coupled by a conductor 114 to the control unit 110 . Structure and operation of the RF detectors 112 will be described in greater detail below.
  • the control unit 110 includes an RF receiver 120 , an RF decoder 122 , and a controller 124 .
  • the RF receiver 120 is configured to receive RF signals conveying tire data from at least one transmitting tire monitor 106 of the plurality of tire monitors 106 associated with the wheels or tires 104 of the vehicle 102 . Any suitable RF receiver circuit may be used.
  • the design and implementation of the RF receiver 120 will depend on the type of modulation used for the RF signals, transmission frequency for the RF signals, and physical limitations such as permitted size, weight and power dissipation.
  • the RF decoder 122 is configured to receive a transmission indication from at least one receiving RF detector 112 of a plurality of RF detectors 112 associated with wheels or tires 104 of the vehicle 102 .
  • a tire monitor 106 will transmit RF signals which are detected by the RF detector 112 associated with the transmitting tire monitor 106 .
  • the receiving RF detector 112 signals its detection of the RF signals by providing the transmission indication on its associated conductor 114 .
  • the RF decoder 122 is further configured to identify a position of a transmitting tire monitor on the vehicle in response to the transmission indication received from an RF detector. Accordingly, the RF decoder 122 includes a plurality of input circuits 123 coupled to the conductors 114 which are in turn coupled to the RF detectors 112 . A transmission indication impressed on a conductor 114 is detected by an associated input circuit 123 . In the illustrated embodiment, there is a one-to-one relationship between input circuits 123 and RF detectors 112 . In this manner, the RF detector 112 which originated the transmission indication may be identified by the RF decoder determining which input circuit 123 detects the transmission indication.
  • the RF decoder 122 may include fewer than four input circuits 123 which are multiplexed in some manner among the plurality of RF detectors 112 .
  • a single input circuit 123 may be time shared among the plurality of RF detectors 112 to reduce the cost and complexity of the RF decoder 122 .
  • the RF decoder 122 is electrically coupled with the RF circuit 120 . Upon receipt of RF signals at the RF circuit 120 , the RF signals are demodulated to extract the tire data contained within the RF signals. In some applications, additional data decoding may be required after demodulation.
  • the tire data in one exemplary embodiment includes a tire monitor identifier, or unique identification code which uniquely identifies the tire monitor 106 which transmitted the RF signals.
  • the tire data also includes tire pressure data related to a sensed tire pressure of the tire 104 at which the transmitting tire monitor 106 is located. Alternative tire data may be included or substituted for the tire pressure data, such as a number of tire revolutions, tire temperature, and so forth.
  • the tire data is conveyed from the RF receiver 120 to the RF decoder 122 .
  • the RF decoder 122 associates the tire data with a position of the transmitting tire monitor 106 on the vehicle 102 .
  • Position information is determined using the input circuit 123 and a transmission indication received over a conductor 114 from RF detector 112 .
  • the tire data and associated tire position are conveyed from the RF decoder 122 to the controller 124 .
  • the controller 124 controls the operation of the remote tire monitor system 100 .
  • the controller 124 is preferably a microcontroller including a processor 128 and a memory 126 .
  • the processor 128 operates in response to data and instructions stored in the memory 126 to control overall operation of the system 100 .
  • the processor 128 stores position data for a plurality of tire monitors 106 of the remote tire monitor system 100 .
  • the controller 124 is electrically coupled to the RF decoder 122 to receive tire data and position data from the RF decoder 122 .
  • the processor 128 retrieves stored position data from the memory 126 .
  • the position data are stored in association with a position on the vehicle, such as left front, left rear, right front or right rear. The received position data is compared with the stored position data. If there is no change, the position data is not updated and further processing may occur using the received tire data.
  • the processor 128 updates the position data for the transmitting tire monitor 106 when the position of the transmitting tire monitor 106 varies from the stored position data for the transmitting tire monitor.
  • the controller 124 includes a memory 126 and a processor configured to store in the memory 126 position of the plurality of tire monitors 106 including the position of the transmitting tire monitor which originated the received position data.
  • the memory 126 is not used for storage of position data. Rather, the received tire data is associated by the control unit 110 with the position information provided by the transmission indication from a RF detector 112 . The tire data and the position information from the input circuit 123 are used together to produce a display or alarm, if appropriate, by the system 100 . Additionally, in still another embodiment, the tire data omits any identifying information for the transmitting tire monitor 106 and again, the tire data and the position information from the input circuit 123 are used together to produce the appropriate display or alarm.
  • the vehicle 102 further includes a CAN driver 130 , a voltage regulator 132 , power line noise suppressor 134 , and a battery 136 .
  • the battery 136 provides operating power for electrical systems of the vehicle 102 including the remote tire monitor system 100 .
  • the battery 136 is a portion of the electrical power system of the vehicle, which typically also includes an alternator and other components. Such electrical power systems for vehicles are well known.
  • the power line suppressor 134 reduces noise on the power line from the battery 136 . Noise may originate in other electrical components of the vehicle 102 , such as the ignition system.
  • the voltage regulator 132 receives the battery voltage or other operating voltage from the power line suppressor 134 and produces a well regulated voltage for components such as the control unit 110 and CAN driver 130 .
  • the CAN driver 130 provides electrical interface with other elements of a Controlled Area Network. Controlled Area Network or CAN is a serial communication protocol for data commonly used in automotive and other applications.
  • the CAN bus 138 accessed by the CAN driver 130 is used to interconnect a network of electronic nodes or modules.
  • the CAN bus operates according to an adopted standard.
  • the CAN bus 138 may be used to convey tire monitor data to other locations in the vehicle 102 .
  • an alarm or a display may be controlled to provide a visual or audible indication to an operator of the vehicle 102 that the tire data indicates an out-of-range condition, such as low tire pressure.
  • the RF decoder 122 and the controller 124 are shown as separate elements of the control unit 110 . In alternative embodiments, they may be combined in a single processor or logic block or circuit. Any other illustrated elements or additional elements included to enhance the functionality of the system 100 may be integrated or combined with other components of the system 100 .
  • system 100 should not be restricted to use in conjunction with a CAN bus.
  • any other communications medium may be employed for interconnecting the system 100 with other elements of the vehicle 102 .
  • communication buses in accordance with the J-1850 or USB standards may be substituted, or the control unit 110 may be directly hard wired with other elements of the vehicle 102 .
  • external communications may be omitted entirely so that the system 100 is completely self-contained.
  • FIG. 1 further shows a detailed view of one embodiment of an RF detector 112 for use in the remote tire monitor system 100 .
  • the RF detector 112 includes an antenna 140 to sense radio frequency (RF) signals transmitted from the tire monitor 106 , an amplifier 142 , an envelope detector coupled to the antenna 140 through the amplifier 142 and an output circuit 146 coupled to the envelope detector 144 .
  • the envelope detector 144 includes a filter 149 , a diode 150 , a capacitor 152 coupled to ground and an amplifier 154 .
  • the RF detector 112 is powered from a power line 156 and a ground line 158 provided on the conductor 114 which couples the RF detector 112 to the input circuit 123 of the RF decoder 122 .
  • the RF detector 112 further includes a resistor 160 and a capacitor 162 to ground.
  • the envelope detector 144 responds to the input signals received at the antenna and amplified by the amplifier 142 to produce at the output circuit 146 data corresponding to the envelope of the RF signals transmitted by the tire monitors 106 .
  • the filter 148 , diode 150 and capacitor 152 together form a circuit coupled with the antenna 140 to detect an envelope of electrical signals produced by the antenna in response to the RF signals.
  • the envelope is itself an electrical signal which is amplified in the amplifier 154 .
  • the output signal from the amplifier 154 is applied to the base of a transistor 164 . In response to this signal at its base, the transistor 164 modulates a wire line signal on the conductor 114 in response to the envelope of the RF signals received at the RF detector 112 .
  • the signals applied at the base of the transistor 164 control turn-on of the transistor 164 , conducting current from its collector at the power node of the conductor 114 to its emitter at the ground node of the conductor 114 .
  • the current in the conductor 114 will be modulated in response to the RF signals received at the antenna 140 of the RF detector 112 .
  • the input circuits 123 of the RF decoder in the illustrated embodiment may include a current mirror which duplicates the current drawn from the input stage of the input circuit 123 , coupled to the conductor 114 .
  • the output current from the current mirror in the input circuit 123 is provided to a resistor which converts the current signal into a voltage signal which can be read by the microcontroller 124 .
  • Suitable current mirror circuits are within the purview of those ordinarily skilled in the art of circuit design.
  • the signal provided on the conductor 114 forms a transmission indication indicating that the tire monitor 106 associated with the RF detector 112 has transmitted an RF signal which was detected by the RF detector 112 .
  • Producing the transmission indication includes detecting the envelope of the RF signals transmitted by the tire monitor 106 and producing a wireline signal on the conductor 114 in response to the envelope of the RF signals.
  • the wireline signal is produced by modulating a current in a conductor 114 coupled with the control unit 110 .
  • the control unit 110 detects the modulation of the current to locate the transmitting tire monitor 106 .
  • the RF detector 112 does not demodulate the data transmitted by the tire monitor 106 . Only the RF circuit 120 of the control unit 110 demodulates the data to extract the contents of the RF signal 106 . The RF detector only senses the presence of the transmitted RF signals. This reduces the cost of the RF detectors 112 and the overall cost of the remote tire monitor system 100 .
  • the conductor 114 can be, for example, a twisted pair of wire or any other inexpensive two-wire cable. Coaxial cable or other shielded cable is not necessary for implementing the system 100 using RF detector 112 .
  • the RF circuit 120 may be omitted.
  • the RF detectors 112 are used to detect the variations in the radio frequency signals and modulate a wire line signal on the conductors 114 .
  • the RF decoder 122 in such an embodiment is configured to demodulate the data in conjunction with the microcontroller 124 .
  • Current pulses on the conductor 114 are detected by the RF decoder 122 and converted to voltage pulses.
  • the voltage pulses can be read by the microcontroller 124 .
  • microcontroller 124 obtains the data from the RF detectors and the RF decoder, without use of an RF circuit 120 . This has the advantage of eliminating the relatively expensive RF circuit.
  • the functionality described herein may be implemented using a programmed computer or other processor operating in response to data and instructions stored in memory.
  • the processor may operate in conjunction with some or all of the hardware elements described in the embodiments shown herein.
  • the disclosed tire monitor system may be used to provide an improved auto learn or auto train method for automatically identifying positions of a plurality of tire monitors on a vehicle.
  • previously devices such as a transponder or magnetic activation tools were used in the car plant to train the control unit of the remote tire monitor system with identifiers for the wheel sensors or tire monitors.
  • the wheel sensors were activated in sequence and the control unit, expecting activated pressure transmissions in a certain order, learned the identification and position on the vehicle of the wheel sensors. So as to prevent cross talk from other training booths, each activation area is required to be RF shielded.
  • Another method of training the receivers was to use bar code readers to scan the identifiers of the wheel sensors and input this data into the receiver. All of these methods required an additional operation either manually or by automatic readers. These operations add cost and potential for downtime.
  • control unit or receiver in a “learn state” at a dynamic test booth.
  • the wheel sensors transmit either once a minute as in the normal mode, or in a special initial mode corresponding to a brand new, right out of the box state, transmitting more often, for example every 30 seconds, or every 10 seconds.
  • the wheel sensors leave the manufacturer's production line, they are placed in off mode.
  • This mode means that each wheel sensor is dormant until it is activated by the closing of its motion switch. Closing the motion switch is only achievable through centrifugal force caused by spinning the tire monitor on a rotating wheel.
  • the wheel sensor while driving, transmits tire information including supervisory tire pressure once every minute.
  • the wheel sensor will transmit the supervisory pressure data once every 30 seconds (to conform to United States regulatory requirements) or 10 seconds outside the United States. Other time intervals may be used.
  • the transmission interval is changed to its normal mode value, such as one minute. This initial mode is known as factory test mode.
  • each sensor's identifier is transmitted by the sensor and is received up by the RF circuit of the control unit.
  • the receiver loads the new identifier into memory, associating the transmission with one of the four RF detectors. Only data received which also is synchronized to activity on one of the RF detector conductors is regarded as valid.
  • each wheel sensor will transmit numerous times and the control unit can verify the tire information, such as each wheel sensor identifier, and associated wheel position. The control unit can then load this data into non-volatile memory for subsequent normal use.
  • the illustrated embodiment further provides for automatic update of tire monitor position information in the control unit upon replacement of one of the tire monitors of the system. This would occur, for example, if one of the wheels or tires of the vehicle is replaced. Due to the nature of the current embodiment, where the RF detectors are continuously indicating the position of the wheel sensors, a wheel sensor may be replaced and detected by the control unit without the need for user intervention. In this case, where a new wheel sensor is put on a wheel, the control unit initially realizes it is receiving a wrong identifier for the tire monitor, but still getting RF detector pulses from a particular wheel position. In addition, the control unit detects that the previously stored identifier for that position is no longer being received. Over a period of time, say ten minutes driving, the receiver verifies it has stopped receiving a stored identifier and is now receiving a new ID for that position. After verification, the new identifier is stored for that position and operation continues as normal.
  • the big advantage of this is the lack of need for user intervention and elimination of the need for a service tool at each service location.
  • Tire monitor position and identification is updated automatically.
  • FIG. 2 is a flow diagram illustrating an auto learn method for the remote tire monitor system of FIG. 1 .
  • the method begins at block 200 .
  • one or more tires with new tire monitors are mounted on a vehicle which includes a remote tire monitor system.
  • the tire monitors are in unused, out of the box condition from the manufacturer.
  • the installation of block 202 may occur as part of the final assembly of the vehicle at the factory. Alternatively, the installation may occur when new tires are installed on the vehicle or when a remote tire monitor system is added to the vehicle.
  • the dynamic vehicle test is initiated and, in response, at block 206 , the tire monitors begin transmitting radio frequency (RF) signals.
  • the dynamic vehicle test is a test to check proper functionality of the systems of the vehicle, including drive train and brakes.
  • any activity which causes the tire monitors to begin transmitting may be substituted at block 204 to initiate transmission at block 206 .
  • the process of driving the vehicle from the end of the assembly line to a storage area or a final checkout area in block 204 may be adequate to begin transmission at block 206 .
  • the tire monitors each include a motion switch which activates the tire monitor in response to motion of the tire monitor on the wheel of the vehicle.
  • the tire monitor begins transmitting at a test mode interval, such as once every 30 or 60 seconds. This aspect may be omitted but adds convenience for initializing the tire monitor system. After initialization, the interval may be reduced to reduce power drain from the battery which powers the tire monitor.
  • the RF signals are received by a receiver of the remote tire monitor system at block 208 .
  • the RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals.
  • the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier.
  • the receiver of the remote tire monitor system demodulates the received RF signals to receive the data.
  • the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
  • the same RF signals received and demodulated at blocks 208 , 210 are detected at block 214 .
  • the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction with FIG. 1 .
  • Other suitable RF detectors may be used.
  • a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver at block 208 .
  • identification information associated with the tire monitor is stored.
  • the data forming the identifier transmitted by the tire monitor and received by the receiver of the remote tire monitor system is stored in memory.
  • Other types and formats of identification information may be stored.
  • the control unit may store an RF detector indicator which indicates which RF detector detected the received RF signals.
  • the described method provides automatic learn capability in a remote tire monitor system. No manual intervention is necessary for the control unit to identify and store the identities and locations of individual tire monitors on the vehicle. This reduces time and cost associated with initiating operation of the remote tire monitor system.
  • FIG. 3 is a flow diagram illustrating an auto learn method for the remote tire monitor system of FIG. 1 .
  • the method of FIG. 3 starts at block 300 .
  • RF signals transmitted by a tire monitor associated with a wheel of a vehicle are received by a receiver of the remote tire monitor system.
  • the RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals.
  • the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier.
  • the tire monitor identifier may be a serial number or other unique or nearly-unique data associated with the tire monitor.
  • the tire monitor identifier may be multiple bit data stored in the tire monitor at the time of manufacture of the tire monitor.
  • the receiver of the remote tire monitor system demodulates the received RF signals to receive the data.
  • the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
  • the same RF signals received and demodulated at blocks 302 , 304 are detected at block 308 .
  • the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction with FIG. 1 .
  • Other suitable RF detectors may be used.
  • a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver at block 302 .
  • stored identification information is retrieved from memory at the control unit.
  • the identification information is stored at a memory location associated with the transmission indication or RF detector.
  • the control unit receives a wireline indication from a receiving RF detector that a transmission has been received. Using the wireline indication, the control unit selects the memory location from which previous identification information is retrieved.
  • the control unit determines if the identifier received from the transmitting tire monitor matches the stored identification information.
  • a match may mean a bit-by-bit match of received and stored data or some other level or association between the received data and the stored data. If the data match, at block 316 , the tire information such as pressure data are updated. For example, in one embodiment, tire pressure data are stored along with the identification information for the tire monitor. If the received tire pressure data varies by a predetermined amount from the stored tire pressure data, the received tire pressure data is stored and an alarm or other user indication is generated.
  • the method waits for receipt of an additional transmission associated with this RF detector.
  • the tire monitor transmits pressure data and a tire monitor identifier periodically, such as once per minute.
  • the method attempts to verify the previously received tire monitor identifier. This is done by comparing the newly received tire monitor identifier and the previously received tire monitor identifier to determine if there was an error in communication of the previously received tire monitor identifier. In some embodiments, multiple subsequent transmissions may be received for comparison. If there is no verification, at block 322 , the mismatched transmission received at block 302 is discarded. This condition indicates that the same tire monitor continues to transmit, and the mismatched transmission was received with an error.
  • the identification information stored for this RF detector is updated with the tire monitor identifier from the received transmission. This condition indicates that the tire monitor has been changed and is communicating reliably.
  • the illustrated system and method provide automatic update capability after a tire monitor has been changed. This may occur if the tires of the vehicle are rotated or if one or more tires is replaced. There is thus no need to manually intervene for the remote tire monitor system to update the identities and locations of the tire monitors on the vehicle.
  • FIG. 4 is a block diagram of a vehicle 400 with a remote tire monitor system 402 .
  • the vehicle 402 includes wheels 404 , 406 , 408 , 410 .
  • Each wheel includes a tire mounted on a rim.
  • the vehicle 400 may have other numbers of wheels.
  • a truck has 18 wheels.
  • the remote tire monitor system 402 includes a control unit 412 , a front detector 414 and a rear detector 416 .
  • the front detector 414 is electrically coupled to the control unit 412 by a cable 418 .
  • the rear detector 416 is electrically coupled to the control unit 412 by a cable 420 .
  • the remote tire monitor system 402 further includes a tire monitor associated with each wheel of the vehicle 400 .
  • a tire monitor 424 is associated with wheel 404 ;
  • tire monitor 426 is associated with wheel 406 ;
  • tire monitor 428 is associated with wheel 408 ;
  • tire monitor 430 is associated with wheel 410 .
  • the tire monitors are generally of the type described herein and are configured to detect a tire condition such as tire pressure and to occasionally transmit a transmission including tire data, such as tire pressure data and identification information uniquely identifying the respective tire monitor.
  • the front detector 414 is positioned proximate the left front wheel 404 .
  • the front detector 414 may be mounted in the wheel well adjacent the wheel 404 .
  • the rear detector 416 is positioned near the left rear wheel 408 , such as in the wheel well adjacent the wheel 408 .
  • the front detector 414 is positioned to detect transmissions from the pair of tire monitors 424 , 426 associated with the front wheels 404 , 406 .
  • the front detector 414 is proximate the left front tire monitor 424 and distal the right front tire monitor 426 .
  • the rear detector 416 is positioned to detect transmissions from the left rear tire monitor 428 and the right rear tire monitor 430 .
  • the rear detector 416 is positioned proximate the left rear tire monitor 428 and distal the right rear tire monitor 430 .
  • the detectors 414 , 416 are designated for detecting radio frequency transmissions from the front wheels 404 , 406 and the rear wheels 408 , 410 , respectively.
  • the RF detectors 414 , 416 may be positioned to detect RF transmissions from the left side wheels 404 , 408 and the right side wheels 406 , 410 respectively.
  • the front detector 414 is positioned in proximity to the left front wheel 404 , away from the right front wheel 406 , this positioning may be reversed so that the front detector 414 is positioned near the right front wheel 406 , such as in the left front wheel well.
  • the rear detector 416 shown in FIG. 4 in proximity to the left rear wheel 408 , may be positioned in proximity to the right rear wheel 410 .
  • Actual positioning of the RF detectors 414 , 416 is not important. Rather, the relative signal strength or frequency of reception of RF transmissions from tire monitors is what is measured by the detectors 414 , 416 in conjunction with the control unit 412 . It is important that each RF detector be positioned on one side or end of the car, away from the centerline, so that the relative signal strength or number of transmissions received by the RF detector from each of its associated pair of tire monitors can be determined.
  • the control unit 412 includes a receiver to receive radio frequency transmissions from tire monitors of the tire monitor system 402 , a controller 432 and a memory device 434 .
  • the controller 432 forms a processing means and may be any suitable control device such as a microprocessor, microcontroller, application specific integrated circuit (ASIC) or logic device coupled together to perform the necessary functions described herein.
  • ASIC application specific integrated circuit
  • the memory device 434 forms a memory means for storing data and preferably is formed of semiconductor memory.
  • the memory device of the control unit 412 includes persistent memory or nonvolatile memory such as an E 2 PROM, and working memory such as random access memory (RAM).
  • the persistent memory may be used to stored tire identifiers and pressure data over extended periods of time, such as when the vehicle 400 is parked.
  • the RAM may be organized as an array which stores counter values associated with tire monitor identifiers and tire monitor positions, as will be described in greater detail below.
  • FIG. 5 is a flow diagram illustrating operation of one embodiment of a remote tire monitor system.
  • the method illustrated in FIG. 5 may be used in conjunction with a remote tire monitor system of the type illustrated in FIG. 4 .
  • the method embodiment in FIG. 5 allows a control unit of such a system to automatically learn the positions of the tire monitors of the system on the vehicle, referred to as a learn method or learn routine. This determination is made after receiving several transmitted frames of tire data from the respective tire monitors of the system.
  • the control unit establishes an array of data in working memory and uses the data of the array to determine the position information for each tire monitor in the system.
  • An example array of data is illustrated below.
  • rows of the array are defined by the identification information for each tire monitor from which data are received.
  • the identification information is listed as “id1,” “id2,” etc.
  • the identification information will be a numeric value forming a unique identifier or identification code of a transmitting tire monitor.
  • the identification code is typically transmitted along with the tire pressure or other tire data by the tire monitor in a transmission frame.
  • the exemplary array is shown with four rows, one for each tire monitor of the vehicle in this example.
  • the array may also be formatted with additional rows to record data for additional transmitting tire monitors whose transmissions are received by the controller.
  • the columns of the array correspond to frame counter values which count the number of frames received at the respective RF detector of the system.
  • a frame labeled with tire monitor identifier id1 has been received at the front RF detector 22 times.
  • a frame with the same identifier id1 has been received at the rear RF detector two times, and so on.
  • the count label TotalRF_FrameCounter is a count of the total number of frames received by the receiver of the controller from the identified tire monitor.
  • the total frame counts recorded in this column is always greater than or equal to an RFD frame counter because the receiver has greater sensitivity than the RF detectors and detects transmissions that are missed by the RF detectors.
  • the method of FIG. 5 begins at block 500 .
  • the method of FIG. 5 shows the learn routine on the production line, when the tires of the vehicle are first assembled with the tire monitors and added to the remote tire monitor system.
  • block 502 it is determined if tire identifiers are already stored in electrically erasable (E 2 ) memory.
  • This memory is nonvolatile or persistent memory which retains data stored therein even when power is removed from the memory.
  • the persistent memory is empty.
  • the tire monitors are stored in the persistent memory.
  • block 502 determines if this is the first time the tire monitor system has been operated after installation on a vehicle. If so, no tire monitor identifiers will be stored in the persistent memory and the “no” path will follow to block 504 . If tire identifiers are already stored in the persistent memory, the “yes” path is followed to block 602 .
  • each frame of data transmitted by a tire monitor typically includes data corresponding to the tire identifier which uniquely identifies the transmitting tire monitor and tire data, such as data corresponding to the measured tire pressure of the tire. Other information, such as a header or synchronization data may be transmitted as well.
  • each identifier has three associated counters. One counter each is associated with each RF detector of the system and stores data corresponding to the number of transmissions detected by that respective RF detector. The third counter counts the total frames received from an identified tire monitor, and is incremented after a frame is received at the receiver of the controller.
  • the relevant wheel position counters that are incremented at block 510 include the total RF frame counter and the frame counter corresponding to the front RF detector or the rear RF detector.
  • a test is performed to determine if the specified criteria have been fulfilled. First, it is determined if four tire identifiers in the list have Total RF Frame counter values that are greater than a predetermined number, 20 in this example. That is, before applying the pass criteria, at least four tire identifier counters must have a value of 20 or greater. This test is implemented to ensure that there is a strong signal from a tire monitor and to eliminate any wrong or incorrect tire identifiers being added to the system. If the received signal from a tire monitor is weak, it will likely be received only a few times, rather than 20 or more times. Any other suitable number may be substituted for the predetermined number 20. Reducing the number will increase the speed at which the tire monitor positioning is learned by the system, but may increase the likelihood of incorrect tire monitor position learning.
  • the counter for the front RF detector must be larger than the counter for the rear RF detector for two different tire identifiers out of the four.
  • the method has chosen four tire identifiers with a total RF frame counter value higher than 20 and has distinguished the selected tire identifiers between the front of the vehicle and the rear of the vehicle by using the front frame counter value and rear frame counter value. For example, using the values shown in the example list above, the tire identifiers corresponding to the tire monitors positioned at the front of a vehicle are tire identifiers id1 and id2. The tire identifiers corresponding to tire monitors positioned at the rear of the vehicle are id3 and id4.
  • the method identifies the right and left tire monitor for each axle. First it is determined if, among the identified tire identifiers from the list for each of the front and rear axles, one RF detector counter value has a higher frame counter value than the other. If not, the method cannot distinguish the two tire monitors on the axle. Control returns to block 504 to await receipt of additional frames of data. If the criterion of block 516 is met, at block 518 the tire indicator with the higher RF detector frame counter value is selected to be on the same side of the vehicle as the RF detector for that end of the vehicle. Thus, in FIG.
  • the tire identifier associated with the larger valued RF detector counter is selected to correspond to tire monitor 426 .
  • the tire identifier having the lower valued RF detector counter value is selected to be associated with the tire monitor 424 .
  • those RF detectors 414 and 416 are positioned on the left side of the vehicle 400 , then of the tires of tire identifier selected at block 514 , the larger valued RF detector frame counter is associated with the left-hand side tire monitor for both axles. In the illustration of FIG.
  • the larger valued tire identifier would be selected to be associated with tire monitor 424 and the larger valued RF detector frame counter would be selected to be associated with tire monitor 428 .
  • the method would select id1 for the left front tire monitor and id2 for the right front tire monitor.
  • the method would select id3 for the left rear tire monitor and id4 for the right rear tire monitor.
  • the four selected tire identifiers are stored in non-volatile memory such as the E 2 PROM or other persistent memory described above.
  • the tire identification information contained in the frame will be compared with one of the selected in store for tire identifiers. If there is a match, the tire pressure information or other tire data contained in the frame will be used to update the current tire pressure information.
  • the learn routine illustrated in FIG. 5 is exited and the method of FIG. 5 terminates.
  • FIG. 6 illustrates a method for the remote tire monitor system to learn the positioning of tire monitors on a vehicle during a normal driving operation.
  • the method begins at block 602 , which is accessed after determining at block 502 ( FIG. 5 ) that tire monitor identifiers have already been stored in the persistent memory of the system.
  • the tire monitor values stored in the persistent memory are inserted into the list or array in working memory.
  • the Total RF Frame Counter, the front RF detector counter value (for identifiers which were in the front) and the rear RF detector counter value (for identifierswhich were in the rear) for each of these array entries is preloaded with a predetermined value, such as 5. Storing preloaded values such as this gives a weighting to the tire identifiers already stored in the persistent memory and copied into the working memory array. The benefit of weighting the preloaded tire monitor values in the array in this manner is to reduce the likelihood that a tire monitor on an adjacent vehicle will be detected and selected as one of the four tire monitors of the vehicle.
  • weighting the preloaded tire monitor values reduces the time required for the learn process so that reliable information can be given to the driver sooner. This process happens every time the vehicle is started and a new journey is begun.
  • control proceeds to block 606 .
  • the relevant wheel position counters are incremented. Operation here is similar to the operation at block 510 , FIG. 5 .
  • the working list of data includes columns for each of the front and rear RF detector counters and a total RF frame counter.
  • the total RF frame counter corresponding to the received tire identifier is incremented.
  • the counter corresponding to the front or rear RF detector is incremented, depending on which RF detector sensed or detected the transmission from the transmitting tire monitor.
  • block 612 three criteria are tested to determine if sufficient frames of data have been received to reliably distinguish front from rear tire monitor positions. Operation of block 612 is similar to the operation of block 512 , FIG. 5 .
  • two tire identifiers are selected to correspond to the front end of the vehicle and two tire identifiers are selected to correspond to the rear end of the vehicle.
  • control returns to block 604 to await the receipt of additional frames of data.
  • the present embodiments provide a method and apparatus which automatically conveys wheel position and data to a receiver in a vehicle. Even after changes in tire position due to tire rotation or replacement of a tire, the system automatically re-learns the position of the tires on the vehicle. No external actuation is required. Interference and cross talk are minimized by locating RF detectors in close proximity to the tire monitors. By sharing one RF detector between the front wheels and one RF detector between the rear wheels, the required number of RF detectors is reduced along with the required cabling and the concomitant cost, weight and difficulty of installation of the system. Further, the system provides automatic learn capability for learning and updating the identities of tire monitors on the vehicle without manual intervention.

Abstract

A tire monitor system and method rely on only two RF detector mounted on the vehicle, one in close proximity to one of the front wheels and the other in close proximity to one of the rear wheels. An RF detector can distinguish between its local transmitter and the other transmitter on the same axle by the amount of signal received. Every time the controller decodes transmitted RF data, the controller looks to see if and which RF detector has detected the transmission. The controller can then determine over a short period of time which sensor identifier belongs to which corner of the vehicle.

Description

    PRIORITY CLAIM
  • This application is a continuation of application Ser. No. 10/021,284 filed Oct. 29, 2001, which is hereby incorporated by reference.
  • CROSS REFERENCE TO RELATED PATENT
  • This application is related to U.S. Pat. No. 6,518,876, filed Apr. 25, 2000 and patented Feb. 11, 2003, in the names of Emmanuel Marguet and William David Stewart and commonly assigned to the owner of the present application. The U.S. Pat. No. 6,518,876 is incorporated herein in its entirety by this reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to a remote tire monitoring system. More particularly, the present invention relates to a method and apparatus for automatically updating position information for tire monitors in such a system.
  • Systems have been developed to monitor a characteristic such as tire pressure of a vehicle and to report the characteristic to a receiver at a central monitoring station using radio transmissions. A monitor is located at each tire and periodically takes a measurement of the tire characteristic. The monitor then transmits the results of the measurement in a radio frequency transmission to the central monitoring station which produces an alarm or a display in response to the measurement.
  • One problem with such systems has been the need to program the location of the transmitters at the central station. To be fully useful, the tire characteristic data is preferably associated with the tire which originated the measurement when presenting a display or alarm. Each monitor includes identification information which can be transmitted with the measurement. The tire monitor is preferably activated to produce this information and the information is then conveyed to the central station and associated with the position of the tire.
  • In the technique of U.S. Pat. No. 5,600,301, the tire monitors each include a reed switch or other magnetic device. A magnet is passed near the reed switch, causing the monitor to transmit a radio frequency transmission that includes identification data. A service technician repeats this process at each wheel and then loads the identification and position information into the central monitoring station. Another method provides a printed bar code on each tire monitor which contains the identification information and which may be read with a suitable bar code reader.
  • In U.S. Pat. No. 5,880,363, an activation signal is provided from the central controller to a low frequency transmitter at each wheel well. The transmitter generates a low frequency signal to activate the tire monitor. The tire pressure monitor responds by generating a long wave identification signal and transmitting that signal with tire pressure and identification data directly to the control unit. The long wave identification signal is used to identify the position of the tire by distinguishing this transmission from other transmissions received by the controller.
  • U.S. Pat. No. 5,883,305 discloses two-way communication of data by radio signals. A tire pressure monitor is activated by a radio frequency signal transmitted by an antenna in the wheel well adjacent the tire. The tire pressure monitor transmits a second radio frequency signal which is detected by the wheel well antenna. The second signal is demodulated to detect that tire pressure data.
  • These previous techniques have been limited in effectiveness. The magnetic programming technique may be subject to interference and crosstalk, for example in a factory where many such tire monitors are being assembled with tires and vehicles. The bar code label system requires a label at each tire which can be lost or become dirty or illegible. The apparatus for transmitting a long wave activation signal and generating a long wave identification signal therefrom is too expensive for some applications. The two-way data communication techniques requires demodulation of the received radio signals at the wheel well and coaxial cabling back to the central controller, both of which add to the cost of the system.
  • A further limitation of some of these prior techniques is the manual operation requiring activation by a service technician. A system is desired which automatically conveys wheel position data to the receiver. Such a system would be particularly useful after any change in tire position, such as tire rotation or replacement of a tire.
  • U.S. patent application Ser. No. 09/557,682, commonly assigned with the present application, discloses a system and method in which tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier. Four small, inexpensive RF detectors are located near each wheel. Each RF detector is connected to the central control unit by a power line and a ground line. When a tire monitor transmits data by emitting an RF transmission, the RF detector that is closest to the transmitter will detect the burst of RF energy. The RF detector responds to the RF energy by modulating the power line to the control unit with the envelope of the transmitted data. The control unit detects this modulation on one of its power lines. Also, the RF receiver of the control unit receives and demodulates the data transmitted by the tire monitor. The control unit associates the received data with the position indication provided by the modulation on the power line. When the positions of the wheels on the vehicle are changed, the control unit can determine the new position using the modulated power line in association with the tire monitor identifier in the transmitted data.
  • While this system has been very successful in application, a system featuring reduced cost and weight is desired. The cables that must be run from the control unit to all four RF detectors add substantially to the cost and weight of an installation. Accordingly, there is a need for a system and method which provide the operational advantages of the earlier system in a system offering reduced complexity, parts count, weight and cost.
  • SUMMARY
  • By way of introduction only, a remote tire monitor method and apparatus provide a central control unit in the cockpit or trunk of a vehicle. The control unit includes a radio frequency (RF) receiver and a controller. Tire monitors are located at each wheel of the vehicle and periodically transmit tire data along with a tire monitor identifier. Two small radio frequency (RF) detectors are positioned in proximity to two wheels on the vehicle. The RF detectors give an indication of the location of a transmitting tire monitor to the controller.
  • The present embodiments of a tire monitor system and method rely on only two RF detectors mounted on the vehicle, one in close proximity to one of the front wheels and the other in close proximity to one of the rear wheels. An RF detector can distinguish between its local transmitter and the other transmitter on the same axle by the amount of signal received. For example, if an RF detector is positioned in close proximity to the left rear wheel, then it can ideally expect to receive 100 percent reception from the transmitter on the left rear wheel and ideally around fifty percent reception from the right rear wheel's transmitter. The amount of false triggering from the front wheel transmitters is substantially zero. Every time the controller decodes transmitted RF data, the controller looks to see if and which RF detector has detected the transmission. The controller can then determine over a short period of time which sensor identifier belongs to which corner of the vehicle.
  • A method in accordance with one embodiment provides for detecting transmissions from two or more tire monitors at a detector. Then, based on a signal parameter associated with the transmission, the method provides for identifying a source tire monitor position. In one embodiment, the method further includes determining the amount of signal received from the two or more tire monitors and determining the signal parameter based thereon. In one example, a signal strength may be used as the signal parameter or to determine the signal parameter. In another, the number of transmissions received at a detector from two or more tire monitors may be used as the signal parameter or to determine the signal parameter. In another example, signal to noise ratio may be used as the signal parameter or to determine the signal parameter. In still another example, instead or in addition to the number of transmissions received, the rate of transmission reception may be used as the signal parameter or to determine the signal parameter.
  • In other embodiments, the signal parameter may be determined for a first tire monitor and for a second tire monitor. The respective signal parameters may then be compared to determine the source tire monitor position.
  • In another embodiment, transmissions are received at a central control unit of the vehicle and at the same time are detected either by a front RF detector positioned near one of the front wheels or a rear RF detector positioned near one of the rear wheels. The number of transmissions received from each tire monitor are counted and counts are maintained. After receipt of a sufficient number of transmissions, the counts are compared to determine the position of each tire monitor in the system.
  • An RF detector will detect almost all the transmissions from an adjacent tire monitor (e.g., in the same wheel well) and some of the transmissions from a tire monitor at the same end (front or rear) of the vehicle, and substantially none of the transmissions from tire monitors at the other end of the car. Therefore, based on the number of received transmissions after a time and using the tire monitor identification embedded in the transmissions, the tire monitor positions can be deduced from the counts of the received transmissions.
  • The foregoing discussion of the preferred embodiments has been provided only by way of introduction. Nothing in this section should be taken as a limitation on the following claims, which define the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a block diagram of one embodiment of a remote tire monitor system shown in conjunction with portions of a vehicle;
  • FIG. 2 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system of FIG. 1;
  • FIG. 3 is a flow diagram illustrating one embodiment of an auto learn method for the remote tire monitor system of FIG. 1;
  • FIG. 4 is a block diagram of a vehicle with a remote tire monitor system; and
  • FIGS. 5 and 6 and are a flow diagram illustrating one embodiment of a remote tire monitor system.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • Referring now to the drawing, it is a block diagram of a remote tire monitor system 100 shown in conjunction with portions of a vehicle 102. The vehicle 102 includes in this example four tires 104. Other numbers of tires may be included, such as a fifth tire as a spare or additional tires if the vehicle is a truck, trailer or other multi-wheeled vehicle.
  • Associated with each of the tires 104 is a transmitter or tire monitor 106. Each of the tire monitors 106 includes a battery powered, radio frequency (RF) transmitter. Any suitable tire monitor may be used. U.S. patent application Ser. No. 09/245,938, entitled “Method And Apparatus For A Remote Tire Pressure Monitor System,” filed Feb. 5, 1999 in the name of McClelland et al., and commonly assigned with the present application is incorporated herein by reference and illustrates one suitable tire monitor for use in the remote tire pressure monitor system 100. Each tire monitor 106 includes a sensor such as a pressure sensor for measuring a tire characteristic. The tire monitor 106 converts the measured tire characteristic to tire data. The tire data is encoded for transmission from the tire monitor 106.
  • The tire monitor further includes a transmitter configured to transmit RF signals including the tire data. In some embodiments, the transmissions are encoded or randomized to minimize clashes at a receiver. For example, U.S. patent application Ser. No. 09/245,577, entitled “Method For Communicating Data In A Remote Tire Pressure Monitoring System,” filed Feb. 5, 1999 in the name of Bailie, et al., and commonly assigned with the present application is incorporated herein by reference. This application shows a technique in which data words are transmitted separated by a time delay. The time delay for each respective data word is defined according to a repeating pattern common to the tires so that data words are transmitted during a plurality of aperiodic time windows. Transmission parameters such as modulation techniques, transmission frequency and transmission power are chosen according to local regulations and to assure reliable reception of the RF signals.
  • The tire monitor 106 includes a motion switch 139. The motion switch 139 closes upon detection of movement of the vehicle 100. The motion switch 139 provides a signal to the processor 124 indicating closure of the switch 139 and motion of the vehicle. In response to closure of the switch, the tire monitor system 100 begins operating, for example, by transmitting tire data. In the illustrated embodiment, during normal operation, the tire monitor 106 transmits supervisory tire pressure information once every minute. Any suitable motion switch may be used for the switch 139.
  • The remote tire monitor system 100 includes a control unit 110 and a plurality of radio frequency (RF) detectors 112. In alternative embodiment, the remote tire monitor system 100 additionally includes a user display for providing user information such as tire pressure information and low tire pressure alarms. In the illustrated embodiment, each RF detector 112 is mounted on the vehicle 102 proximate an associated tire monitor 106 to detect the RF signals from the associated tire monitor 106 and produce a transmission indication in response to detected RF signals. Each of the RF detectors 112 is electrically coupled by a conductor 114 to the control unit 110. Structure and operation of the RF detectors 112 will be described in greater detail below.
  • The control unit 110 includes an RF receiver 120, an RF decoder 122, and a controller 124. The RF receiver 120 is configured to receive RF signals conveying tire data from at least one transmitting tire monitor 106 of the plurality of tire monitors 106 associated with the wheels or tires 104 of the vehicle 102. Any suitable RF receiver circuit may be used. The design and implementation of the RF receiver 120 will depend on the type of modulation used for the RF signals, transmission frequency for the RF signals, and physical limitations such as permitted size, weight and power dissipation.
  • The RF decoder 122 is configured to receive a transmission indication from at least one receiving RF detector 112 of a plurality of RF detectors 112 associated with wheels or tires 104 of the vehicle 102. Thus, a tire monitor 106 will transmit RF signals which are detected by the RF detector 112 associated with the transmitting tire monitor 106. The receiving RF detector 112 signals its detection of the RF signals by providing the transmission indication on its associated conductor 114.
  • The RF decoder 122 is further configured to identify a position of a transmitting tire monitor on the vehicle in response to the transmission indication received from an RF detector. Accordingly, the RF decoder 122 includes a plurality of input circuits 123 coupled to the conductors 114 which are in turn coupled to the RF detectors 112. A transmission indication impressed on a conductor 114 is detected by an associated input circuit 123. In the illustrated embodiment, there is a one-to-one relationship between input circuits 123 and RF detectors 112. In this manner, the RF detector 112 which originated the transmission indication may be identified by the RF decoder determining which input circuit 123 detects the transmission indication. In alternative embodiments, the RF decoder 122 may include fewer than four input circuits 123 which are multiplexed in some manner among the plurality of RF detectors 112. For example, a single input circuit 123 may be time shared among the plurality of RF detectors 112 to reduce the cost and complexity of the RF decoder 122.
  • The RF decoder 122 is electrically coupled with the RF circuit 120. Upon receipt of RF signals at the RF circuit 120, the RF signals are demodulated to extract the tire data contained within the RF signals. In some applications, additional data decoding may be required after demodulation. The tire data in one exemplary embodiment includes a tire monitor identifier, or unique identification code which uniquely identifies the tire monitor 106 which transmitted the RF signals. In addition, in this exemplary embodiment, the tire data also includes tire pressure data related to a sensed tire pressure of the tire 104 at which the transmitting tire monitor 106 is located. Alternative tire data may be included or substituted for the tire pressure data, such as a number of tire revolutions, tire temperature, and so forth.
  • After extracting the tire data from the RF signals, the tire data is conveyed from the RF receiver 120 to the RF decoder 122. The RF decoder 122 associates the tire data with a position of the transmitting tire monitor 106 on the vehicle 102. Position information is determined using the input circuit 123 and a transmission indication received over a conductor 114 from RF detector 112. The tire data and associated tire position are conveyed from the RF decoder 122 to the controller 124.
  • The controller 124 controls the operation of the remote tire monitor system 100. The controller 124 is preferably a microcontroller including a processor 128 and a memory 126. The processor 128 operates in response to data and instructions stored in the memory 126 to control overall operation of the system 100.
  • In the illustrated embodiment, the processor 128 stores position data for a plurality of tire monitors 106 of the remote tire monitor system 100. The controller 124 is electrically coupled to the RF decoder 122 to receive tire data and position data from the RF decoder 122. In the illustrated embodiment, when tire data and position data are received at the microcontroller 124, the processor 128 retrieves stored position data from the memory 126. In one embodiment, the position data are stored in association with a position on the vehicle, such as left front, left rear, right front or right rear. The received position data is compared with the stored position data. If there is no change, the position data is not updated and further processing may occur using the received tire data. However, the processor 128 updates the position data for the transmitting tire monitor 106 when the position of the transmitting tire monitor 106 varies from the stored position data for the transmitting tire monitor. Thus, the controller 124 includes a memory 126 and a processor configured to store in the memory 126 position of the plurality of tire monitors 106 including the position of the transmitting tire monitor which originated the received position data.
  • In an alternative embodiment, the memory 126 is not used for storage of position data. Rather, the received tire data is associated by the control unit 110 with the position information provided by the transmission indication from a RF detector 112. The tire data and the position information from the input circuit 123 are used together to produce a display or alarm, if appropriate, by the system 100. Additionally, in still another embodiment, the tire data omits any identifying information for the transmitting tire monitor 106 and again, the tire data and the position information from the input circuit 123 are used together to produce the appropriate display or alarm.
  • Completing the identification of the elements in FIG. 1, the vehicle 102 further includes a CAN driver 130, a voltage regulator 132, power line noise suppressor 134, and a battery 136. The battery 136 provides operating power for electrical systems of the vehicle 102 including the remote tire monitor system 100. The battery 136 is a portion of the electrical power system of the vehicle, which typically also includes an alternator and other components. Such electrical power systems for vehicles are well known. The power line suppressor 134 reduces noise on the power line from the battery 136. Noise may originate in other electrical components of the vehicle 102, such as the ignition system. The voltage regulator 132 receives the battery voltage or other operating voltage from the power line suppressor 134 and produces a well regulated voltage for components such as the control unit 110 and CAN driver 130. The CAN driver 130 provides electrical interface with other elements of a Controlled Area Network. Controlled Area Network or CAN is a serial communication protocol for data commonly used in automotive and other applications. The CAN bus 138 accessed by the CAN driver 130 is used to interconnect a network of electronic nodes or modules. The CAN bus operates according to an adopted standard. In conjunction with a remote tire pressure monitor system 100, the CAN bus 138 may be used to convey tire monitor data to other locations in the vehicle 102. For example, an alarm or a display (not shown) may be controlled to provide a visual or audible indication to an operator of the vehicle 102 that the tire data indicates an out-of-range condition, such as low tire pressure.
  • In FIG. 1, the RF decoder 122 and the controller 124 are shown as separate elements of the control unit 110. In alternative embodiments, they may be combined in a single processor or logic block or circuit. Any other illustrated elements or additional elements included to enhance the functionality of the system 100 may be integrated or combined with other components of the system 100.
  • Further, the system 100 should not be restricted to use in conjunction with a CAN bus. In alternative embodiments, any other communications medium may be employed for interconnecting the system 100 with other elements of the vehicle 102. For example, communication buses in accordance with the J-1850 or USB standards may be substituted, or the control unit 110 may be directly hard wired with other elements of the vehicle 102. Still further, external communications may be omitted entirely so that the system 100 is completely self-contained.
  • FIG. 1 further shows a detailed view of one embodiment of an RF detector 112 for use in the remote tire monitor system 100. The RF detector 112 includes an antenna 140 to sense radio frequency (RF) signals transmitted from the tire monitor 106, an amplifier 142, an envelope detector coupled to the antenna 140 through the amplifier 142 and an output circuit 146 coupled to the envelope detector 144. The envelope detector 144 includes a filter 149, a diode 150, a capacitor 152 coupled to ground and an amplifier 154. The RF detector 112 is powered from a power line 156 and a ground line 158 provided on the conductor 114 which couples the RF detector 112 to the input circuit 123 of the RF decoder 122. To isolate the operational circuitry of the RF detector 112 from noise on the power line 156, the RF detector 112 further includes a resistor 160 and a capacitor 162 to ground.
  • The envelope detector 144 responds to the input signals received at the antenna and amplified by the amplifier 142 to produce at the output circuit 146 data corresponding to the envelope of the RF signals transmitted by the tire monitors 106. Thus, the filter 148, diode 150 and capacitor 152 together form a circuit coupled with the antenna 140 to detect an envelope of electrical signals produced by the antenna in response to the RF signals. The envelope is itself an electrical signal which is amplified in the amplifier 154. The output signal from the amplifier 154 is applied to the base of a transistor 164. In response to this signal at its base, the transistor 164 modulates a wire line signal on the conductor 114 in response to the envelope of the RF signals received at the RF detector 112. That is, the signals applied at the base of the transistor 164 control turn-on of the transistor 164, conducting current from its collector at the power node of the conductor 114 to its emitter at the ground node of the conductor 114. As a result, the current in the conductor 114 will be modulated in response to the RF signals received at the antenna 140 of the RF detector 112.
  • In one embodiment, to detect the modulated current, the input circuits 123 of the RF decoder in the illustrated embodiment may include a current mirror which duplicates the current drawn from the input stage of the input circuit 123, coupled to the conductor 114. The output current from the current mirror in the input circuit 123 is provided to a resistor which converts the current signal into a voltage signal which can be read by the microcontroller 124. Suitable current mirror circuits are within the purview of those ordinarily skilled in the art of circuit design.
  • In this manner, then, the signal provided on the conductor 114 forms a transmission indication indicating that the tire monitor 106 associated with the RF detector 112 has transmitted an RF signal which was detected by the RF detector 112. Producing the transmission indication includes detecting the envelope of the RF signals transmitted by the tire monitor 106 and producing a wireline signal on the conductor 114 in response to the envelope of the RF signals. In particular, in the illustrated embodiment, the wireline signal is produced by modulating a current in a conductor 114 coupled with the control unit 110. The control unit 110 detects the modulation of the current to locate the transmitting tire monitor 106.
  • Significantly, the RF detector 112 does not demodulate the data transmitted by the tire monitor 106. Only the RF circuit 120 of the control unit 110 demodulates the data to extract the contents of the RF signal 106. The RF detector only senses the presence of the transmitted RF signals. This reduces the cost of the RF detectors 112 and the overall cost of the remote tire monitor system 100.
  • Also, by modulating the current in the conductor 114, the RF detector's sensitivity to noise is reduced. Noise will occur in the form of voltage spikes or pulses on the conductor 114. However, this noise will have little effect on the operation of the RF detector 112 and will have little effect on the current levels in the conductor. As a result, the conductor 114 can be, for example, a twisted pair of wire or any other inexpensive two-wire cable. Coaxial cable or other shielded cable is not necessary for implementing the system 100 using RF detector 112.
  • In alternative embodiments, the RF circuit 120 may be omitted. In such an embodiment, the RF detectors 112 are used to detect the variations in the radio frequency signals and modulate a wire line signal on the conductors 114. The RF decoder 122 in such an embodiment is configured to demodulate the data in conjunction with the microcontroller 124. Current pulses on the conductor 114 are detected by the RF decoder 122 and converted to voltage pulses. The voltage pulses can be read by the microcontroller 124. In this manner, microcontroller 124 obtains the data from the RF detectors and the RF decoder, without use of an RF circuit 120. This has the advantage of eliminating the relatively expensive RF circuit. Further, this permits reduction in the transmit power used by the tire monitors 106 to transmit the radio frequency signals conveying the entire data. In some jurisdictions, substantially attenuated transmit power is required for applications such as tire monitors. These low transmit power requirements may be satisfied while still providing reliable performance in the remote tire monitoring system 100 by use of the RF detectors 112.
  • In still other embodiments, the functionality described herein may be implemented using a programmed computer or other processor operating in response to data and instructions stored in memory. The processor may operate in conjunction with some or all of the hardware elements described in the embodiments shown herein.
  • The disclosed tire monitor system may be used to provide an improved auto learn or auto train method for automatically identifying positions of a plurality of tire monitors on a vehicle. As noted above, previously devices such as a transponder or magnetic activation tools were used in the car plant to train the control unit of the remote tire monitor system with identifiers for the wheel sensors or tire monitors. With the vehicle located in a training booth or activation area at the factory, the wheel sensors were activated in sequence and the control unit, expecting activated pressure transmissions in a certain order, learned the identification and position on the vehicle of the wheel sensors. So as to prevent cross talk from other training booths, each activation area is required to be RF shielded. Another method of training the receivers was to use bar code readers to scan the identifiers of the wheel sensors and input this data into the receiver. All of these methods required an additional operation either manually or by automatic readers. These operations add cost and potential for downtime.
  • In the illustrated embodiment of FIG. 1, no such tools are required. In the car plant at the end of the production line, a standard one to two minute dynamic test is used to test and calibrate steering, brakes etc. of the vehicle. For the illustrated embodiment, positions and identities of the four tire pressure monitor wheel sensors are automatically learned during this dynamic test.
  • This is achieved by placing the control unit or receiver in a “learn state” at a dynamic test booth. The wheel sensors transmit either once a minute as in the normal mode, or in a special initial mode corresponding to a brand new, right out of the box state, transmitting more often, for example every 30 seconds, or every 10 seconds.
  • For example, when the wheel sensors leave the manufacturer's production line, they are placed in off mode. This mode means that each wheel sensor is dormant until it is activated by the closing of its motion switch. Closing the motion switch is only achievable through centrifugal force caused by spinning the tire monitor on a rotating wheel. During normal operation, the wheel sensor, while driving, transmits tire information including supervisory tire pressure once every minute. However, in the illustrated embodiment, for the driving periods during the first 16 activations of the motion switch, the wheel sensor will transmit the supervisory pressure data once every 30 seconds (to conform to United States regulatory requirements) or 10 seconds outside the United States. Other time intervals may be used. After the initial 16 transmissions, or any other suitable number, the transmission interval is changed to its normal mode value, such as one minute. This initial mode is known as factory test mode.
  • At the time of the dynamic vehicle test, the vehicle is accelerated, causing the wheel sensors to activate with the rotation of the wheels and associated closure of their motion switches. When the wheel sensors begin transmitting tire pressure, say once every thirty seconds, each sensor's identifier is transmitted by the sensor and is received up by the RF circuit of the control unit. In this initial unlearned state, the receiver loads the new identifier into memory, associating the transmission with one of the four RF detectors. Only data received which also is synchronized to activity on one of the RF detector conductors is regarded as valid. Over the one to two minute duration of the dynamic test, each wheel sensor will transmit numerous times and the control unit can verify the tire information, such as each wheel sensor identifier, and associated wheel position. The control unit can then load this data into non-volatile memory for subsequent normal use.
  • Key advantages of this auto-learn technique is the lack of any additional labor or equipment at the vehicle assembly plant, and the lack of a need for a transponder component or magnetic switch in the wheel sensor. Also there is no possibility of learning the wrong wheels, from other vehicles due to cross talk or of getting the wrong position. Thus, cost is reduced, operation is simplified and reliability is increased. Using the illustrated embodiment of the tire monitor system, no additional activation or learning tools are required to train the control unit with the wheel sensors' position on the vehicle. The only device required to train the control unit is the standard dynamic vehicle test at the end of line test in the vehicle assembly plant. Because the training procedure can be carried out in parallel with the steering and braking tests on the rolling road, and because of the factory test mode feature, no extra time or cost is required to ‘auto learn’ the tire monitor system.
  • The illustrated embodiment further provides for automatic update of tire monitor position information in the control unit upon replacement of one of the tire monitors of the system. This would occur, for example, if one of the wheels or tires of the vehicle is replaced. Due to the nature of the current embodiment, where the RF detectors are continuously indicating the position of the wheel sensors, a wheel sensor may be replaced and detected by the control unit without the need for user intervention. In this case, where a new wheel sensor is put on a wheel, the control unit initially realizes it is receiving a wrong identifier for the tire monitor, but still getting RF detector pulses from a particular wheel position. In addition, the control unit detects that the previously stored identifier for that position is no longer being received. Over a period of time, say ten minutes driving, the receiver verifies it has stopped receiving a stored identifier and is now receiving a new ID for that position. After verification, the new identifier is stored for that position and operation continues as normal.
  • The big advantage of this is the lack of need for user intervention and elimination of the need for a service tool at each service location. Tire monitor position and identification is updated automatically.
  • FIG. 2 is a flow diagram illustrating an auto learn method for the remote tire monitor system of FIG. 1. The method begins at block 200. At block 202, one or more tires with new tire monitors are mounted on a vehicle which includes a remote tire monitor system. In this embodiment, the tire monitors are in unused, out of the box condition from the manufacturer. The installation of block 202 may occur as part of the final assembly of the vehicle at the factory. Alternatively, the installation may occur when new tires are installed on the vehicle or when a remote tire monitor system is added to the vehicle.
  • At block 204, the dynamic vehicle test is initiated and, in response, at block 206, the tire monitors begin transmitting radio frequency (RF) signals. The dynamic vehicle test is a test to check proper functionality of the systems of the vehicle, including drive train and brakes. Alternatively, any activity which causes the tire monitors to begin transmitting may be substituted at block 204 to initiate transmission at block 206. For example, the process of driving the vehicle from the end of the assembly line to a storage area or a final checkout area in block 204 may be adequate to begin transmission at block 206. It is contemplated that the tire monitors each include a motion switch which activates the tire monitor in response to motion of the tire monitor on the wheel of the vehicle.
  • Further, at block 206, the tire monitor begins transmitting at a test mode interval, such as once every 30 or 60 seconds. This aspect may be omitted but adds convenience for initializing the tire monitor system. After initialization, the interval may be reduced to reduce power drain from the battery which powers the tire monitor.
  • After transmission of the RF signals at block 206, the RF signals are received by a receiver of the remote tire monitor system at block 208. The RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals. For example, the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier. The receiver of the remote tire monitor system demodulates the received RF signals to receive the data. At block 212, the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
  • Meanwhile, the same RF signals received and demodulated at blocks 208, 210 are detected at block 214. In the preferred embodiment, the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction with FIG. 1. Other suitable RF detectors may be used. At block 216, in response to the detected RF signals, a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver at block 208.
  • At block 218, identification information associated with the tire monitor is stored. In one embodiment, the data forming the identifier transmitted by the tire monitor and received by the receiver of the remote tire monitor system is stored in memory. Other types and formats of identification information may be stored. For example, the control unit may store an RF detector indicator which indicates which RF detector detected the received RF signals.
  • In this manner, the described method provides automatic learn capability in a remote tire monitor system. No manual intervention is necessary for the control unit to identify and store the identities and locations of individual tire monitors on the vehicle. This reduces time and cost associated with initiating operation of the remote tire monitor system.
  • FIG. 3 is a flow diagram illustrating an auto learn method for the remote tire monitor system of FIG. 1. The method of FIG. 3 starts at block 300.
  • At block 302, RF signals transmitted by a tire monitor associated with a wheel of a vehicle are received by a receiver of the remote tire monitor system. At block 304, the RF signals are demodulated, decoded and otherwise processed to extract the data conveyed on the RF signals. For example, the tire monitor may modulate a carrier signal using data corresponding to pressure of the tire or a tire monitor identifier. The tire monitor identifier may be a serial number or other unique or nearly-unique data associated with the tire monitor. For example, the tire monitor identifier may be multiple bit data stored in the tire monitor at the time of manufacture of the tire monitor. The receiver of the remote tire monitor system demodulates the received RF signals to receive the data. At block 306, the data including a tire monitor identifier, if any, is provided to a control unit of the remote tire monitor system.
  • Meanwhile, the same RF signals received and demodulated at blocks 302, 304 are detected at block 308. In the preferred embodiment, the RF signals are received without demodulation, for example, using a detector of the type illustrated above in conjunction with FIG. 1. Other suitable RF detectors may be used. At block 310, in response to the detected RF signals, a transmission indication is provided to the control unit. The transmission indication indicates to the control unit which RF detector of the vehicle detected the RF signals transmitted by the tire monitor and received by the receiver at block 302.
  • At block 312, stored identification information is retrieved from memory at the control unit. In the illustrated embodiment, the identification information is stored at a memory location associated with the transmission indication or RF detector. Thus, the control unit receives a wireline indication from a receiving RF detector that a transmission has been received. Using the wireline indication, the control unit selects the memory location from which previous identification information is retrieved.
  • At block 314, the control unit determines if the identifier received from the transmitting tire monitor matches the stored identification information. In this application, a match may mean a bit-by-bit match of received and stored data or some other level or association between the received data and the stored data. If the data match, at block 316, the tire information such as pressure data are updated. For example, in one embodiment, tire pressure data are stored along with the identification information for the tire monitor. If the received tire pressure data varies by a predetermined amount from the stored tire pressure data, the received tire pressure data is stored and an alarm or other user indication is generated.
  • At block 318, if there is no match between the received identifier and the stored identification information, the method waits for receipt of an additional transmission associated with this RF detector. Preferably, the tire monitor transmits pressure data and a tire monitor identifier periodically, such as once per minute. Upon receipt of a subsequent transmission, at block 320, the method attempts to verify the previously received tire monitor identifier. This is done by comparing the newly received tire monitor identifier and the previously received tire monitor identifier to determine if there was an error in communication of the previously received tire monitor identifier. In some embodiments, multiple subsequent transmissions may be received for comparison. If there is no verification, at block 322, the mismatched transmission received at block 302 is discarded. This condition indicates that the same tire monitor continues to transmit, and the mismatched transmission was received with an error.
  • If at block 320 the newly received data verify the previously received data, the identification information stored for this RF detector is updated with the tire monitor identifier from the received transmission. This condition indicates that the tire monitor has been changed and is communicating reliably. In this manner, the illustrated system and method provide automatic update capability after a tire monitor has been changed. This may occur if the tires of the vehicle are rotated or if one or more tires is replaced. There is thus no need to manually intervene for the remote tire monitor system to update the identities and locations of the tire monitors on the vehicle.
  • FIG. 4 is a block diagram of a vehicle 400 with a remote tire monitor system 402. In the exemplary embodiment of FIG. 4, the vehicle 402 includes wheels 404, 406, 408, 410. Each wheel includes a tire mounted on a rim. In other embodiments, the vehicle 400 may have other numbers of wheels. For example, in one particular embodiment, a truck has 18 wheels.
  • The remote tire monitor system 402 includes a control unit 412, a front detector 414 and a rear detector 416. The front detector 414 is electrically coupled to the control unit 412 by a cable 418. Similarly, the rear detector 416 is electrically coupled to the control unit 412 by a cable 420.
  • The remote tire monitor system 402 further includes a tire monitor associated with each wheel of the vehicle 400. Thus, a tire monitor 424 is associated with wheel 404; tire monitor 426 is associated with wheel 406; tire monitor 428 is associated with wheel 408; and tire monitor 430 is associated with wheel 410. The tire monitors are generally of the type described herein and are configured to detect a tire condition such as tire pressure and to occasionally transmit a transmission including tire data, such as tire pressure data and identification information uniquely identifying the respective tire monitor.
  • In the illustrated embodiment, the front detector 414 is positioned proximate the left front wheel 404. For example, the front detector 414 may be mounted in the wheel well adjacent the wheel 404. Similarly, the rear detector 416 is positioned near the left rear wheel 408, such as in the wheel well adjacent the wheel 408. With this mounting configuration, the front detector 414 is positioned to detect transmissions from the pair of tire monitors 424, 426 associated with the front wheels 404, 406. The front detector 414 is proximate the left front tire monitor 424 and distal the right front tire monitor 426. Similarly, the rear detector 416 is positioned to detect transmissions from the left rear tire monitor 428 and the right rear tire monitor 430. The rear detector 416 is positioned proximate the left rear tire monitor 428 and distal the right rear tire monitor 430.
  • The illustrated embodiment is exemplary only. In FIG. 4, the detectors 414, 416 are designated for detecting radio frequency transmissions from the front wheels 404, 406 and the rear wheels 408, 410, respectively. In alternate embodiments, the RF detectors 414, 416 may be positioned to detect RF transmissions from the left side wheels 404, 408 and the right side wheels 406, 410 respectively. Similarly, while in FIG. 4 the front detector 414 is positioned in proximity to the left front wheel 404, away from the right front wheel 406, this positioning may be reversed so that the front detector 414 is positioned near the right front wheel 406, such as in the left front wheel well. In the same way, the rear detector 416, shown in FIG. 4 in proximity to the left rear wheel 408, may be positioned in proximity to the right rear wheel 410. Actual positioning of the RF detectors 414, 416 is not important. Rather, the relative signal strength or frequency of reception of RF transmissions from tire monitors is what is measured by the detectors 414, 416 in conjunction with the control unit 412. It is important that each RF detector be positioned on one side or end of the car, away from the centerline, so that the relative signal strength or number of transmissions received by the RF detector from each of its associated pair of tire monitors can be determined.
  • The control unit 412 includes a receiver to receive radio frequency transmissions from tire monitors of the tire monitor system 402, a controller 432 and a memory device 434. The controller 432 forms a processing means and may be any suitable control device such as a microprocessor, microcontroller, application specific integrated circuit (ASIC) or logic device coupled together to perform the necessary functions described herein.
  • The memory device 434 forms a memory means for storing data and preferably is formed of semiconductor memory. In the illustrated embodiment, the memory device of the control unit 412 includes persistent memory or nonvolatile memory such as an E2PROM, and working memory such as random access memory (RAM). For example, the persistent memory may be used to stored tire identifiers and pressure data over extended periods of time, such as when the vehicle 400 is parked. The RAM may be organized as an array which stores counter values associated with tire monitor identifiers and tire monitor positions, as will be described in greater detail below.
  • FIG. 5 is a flow diagram illustrating operation of one embodiment of a remote tire monitor system. The method illustrated in FIG. 5 may be used in conjunction with a remote tire monitor system of the type illustrated in FIG. 4. The method embodiment in FIG. 5 allows a control unit of such a system to automatically learn the positions of the tire monitors of the system on the vehicle, referred to as a learn method or learn routine. This determination is made after receiving several transmitted frames of tire data from the respective tire monitors of the system. The control unit establishes an array of data in working memory and uses the data of the array to determine the position information for each tire monitor in the system. An example array of data is illustrated below.
    FrontRFD Rear RFD TotalRF_FrameCounter
    id1 22  2 22
    id2 12  4 23
    id3  2 20 20
    id4  1 10 20
  • In this example, rows of the array are defined by the identification information for each tire monitor from which data are received. In the example above, the identification information is listed as “id1,” “id2,” etc. However, in a more typical example, the identification information will be a numeric value forming a unique identifier or identification code of a transmitting tire monitor. The identification code is typically transmitted along with the tire pressure or other tire data by the tire monitor in a transmission frame. The exemplary array is shown with four rows, one for each tire monitor of the vehicle in this example. The array may also be formatted with additional rows to record data for additional transmitting tire monitors whose transmissions are received by the controller.
  • In the example array above, the columns of the array correspond to frame counter values which count the number of frames received at the respective RF detector of the system. Thus, in this example, a frame labeled with tire monitor identifier id1 has been received at the front RF detector 22 times. A frame with the same identifier id1 has been received at the rear RF detector two times, and so on. The count label TotalRF_FrameCounter is a count of the total number of frames received by the receiver of the controller from the identified tire monitor. The total frame counts recorded in this column is always greater than or equal to an RFD frame counter because the receiver has greater sensitivity than the RF detectors and detects transmissions that are missed by the RF detectors.
  • The method of FIG. 5 begins at block 500. The method of FIG. 5 shows the learn routine on the production line, when the tires of the vehicle are first assembled with the tire monitors and added to the remote tire monitor system. At block 502, it is determined if tire identifiers are already stored in electrically erasable (E2) memory. This memory is nonvolatile or persistent memory which retains data stored therein even when power is removed from the memory. In the illustrated system, after installation on a vehicle, the persistent memory is empty. As soon as tire identifiers are received and verified according to the procedure of FIG. 5, the tire monitors are stored in the persistent memory. Thus, block 502 determines if this is the first time the tire monitor system has been operated after installation on a vehicle. If so, no tire monitor identifiers will be stored in the persistent memory and the “no” path will follow to block 504. If tire identifiers are already stored in the persistent memory, the “yes” path is followed to block 602.
  • At block 504, it is determined if a frame of data has been received. If not, control remains in a loop including block 504 until a frame of data have been received. As indicated above, each frame of data transmitted by a tire monitor typically includes data corresponding to the tire identifier which uniquely identifies the transmitting tire monitor and tire data, such as data corresponding to the measured tire pressure of the tire. Other information, such as a header or synchronization data may be transmitted as well.
  • Once a frame of data has been received at block 504, the tire monitor identifier contained in the frame of data is extracted and compared with other already-received identifiers stored in the list in working memory. If the extracted tire identifier is not present in the list, block 506, it is added to the list, block 508. Control then proceeds to block 510, where the relevant wheel position counters are incremented. As noted above, each identifier has three associated counters. One counter each is associated with each RF detector of the system and stores data corresponding to the number of transmissions detected by that respective RF detector. The third counter counts the total frames received from an identified tire monitor, and is incremented after a frame is received at the receiver of the controller. Thus, the relevant wheel position counters that are incremented at block 510 include the total RF frame counter and the frame counter corresponding to the front RF detector or the rear RF detector.
  • At block 512, a test is performed to determine if the specified criteria have been fulfilled. First, it is determined if four tire identifiers in the list have Total RF Frame counter values that are greater than a predetermined number, 20 in this example. That is, before applying the pass criteria, at least four tire identifier counters must have a value of 20 or greater. This test is implemented to ensure that there is a strong signal from a tire monitor and to eliminate any wrong or incorrect tire identifiers being added to the system. If the received signal from a tire monitor is weak, it will likely be received only a few times, rather than 20 or more times. Any other suitable number may be substituted for the predetermined number 20. Reducing the number will increase the speed at which the tire monitor positioning is learned by the system, but may increase the likelihood of incorrect tire monitor position learning.
  • According to the second criterion of the illustrated embodiment, the counter for the front RF detector must be larger than the counter for the rear RF detector for two different tire identifiers out of the four. According to the third criterion, it is determined if the the frame counter for the rear RF detector stores a value larger than the front RF detector frame counter for the two remaining tire identifiers in the list. If these criteria are not fulfilled using the tire identifiers in the list, control returns to the block 504 to await receipt of additional frame of data.
  • If these three criteria are fulfilled, however, at block 514, two tire identifiers are selected from the list for the front axle of the vehicle, according to the second criterion above, and two tire identifiers are selected from the list for the rear axle, according to the third criterion above. Thus, at block 518, the method has chosen four tire identifiers with a total RF frame counter value higher than 20 and has distinguished the selected tire identifiers between the front of the vehicle and the rear of the vehicle by using the front frame counter value and rear frame counter value. For example, using the values shown in the example list above, the tire identifiers corresponding to the tire monitors positioned at the front of a vehicle are tire identifiers id1 and id2. The tire identifiers corresponding to tire monitors positioned at the rear of the vehicle are id3 and id4.
  • Beginning at block 516, the method identifies the right and left tire monitor for each axle. First it is determined if, among the identified tire identifiers from the list for each of the front and rear axles, one RF detector counter value has a higher frame counter value than the other. If not, the method cannot distinguish the two tire monitors on the axle. Control returns to block 504 to await receipt of additional frames of data. If the criterion of block 516 is met, at block 518 the tire indicator with the higher RF detector frame counter value is selected to be on the same side of the vehicle as the RF detector for that end of the vehicle. Thus, in FIG. 4, among the front wheels 404, 406, the tire identifier associated with the larger valued RF detector counter is selected to correspond to tire monitor 426. Similarly, the tire identifier having the lower valued RF detector counter value is selected to be associated with the tire monitor 424. Alternatively, if, as is suggested in FIG. 5, those RF detectors 414 and 416 are positioned on the left side of the vehicle 400, then of the tires of tire identifier selected at block 514, the larger valued RF detector frame counter is associated with the left-hand side tire monitor for both axles. In the illustration of FIG. 4, if the RF detector 414 were instead mounted on the left-hand side of the vehicle 400, the larger valued tire identifier would be selected to be associated with tire monitor 424 and the larger valued RF detector frame counter would be selected to be associated with tire monitor 428. Using the example list of data above, and assuming that both tire monitors are on the left-hand side of the vehicle, the method would select id1 for the left front tire monitor and id2 for the right front tire monitor. Similarly, the method would select id3 for the left rear tire monitor and id4 for the right rear tire monitor.
  • At block 520, the four selected tire identifiers are stored in non-volatile memory such as the E2PROM or other persistent memory described above. During subsequent operation of the tire monitor system, as new frames of tire data are received, the tire identification information contained in the frame will be compared with one of the selected in store for tire identifiers. If there is a match, the tire pressure information or other tire data contained in the frame will be used to update the current tire pressure information. At block 522, the learn routine illustrated in FIG. 5 is exited and the method of FIG. 5 terminates.
  • FIG. 6 illustrates a method for the remote tire monitor system to learn the positioning of tire monitors on a vehicle during a normal driving operation. The method begins at block 602, which is accessed after determining at block 502 (FIG. 5) that tire monitor identifiers have already been stored in the persistent memory of the system.
  • At block 602, the tire monitor values stored in the persistent memory are inserted into the list or array in working memory. The Total RF Frame Counter, the front RF detector counter value (for identifiers which were in the front) and the rear RF detector counter value (for identifierswhich were in the rear) for each of these array entries is preloaded with a predetermined value, such as 5. Storing preloaded values such as this gives a weighting to the tire identifiers already stored in the persistent memory and copied into the working memory array. The benefit of weighting the preloaded tire monitor values in the array in this manner is to reduce the likelihood that a tire monitor on an adjacent vehicle will be detected and selected as one of the four tire monitors of the vehicle. This could occur, for example, if more than one vehicle with comparable systems are parked adjacent each other, such as the end of an assembly line or in another location. Further, weighting the preloaded tire monitor values reduces the time required for the learn process so that reliable information can be given to the driver sooner. This process happens every time the vehicle is started and a new journey is begun.
  • At block 604, it is determined if a frame of data has been received. If not, control remains in a loop including block 604 until a frame of data is received. Once a frame of data has been received, control proceeds to block 606.
  • At block 606 it is determined if the tire monitor identifier contained in the received frame is already stored in the persistent memory or E2PROM. If not, at block 608 the received tire monitor identifier is added to the working list of tire identifiers in working memory. Control proceeds to block 610.
  • At block 610, the relevant wheel position counters are incremented. Operation here is similar to the operation at block 510, FIG. 5. The working list of data includes columns for each of the front and rear RF detector counters and a total RF frame counter. At block 610, the total RF frame counter corresponding to the received tire identifier is incremented. Also at block 610, the counter corresponding to the front or rear RF detector is incremented, depending on which RF detector sensed or detected the transmission from the transmitting tire monitor.
  • At block 612, three criteria are tested to determine if sufficient frames of data have been received to reliably distinguish front from rear tire monitor positions. Operation of block 612 is similar to the operation of block 512, FIG. 5. At block 614, two tire identifiers are selected to correspond to the front end of the vehicle and two tire identifiers are selected to correspond to the rear end of the vehicle. At block 612, if all three criteria are not fulfilled, control returns to block 604 to await the receipt of additional frames of data.
  • At block 616, it is determined if, for each of the front and rear sets of tire monitors, one tire monitor has a higher RF detector counter value. If not, control returns to block 604 to await the receipt of additional data. If so, at block 618, the front and rear selected tire monitor pairs are each sorted among right and left tire monitors, selecting a left front, right front, left rear and right rear tire monitor. At block 620, the four tire monitor identifiers are stored in non-volatile or persistent memory, along with position information for the tire monitor. The learn routine of FIG. 6 is then exited at 622.
  • From the foregoing, it can be seen that the present embodiments provide a method and apparatus which automatically conveys wheel position and data to a receiver in a vehicle. Even after changes in tire position due to tire rotation or replacement of a tire, the system automatically re-learns the position of the tires on the vehicle. No external actuation is required. Interference and cross talk are minimized by locating RF detectors in close proximity to the tire monitors. By sharing one RF detector between the front wheels and one RF detector between the rear wheels, the required number of RF detectors is reduced along with the required cabling and the concomitant cost, weight and difficulty of installation of the system. Further, the system provides automatic learn capability for learning and updating the identities of tire monitors on the vehicle without manual intervention.
  • While a particular embodiment of the present invention has been shown and described, modifications may be made. For example, while the exemplary embodiment counts received transmissions from tire monitors of the system, other embodiments may use alternate methods or detect other signal parameters to identify tire monitor positions in the system. Also, while the two learn methods of FIGS. 5 and 6 are generally similarly for both the learn method in the production line and the learn method during normal driving, other method steps or test criteria may be substituted to change the two methods, accounting for the differing environments in which each method is practiced. It is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims (12)

1. A tire monitor method comprising:
at two or more detectors, detecting envelopes of respective radio transmissions from two or more tire monitors; and
based on the detected envelopes of the respective radio transmissions, identifying a source tire monitor position.
2. The tire monitor method of claim 1 further comprising:
based on the detected envelopes, modulating a wireline signal; and
identifying the source tire monitor position based on the modulated signal.
3. The tire monitor method of claim 1 further comprising:
based on the detected envelopes, determining a number of received transmissions from each of the two or more tire monitors; and
identifying the source tire monitor position based on the number of received transmissions.
4. The tire monitor method of claim 1 further comprising:
based on the detected envelopes, determining a rate of received transmissions from each of the two or more tire monitors; and
identifying the source tire monitor position based on the rate of received transmissions.
5. The tire monitor method of claim 1 further comprising:
detecting a signal envelope for the transmissions from a first tire monitor;
detecting a signal envelope for the transmissions from a second tire monitor; and
comparing the detected signal envelopes to determine the source tire monitor position.
6. The tire monitor method of claim 5 further comprising:
based on the detected envelopes, counting received transmissions from the first tire monitor;
based on the detected envelopes, counting received transmissions from the second tire monitor; and
comparing the transmission counts to determine source tire monitor position.
7. The tire monitor method of claim 1 wherein detecting envelopes comprises:
modulating a wireline signal to indicate detection of the envelopes of the respective radio transmissions.
8. The tire monitor method of claim 1 wherein detecting envelopes comprises:
in response to the respective radio transmissions, controlling actuation of a circuit element conducting a current which is detected to identify a position of a tire monitor transmitting the respective radio transmissions.
9. A remote tire monitor system comprising:
a first plurality of tire monitors associated with wheels of a vehicle and configured for transmission of radio signals conveying information;
a second plurality of detectors, each detector associated with a pair of tire monitors to detect presence of radio signals from the pair of tire monitors and to produce a detected transmission indication in response to the detection of the presence of the radio signals; and
a control unit electrically coupled by conductors with the plurality of detectors to receive detected transmission indications, the control unit configured to receive tire monitor transmissions and associate transmitting tire monitors with positions on the vehicle based on the received detected transmission indications.
10. The remote tire monitor system of claim 9 wherein each detector of the second plurality of detectors comprises an envelope detector responsive to the presence of the radio signals to produce a wireline signal corresponding to an envelope of the radio signals.
11. The remote tire monitor system of claim 10 wherein the envelope detector modulates a current in a conductor electrically coupled with the control unit in response to the presence of the radio signals.
12. A remote tire monitor system comprising:
tire monitors mountable on wheels of a vehicle and configured for radio transmissions of tire data;
radio detectors, each radio detector being configured to detect radio transmissions from tire monitors according to proximity to the tire monitors and produce an indication of a detected transmission, a first radio detector being positioned near one of a first pair of tire monitors and a second radio detector being positioned near a second pair of tire monitors on the vehicle, each radio detector being positioned proximate one tire monitor of its respective pair of tire monitors and positioned distal the other tire monitor of its respective pair of tire monitors; and
a control unit which receives the radio transmissions and which is coupled with the radio detectors to count the indications produced by respective tire monitors, the control unit determining respective positions of the tire monitors on the vehicle based on counts of the indications.
US11/030,837 2001-10-29 2005-01-07 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system Abandoned US20050134446A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/030,837 US20050134446A1 (en) 2001-10-29 2005-01-07 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US11/104,699 US7423532B2 (en) 2001-10-29 2005-04-13 Determination of wheel sensor position using a single radio frequency detector in an automotive remote tire monitor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/021,284 US6882270B2 (en) 2001-10-29 2001-10-29 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US11/030,837 US20050134446A1 (en) 2001-10-29 2005-01-07 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/021,284 Continuation US6882270B2 (en) 2001-10-29 2001-10-29 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/104,699 Continuation-In-Part US7423532B2 (en) 2001-10-29 2005-04-13 Determination of wheel sensor position using a single radio frequency detector in an automotive remote tire monitor system

Publications (1)

Publication Number Publication Date
US20050134446A1 true US20050134446A1 (en) 2005-06-23

Family

ID=21803345

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/021,284 Expired - Lifetime US6882270B2 (en) 2001-10-29 2001-10-29 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US11/030,837 Abandoned US20050134446A1 (en) 2001-10-29 2005-01-07 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/021,284 Expired - Lifetime US6882270B2 (en) 2001-10-29 2001-10-29 Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system

Country Status (1)

Country Link
US (2) US6882270B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070052519A1 (en) * 2005-09-02 2007-03-08 Gm Global Technology Operations, Inc. Wireless sensing system
US20080184786A1 (en) * 2007-01-31 2008-08-07 Beru F1 Systems Limited Wheel sensor with valve
US20130038441A1 (en) * 2011-08-09 2013-02-14 Continental Automotive Systems Us, Inc. Protocol Arrangement In A Tire Pressure Monitoring System
US8502655B2 (en) 2011-08-09 2013-08-06 Continental Automotive Systems, Inc. Protocol misinterpretation avoidance apparatus and method for a tire pressure monitoring system
US8692661B2 (en) 2007-07-03 2014-04-08 Continental Automotive Systems, Inc. Universal tire pressure monitoring sensor
US8742914B2 (en) 2011-08-09 2014-06-03 Continental Automotive Systems, Inc. Tire pressure monitoring apparatus and method
US8751092B2 (en) 2011-01-13 2014-06-10 Continental Automotive Systems, Inc. Protocol protection
US20140210606A1 (en) * 2013-01-29 2014-07-31 Ford Global Technologies, Llc Automatic sensor detection
US9024743B2 (en) 2011-08-09 2015-05-05 Continental Automotive System, Inc. Apparatus and method for activating a localization process for a tire pressure monitor
US9446636B2 (en) 2014-02-26 2016-09-20 Continental Automotive Systems, Inc. Pressure check tool and method of operating the same
US20160282497A1 (en) * 2015-03-26 2016-09-29 General Electric Company Proximity probe interchange compensation
US9517664B2 (en) 2015-02-20 2016-12-13 Continental Automotive Systems, Inc. RF transmission method and apparatus in a tire pressure monitoring system
US9676238B2 (en) 2011-08-09 2017-06-13 Continental Automotive Systems, Inc. Tire pressure monitor system apparatus and method
US10220660B2 (en) 2015-08-03 2019-03-05 Continental Automotive Systems, Inc. Apparatus, system and method for configuring a tire information sensor with a transmission protocol based on vehicle trigger characteristics
US10377189B2 (en) 2017-01-03 2019-08-13 Orange Electronic Co., Ltd Preliminary positioning method for a tire pressure monitoring system
US11554618B2 (en) 2019-04-09 2023-01-17 Cub Elecparts Inc. Tire pressure monitoring system for tractor-trailer

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693626B2 (en) 2000-09-08 2010-04-06 Automotive Technologies International, Inc. Vehicular tire monitoring based on sensed acceleration
US6882270B2 (en) * 2001-10-29 2005-04-19 Schrader Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US7084751B2 (en) * 2002-10-25 2006-08-01 Johnson Controls Technology Company System and method of facilitating training of a tire pressure monitoring system on a vehicle
US20040084517A1 (en) * 2002-11-05 2004-05-06 Glen Harm Method and apparatus for writing information to a tire pressure monitoring sensor
JP3972851B2 (en) * 2003-03-31 2007-09-05 株式会社デンソー Tire pressure monitoring system
ATE456034T1 (en) * 2003-07-04 2010-02-15 Pirelli METHOD AND SYSTEM FOR DETERMINING TIRE LOAD WHILE DRIVING A MOTOR VEHICLE
US6980925B2 (en) * 2003-10-03 2005-12-27 Kelsey-Hayes Company Real-time signal processing for vehicle tire load monitoring
US7104438B2 (en) * 2003-10-22 2006-09-12 The Goodyear Tire & Rubber Company Method of integrating tire identification into a vehicle information system
DE102004004292A1 (en) * 2004-01-28 2005-09-08 Siemens Ag Arrangement and method for bidirectionally transmitting signals in a motor vehicle
CN101160228A (en) * 2005-02-22 2008-04-09 凯尔西-海耶斯公司 Vehicle stability control utilizing static tire data
EP1859562B1 (en) * 2005-03-10 2012-05-16 Delphi Technologies, Inc. Tire pressure monitor with diversity antenna system and method
JP4232760B2 (en) * 2005-06-06 2009-03-04 株式会社デンソー Tire pressure receiver and tire pressure monitoring system
JP4186955B2 (en) * 2005-06-06 2008-11-26 株式会社デンソー Tire pressure monitoring system
US20060282043A1 (en) * 2005-06-14 2006-12-14 Pyles Stephen T Intrathecal catheter having a stylet with a curved tip
US20070032932A1 (en) * 2005-08-05 2007-02-08 Yeoh Chin H Method and apparatus for providing a visual indication of a position of a steerable wheel, and components thereof
US20090284357A1 (en) * 2008-05-16 2009-11-19 Jesse Ortega Vehicle wheel security system
US20100097203A1 (en) * 2008-10-20 2010-04-22 Tung Thih Electronics Co. Ltd. Wireless tire pressure monitor system
US8254869B2 (en) * 2009-02-19 2012-08-28 Chrysler Group Llc Smart antenna module
US7986222B2 (en) * 2009-02-24 2011-07-26 Infineon Technologies Ag Tire position identification system and method
US8963691B1 (en) * 2010-07-27 2015-02-24 The Boeing Company Sensor association system using wireless device information
US9113234B2 (en) 2010-07-27 2015-08-18 The Boeing Company Wireless device association system
GB2499181B (en) * 2011-12-20 2016-01-20 Silent Sensors Ltd Measurement sensor
US9415643B2 (en) * 2014-07-15 2016-08-16 Bendix Commercial Vehicly Systems LLC Apparatus and method for configuring a tire sensor system
DE102016221430A1 (en) * 2016-11-01 2018-05-03 Continental Reifen Deutschland Gmbh A method for assigning tire sensor modules to a trailer vehicle of their own commercial vehicle combination
CN108099511A (en) * 2017-12-13 2018-06-01 深圳市道通科技股份有限公司 Tyre pressure sensor Activiation method, device, storage medium and front end processor
US10384496B1 (en) * 2018-02-14 2019-08-20 Infineon Technologies Ag Configuration data storage for a tire pressure sensor

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602524A (en) * 1992-02-26 1997-02-11 Mock; Markus Device for monitoring the air-pressure in pneumatic tires fitted on vehicle wheels
US5612671A (en) * 1995-12-11 1997-03-18 Delco Electronics Corp. Method of learning tire pressure transmitter ID
US5774047A (en) * 1996-04-12 1998-06-30 Hensel, Iv; Frederick William Tire pressure sensing system including improved switch and location indicator
US5838229A (en) * 1995-07-18 1998-11-17 Schrader-Bridgeport International, Inc. Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission and enabling recalibration upon tire rotation or replacement
US5883305A (en) * 1996-09-27 1999-03-16 Motorola, Inc. Tire pressure monitoring system
US6018993A (en) * 1995-11-17 2000-02-01 Doduco Gmbh Method for monitoring tire pressure
US6034597A (en) * 1996-08-07 2000-03-07 Ami Doduco Gmbh Process for evaluating the signals from a tire pressure monitoring system
US6062072A (en) * 1995-08-11 2000-05-16 Dynatron Ag Device for monitoring the air pressure of pneumatic tires of vehicles
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
US6169480B1 (en) * 1995-05-26 2001-01-02 Doduco Gmbh Device for measuring vehicle tire pressure
US6181241B1 (en) * 1995-11-17 2001-01-30 Beru Aktiengesellschaft Method of allocating transmitters of a tire pressure monitoring system to a particular vehicle
US6204758B1 (en) * 1999-07-23 2001-03-20 Schrader-Bridgeport International, Inc. System to automatically determine wheel position for automotive remote tire monitoring system
US6218936B1 (en) * 1998-08-25 2001-04-17 Pacific Industrial Co. Ltd. Tire air pressure monitoring system
US20010002451A1 (en) * 1995-06-07 2001-05-31 Breed David S. Method and apparatus for controlling a vehicular component
US6252498B1 (en) * 1998-03-03 2001-06-26 Charles Pashayan, Jr. Tire pressure detecting system for a vehicle
US6259361B1 (en) * 1998-07-13 2001-07-10 Prince Corporation Tire monitoring system
US6271748B1 (en) * 1994-08-31 2001-08-07 Andrew John Derbyshire Tyre condition monitoring system
US6304172B1 (en) * 1998-11-27 2001-10-16 Pacific Industrial Co., Ltd. Receiver of tire inflation pressure monitor
US6340930B1 (en) * 2001-03-07 2002-01-22 Trw Inc. System and method for monitoring a condition of a vehicle tire
US6362731B1 (en) * 2000-12-06 2002-03-26 Eaton Corporation Tire pressure monitor and location identification system and method
US6384720B1 (en) * 2001-03-08 2002-05-07 Trw Inc. System and method for sensing an operating parameter of a vehicle tire
US6489888B1 (en) * 2001-06-29 2002-12-03 Johnson Controls Technology Company Using signal strength to identify tire position
US6518876B1 (en) * 2000-04-25 2003-02-11 Schrader-Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US6580365B2 (en) * 2000-01-14 2003-06-17 Schrader-Bridgeport International, Inc. Method and apparatus for identifying remote sending units in a tire pressure monitor system of a vehicle using secondary modulation of wheel rotation
US6581449B1 (en) * 1999-09-15 2003-06-24 The Goodyear Tire & Rubber Company Low pressure warning system for pneumatic tires with RF tags and monitors for each tire
US6633229B1 (en) * 1998-12-09 2003-10-14 Beru Aktiengesellschaft Method for assigning identifying elements in signals emitted by transmitters in a tire pressure indicating system to the wheels on which the transmitters are mounted
US6705155B2 (en) * 2000-12-15 2004-03-16 Pacific Industrial Co., Ltd. Apparatus and method for monitoring tire condition
US6788193B2 (en) * 2002-03-01 2004-09-07 Lear Corporation System and method for tire pressure monitoring providing automatic tire location recognition
US6794993B1 (en) * 1998-12-10 2004-09-21 Ralf Kessler Arrangement for transmitting signals from a device monitoring tire pressure on the wheels of a motor vehicle to an evaluation device arranged in a motor vehicle
US6882270B2 (en) * 2001-10-29 2005-04-19 Schrader Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532386A1 (en) 1995-09-01 1997-03-06 Bayerische Motoren Werke Ag Device for tire inflation pressure control systems in motor vehicles
DE19534616B4 (en) 1995-09-18 2007-01-11 Alpha-Beta Electronics Ag Tire pressure monitoring device
DE60024574T2 (en) * 1999-12-20 2006-08-24 Trw Automotive U.S. Llc, Livonia Device and method for checking the operating state of a vehicle tire

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602524A (en) * 1992-02-26 1997-02-11 Mock; Markus Device for monitoring the air-pressure in pneumatic tires fitted on vehicle wheels
US6271748B1 (en) * 1994-08-31 2001-08-07 Andrew John Derbyshire Tyre condition monitoring system
US6169480B1 (en) * 1995-05-26 2001-01-02 Doduco Gmbh Device for measuring vehicle tire pressure
US20010002451A1 (en) * 1995-06-07 2001-05-31 Breed David S. Method and apparatus for controlling a vehicular component
US5838229A (en) * 1995-07-18 1998-11-17 Schrader-Bridgeport International, Inc. Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission and enabling recalibration upon tire rotation or replacement
US6062072A (en) * 1995-08-11 2000-05-16 Dynatron Ag Device for monitoring the air pressure of pneumatic tires of vehicles
US6018993A (en) * 1995-11-17 2000-02-01 Doduco Gmbh Method for monitoring tire pressure
US6181241B1 (en) * 1995-11-17 2001-01-30 Beru Aktiengesellschaft Method of allocating transmitters of a tire pressure monitoring system to a particular vehicle
US5612671A (en) * 1995-12-11 1997-03-18 Delco Electronics Corp. Method of learning tire pressure transmitter ID
US5774047A (en) * 1996-04-12 1998-06-30 Hensel, Iv; Frederick William Tire pressure sensing system including improved switch and location indicator
US6034597A (en) * 1996-08-07 2000-03-07 Ami Doduco Gmbh Process for evaluating the signals from a tire pressure monitoring system
US5883305A (en) * 1996-09-27 1999-03-16 Motorola, Inc. Tire pressure monitoring system
US6112587A (en) * 1997-08-08 2000-09-05 Continental Aktiengesellschaft Method for assigning the wheel position to tire pressure control devices in a tire pressure control system of a motor vehicle
US6252498B1 (en) * 1998-03-03 2001-06-26 Charles Pashayan, Jr. Tire pressure detecting system for a vehicle
US6259361B1 (en) * 1998-07-13 2001-07-10 Prince Corporation Tire monitoring system
US6218936B1 (en) * 1998-08-25 2001-04-17 Pacific Industrial Co. Ltd. Tire air pressure monitoring system
US6304172B1 (en) * 1998-11-27 2001-10-16 Pacific Industrial Co., Ltd. Receiver of tire inflation pressure monitor
US6633229B1 (en) * 1998-12-09 2003-10-14 Beru Aktiengesellschaft Method for assigning identifying elements in signals emitted by transmitters in a tire pressure indicating system to the wheels on which the transmitters are mounted
US6794993B1 (en) * 1998-12-10 2004-09-21 Ralf Kessler Arrangement for transmitting signals from a device monitoring tire pressure on the wheels of a motor vehicle to an evaluation device arranged in a motor vehicle
US6204758B1 (en) * 1999-07-23 2001-03-20 Schrader-Bridgeport International, Inc. System to automatically determine wheel position for automotive remote tire monitoring system
US6581449B1 (en) * 1999-09-15 2003-06-24 The Goodyear Tire & Rubber Company Low pressure warning system for pneumatic tires with RF tags and monitors for each tire
US6580365B2 (en) * 2000-01-14 2003-06-17 Schrader-Bridgeport International, Inc. Method and apparatus for identifying remote sending units in a tire pressure monitor system of a vehicle using secondary modulation of wheel rotation
US6809639B2 (en) * 2000-04-25 2004-10-26 Schrader-Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US6518876B1 (en) * 2000-04-25 2003-02-11 Schrader-Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US6864785B2 (en) * 2000-04-25 2005-03-08 Schrader-Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US6362731B1 (en) * 2000-12-06 2002-03-26 Eaton Corporation Tire pressure monitor and location identification system and method
US6705155B2 (en) * 2000-12-15 2004-03-16 Pacific Industrial Co., Ltd. Apparatus and method for monitoring tire condition
US6340930B1 (en) * 2001-03-07 2002-01-22 Trw Inc. System and method for monitoring a condition of a vehicle tire
US6384720B1 (en) * 2001-03-08 2002-05-07 Trw Inc. System and method for sensing an operating parameter of a vehicle tire
US6489888B1 (en) * 2001-06-29 2002-12-03 Johnson Controls Technology Company Using signal strength to identify tire position
US6882270B2 (en) * 2001-10-29 2005-04-19 Schrader Bridgeport International, Inc. Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US6788193B2 (en) * 2002-03-01 2004-09-07 Lear Corporation System and method for tire pressure monitoring providing automatic tire location recognition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070052519A1 (en) * 2005-09-02 2007-03-08 Gm Global Technology Operations, Inc. Wireless sensing system
WO2007027869A2 (en) * 2005-09-02 2007-03-08 Gm Global Technology Operations, Inc. Wireless sensing system
WO2007027869A3 (en) * 2005-09-02 2009-04-23 Gm Global Tech Operations Inc Wireless sensing system
US7551070B2 (en) 2005-09-02 2009-06-23 Gm Global Technology Operations, Inc. Wireless sensing system
US20080184786A1 (en) * 2007-01-31 2008-08-07 Beru F1 Systems Limited Wheel sensor with valve
US8742913B2 (en) 2007-07-03 2014-06-03 Continental Automotive Systems, Inc. Method of preparing a universal tire pressure monitoring sensor
US8692661B2 (en) 2007-07-03 2014-04-08 Continental Automotive Systems, Inc. Universal tire pressure monitoring sensor
US8751092B2 (en) 2011-01-13 2014-06-10 Continental Automotive Systems, Inc. Protocol protection
US20130038441A1 (en) * 2011-08-09 2013-02-14 Continental Automotive Systems Us, Inc. Protocol Arrangement In A Tire Pressure Monitoring System
US8502655B2 (en) 2011-08-09 2013-08-06 Continental Automotive Systems, Inc. Protocol misinterpretation avoidance apparatus and method for a tire pressure monitoring system
US8742914B2 (en) 2011-08-09 2014-06-03 Continental Automotive Systems, Inc. Tire pressure monitoring apparatus and method
US8576060B2 (en) * 2011-08-09 2013-11-05 Continental Automotive Systems, Inc. Protocol arrangement in a tire pressure monitoring system
US9676238B2 (en) 2011-08-09 2017-06-13 Continental Automotive Systems, Inc. Tire pressure monitor system apparatus and method
US9776463B2 (en) 2011-08-09 2017-10-03 Continental Automotive Systems, Inc. Apparatus and method for data transmissions in a tire pressure monitor
US9024743B2 (en) 2011-08-09 2015-05-05 Continental Automotive System, Inc. Apparatus and method for activating a localization process for a tire pressure monitor
US9259980B2 (en) 2011-08-09 2016-02-16 Continental Automotive Systems, Inc. Apparatus and method for data transmissions in a tire pressure monitor
US20140210606A1 (en) * 2013-01-29 2014-07-31 Ford Global Technologies, Llc Automatic sensor detection
US8878663B2 (en) * 2013-01-29 2014-11-04 Ford Global Technologies, Llc Automatic sensor detection
US9446636B2 (en) 2014-02-26 2016-09-20 Continental Automotive Systems, Inc. Pressure check tool and method of operating the same
US9517664B2 (en) 2015-02-20 2016-12-13 Continental Automotive Systems, Inc. RF transmission method and apparatus in a tire pressure monitoring system
US20160282497A1 (en) * 2015-03-26 2016-09-29 General Electric Company Proximity probe interchange compensation
US10067256B2 (en) * 2015-03-26 2018-09-04 General Electric Company Proximity probe interchange compensation
US10534104B2 (en) 2015-03-26 2020-01-14 General Electric Company Proximity probe interchange compensation
US10220660B2 (en) 2015-08-03 2019-03-05 Continental Automotive Systems, Inc. Apparatus, system and method for configuring a tire information sensor with a transmission protocol based on vehicle trigger characteristics
US10377189B2 (en) 2017-01-03 2019-08-13 Orange Electronic Co., Ltd Preliminary positioning method for a tire pressure monitoring system
US11554618B2 (en) 2019-04-09 2023-01-17 Cub Elecparts Inc. Tire pressure monitoring system for tractor-trailer

Also Published As

Publication number Publication date
US20030080860A1 (en) 2003-05-01
US6882270B2 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
US6882270B2 (en) Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US7423532B2 (en) Determination of wheel sensor position using a single radio frequency detector in an automotive remote tire monitor system
US6864785B2 (en) Determination of wheel sensor position using radio frequency detectors in an automotive remote tire monitor system
US7010968B2 (en) Determination of wheel sensor position using a wireless solution
US6369703B1 (en) Tire pressure monitor and location identification system
US8035500B2 (en) Method and device for allocating triggered transmitters of a tire monitoring system, especially of a tire-pressure monitoring system
EP1419908B1 (en) Method and apparatus for associating tires with tire locations of a vehicle
US6018993A (en) Method for monitoring tire pressure
US7271711B2 (en) Device and method for determining a wheel position
US20060020372A1 (en) System for communicating between a master device and each of slave devices
CN101391563B (en) Tire inflation pressure detecting apparatus
US20030020605A1 (en) Method and apparatus for identifying remote sending units in a tire pressure monitor system of a vehicle using secondary modulation of wheel rotation
US20050033485A1 (en) Tyre pressure monitoring system
US6668636B2 (en) System and method for tire pressure monitoring including tire location recognition
CN101746232A (en) Method and system for associating a tire pressure sensor to a wheel location in an intitiator based tire pressure monitoring system
US6681164B2 (en) System and method for monitoring the wheels of a motor vehicle
US7084751B2 (en) System and method of facilitating training of a tire pressure monitoring system on a vehicle
US6998974B2 (en) Method and system for monitoring the wheels of motor vehicle
US7075419B2 (en) Tire pneumatic pressure monitoring system
US6857310B2 (en) Method and system for determining wheel position
JPH10104103A (en) Tire pressure monitoring apparatus
WO2023067635A1 (en) Method and system for detecting the position of sensors associated to wheels of a vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHRADER ELECTRONICS, INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHRADER-BRIDGEPORT INTERNATIONAL, INC.;REEL/FRAME:025550/0657

Effective date: 20101112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION