US20050133049A1 - Smoking articles and filters including zeolite molecular sieve sorbent - Google Patents

Smoking articles and filters including zeolite molecular sieve sorbent Download PDF

Info

Publication number
US20050133049A1
US20050133049A1 US10/740,585 US74058503A US2005133049A1 US 20050133049 A1 US20050133049 A1 US 20050133049A1 US 74058503 A US74058503 A US 74058503A US 2005133049 A1 US2005133049 A1 US 2005133049A1
Authority
US
United States
Prior art keywords
cigarette
filter
zeolite
molecular sieve
zeolite molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/740,585
Inventor
Jay Fournier
Kent Koller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philip Morris USA Inc
Original Assignee
Philip Morris USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris USA Inc filed Critical Philip Morris USA Inc
Priority to US10/740,585 priority Critical patent/US20050133049A1/en
Assigned to PHILIP MORRIS USA INC. reassignment PHILIP MORRIS USA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOLLER, KENT B., FOURNIER, JAY A.
Publication of US20050133049A1 publication Critical patent/US20050133049A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/166Silicic acid or silicates

Abstract

Filters, smoking articles, and methods for selectively removing one or more selected constituents from mainstream smoke are provided. The filters comprise zeolite BETA. Methods for making cigarette filters and smoking articles, as well as methods for smoking a cigarette, are also provided.

Description

    BACKGROUND
  • Certain filter materials have been suggested for incorporation into cigarette filters, including cotton, paper, cellulose, and certain synthetic fibers. However, such filter materials generally only remove particulate and condensable components from tobacco smoke. Thus, they are usually not optimal for the removal of certain gaseous components from tobacco smoke, e.g., volatile organic compounds.
  • SUMMARY
  • Cigarette filters, smoking articles, and methods for selectively removing selected constituents from mainstream smoke, are provided. In a preferred embodiment, one or more selected constituents are selectively removed from mainstream smoke, to a greater extent than other constituents of the mainstream smoke.
  • The cigarette filters comprise zeolite molecular sieve sorbent capable of selectively removing at least one selected constituent of mainstream smoke. The filters can be incorporated in various smoking articles, including traditional and non-traditional cigarettes. The zeolite molecular sieve sorbent is preferably located in the cigarette filter.
  • The zeolite molecular sieve sorbent may be incorporated in various types of cigarette filters, as well as in one or more cigarette filter parts.
  • In a preferred embodiment, a cigarette filter comprises a molecular sieve sorbent including zeolite BETA. The zeolite BETA is capable of selectively removing at least one of acrolein and 1,3-butadiene from mainstream tobacco smoke.
  • In another embodiment, the zeolite molecular sieve sorbent may optionally be located in a tobacco rod of the smoking article.
  • In another embodiment, methods of smoking a cigarette are provided, which comprise heating or lighting the cigarette to form smoke and drawing the smoke through the cigarette. During smoking of the cigarette, the zeolite molecular sieve sorbent selectively removes one or more selected constituents from mainstream smoke. The methods can be practiced with traditional and non-traditional cigarettes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a cigarette, which can include folded paper containing zeolite molecular sieve sorbent inserted into a hollow portion of a tubular filter element of the cigarette.
  • FIG. 2 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in folded paper and inserted into a hollow portion of a first free-flow sleeve of a tubular filter element next to a second free-flow sleeve.
  • FIG. 3 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in a plug-space-plug filter element.
  • FIG. 4 illustrates another embodiment, which can include zeolite molecular sieve sorbent incorporated in a three-piece filter element having three plugs.
  • FIG. 5 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in a four-piece filter element having a plug-space-plug arrangement, and a hollow sleeve.
  • FIG. 6 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in a three-part filter element having two plugs and a hollow sleeve.
  • FIG. 7 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in a two-part filter element having two plugs.
  • FIG. 8 illustrates another embodiment of a cigarette, which can include zeolite molecular sieve sorbent incorporated in a filter element, which may be used in a smoking article.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Cigarette filters and smoking articles are provided, which comprise a zeolite molecular sieve sorbent that is capable of selectively removing selected constituents from mainstream smoke. Methods for making such cigarette filters and smoking articles, and methods of smoking cigarettes including the zeolite molecular sieve sorbent, are also provided.
  • The term “sorption” denotes filtration through adsorption and/or absorption. Sorption is intended to encompass interactions on the outer surface of the zeolite sorbent, as well as interactions within the pores and channels of the sorbent. In other words, a “sorbent” material has the ability to condense or hold molecules of other substances on its surface and/or the ability to take up other substances, i.e., through penetration of the other substances into its inner structure or into its pores. The term “sorbent” as used herein refers to either an adsorbent, an absorbent, or a substance that can function as both an adsorbent and an absorbent.
  • The term “remove” as used herein refers to adsorption and/or absorption of at least some portion of a selected constituent of mainstream tobacco smoke so that the amount of that constituent is reduced in the mainstream tobacco smoke.
  • The term “mainstream smoke” includes the mixture of gases that passes down the tobacco rod and through the filter end, i.e., the amount of smoke issuing or drawn from the mouth end of a smoking article during smoking of the cigarette. The mainstream smoke contains air that is drawn in through both the lit or heated region of the smoking article, as well as through the paper wrapper.
  • The term “molecular sieve” as used herein refers to a porous material having a porous structure including pores, such as channels or cavities, of molecular-sized dimensions. These materials are capable of sorbing molecules of particular dimensions, while rejecting molecules of larger dimensions.
  • Smoking articles, such as cigarettes, pipes, and cigars, as well as non-traditional cigarettes, are provided. Non-traditional cigarettes include, for example, cigarettes for electrical smoking systems described in commonly-assigned U.S. Pat. Nos. 6,026,820; 5,988,176; 5,915,387; 5,692,526; 5,692,525; 5,666,976; and 5,499,636.
  • Activated carbon has been used in smoking articles as an adsorbent to reduce levels of constituents in the smoke stream. However, activated carbon is a “broadband adsorbent,” i.e., it has a pore structure that removes smoke stream constituents non-selectively. Consequently, activated carbon removes constituents from the smoke stream that are not targeted for removal, e.g., flavor constituents. Further, activated carbon contained in a cigarette filter may become inactivated during storage by the adsorption of volatile compounds, or during smoking by contact with various constituents of mainstream smoke.
  • Accordingly, cigarette filters and smoking articles including a sorbent capable of selectively removing one or more selected constituents from mainstream smoke, and also capable of not removing (i.e., retaining) other constituents in the mainstream smoke, such as flavor constituents, are desired. As described below, certain zeolites can provide both selective removal and retention of mainstream smoke constituents.
  • In preferred embodiments, cigarette filters and smoking articles comprise one or more zeolites. Zeolites include crystalline aluminosilicates having pores, e.g., channels, or cavities of uniform, molecular sized dimensions. Zeolites include natural and synthetic materials. There are many known unique zeolite structures having pores of different sizes and shapes. The size and shape of the pores can significantly affect the properties of these materials with regard to their sorption and separation performance characteristics. Molecules can be separated by zeolites by size and shape effects related to the possible orientation of the molecules or pores, and/or by differences in strength of sorption. By using one or more zeolites having pores, e.g. channels, larger than one or more selected constituents of mainstream smoke, only molecules that are small enough to enter the pores of the zeolite are able to be sorbed.
  • In preferred embodiments, zeolite BETA, and optionally zeolite ZSM-5, can be used as a zeolite molecular sieve sorbent in smoking articles, such as in cigarette filters and tobacco mixtures, for example, tobacco rods of smoking articles. Zeolite ZSM-5 is in the MFI structural classification family and represented by the crystal chemical formula [Nan(AlnSi96-nO192)˜16H2O, with n<27, orthorhombic, Pnma]. Zeolite BETA is in the BEA structural classification family and represented by the crystal chemical formula [Na7(Al7Si57O128) tetragonal, P4122]. Zeolites ZSM-5 and BETA are thermally stable at temperatures up to about 800° C., allowing them to be incorporated in the cigarette filter, and/or tobacco rod of smoking articles. It has been discovered that zeolite ZSM-5 and zeolite BETA can selectively remove selected constituents from mainstream smoke, including acrolein and 1,3-butadiene.
  • The term “microporous molecular sieve” generally refers to a molecular sieve material having a pore size of about 20 Å or less; “mesoporous molecular sieve” generally refers to such material with a pore size of about 20-500 Å; and “macroporous molecular sieve” generally refers to a material with a pore size of about 500 Å or larger. In embodiments, one or more different types of molecular sieves may be used in combination, e.g., one or more microporous molecular sieve and one or more mesoporous molecular sieve.
  • Exemplary microporous zeolites are described in U.S. Pat. Nos. 3,702,886 (zeolite ZSM-5); 2,882,243 (zeolite A); 2,882,244 (zeolite X); 3,130,007 (zeolite Y); 3,055,654 (zeolite K-G); 3,247,195 (zeolite ZK-5); 3,308,069 (zeolite BETA); and 3,314,752 (zeolite ZK-4), each of which is hereby incorporated by reference in its entirety. Natural zeolite is commercially available, for example, from the St. Cloud Mining Company, Truth or Consequences, New Mexico. In addition to zeolite ZSM-5 and zeolite BETA, other zeolite materials described above can be incorporated into cigarette filters and smoking articles.
  • In addition to zeolite BETA and zeolite ZSM-5, other microporous, mesoporous, and/or macroporous molecular sieve sorbents may be used in cigarette filters and smoking articles. Such other materials include, for example, microporous zeolites other than zeolite BETA and zeolite ZSM-5 (e.g., one or more of zeolite A, zeolite X, zeolite Y, zeolite K-G, zeolite ZK-5, zeolite ZK-4, or the like), mesoporous silicates, alumino-phosphates, mesoporous aluminosilicates, and other related porous materials, such as mixed oxide gels, which may optionally further comprise inorganic or organic ions and/or metals. The additional sorbent material can be selected based on the particular constituent(s) of mainstream smoke that are targeted for removal.
  • The pore size of the molecular sieve sorbent can be selected based on the size of one or more selected constituents that are preferably removed from mainstream smoke. In preferred embodiments, zeolite molecular sieve sorbent has an average pore diameter larger than such selected constituents, and smaller than the diameter of at least one tobacco smoke constituent that is desired to be retained in the mainstream smoke. Preferably, the zeolite molecular sieve sorbent has an average pore diameter larger than at least one of acrolein and 1,3-butadiene, but smaller than the diameter of at least one tobacco smoke constituent that is desired to be retained in the mainstream smoke, such as flavor constituents. In preferred embodiments, zeolite molecular sieve sorbent is selected that is capable of removing at least one of 1,3-butadiene and acrolein from mainstream smoke. Other constituents that can be selectively removed include, for example, other aldehydes, such as acetaldehyde and isobutraldehyde, and isoprene.
  • In a preferred embodiment, zeolite molecular sieve sorbent material is incorporated into, onto, or with, a support. The support composition and/or structure is not limited and can include, for example, paper or fibers. In embodiments, the paper can be folded paper inserted into a hollow portion of the cigarette filter. The support is preferably in the form of a sheet material, such as crepe paper, filter paper or tipping paper. However, other suitable support materials, such as organic or inorganic cigarette compatible materials, can be used.
  • In a preferred embodiment, the zeolite molecular sieve sorbent is located in at least a filter portion of a smoking article. Typically, about 10 mg to about 300 mg of the zeolite molecular sieve sorbent can be used in a cigarette filter. For example, within the usual range, amounts such as about 20, 30, 50, 75, 100, 150, 200, or 250 mg of the zeolite molecular sieve sorbent can be used in the cigarette filter.
  • In some embodiments, the zeolite molecular sieve sorbent is located in both the filter and tobacco rod of a cigarette. For example, zeolite BETA and optionally zeolite ZSM-5 can be located in the filter, and at least one of these zeolites can be located in the tobacco rod.
  • Zeolite molecular sieve sorbent capable of selectively removing at least one selected constituent of mainstream smoke can be incorporated in various filter constructions. Exemplary filter structures that can be used include, but are not limited to, a mono filter, a dual filter, a triple filter, a cavity filter, a recessed filter, or a free-flow filter. Mono filters typically contain cellulose acetate tow or cellulose paper inside materials. Pure mono cellulose filters or paper filters offer good tar and nicotine retention, and are highly degradable. Dual filters typically comprise a cellulose acetate mouth side and a pure cellulose, or cellulose acetate segment. In such dual filters, zeolite molecular sieve sorbent is preferably provided on the smoking material, or tobacco side. The length and pressure drop of the two segments of the dual filter can be adjusted to provide optimal adsorption, while maintaining acceptable draw resistance. Triple filters can include mouth and smoking material or tobacco side segments, and a middle segment comprising a material or paper. Zeolite molecular sieve sorbent can preferably be provided in the middle segment. Cavity filters typically include two segments, e.g., acetate-acetate, acetate-paper or paper-paper, separated by a cavity. Zeolite molecular sieve sorbent can preferably be provided in the cavity. Recessed filters include an open cavity on the mouth side, and can incorporate the zeolite molecular sieve sorbent into the plug material. The filters may also optionally be ventilated, and/or comprise additional sorbents (such as charcoal or magnesium silicate), catalysts, flavorants or other additives used in the cigarette filter art.
  • FIG. 1 illustrates a cigarette 2 including a tobacco rod 4, a filter portion 6, and a mouthpiece filter plug 8. Zeolite molecular sieve sorbent can be loaded on, or incorporated into, folded paper 10 inserted into a hollow cavity, such as the interior of a free-flow sleeve 12 forming part of the filter portion 6.
  • FIG. 2 shows a cigarette 2 including a tobacco rod 4 and a filter portion 6. Folded paper 10 is located in the hollow cavity of a first free-flow sleeve 13 located between the mouthpiece filter 8 and a second free-flow sleeve 15. The paper 10 can be used in forms other than a folded sheet. For instance, the paper 10 can comprise one or more individual strips, a wound roll, or the like. A desired amount of zeolite molecular sieve sorbent can be provided in the cigarette filter portion loaded on, or incorporated into, the paper. For example, the zeolite molecular sieve sorbent can be provided by a combination of the coated amount of reagent/area of the paper and/or the total area of coated paper employed in the filter (e.g., greater amounts of zeolite molecular sieve sorbent can be provided simply by using larger pieces of coated paper.) In the cigarettes shown in FIGS. 1 and 2, the tobacco rod 4 and the filter portion 6 are joined together with tipping paper 14. In both cigarettes, the filter portion 6 may be held together by filter overwrap 11.
  • Zeolite molecular sieve sorbent can be incorporated into the filter paper in a number of ways. For example, zeolite molecular sieve sorbent can be mixed with water to form a slurry. The slurry can be coated onto pre-formed filter paper and allowed to dry. The filter paper can then be incorporated into the filter portion of a cigarette in the manner shown in FIGS. 1 and 2. Alternatively, dried paper can be formed into a plug or other shape, and inserted into a filter portion of the cigarette. For example, the paper can be wrapped into a plug shape and inserted as a plug into the interior of a free-flow filter element, such as a polypropylene or cellulose acetate sleeve. In another arrangement, the paper can comprise an inner liner of such a free-flow filter element.
  • In another preferred embodiment, zeolite molecular sieve sorbent is added to the filter paper during the paper-making process. For example, zeolite molecular sieve sorbent can be mixed with bulk cellulose to form a cellulose pulp mixture. The mixture can be then formed into filter paper by known methods.
  • In a further preferred embodiment, zeolite molecular sieve sorbent is incorporated on, or with, fibrous material of the cigarette filter portion itself. Such filter materials include, but are not limited to, fibrous filter materials including paper, cellulose acetate fibers, and polypropylene fibers. An exemplary embodiment is illustrated in FIG. 3, which shows a cigarette 2 including a tobacco rod 4 and a filter portion 6 in the form of a plug-space-plug filter having a mouthpiece filter 8, a plug 16 and a space 18. The plug 16 can comprise a tube or solid piece of material, such as polypropylene or cellulose acetate fibers. The tobacco rod 4 and the filter portion 6 are joined together with tipping paper 14. The filter portion 6 may include a filter overwrap 11 containing traditional fibrous filter material. Zeolite molecular sieve sorbent can be incorporated on the filter overwrap 11, such as by coating. Alternatively or additionally, zeolite molecular sieve sorbent can be incorporated in the plug 16, and/or in the space 18.
  • FIG. 4 shows a cigarette 2 including a tobacco rod 4 and filter portion 6. This arrangement is similar to the cigarette shown in FIG. 3 except the space 18 is filled with granules of zeolite molecular sieve sorbent, or contains a plug 15 made of material, such as fibrous polypropylene or cellulose acetate, containing zeolite molecular sieve sorbent. The plug 16 can be hollow or solid, and the tobacco rod 4 and filter portion 6 are joined together with tipping paper 14. The cigarette also includes a filter overwrap 11.
  • FIG. 5 shows a cigarette 2 including a tobacco rod 4 and a filter portion 6. The filter portion 6 includes a mouthpiece filter 8, a filter overwrap 11, tipping paper 14 joining the tobacco rod 4 and filter portion 6, a space 18, a plug 16, and a hollow sleeve 20. Zeolite molecular sieve sorbent can be incorporated into one or more elements of the filter portion 6. For example, zeolite molecular sieve sorbent can be incorporated into the sleeve 20, or granules of zeolite molecular sieve sorbent can be filled into the space within the sleeve 20. If desired, the plug 16 and sleeve 20 can be made of material, such as fibrous polypropylene or cellulose acetate containing zeolite molecular sieve sorbent. The plug 16 can be hollow or solid.
  • FIGS. 6 and 7 show further versions of the filter portion 6. In FIG. 6, cigarette 2 includes a tobacco rod 4 and filter portion 6. The filter portion 6 includes a mouthpiece filter 8, a filter overwrap 11, a plug 22, and a sleeve 20. Zeolite molecular sieve sorbent can be incorporated in one or more of these filter elements.
  • In the embodiment shown in FIG. 7, the filter portion 6 includes a mouthpiece filter 8 and a plug 24. The plug 24 can be solid or hollow. Zeolite molecular sieve sorbent can be incorporated in at least the plug 24. In the cigarettes shown in FIGS. 6 and 7, the tobacco rod 4 and filter portion 6 are joined together by tipping paper 14.
  • Various techniques can be used to apply zeolite molecular sieve sorbent to filter fibers or other supports. For example, zeolite molecular sieve sorbent can be added to filter fibers before forming them into a cigarette filter rod. Zeolite molecular sieve sorbent can be added to filter fibers in the form of a dry powder or slurry by any suitable method. If zeolite molecular sieve sorbent is applied in the form of a slurry, the fibers are preferably allowed to dry before being formed into a cigarette filter.
  • In another preferred embodiment, zeolite molecular sieve sorbent is employed in a hollow portion of a cigarette filter. For example, as described above, some cigarette filters have a plug-space-plug configuration in which the plugs comprise a fibrous filter material and the space is a void between the two plugs. The void can be filled with zeolite molecular sieve sorbent, such as in powder or particle form. An example of this embodiment is shown in FIG. 3. Zeolite molecular sieve sorbent can be in granular form, or can alternatively be loaded onto or incorporated with a suitable support, such as fibers or threads.
  • In another embodiment, zeolite molecular sieve sorbent is placed in a filter portion of a cigarette for use with a smoking device as described in U.S. Pat. No. 5,692,525, which is hereby incorporated by reference in its entirety. FIG. 8 illustrates one type of construction of a cigarette 100, which can be used with an electrical smoking device. As shown, the cigarette 100 includes a tobacco rod 60 and a filter portion 62 joined by tipping paper 64. The filter portion 62 preferably contains a tubular free-flow filter element 102 and a mouthpiece filter plug 104. The free-flow filter element 102 and mouthpiece filter plug 104 may be joined together as a combined plug 110 with plug wrap 112. The tobacco rod 60 can have various forms incorporating one or more of the following items: an overwrap 71, another tubular free-flow filter element 74, a cylindrical tobacco plug 80 preferably wrapped in a plug wrap 84, a tobacco web 66 comprising a base web 68 and tobacco flavor material 70, and a void space 91. The free-flow filter element 74 provides structural definition and support at the tipped end 72 of the tobacco rod 60. At the free end 78 of the tobacco rod 60, the tobacco web 66 together with overwrap 71 are wrapped about cylindrical tobacco plug 80. Various modifications can be made to a filter arrangement for such a cigarette incorporating the zeolite molecular sieve sorbent.
  • In an embodiment, the zeolite molecular sieve sorbent is incorporated into a filter portion of a non-traditional cigarette. For example, zeolite molecular sieve sorbent can be incorporated in various ways, such as by being loaded on, into, or with, paper or other substrate material, disposed in the passageway of the tubular free-flow filter element 102 therein. Zeolite molecular sieve sorbent may also be used as a liner or a plug in the interior of the tubular free-flow filter element 102. Alternatively, zeolite molecular sieve sorbent can be incorporated into the fibrous wall portions of the tubular free-flow filter element 102. For example, the tubular free-flow filter element or sleeve 102 can be made of a suitable material, such as polypropylene or cellulose acetate fibers. Zeolite molecular sieve sorbent can be mixed with such fibers prior to, or as part of, the sleeve forming process.
  • As in above-described embodiments, zeolite molecular sieve sorbent may be incorporated into more than one component of a filter portion, such as into the tubular free-flow filter element 102 and another component. The filter portion 62 of FIG. 8 can also be modified to create a void space into which zeolite molecular sieve sorbent can be inserted.
  • As explained above, zeolite molecular sieve sorbent can be incorporated in various support materials. When zeolite molecular sieve sorbent is used in filter paper, the particles may have an average particle diameter of up to 100 μm, preferably 2 to 50 μm.
  • When zeolite molecular sieve sorbent is used in granular form, e.g., in a space or void in a filter, larger particles may be used. Such particles preferably have a mesh size of from about 18 to 60 mesh (1000 to 250 microns, U.S. Standard, ASTM E11), and more preferably from about 30 to 60 mesh (600 to 250 microns). To form such particles, larger particles of zeolite material can be broken up into smaller particles having a desired size by any suitable technique, such as milling. The smaller particles can be separated to produce a desired particle size range by any suitable technique, such as sieving.
  • The zeolite molecular sieve sorbent can also be used in monolithic form in cigarette filters. For example, zeolite particles can be formed into a monolithic structure using any suitable binder, e.g., a resin, to bond the zeolite particles together. The monolithic structure can have any suitable shape and size that can be incorporated into a cigarette filter. For example, the monolithic structure can be cylindrical-shaped, disc shaped, or the like. The size of the monolithic structure can be determined based on an effective amount of the zeolite material that is effective to selectively remove one or more selected constituents of mainstream smoke when incorporated in a cigarette.
  • The zeolite molecular sieve material can also be provided in bead form. For example, the material can be loaded on a spherical, substantially spherical, or like-shaped support by any suitable coating process to form beads. The beads preferably have a mesh size of from 18 to 60 mesh, and more preferably from 30 to 60 mesh.
  • The amount of zeolite molecular sieve sorbent provided in the cigarette filter by being incorporated on, into, or with, a suitable support, such as filter paper and/or filter fibers, or placed in a space or void, is dependent on the amount of constituents in the tobacco smoke, as well as the amount of the constituents that is desired to be removed from the smoke. Filter paper and the filter fibers may contain from 10% to 50% by weight of zeolite molecular sieve sorbent to remove the constituents from tobacco smoke, for example.
  • An exemplary embodiment of a method of making a filter comprises incorporating zeolite BETA into a cigarette filter. The zeolite BETA is capable of selectively removing one or more selected constituents from mainstream smoke. Any conventional or modified method of making cigarette filters can be used to incorporate the zeolite BETA.
  • An exemplary embodiment of a method of making cigarettes comprises providing a cut filler to a cigarette making machine to form a tobacco column; placing a paper wrapper around the tobacco column to form a tobacco rod; and attaching a cigarette filter comprising zeolite molecular sieve sorbent to the tobacco rod to form the cigarette.
  • Exemplary suitable types of tobacco materials that can be used include flue-cured, Burley, Maryland or Oriental tobaccos, the rare or specialty tobaccos, and blends thereof. The tobacco material can have any suitable form including, but not limited to, tobacco lamina; processed tobacco materials such as volume expanded or puffed tobacco, processed tobacco stems, such as cut-rolled or cut-puffed stems, reconstituted tobacco materials; or blends thereof. Tobacco substitutes can also be used.
  • In cigarette manufacture, tobacco is normally in the form of cut filler, i.e., in the form of shreds or strands cut into widths ranging from about {fraction (1/10)} inch to about {fraction (1/20)} inch or even {fraction (1/40)} inch. The lengths of the strands range from between about 0.25 inches to about 3.0 inches. The cigarettes may further comprise one or more known flavors or other additives (e.g., burn additives, combustion modifying agents, coloring agents, binders, and the like).
  • Techniques for cigarette manufacture are known, and may be used to incorporate the zeolite molecular sieve sorbent. The resulting cigarettes can be manufactured to any desired specification using standard or modified cigarette making techniques and equipment. The cigarettes may have a length ranging from about 50 mm to about 120 mm. Generally, a regular cigarette is about 70 mm long, a “King Size” is about 85 mm long, a “Super King Size” is about 100 mm long, and a “Long” is usually about 120 mm in length. The circumference is from about 15 mm to about 30 mm in circumference, and preferably around 25 mm. The packing density is typically between the range of about 100 mg/cm3 to about 300 mg/cm3, and preferably 150 mg/cm3 to about 275 mg/cm3.
  • Another embodiment relates to methods of smoking the cigarette described above, which involve heating or lighting the cigarette to form smoke, and drawing the smoke through the cigarette. During smoking of the cigarette, the zeolite molecular sieve sorbent selectively removes one or more selected constituents from mainstream smoke. Preferably at least 10%, 20%, 30%, 40%, 50% or more of the selected constituent is removed from the tobacco smoke by the sorbent.
  • “Smoking” of a cigarette means the heating or combustion of the cigarette to form tobacco smoke. Generally, smoking of a cigarette involves lighting one end of the cigarette and drawing the cigarette smoke through the mouth end of the cigarette, while the tobacco contained therein undergoes a combustion reaction. However, the cigarette may also be smoked by other means. For example, the cigarette may be smoked by heating the cigarette using an electrical heater described, for example, in commonly-assigned U.S. Pat. Nos. 6,053,176; 5,934,289; 5,591,368 or 5,322,075, each of which is incorporated herein by reference in its entirety.
  • EXAMPLE
  • Samples 1-4 are prepared by modifying four industry reference 1R4F cigarettes. Particularly, approximately 100 mg of zeolite NH4-Ferrierite, zeolite NH4-ZSM-5 (zeolite ZSM-5), zeolite H-BETA (zeolite BETA) and zeolite H-Y, respectively, is sieved to a mesh size of about 18 to 40 mesh (1000 to 425 microns), and loaded into a space of a plug-space-plug filter configuration of a 1R4F cigarette. An unmodified 1R4F cigarette and the four modified cigarettes are smoked under FTC conditions (2 second, 35 cm3 puff every 60 seconds). The fourth puff is analyzed using gas chromatography/mass spectrometry. For each of Samples 1-4, the percent delivered of the gas phase smoke constituents 1,3-butadiene, isoprene, acetaldehyde, acrolein, and isobutraldehyde, is calculated in comparison to that of the unmodified 1R4F cigarette. The results are shown in the following Table.
    TABLE
    Percent of Constituent Delivered by
    Modified Cigarette Versus 1R4F Cigarette
    1,3-Buta- Acro- Acetal- Iso- Isobutral-
    diene lein dehyde prene dehyde
    Sample 1 67 21 27 77 56
    (zeolite NH4-
    Ferrierite)
    Sample 2 24  9 21 32 20
    (zeolite ZSM-5)
    Sample 3 65  6 21 35  9
    (zeolite BETA)
    Sample 4 89 12 29 38  5
    (zeolite H-Y)
  • As shown in the Table, Sample 2 containing zeolite ZSM-5 is significantly more efficient in removing 1,3-butadiene (i.e., of delivering a smaller percentage of 1,3-butadiene) than are Samples 1, 3 and 4 containing other zeolites (i.e., 24% versus 67%, 65 % and 89%, respectively). Sample 2 also more selectively removes acrolein than molecular-smaller acetaldehyde and molecular-larger isobutraldehyde (i.e., 9% versus 21% and 20%, respectively). Sample 3 containing zeolite BETA more selectively removes acrolein than acetaldehyde (i.e., 6% versus 21%, respectively).
  • These test results demonstrate that cigarette filters containing zeolite BETA and zeolite ZSM-5 can selectively remove a substantial amount of acrolein from mainstream smoke, and that the inclusion of zeolite ZSM-5 is highly efficient in removing a substantial amount of 1,3-butadiene from mainstream smoke. Accordingly, in an embodiment, zeolite BETA and zeolite ZSM-5 can be used in combination in smoking articles to selectively remove acrolein and 1,3-butadiene. Preferably, other constituents, such as flavor constituents, remain in the mainstream tobacco smoke. The zeolites can be incorporated in the tobacco rod, as well as in the filter.
  • While the invention has been described in detail with reference to preferred embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention.

Claims (27)

1. A cigarette filter comprising zeolite molecular sieve sorbent including zeolite BETA.
2. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is (i) loaded on a support, (ii) incorporated in a support, (iii) incorporated with a support, (iv) in a plug-space-plug arrangement, (v) in bead form, and/or (vi) in monolith form.
3. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent has an average pore size larger than at least one selected constituent of mainstream smoke that passes through the cigarette filter.
4. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent further comprises at least one additional microporous zeolite.
5. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is in particle form having an average particle size of about 250 microns to about 1000 microns, or from about 250 microns to about 600 microns.
6. The cigarette filter of claim 1, which is a mono filter, a dual filter, a triple filter, a cavity filter, a recessed filter, or a free-flow filter.
7. The cigarette filter of claim 2, wherein the support comprises paper or fibers.
8. The cigarette filter of claim 1, wherein the filter comprises cellulose acetate tow, cellulose paper, mono cellulose, mono acetate, or combinations thereof.
9. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is incorporated into at least one cigarette filter part selected from the group consisting of a shaped paper insert, a plug, a space, cigarette filter paper, and a free-flow sleeve.
10. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is incorporated within a plug, or within a free-flow filter element.
11. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is incorporated in at least one of a first tubular filter element adjacent to a mouthpiece filter plug, and a second tubular filter element adjacent to the first tubular element.
12. The cigarette filter of claim 1, wherein the zeolite molecular sieve sorbent is incorporated in at least one of a first filter plug adjacent to a mouthpiece filter plug, and a second filter plug adjacent to the first filter plug.
13. A cigarette comprising a cigarette filter according to claim 1.
14. The cigarette of claim 13, which is a non-traditional cigarette.
15. The cigarette of claim 13, further comprising a tobacco rod including at least one of zeolite ZSM-5 and zeolite BETA.
16. A method of making a cigarette, comprising:
placing a paper wrapper around a tobacco column to form a tobacco rod; and
attaching the cigarette filter of claim 1 to the tobacco rod to form the cigarette.
17. A method of smoking the cigarette of claim 16, comprising:
heating or lighting the cigarette to form smoke; and
drawing the smoke through the cigarette, wherein the zeolite molecular sieve sorbent selectively removes at least one selected constituent from mainstream smoke.
18. The method of claim 17, wherein the zeolite molecular sieve sorbent selectively removes a substantial amount of at least one of acrolein and 1,3-butadiene from the mainstream smoke.
19. A cigarette filter comprising zeolite BETA and zeolite ZSM-5.
20. A cigarette comprising a cigarette filter according to claim 19.
21. The cigarette of claim 20, which is a non-traditional cigarette.
22. The cigarette of claim 20, further comprising a tobacco rod including at least one of zeolite ZSM-5 and zeolite BETA.
23. A cigarette filter comprising zeolite molecular sieve sorbent consisting essentially of zeolite BETA.
24. A cigarette comprising a cigarette filter according to claim 23.
25. The cigarette of claim 24, which is a non-traditional cigarette.
26. The cigarette of claim 24, further comprising a tobacco rod including at least one of zeolite ZSM-5 and zeolite BETA.
27. A method of making a cigarette filter, comprising incorporating zeolite BETA in the filter.
US10/740,585 2003-12-22 2003-12-22 Smoking articles and filters including zeolite molecular sieve sorbent Abandoned US20050133049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/740,585 US20050133049A1 (en) 2003-12-22 2003-12-22 Smoking articles and filters including zeolite molecular sieve sorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/740,585 US20050133049A1 (en) 2003-12-22 2003-12-22 Smoking articles and filters including zeolite molecular sieve sorbent

Publications (1)

Publication Number Publication Date
US20050133049A1 true US20050133049A1 (en) 2005-06-23

Family

ID=34677910

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/740,585 Abandoned US20050133049A1 (en) 2003-12-22 2003-12-22 Smoking articles and filters including zeolite molecular sieve sorbent

Country Status (1)

Country Link
US (1) US20050133049A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047984A1 (en) * 2010-01-11 2013-02-28 Lars Dähne Inhaler system for volatile substances
CN105996119A (en) * 2016-06-22 2016-10-12 云南中烟工业有限责任公司 Composite filter tip and application of composite filter tip in heating and incombustible cigarette
CN114223940A (en) * 2021-12-22 2022-03-25 江西艾斯新材料科技有限公司 Novel zeolite molecular sieve adsorbent cigarette holder filter
US11744964B2 (en) 2016-04-27 2023-09-05 Nicoventures Trading Limited Electronic aerosol provision system and vaporizer therefor

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881770A (en) * 1954-05-27 1959-04-14 Eastman Kodak Co Fibrous tobacco smoke filters
US2882244A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3055654A (en) * 1960-02-03 1962-09-25 Harrison Henry Screw clamp
US3101723A (en) * 1960-11-15 1963-08-27 Philip Morris Inc Fibrous cigarette filter
US3130007A (en) * 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3247195A (en) * 1962-02-21 1966-04-19 Socony Mobil Oil Co Inc Synthetic zeolite and method for preparing the same
US3292636A (en) * 1964-05-04 1966-12-20 Union Carbide Corp Smoking tobacco preparation
US3308069A (en) * 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
US3314752A (en) * 1961-08-30 1967-04-18 Mobil Oil Corp Synthetic zeolite
US3327718A (en) * 1963-10-15 1967-06-27 Brown & Williamson Tobacco Tobacco-smoke filters
US3353543A (en) * 1964-12-02 1967-11-21 American Filtrona Corp Smoke filter
US3572348A (en) * 1968-08-01 1971-03-23 Liggett & Myers Inc Tobacco composition
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3703901A (en) * 1971-03-11 1972-11-28 Liggett & Myers Inc Tobacco composition
US3882243A (en) * 1972-02-04 1975-05-06 Sumitomo Chemical Co Aqueous suspensions of stable non-beta type crystals of higher fatty acid esters of chloramphenicol
US4481958A (en) * 1981-08-25 1984-11-13 Philip Morris Incorporated Combustible carbon filter and smoking product
US5322075A (en) * 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
US5404890A (en) * 1993-06-11 1995-04-11 R. J. Reynolds Tobacco Company Cigarette filter
US5499636A (en) * 1992-09-11 1996-03-19 Philip Morris Incorporated Cigarette for electrical smoking system
US5591368A (en) * 1991-03-11 1997-01-07 Philip Morris Incorporated Heater for use in an electrical smoking system
US5666976A (en) * 1992-09-11 1997-09-16 Philip Morris Incorporated Cigarette and method of manufacturing cigarette for electrical smoking system
US5692525A (en) * 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5692526A (en) * 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5727573A (en) * 1995-05-03 1998-03-17 F. J. Burrus Sa Smoker's article
US5934289A (en) * 1996-10-22 1999-08-10 Philip Morris Incorporated Electronic smoking system
US6053176A (en) * 1999-02-23 2000-04-25 Philip Morris Incorporated Heater and method for efficiently generating an aerosol from an indexing substrate
US6074974A (en) * 1995-07-31 2000-06-13 Korea Research Institute Of Chemical Technology Manufacturing method of granulated complex molecular sieve composition having multi-functions
US6209547B1 (en) * 1998-10-29 2001-04-03 Philip Morris Incorporated Cigarette filter
US6814786B1 (en) * 2003-04-02 2004-11-09 Philip Morris Usa Inc. Filters including segmented monolithic sorbent for gas-phase filtration

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882244A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US2881770A (en) * 1954-05-27 1959-04-14 Eastman Kodak Co Fibrous tobacco smoke filters
US3055654A (en) * 1960-02-03 1962-09-25 Harrison Henry Screw clamp
US3101723A (en) * 1960-11-15 1963-08-27 Philip Morris Inc Fibrous cigarette filter
US3130007A (en) * 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3314752A (en) * 1961-08-30 1967-04-18 Mobil Oil Corp Synthetic zeolite
US3247195A (en) * 1962-02-21 1966-04-19 Socony Mobil Oil Co Inc Synthetic zeolite and method for preparing the same
US3327718A (en) * 1963-10-15 1967-06-27 Brown & Williamson Tobacco Tobacco-smoke filters
US3308069A (en) * 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
US3292636A (en) * 1964-05-04 1966-12-20 Union Carbide Corp Smoking tobacco preparation
US3353543A (en) * 1964-12-02 1967-11-21 American Filtrona Corp Smoke filter
US3572348A (en) * 1968-08-01 1971-03-23 Liggett & Myers Inc Tobacco composition
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3703901A (en) * 1971-03-11 1972-11-28 Liggett & Myers Inc Tobacco composition
US3882243A (en) * 1972-02-04 1975-05-06 Sumitomo Chemical Co Aqueous suspensions of stable non-beta type crystals of higher fatty acid esters of chloramphenicol
US4481958A (en) * 1981-08-25 1984-11-13 Philip Morris Incorporated Combustible carbon filter and smoking product
US5591368A (en) * 1991-03-11 1997-01-07 Philip Morris Incorporated Heater for use in an electrical smoking system
US5322075A (en) * 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
US5988176A (en) * 1992-09-11 1999-11-23 Philip Morris Incorporated Cigarette for electrical smoking system
US6026820A (en) * 1992-09-11 2000-02-22 Philip Morris Incorporated Cigarette for electrical smoking system
US5915387A (en) * 1992-09-11 1999-06-29 Philip Morris Incorporated Cigarette for electrical smoking system
US5666976A (en) * 1992-09-11 1997-09-16 Philip Morris Incorporated Cigarette and method of manufacturing cigarette for electrical smoking system
US5692525A (en) * 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5692526A (en) * 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5499636A (en) * 1992-09-11 1996-03-19 Philip Morris Incorporated Cigarette for electrical smoking system
US5568819A (en) * 1993-06-11 1996-10-29 R. J. Reynolds Tobacco Company Cigarette filter
US5404890A (en) * 1993-06-11 1995-04-11 R. J. Reynolds Tobacco Company Cigarette filter
US5727573A (en) * 1995-05-03 1998-03-17 F. J. Burrus Sa Smoker's article
US6074974A (en) * 1995-07-31 2000-06-13 Korea Research Institute Of Chemical Technology Manufacturing method of granulated complex molecular sieve composition having multi-functions
US5934289A (en) * 1996-10-22 1999-08-10 Philip Morris Incorporated Electronic smoking system
US6209547B1 (en) * 1998-10-29 2001-04-03 Philip Morris Incorporated Cigarette filter
US6053176A (en) * 1999-02-23 2000-04-25 Philip Morris Incorporated Heater and method for efficiently generating an aerosol from an indexing substrate
US6814786B1 (en) * 2003-04-02 2004-11-09 Philip Morris Usa Inc. Filters including segmented monolithic sorbent for gas-phase filtration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047984A1 (en) * 2010-01-11 2013-02-28 Lars Dähne Inhaler system for volatile substances
US9682203B2 (en) * 2010-01-11 2017-06-20 Surflay Nanotec Gmbh Inhaler system for volatile substances
US11744964B2 (en) 2016-04-27 2023-09-05 Nicoventures Trading Limited Electronic aerosol provision system and vaporizer therefor
CN105996119A (en) * 2016-06-22 2016-10-12 云南中烟工业有限责任公司 Composite filter tip and application of composite filter tip in heating and incombustible cigarette
CN114223940A (en) * 2021-12-22 2022-03-25 江西艾斯新材料科技有限公司 Novel zeolite molecular sieve adsorbent cigarette holder filter

Similar Documents

Publication Publication Date Title
US20170042220A1 (en) Method of Manufacturing Smoking Article With Activated Carbon Sorbent and Sodium Bicarbonate-Treated Fibers
KR101891354B1 (en) Smoking article including alkanoylated glycoside and method of making
US8114475B2 (en) Adsorbents for smoking articles comprising a non-volatile organic compound applied using a supercritical fluid
US7503960B2 (en) Smoking articles and filters with carbon fiber composite molecular sieve sorbent
AU2008340634B2 (en) Filter including randomly-oriented fibers for reduction of particle breakthrough
KR100908752B1 (en) Cigarettes and filters with added flavoring downstream
US8286642B2 (en) Temperature sensitive powder for enhanced flavor delivery in smoking articles
US6814786B1 (en) Filters including segmented monolithic sorbent for gas-phase filtration
US7370657B2 (en) Activated carbon-containing sorbent
US8439047B2 (en) Composite mesoporous/microporous materials and their use in smoking articles for removing certain gas phase constituents from tobacco smoke
US6863074B2 (en) Cigarette filters comprising unfunctionalized porous polyaromatic resins for removing gas phase constituents from mainstream tobacco smoke
US20160219928A1 (en) Smoking article having carbon dioxide delivery technology for sensorially improved carbon filtration and method of making
CN101404902A (en) Gamma cyclodextrin flavoring-release additives
US20120247491A1 (en) Smoking articles comprising copper-exchanged molecular sieves
US11160305B2 (en) Additive releasing materials
US7448392B2 (en) Smoking articles and filters with carbon-coated molecular sieve sorbent
US7610920B2 (en) Thiol-functionalized sorbent for smoking articles and filters for the removal of heavy metals from mainstream smoke
US20050133049A1 (en) Smoking articles and filters including zeolite molecular sieve sorbent

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHILIP MORRIS USA INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOURNIER, JAY A.;KOLLER, KENT B.;REEL/FRAME:015477/0469;SIGNING DATES FROM 20040414 TO 20040610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION