Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050125161 A1
Publication typeApplication
Application numberUS 10/651,991
Publication date9 Jun 2005
Filing date2 Sep 2003
Priority date11 Oct 2000
Also published asUS7162371
Publication number10651991, 651991, US 2005/0125161 A1, US 2005/125161 A1, US 20050125161 A1, US 20050125161A1, US 2005125161 A1, US 2005125161A1, US-A1-20050125161, US-A1-2005125161, US2005/0125161A1, US2005/125161A1, US20050125161 A1, US20050125161A1, US2005125161 A1, US2005125161A1
InventorsJohn Cairney, Nanfei Xu
Original AssigneeInstitute Of Paper Science And Technology, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Differentially-expressed conifer cDNAs, and their use in improving somatic embryogenesis
US 20050125161 A1
Abstract
The invention relates to a method for staging embryos of plants. In particular, this invention relates to a method for creating a relational database by determining transcript levels of sets of genes expressed at predetermined stages in embryo development. This approach creates a method by which embryos of unknown stage development can be determined by comparisons between expression levels of those embryos to the expression levels found in the database. This approach further allows rapid identification of transcripts in an embryo to be staged by the utilization of probes corresponding to cDNAs comprising the database. Additionally, this invention relates to a method for selecting advantageous plant clones for future propagation. Specifically, this method relates to an approach to link the biochemical condition of an embryo to current culture conditions and thus provides a method for enhancing conditions to produce embryos with a desired biochemical state.
Images(14)
Previous page
Next page
Claims(61)
1. A relational database comprising the data of Table I.
2. A method of staging embryos comprising:
a) providing at least one embryo;
b) detecting the expression in the embryo of at least one RNA transcript of Table I; and
c) correlating the expression of said transcript to one or more embryonic stages.
3. The method of claim 2 wherein at least two RNA transcripts are detected or determined and correlated to one or more embryonic stages.
4. The method of claim 2 wherein expression of the at least one RNA transcript is analyzed by hybridization with at least one probe of Table I.
5. The method of claim 2 wherein expression of the at least one RNA transcript is analyzed by hybridization with a variant of at least one probe of Table I.
6. The method of claim 5 wherein said variant hybridizes to at least one probe of Table I under conditions of high stringency.
7. The method of claim 5 wherein said variant hybridizes to at least one probe of Table I under conditions of moderate stringency.
8. The method of claim 2 wherein expression of at least one RNA transcript is detected or determined by at least one member of the group consisting of PCR, Northern Analysis, and in situ hybridization.
9. The method of claim 2 wherein expression of said at least two RNA transcripts are detected by a DNA array.
10. A database comprising a multiplicity of nucleotide sequences shown in any one of Table I, including variants thereof, wherein said variants hybridize under conditions of high stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-327.
11. The database of claim 10 wherein said variants hybridize under conditions of moderate stringency.
12. A DNA array comprising a multiplicity of nucleotide sequences shown in Table I, including variants thereof, wherein said variants hybridize under conditions of high stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-327.
13. The DNA array of claim 12 wherein said variants hybridize under conditions of moderate stringency.
14. A method for staging plant embryos comprising:
a) selecting total RNA from a multiplicity of embryos of known developmental age;
b) correlating the embryonic expression pattern to the developmental age to develop a relational database;
c) determining levels of expression from embryos of unknown developmental age by hybridization to a DNA array comprising a multiplicity of the nucleotide sequences shown in any one of SEQ ID NOS: 1-327;
d) correlating the expression pattern from step 3 to the relational database to determine developmental stage for the unknown embryo.
15. The method of claim 14 wherein the embryos of step 1) are zygotic embryos.
16. The method of claim 14 further comprising the step of altering the embryonic growth conditions to approximate the expression pattern of zygotic embryos.
17. An isolated nucleic acid variant of the nucleotide sequence shown in any one of SEQ ID NOS: 1-334, wherein said variant hybridizes under conditions of moderate stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-334.
18. An isolated polypeptide encoded by a nucleic acid molecule of claim 17.
19. An isolated nucleic acid encoding the polypeptide of claim 18.
20. Antibodies that specifically bind to the peptide of claim 18.
21. The antibodies of claim 20, wherein said antibodies are monoclonal.
22. A recombinant vector that directs the expression of a nucleic acid of claim 17.
23. A host cell transformed with the vector of claim 22.
24. The host cell of claim 23, wherein the host is a somatic pine embryo.
25. A method for staging plant embryos comprising:
a) selecting total RNA from at least one embryo of known developmental age;
b) determining the level of expression of a multiplicity of genes which hybridize to one or more of SEQ ID NOS: 1-327;
c) correlating the known developmental ages of the embryos from step 1) with the profile of expression measured in step 2);
d) applying the correlation of step 3) to a sample of embryo RNA from embryos to be staged; and
e) determining the embryo stage.
26. The method of claim 25, wherein the measurement of gene expression is by RT-PCR.
27. The method of claim 25, wherein the measurement of gene expression is by nucleic acid hybridization.
28. The method of claim 25, wherein the measurement of gene expression is by determining the level of protein expression.
29. The method of claim 28, wherein protein expression is measured by antibody binding.
30. A method for selecting advantageous plant clones comprising:
a) selecting one or more samples of embryonic RNA from multiple clones of plants;
b) determining that at least one sampled clone has an advantageous characteristic;
c) comparing the embryonic levels of expression of genes which hybridize to one or more of SEQ ID NOS: 1-327 in samples from the advantageous clone with expression levels in at least one clone that does not show the advantageous characteristic; and
d) selecting additional clones which show an embryonic gene expression pattern more similar to that of the advantageous clone than to the pattern of at least one clone that does not show the advantageous characteristic.
31. Method of claim 30 where the clones to be sampled or compared are from about the same developmental age.
32. Method of claim 31 where the development age is visually detected.
33. The method of claim 30, wherein the measurement of gene expression is by RT-PCR.
34. The method of claim 30, wherein the measurement of gene expression is by nucleic acid hybridization.
35. The method of claim 30, wherein the measurement of gene expression is by determining the level of protein expression.
36. The method of claim 35, wherein protein expression is measured by antibody binding.
37. A method of determining embryo fitness comprising:
a) creating a relational database with RNA expression values for genes listed in Table I for embryos of known developmental stages;
b) isolating total RNA from embryos of unknown stage development;
c) measuring expression levels of genes identified in Table I from the solated total RNA; and
d) correlating the database of step 1) with the pattern of expression determined in steps 2) and 3) to assess proper embryo development.
38. The method of claim 37, wherein the measurement of gene expression is by RT-PCR.
39. The method of claim 37, wherein the measurement of gene expression is by nucleic acid hybridization.
40. The method of claim 37, wherein the measurement of gene expression is by determining the level of protein expression.
41. The method of claim 40, wherein protein expression is measured by antibody binding.
42. A method for selecting advantageous growth conditions for embryo development comprising:
a) determining RNA expression profiles for staged embryos under control culture conditions;
b) altering culture conditions;
c) determining RNA expression profiles for staged embryos under altered culture conditions; and
d) correlating culture change to developmental effect in embryo.
43. The method of claim 42, wherein conditions are selected which produce RNA expression profiles most closely approximating late-stage embryo profiles.
44. The method of claim 42, wherein the culture conditions are altered by operatively linking one or more stage-specific embryo promoter(s) to one or more sense or antisense nucleic acid molecules.
45. The method of claim 42, wherein the culture conditions are altered by operatively linking one more stage-specific embryo promoter(s) selected from SEQ ID NOS: 328-334 to one or more sense or antisense nucleic acid molecules.
46. The method of claim 42, wherein the change in expression profiles is correlated by a relational database.
47. A recombinant nucleic acid molecule encoding a product during embryo development comprising:
a) a first nucleic acid sequence which is the LP2-3 promoter; and
b) a second nucleic acid sequence encoding a product,
wherein the first nucleic acid is operatively linked to the second nucleic acid molecule whereby its expression is directed by the promoter sequence.
48. The recombinant nucleic acid molecule of claim 47 wherein the second nucleic acid sequence encodes for GFP, or a variant of GFP.
49. The recombinant nucleic acid molecule of claim 48 wherein the second nucleic acid sequence is linked to one or more additional nucleic acid molecules.
50. The recombinant nucleic acid molecule of claim 49 wherein the additional molecule encodes a protein product normally expressed, by a developing embryo at a known stage.
51. The recombinant nucleic acid molecule of claim 47 wherein the second nucleic acid sequence encodes an embryo-derived molecule.
52. The recombinant nucleic acid molecule of claim 51 embryo-derived molecule is stage-specific.
53. A plant cell comprising the recombinant nucleic acid molecule of claim 47.
54. A method for producing a protein product during embryo development comprising:
a) operatively linking one more stage-specific embryo promoter(s) to one or more nucleic acid molecules that encode a protein product,
b) delivering construct to developing embryos.
55. The method of claim 54 wherein the operatively linked nucleic acid molecule is a reporter or indicator gene.
56. The method of claim 54 wherein the operatively linked nucleic acid molecule is GFP, or a variant of GFP
57. The method of claim 54 wherein at least one stage-specific promoter is selected from SEQ ID NOS: 328-334.
58. A method for staging embryos comprising:
a) providing one or more stage-specific embryo promoter(s) operatively linked to one or more nucleic acid molecules that encode a protein product to developing embryos,
b) monitoring expression of the protein product as the embryo matures through stage in which promoter functions.
59. The method of claim 58 wherein the operatively linked nucleic acid molecule is a reporter or indicator gene.
60. The method of claim 58 wherein the operatively linked nucleic acid molecule is GFP, or a variant of GFP.
61. The method of claim 58 wherein at least one stage-specific promoter is selected from SEQ ID NOS: 328-334.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims benefit of priority of provisional application U.S. Ser. No. 60/239,250, filed Oct. 11, 2000, and claims benefit of priority of provisional application U.S. Ser. No. 60/260,882, filed Jan. 12, 2001.

FIELD OF THE INVENTION

The present invention relates to a relational database of cDNA molecules, including those corresponding to Loblolly Pine Major Intrinsic Protein (MIP), which are differentially expressed during plant embryogenesis. The present invention further relates to the use of DNA arrays for evaluating gene expression in somatic and zygotic embryos. The invention encompasses related nucleic acids, proteins, antigens, and antibodies derived from these cDNAs as well as the use of such molecules for the staging, characterization, and manipulation of plant embryogenesis, in particular conifer embryogenesis. The cDNAs and related nucleic acids, proteins, antigens, and antibodies derived from these cDNAs are useful in the design, selection, and cultivation of improved crops, specifically including coniferous trees, which provide raw materials for paper and wood products.

BACKGROUND OF THE INVENTION

The world demand for paper is expected to increase nearly 50% by the year 2010 (McNutt and Rennel, Pulp Paper Intern 39: 48 (1997)). The United States' forest products industry faces a great challenge in order to keep pace with the growing demand for paper. This challenge is made greater by the decreasing availability of a forest land-base, resulting from environmental restrictions and urban growth, from which to harvest timber resources. Additionally, valuable wood resources are lost to the environmental stresses and biotic diseases. Consequently, the push to secure a renewable and sustainable source of raw material for paper and other wood related products has become an important priority for the forest products industry.

Current forestry related research and development is focused on creating sustainable fiber farms or tree plantations. Farming trees with elite germplasms will increase growth rates and yields of wood per acre. However, creating improved tree stock requires the ability to identify and generate genetically superior trees and a way to propagate such superior trees without diluting their genetic quotient.

A. Breeding and Selection

Addressing the need to propagate genetically superior trees without genetic diminution demands full research attention. Traditional methods of tree propagation relied on selected breeding programs to achieve genetic gain, i.e., the development of a strain, sub-strain, or line having any heritable and economically valuable characteristic or combination of characteristics not found in the parents. Based on the results of progeny tests, superior maternal trees are selected and used in “seed orchards” for mass production of genetically improved seed. The genetic gain in such an open-pollinated sexual propagation strategy is, however, limited by the breeder's inability to control the paternal parent. Additional gains can also be achieved by control-pollination of the maternal tree with pollen from individual trees whose progeny have demonstrated superior growth characteristics. Nevertheless, even under controlled conditions where both parents of each seed are the same, sexual propagation results in a “family” of seeds, i.e., siblings, comprised of many different genetic combinations. As not all genotype combinations are favorable, the genetic gain in any particular progeny is frequently offset and obscured by the genetic variation among sibling seeds and those seedlings retaining undesirable or previously masked pre-cross traits.

In addition to inherent genetic limitations of a traditional breeding programs, large-scale production of control pollinated seeds is also expensive. Consequently, economic and biological limitations of large-scale seed production has lead the industry to turn towards methods of asexual reproduction, such as grafting, vegetative propagation and micropropagation, as more viable alternatives.

B. Asexual (Clonal) Propagation

Asexual propagation permits the application of very high selection intensity, resulting in the propagation of only those progeny showing a high genetic gain potential. These highly desirable progeny can have unique genetic combinations that result in superior growth and performance characteristics. Thus, with asexual propagation it is possible to genetically select individuals while avoiding a concomitant reduction of genetic gain due to intra-familial variation.

Asexual propagation of trees can be accomplished currently by grafting, vegetative propagation, and micropropagation. Grafting, widely used to propagate select individuals in limited quantities for seed orchard establishment, is not applicable to large-scale production for reforestation. Vegetative propagation, achieved by the rooting of cuttings, and micropropagation by somatic embryogenesis, currently hold the most potential for reforestation of conifers. Although vegetative propagation by rooted cuttings can be achieved in many coniferous species, large-scale production via this method is extremely costly due to difficulties in automating and mechanizing the process, not to mention the need for tremendous quantities of stock tissue. This propagation method is still further limited by the fact that the rooting potential of stock plants decrease with time, making it difficult to serially propagate from select genotypes over extended periods of time.

Micropropagation is the most promising method of asexual propagation for mass plantings. This process involves the production of somatic embryos in vitro from minute pieces of plant tissue or individual cells. The embryos are referred to as somatic because they are derived from the somatic (vegetative) tissue, rather than from the sexual process. Both vegetative propagation and micropropagation have the potential to capture all genetic gain of highly desirable genotypes. However, unlike conventional vegetative propagation methods, somatic embryogenesis is amenable to automation and mechanization, making it highly desirable for large-scale production of planting stock for reforestation. Moreover, somatic embryogenesis is particularly amenable to high intensity selection of a large number of clones. These advantages are compounded by the ability to safely preserve somatic embryogenic cultures in liquid nitrogen for long-term storage. Consequently, long-term cryogenic preservation offers immense advantages over other vegetative propagation systems that attempt to maintain the juvenility of stock plants. Techniques for somatic embryogenesis in a wide variety of plant species are well known in the art; exemplary methods for performing somatic embryogenesis in conifers are taught in U.S. Pat. Nos.: 5,036,007; 5,236,841; 5,294,549; 5,413,930; 5,491,090; 5,506,136; 5,563,061; 5,677,185; 5,731,203; 5,731,204; and 5, 856,191, herein incorporated by reference in their entirety.

Thus, somatic embryogenesis has great potential for clonal production of conifer embryos to meet the increased demands of the pulp and paper industry. Assessment of embryo quality, however, needs improvement. The process of creating better tree stock begins with understanding the process of tree development from embryogenesis through full maturation.

In general, plant tissue culture is the broad science of growing plant tissues on or in a nutrient medium containing minerals, sugars, vitamins and plant hormones. By adjusting the composition of the media, cultured tissues can be induced to grow or differentiate into specific cell types or organs. “Somatic embryogenesis” is a type of plant tissue culture where a piece of a donor plant is excised, cultured and induced to form multiple embryos. An embryo is a discrete mass of cells with a well-defined structure that is capable of growing into a whole plant.

The methods generally in use for somatic embryogenesis today involve several steps. Prior to the tissue culture process, a suitable “explant” is harvested. A typical explant in conifer somatic embryogenesis is the “megagametophyte”, a haploid nutritive tissue of the conifer seed, which is extracted from the ovule of a pollinated female cone. This ovule contains single or multiple zygotic seed embryos. In the seeds of many coniferous species, one or more genetically unique embryos naturally undergo a process called cleavage polyembryony, where a zygotic embryo grows and divides to form a small clones of embryos.

The first step in somatic embryogenesis is the initiation step. The explant is placed on a suitable media. When the explant is an ovule, a process called extrusion occurs. Extrusion involves the emergence or expulsion of a zygotic embryo or multiple embryos and embryogenic tissue out of the megagametophyte. If culture conditions are suitable, initiation proceeds and the extruded embryo or embryos undergo the process of cleavage polyembryony. This results in the formation of early stage somatic embryos in a glossy, mucilaginous mass.

After embryogenic cultures are initiated, the somatic embryos are transferred to a second medium with an appropriate composition of plant hormones and other factors to induce the somatic embryos to multiply. In the multiplication stage, cultures can double up to 2-6 times in one week. Once large numbers of embryos are obtained in the multiplication stage, the embryos are moved to a development and maturation medium. Here, the correct balance of plant hormones and other factors will induce the early-stage embryos to mature into late stage embryos. Following the maturation and development stage, embryos are germinated to form small seedlings. These seedlings are then acclimated for survival outside of the culture vessel. After acclimation, the seedlings are ready for planting.

The relative ability to propagate plants by somatic embryogenesis can vary greatly between species. Among conifers, for example, spruce (Picea) species and Douglas fir are easily propagated, while Pinus species are much more difficult. Many Pinus species, including Loblolly pine (Pinus taeda), do not readily initiate embryonic cultures. Typical initiation frequencies between 1% and 12% are reported for various Pinus species (Becwar et al., For. Sci. p1-18 (1988), Jain et al., Plant Sci. 65:233-241 (1989), Becwar et al., Can. J. For. Res. 20:810 (1990), Li and Huang, J. Tissue Cult. Assoc. 32:129 (1996)). Laine and David, (Plant Sci. 69:215 (1990)), however, were able to obtain high frequencies of initiation (up to 59%) in Pinus caibaea, suggesting that not all Pinus species are recalcitrant. Also, one earlier report described initiation frequencies of 54% in White pine (Pinus strobus). Finer et al., Plant Cell Rep. 8:203 (1989). However, other workers were not able to duplicate this success. Michler et al., Plant Sci. 77:111 (1991). The results in the literature demonstrate the recalcitrance of Pinus species, especially Loblolly pine, in regeneration by somatic embryogenesis.

Nevertheless, once this process is understood from the standpoint of developmental genetics, breeders will then have the appropriate tools to monitor, intervene, and improve both the regeneration frequency and the overall quality of tree stock through genetic engineering. For example, both environmental requirements and responsiveness of a developing embryo change as the embryo passes various developmental milestones. Consequently, accurate and timely knowledge of the developmental stage of an embryonic culture would allow the skilled practitioner to beneficially adjust the growth media components and other environmental factors to achieve optimal embryo survival, growth, and maturation. In addition, an understanding of developmentally regulated genes would allow for early selection of advantageous clones and provide tools for developmentally regulated transgenic expression systems.

Currently, a reasonable determination of the precise developmental stage of an embryo requires a practiced, physical familiarity with the morphological appearance of embryos at different stages, which is further complicated by the presence of morphological variations between species. Consequently, visual determination is performed best by experts in the field. Thus, there is a need in the art for a staging method which can be reliably practiced by the ordinary practitioner. The current invention will allow one to stage embryos based on a relational database system profiling gene expression patterns instead of physical morphological differences, thereby permitting one less skilled in the art of visual staging to biologically determine the stages of embryogenesis.

The traditional morphological staging method provides only a crude indication of the underlying biochemical condition or state of an embryo. This level of information is insufficient for refining culture conditions, including media formulations, or for selecting potentially advantageous embryo clones for further development. Thus, there is a need in the art for a more sensitive staging method that precisely defines the physiological age, health, growth requirements, and potential fitness of a particular embryo. The current invention will allow definitive staging significantly beyond that currently practiced in the art, and provides a detailed analysis of the biochemical state and potential fitness of an embryo by comparison to developed relational database profiles.

Visual staging methods depend on morphological markers to assign a numerical stage of 1-9 to an embryo. Nevertheless, it is well accepted that visually undetectable developmental changes occur in an embryo after it reaches stage 9. The current invention is particularly useful in providing means for monitoring and evaluating the developmental state of these older embryos, as genetic responses occur and are detectable up to and through an adult tree's life.

There further exists in the art a need for information regarding the proteins, genes, and gene expression patterns in plant embryo development, as well as a more thorough understanding of how this information relates to the physiology, developmental potential, and genetic quotient of a plant embryo. The relational database system provides a platform for which to monitor individual gene expression levels during embryo development while directly correlating expression with, for example, environmental conditions, age, and embryo fitness, as well as the protein identification achieved by BLAST searches of publicly available databases (i.e., GenBank) for desirable genes. Accordingly, the present invention therefore provides the additional ability to correlate the direct, global gene expression response within the embryo system to a typically non-expressing gene driven by a stage-specific promoter.

SUMMARY OF THE INVENTION

The present invention addresses these needs by providing in a relational database format nucleic acid and protein sequences that are differentially expressed during various stages of plant embryogenesis. The invention encompasses a set of isolated nucleic acid molecules comprising the DNA sequence of any one of SEQ ID NOS: 1-334 and nucleic acid molecules related or complementary to any one of SEQ ID NOS: 1-334. (See Table I) As such, the invention includes both single-stranded and double-stranded RNA and DNA nucleic acids, including variants thereof. The nucleic acids of the invention can be used as an expression template in the form of DNA arrays, including for example, gene arrays, DNA chips, and dot array Southerns, for which to compare and evaluate expression in test samples. (See Table II) The nucleic acids of the invention can be further used as probes to detect the presence or level of both single-stranded and double-stranded RNA and DNA encoding variants of polypeptides or fragments of polypeptides encompassed by the invention. The nucleic acids of the invention can be further used as promoters for the expression of sense and antisense molecules at specific stages of embryo development. Data acquired through the use of the present invention can in turn be provided to the relational database for further development.

Isolated nucleic acid molecules that hybridize to a denatured, double-stranded DNA comprising the DNA sequence of any one of SEQ ID NOS: 1-334 under conditions of moderate or high stringency are also encompassed by the invention. The invention further encompasses synthetic and naturally-occurring variants of the nucleic acids described in SEQ ID NOS: 1-334, for example, isolated nucleic acid molecules derived by in vitro mutagenesis from SEQ ID NOS: 1-334. In vitro mutagenesis would include numerous techniques known in the art including, but not limited to, site-directed mutagenesis, random mutagenesis, and in vitro nucleic acid synthesis.

The invention also encompasses related molecules (variants) including isolated nucleic acid molecules degenerate from SEQ ID NOS: 1-334 as a result of the genetic code, for example, naturally-occurring or synthetic allelic variants of the genes encoding SEQ ID NOS: 1-334. Such related molecules also encompass both smaller and larger nucleic acids that contain sufficient sequence to support hybridization to any of SEQ ID NOS: 1-334 under conditions of moderate or high stringency. Consequently, recombinant vectors, including those that direct the expression of these nucleic acid molecules and host cells transformed or transfected with these vectors are herein defined as variants and are encompassed by the invention.

Another embodiment of this invention is the production of transgenic vectors and transgenic plants comprising vectors or other nucleic acids comprising any one of SEQ ID NOS: 1-334 and related molecules. Particularly preferred are those capable of expressing polypeptides or peptides encoded by any of SEQ ID NOS: 1-327. In a preferred embodiment, the transgene comprises SEQ ID NO: 327, or a variant thereof.

SEQ ID NO: 327 encodes a protein which corresponds to a novel Loblolly pine homolog of the plant Major Intrinsic Protein (MIP) family. MIPs comprise a large family of related proteins that function as membrane channels for the transport of water and possibly ions across cellular membranes. Henceforth, the encoded protein of SEQ ID NO: 327 may be referred to as Loblolly MIP. Variants, including naturally-occurring and artifactually-programmed allelic variants, vectors, and other nucleic acids which hybridize to SEQ ID NO: 327 under conditions of moderate or high stringency are encompassed by the invention. Also encompassed are plant cells, seeds, embryos and trees, transgenic for loblolly pine MIP, and variants thereof.

The invention also encompasses isolated polypeptides, or fragments thereof, encoded by any one of the nucleic acid molecules of SEQ ID NOS: 1-327, including variants thereof. The invention further encompasses the use of these peptide sequences as markers for staging, monitoring, and selecting embryos and embryo cultures. The invention also encompasses methods for the production of these polypeptides or fragments thereof including culturing a host cell under conditions promoting expression and recovering the polypeptide or peptide from the culture medium. In particular, the expression of polypeptides or peptides encoded by SEQ ID NOS: 1-327 in viral vectors, bacteria, yeast, plant, and animal cells is encompassed by the invention. Isolated polyclonal or monoclonal antibodies that bind to peptides encoded by SEQ ID NOS: 1-327 are also encompassed by the invention.

Further encompassed by this invention are methods for using the nucleic acid molecules of any one of SEQ ID NOS: 1-327 to obtain full length cDNA and genomic sequences of the corresponding genes, including cognate, homologous, or otherwise related genetic sequences, which hybridize to any of SEQ ID NOS: 1-327 under conditions of moderate or high stringency. Also provided by this invention are oligonucleotides derived from any one of SEQ ID NOS: 1-334 that can be used as probes and/or as primers in PCR, RT-PCR, and other assays to detect the presence or level of the nucleic acids of SEQ ID NOS: 1-334 and related molecules.

The primers and other probes of the invention may be used to monitor and characterize the development of plant embryos, in particular, pine tree embryos. Characterization of embryonic gene expression provides means for correlating gene expression with current and potential plant phenotypes. Consequently, the present invention encompasses means for monitoring and adjusting growth conditions (see FIG. 6), as well as means for selecting genetically superior embryonic clones for further propagation and expansion (see FIG. 8). Thus, the present invention encompasses the use of DNA or RNA probes derived from the nucleic acid molecules of SEQ ID NOS: 1-334 in any form, e.g., in DNA arrays, and antibodies raised against polypeptides or peptide fragments encoded by SEQ ID NOS: 1-327, to determine relative or absolute levels of expression of the genes or proteins encoded by SEQ ID NOS: 1-327. In addition, these nucleic acid and antibody probes may be used for staging, monitoring, characterizing, or selecting plant embryos or embryo cultures, particularly pine tree embryos.

The relational database of the present invention allows expression information pertaining to embryo stages to be viewed as sequence data generated in accordance with the present invention. The invention includes a database for storing a plurality of sequence records for which to correlate embryo stages to sequence records. The method further involves providing an interface which allows a user to select one or more expression categories contained within the database.

The relational database is designed to include separate parts or cells for information storage. One cell or part may contain a gene expression database which contains nucleic acid molecules of SEQ ID NOS: 1-327. Other cells or parts may contain descriptive information pertaining to each nucleic acid molecules of SEQ ID NOS: 1-327, additional sequence data related to the gene expression database, protein encoded by nucleic acids disclosed herein, similarity values to known proteins of other systems, and to conditions under which expression data was obtained.

The database system described in the present invention will allow identification or selection of particular genes of interest for further use with DNA arrays. Identification or selection of particular genes may include, for example, those related to patterns of expression, those identified with homology to known genes from other studies, and those sequences considered novel.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts differential display of loblolly pine zygotic and somatic embryos at different stages of development.

FIG. 2 displays embryo gene expression observed by high-density array Southern hybridization.

FIG. 3 provides a general schematic for gene regulation studies arising from the cDNA cloning of genes expressed in embryos.

FIG. 4 depicts graphical representation of hybridization of ‘dehydrin’ and LPZ216 cDNA probes to total RNA isolated from zygotic embryos of loblolly pine.

FIG. 5 displays ABA concentration of loblolly pine embryos.

FIG. 6 shows schematic of gene study for improved somatic embryogenesis.

FIG. 7 shows detection of gene expression by high-density array Southern hybridization for loblolly pine genotype 333 after 12 weeks on two maturation media.

FIG. 8 depicts the application of embryogenic gene expression studies.

FIG. 9 displays slot blots and expression levels for three embryogenesis-related genes.

FIG. 10 depicts clone LPS-097 sequence (LP2-3 differential display fragment.)

FIG. 11 displays a northern blot for the LP2-3 gene during stages 1-3.

FIG. 12 displays a slot blot of total RNA from somatic embryo tissue probed with an LP2-3-specific probe.

FIG. 13 displays a slot blot of total RNA from zygotic embryo tissue probed with an LP2-3-specific probe.

FIG. 14 depicts the quantified expression of early zygotic embryos compared to early somatic embryos.

DETAILED DESCRIPTION OF THE INVENTION

The three hundred and twenty-seven differentially expressed cDNAs isolated from plant specimens of known developmental ages are disclosed in SEQ ID NOS: 1-327. The seven stage-specific promoters isolated from plant specimens are disclosed in SEQ ID NOS: 328-334. The discovery of these cDNAs and promoters enables the design, isolation, and construction of related nucleic acids, proteins, antigens, antibodies other heterologous genes. Both the cDNAs and promoters facilitate the staging, characterization, and manipulation of plant embyrogenesis, in particular, conifer embryogenesis. These molecules, and related nucleic acids, peptides, proteins, antigens, and antibodies are particularly useful when compiled into a relational database for the monitoring, design, selection, and cultivation of improved crop plants.

The cDNAs of SEQ ID NOS: 1-327, in addition to the promoters of SEQ ID NOS: 328-334, were originally derived from Pinus taeda embryos, commonly known as the Loblolly Pine. Nevertheless, it is understood that the invention is applicable to and encompasses all plants, including all dicotyledonous plants, including all conifers, including all species of Pinus, Picea, and Pseudotsuga. Exemplary conifers may include Picea abies, and Psedotsuga menziesii, and Pinus taeda.

Nucleic Acid Molecules

In a particular embodiment, the invention relates to certain isolated nucleotide sequences including those that are substantially free from contaminating endogenous material. The terms “nucleic acid” or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, and unless otherwise limited, would encompass known analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides. A “nucleotide sequence” also refers to a polynucleotide molecule or oligonucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid. The nucleotide sequence or molecule may also be referred to as a “nucleotide probe.” The nucleic acid molecules of the invention are derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequence by standard biochemical methods. Examples of such methods, including methods for PCR protocols that may be used herein, are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, inc. (1987), and Innis, M. et al., eds., PCR Protocols: A Guide to Methods and Applications, Academic Press (1990), each of which are herein incorporated by reference in their entirety.

As used herein a “nucleotide probe” is defined as an oligonucleotide capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, through complementary base pairing, or through hydrogen bond formation. As described above, the oligonucleotide probe may include natural (ie. A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, bases in a oligonucleotide probe may be joined by a linkage other than a phosphodiester bond, so long as it does not prevent hybridization. Thus, oligonucleotide probes may have constituent bases joined by peptide bonds rather than phosphodiester linkages.

A “target nucleic acid” herein refers to a nucleic acid to which the nucleotide probe or molecule can specifically hybridize. The probe is designed to determine the presence or absence of the target nucleic acid, and the amount of target nucleic acid. The target nucleic acid has a sequence that is complementary to the nucleic acid sequence of the corresponding probe directed to the target. As recognized by one of skill in the art, the probe may also contain additional nucleic acids or other moieties, such as labels, which may not specifically hybridize to the target. The term target nucleic acid may refer to the specific nucleotide sequence of a larger nucleic acid to which the probe is directed or to the overall sequence (e.g., gene or mRNA) whose expression level it is desired to detect. One skilled in the art will recognize the full utility under various conditions.

As described herein, the nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the RNA complement thereof. DNA includes, for example, cDNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. Genomic DNA, including translated, non-translated and control regions, may be isolated by conventional techniques, e.g., using any one of the cDNAs of SEQ ID NO: 1 through SEQ ID NO: 327, or suitable fragments thereof, as a probe, to identify a piece of genomic DNA which can then be cloned using methods commonly known in the art. In general, nucleic acid molecules within the scope of the invention include sequences that hybridize to sequences of SEQ ID NOS: 1-334 under hybridization and wash conditions of 5°, 10°, 15°, 20°, 25°, or 30° below the melting temperature of the DNA duplex of sequences of SEQ ID NOS: 1-334, including any range of conditions subsumed within these ranges.

DNA Arrays

In a further embodiment, DNA arrays are used to identify hybridizing sequences from test samples. The term “DNA array” refers to “gene arrays,” “DNA chips,” “dot array Southerns,” etc. One of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention. The DNA array will typically include one or a multiplicity of nucleic acid molecules derived from SEQ ID NO: 1 through SEQ ID NO: 327 that specifically hybridize to the nucleic acid expression of which is to be detected. In addition, the array may include one or more control probes to monitor the expression system. Control probes refer to known expression products present at each stage of expression, e.g., ribosomal gene products or the transcripts of other housekeeping genes. The organization of the DNA array will be known to facilitate interpretation of results. Examples in the art describing the uses and composition of DNA arrays can be found in U.S. Pat. Nos.: 5,700,637, 5,837,832, 5,843,655, 5,874,219, 6,040,138, 6,045,996, and are incorporated by reference.

Molecules That Hybridize to Identified Sequences

Thus, in a particular embodiment, this invention provides an isolated nucleic acid molecule selected from the group consisting of:

  • (1) a DNA sequence comprising any one of the sequences presented in SEQ ID NO: 1 through SEQ ID NO: 334;
  • (2) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of moderate stringency; and
  • (3) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of high stringency.

As used herein, stringency conditions in nucleic acid hybridizations can be readily determined by those having ordinary skill in the art based on, for example, the length and composition of the nucleic acid. In one embodiment, moderate stringency is herein defined as a nucleic acid having 10, 11, 12, 13, 14, 15, 16, or 17, contiguous nucleotides identical to any of the sequences of SEQ ID NOS: 1-334, or a complement thereof. Similarly, high stringency is hereby defined as a nucleic acid having 18, 19, 20, 21, 22, or more contiguous identical nucleotides, or a longer nucleic acid having at least 80, 85, 90, 95, or 99 percent identity with any of the sequences of SEQ ID NOS: 1-334; for sequences of at least 50, 100, 150, 200, or 250 nucleotides, high stringency may comprise an overall identity of at least 60, 65, 70 or 75 percent.

Generally, nucleic acid hybridization simply involves providing a denatured nucleotide molecule or probe and target nucleic acid under conditions where the probe and its complementary target can form stable hybrid duplexes through complementary base pairing. The nucleic acids that do not substantially form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is further generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under lower stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA, or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches. One of skill in the art will appreciate that hybridization conditions may be selected to provide any degree of stringency.

As used herein, the percent identity between an amino acid sequence encoded by any of SEQ ID NOS: 1-334 and a potential hybridizing variant can be determined, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol, 48:443, 1970), as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess (Nuci. Acids Res. 14:6745, 1986), as described by Schwartz and Dayhoff (eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

Alternatively, basic protocols for empirically determining hybridization stringency are set forth in section 2.10 of Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, Inc. (1987). Stringency conditions can be determined readily by the skilled artisan. An example of moderate stringency hybridization conditions would be hybridization in 5×SSC, 5× Denhardt's Solution, 50% (w/v) formamide, and 1% SDS at 42° C. with washing conditions of 0.2×SSC and 0.1% SDS at 42° C. An example of high stringency conditions can be defined as hybridization conditions as above, and with washing at approximately 68° C., in 0.1×SSC, and 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe.

Due to the degeneracy of the genetic code wherein more than one codon can encode the same amino acid, multiple DNA sequences can code for the same polypeptide. Such variant DNA sequences can result from genetic drift or artificial manipulation (e.g., occurring during PCR amplification or as the product of deliberate mutagenesis of a native sequence). The present invention thus encompasses any nucleic acid capable of encoding a protein derived from SEQ ID NOS: 1-327, or variants thereof.

Deliberate mutagenesis of a native sequence can be carried out using numerous techniques well known in the art. For example, oligonucleotide-directed site-specific mutagenesis procedures can be employed, particularly where it is desired to mutate a gene such that predetermined restriction nucleotides or codons are altered by substitution, deletion or insertion. Exemplary methods of making such alterations are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, Jan. 12-19, 1985); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); Kunkel (Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. (Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462, all of which are incorporated by reference.

Thus, the invention further provides an isolated nucleic acid molecule selected from the group comprising of (1), (2), and (3) above and further consisting of:

  • (4) an isolated nucleic acid molecule degenerate from SEQ ID NOS: 1-334 as a result of the genetic code; and
  • (5) an isolated nucleic acid molecule selected from the group consisting of an allelic variants and species homologs of SEQ ID NOS: 1-334.
    Obtaining Full Length cDNAs

The cDNAs isolated and cloned through the differential display procedure will often only represent a partial sequence (generally the 3′ end) of the mRNA from which it was derived due to the nature of the arbitrary primer used in the differential display PCR reaction. Consequently, the cDNA sequences of SEQ ID NOS: 1-327 provide powerful tools for obtaining the sequences of full-length cDNAs. This can be accomplished by using a partial cDNA as a probe to identify and isolate the full length cDNA from a population of full length cDNAs or from a full length cDNA library. As is well known in the art, similar procedures can be used to identify corresponding genomic DNA sequences.

Alternatively, one can obtain the 5′ sequence of a partial cDNA by performing Rapid Amplification of cDNA Ends (RACE) procedures such as those disclosed in Frohman, Methods in Enzymology, 218:340-356 (1993) and Bertling et al., PCR Methods and Applications 3:95-99 (1993) which are hereby incorporated by reference. For example, Clonetech Laboratories, Inc. (Palo Alto, Calif.) offers a SMAR™ cDNA product line that allows one to generate high quality full length cDNAs and cDNA libraries. SMART™ technology can also be used to perform RACE. One skilled in the art will readily recognize that there are other equivalent products and procedures for obtaining full length cDNAs. Full length cDNAs may be sequenced and their sequences compared to sequences in public databases to assess their identities and/or homologies to other known sequences.

Cloned full length cDNAs can be used in the construction of expression vectors for the production and purification of pine tree polypeptides which contain the pine tree peptides encoded by the cDNAs of any one of SEQ ID NOS: 1-327.

Oligonucleotide Primers for PCR Assays

In another embodiment, the present invention encompasses oligonucleotide fragments derived from any one of SEQ ID NO: 1 through SEQ ID NO: 327 or from the reverse complement sequence of any one of SEQ ID NO: 1 through SEQ ID NO: 327. Such oligonucleotides would be useful as primers in the performance of RT-PCR assays to detect, or even quantify, pine embryo stage-specific transcripts. Such oligonucleotide primers will generally comprise from 10 to 25 nucleotides substantially complementary to the ends of the target sequence and may contain additional non-complementary nucleotides, for example, nucleotides that generate a restriction endonuclease site or cloning junction. Programs useful in selecting PCR primers may be used to design the oligonucleotides of this invention, but use of such programs is not necessary. By way of example, the Wisconsin Package™ software available from the Genetic Computer Group (Madison, Wis.) includes a program called Prime that can aid in selecting primers from a given template sequence. Protocols for the design and optimization of PCR reactions are commonly known in the art and are described in Saiki et al., Science 239:487 (1988); Recombinant DNA Methodology, Wu et al., eds., Academic Press, Inc., San Diego (1989), pp. 189-196; and PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, Inc. (1990).

Antisense Nucleic Acid Molecules

Other useful fragments of the nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of DNA from any one of SEQ ID NO: 1 through SEQ ID NO: 327. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 To about 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (Bio/Techniques 6:958, 1988).

Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes or other nucleic acid complexes inimical to efficient production of gene products. The antisense oligonucleotides thus may be used to block expression of proteins or the function of RNA. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sufficient sequence specificity to be able to bind to target nucleotide sequences.

Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides. Such modifications may modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.

Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, lipofection, CaPO4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus or adenovirus.

Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. In one embodiment, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.

Polypeptides Encoded by Differentially-Expressed cDNAs

The cDNAs of SEQ ID NOS: 1-327 can be translated into amino acid sequences potentially corresponding to portions of developmentally-regulated plant proteins. These amino acid sequences can be identified from sequences listed in Table I, below. The cDNAs encoding these predicted polypeptides are grouped into early, middle, and late transcripts according to the staged embryo population from which they were derived.

(See Table I)

Although the term “peptide” is generally understood to reference synthetic sequences, or fragments of larger proteins, and includes short amino acid sequences of between 2 and 10 amino acids, whereas “polypeptide” refers to larger sequences and full-length proteins, the terms are used interchangeably herein to indicate that the invention applies to peptides and polypeptides of any length and variants thereof. Moreover, the discovery of presumptive open reading frames in SEQ ID NOS: 1-327, and the ability to isolate additional cDNA sequence, enables the construction of expression vectors comprising nucleic acid sequences encoding those polypeptides. The cDNAs of the invention also enable cells transfected or transformed with expression vectors driving the expression of the encoded polypeptides and antibodies reactive with the polypeptides.

In one embodiment, the invention provides for isolated polypeptides, preferably, pine tree polypeptides. As used herein, the term “polypeptides” refers to a genus of polypeptide or peptide fragments that encompass the amino acid sequences identified from Table I, as well as smaller fragments. Consequently, the invention encompasses any polypeptide fragment comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 contiguous amino acids encoded by the cDNAs of any of SEQ ID NOS: 1-327, or comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 contiguous amino acids of any of amino acid sequence derived from Table I.

Alternatively, a polypeptide may be defined in terms of its antigenic relatedness to any peptide encoded by SEQ ID NOS:-1-327. Thus, in one embodiment a polypeptide within the scope of the invention is defined as an amino acid sequence comprising a linear or 3-dimensional epitope shared with any peptide encoded by the cDNAs of SEQ ID NOS: 1-327. Alternatively, a polypeptide within the scope of the invention is recognized by an antibody that specifically recognizes any peptide encoded by SEQ ID NOS: 1-327. Antibodies are defined to be specifically binding if they bind pine tree polypeptides with a Ka of greater than or equal to about 107 M, and preferably greater than or equal to 108 M−1.

A polypeptide “variant” as referred to herein means a polypeptide substantially homologous to a native polypeptide, but which has an amino acid sequence different from that encoded by any of SEQ ID NOS: 1-327 because of one or more deletions, insertions or substitutions. The variant amino acid sequence preferably is at least 80% identical to a native polypeptide amino acid sequence, preferably at least 90%, more preferably, at least 95% identical over at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21-25, or 26-30 contiguous amino acids. The percent identity between an amino acid sequence encoded by any of SEQ ID NOS: 1-327 and a potential variant can be determined manually, or, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program, described above, utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443,1970), as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981).

Variants can comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physiochemical characteristics. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as lie, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gin and Asn. See Zubay, Biochemistry, Addison-Wesley Pub. Co., (1983) incorporated by reference in its entirety. The effects of such substitutions can be calculated using substitution score matrices such a PAM-120, PAM-200, and PAM-250 as discussed in Altschul, (J. Mol. Biol. 219:555-65, 1991). Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known.

Naturally-occurring peptide variants are also encompassed by the invention. Examples of such variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the polypeptides of Table I. Variations attributable to proteolysis include, for example, differences in the N- or C-termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the polypeptides encoded by the sequences of Table I (generally from 1-5 terminal amino acids).

As stated above, the invention provides recombinant and non-recombinant, isolated and purified polypeptides, preferably pine tree polypeptides. Variants and derivatives of native polypeptides can be obtained by isolating naturally-occurring variants, or the nucleotide sequence of variants, of other plant lines or species, or by artificially programming mutations of nucleotide sequences coding for native pine tree polypeptides. Alterations of the native amino acid sequence can be accomplished by any of a number of conventional methods. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion. Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion or insertion. Exemplary methods of making such alterations are discussed supra.

The following sections are examples of the various expression vectors, host cells, and protein purification methods that are known in the art. These examples are provided merely as illustrative and should not be construed as the only means to express and purify the polypeptides and polypeptide variants of the invention.

Expression Vectors and Purified proteins

Recombinant expression vectors containing a nucleic acid sequence encoding the polypeptides of the invention can be prepared using well known methods. In one embodiment, the expression vectors include a cDNA sequence encoding the polypeptide operably linked to suitable transcriptional or translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation initiation and termination. Nucleotide sequences are “operably linked” when the regulatory sequence functionally relates to the cDNA sequence of the invention. Thus, a promoter nucleotide sequence is operably linked to a cDNA sequence if the promoter nucleotide sequence controls the transcription of the cDNA sequence. The ability to replicate in the desired host cells, usually conferred by an origin of replication, and a selection gene by which transformants are identified can additionally be incorporated into the expression vector.

In addition, sequences encoding appropriate signal peptides that are not naturally associated with the polypeptides of the invention can be incorporated into expression vectors. For example, a DNA sequence for a signal peptide (secretory leader) can be fused in-frame to the pine tree nucleotide sequence so that the polypeptides of the invention is initially translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cells enhances extracellular secretion of the expressed polypeptide. The signal peptide can be cleaved from the polypeptide upon secretion from the cell.

Fusions of additional peptide sequences at the amino and carboxyl terminal ends of the polypeptides of the invention can be used to enhance expression of the polypeptides or aid in the purification of the protein. Such peptides include, for example, poly-His or the antigenic identification peptides described in U.S. Pat. No. 5,011,912 and in Hopp et al., (Bio/Technology6:1204, 1988).

Suitable host cells for expression of polypeptides of the invention include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al., Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to the disclosed polypeptides using RNAs derived from DNA constructs disclosed herein.

Prokaryotic Expression Systems

Prokaryotes include gram negative or gram positive organisms, for example, E. coli or Bacilli. Suitable prokaryotic host cells for transformation include, for example, E. coli, Bacillus subtilis, Salmonella typhimurium, and various other species within the genera Pseudomonas, Streptomyces, and Staphylococcus. In a prokaryotic host cell, such as E. coli, the disclosed polypeptides can include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in the prokaryotic host cell. The N-terminal methionine can be cleaved from the expressed recombinant polypeptide.

Expression vectors for use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes. A phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement. Examples of useful expression vectors for prokaryotic host cells include those derived from commercially available plasmids such as the cloning vector pBR322 (ATCC 37017). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells. To construct an expression vector using pBR322, an appropriate promoter and a DNA sequence encoding one or more of the polypeptides of the invention are inserted into the pBR322 vector. Other commercially available vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM-1 (Promega Biotec, Madison, Wis., USA). Other commercially available vectors include those that are specifically designed for the expression of proteins; these would include pMAL-p2 and pMAL-c2 vectors that are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA).

Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include P-lactamase (penicillinase), lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p. 412, 1982). A particularly useful prokaryotic host cell expression system employs a phage λ PL promoter and a c1857ts thermolabile repressor sequence. Plasmid vectors available from the American Type Culture Collection (“ATCC”), which incorporate derivatives of the PL promoter, include plasmid pHUB2 (resident in E. Coli strain JMB9 (ATCC 37092)) and pPLc28 (resident in E. coli RR1 (ATCC 53082)).

DNA encoding one or more of the polypeptides of the invention may be cloned in-frame into the multiple cloning site of an ordinary bacterial expression vector. Ideally the vector would contain an inducible promoter upstream of the cloning site, such that addition of an inducer leads to high-level production of the recombinant protein at a time of the investigator's choosing. For some proteins, expression levels may be boosted by incorporation of codons encoding a fusion partner (such as hexahistidine) between the promoter and the gene of interest. The resulting “expression plasmid” may be propagated in a variety of strains of E. coli.

For expression of the recombinant protein, the bacterial cells are propagated in growth medium until reaching a pre-determined optical density. Expression of the recombinant protein is then induced, e.g., by addition of IPTG (isopropyl-b-D-thiogalactopyranoside), which activates expression of proteins from plasmids containing a lac operator/promoter. After induction (typically for 1-4 hours), the cells are harvested by pelleting in a centrifuge, e.g., at 5,000×G for 20 minutes at 4° C.

For recovery of the expressed protein, the pelleted cells may be resuspended in ten volumes of 50 mM Tris-HCl (pH 8)/1 M NaCl and then passed two or three times through a French press. Most highly expressed recombinant proteins forms insoluble aggregates known as inclusion bodies. Inclusion bodies can be purified away from the soluble proteins by pelleting in a centrifuge at 5,000×G for 20 minutes, 4° C. The inclusion body pellet is washed with 50 mM Tris-HCl (pH 8)/1% Triton X-100 and then dissolved in 50 mM Tris-HCl (pH 8)/8 M urea/0.1 M DTT. Any material that cannot be dissolved in 50 mM Tris-HCl (pH 8)/8 M urea/0.1 M DTT may be removed by centrifugation (10,000×G for 20 minutes, 20° C.). The protein of interest will, in most cases, be the most abundant protein in the resulting clarified supernatant. This protein may be “refolded” into the active conformation by dialysis against 50 mM Tris-HCl (pH 8)/5 mM CaCl2/5 mM Zn(OAc)2/1 mM GSSG/0.1 mM GSH. After refolding, purification can be carried out by a variety of chromatographic methods such as ion exchange or gel filtration. In some protocols, initial purification may be carried out before refolding. As an example, hexahistidine-tagged fusion proteins may be partially purified on immobilized Nickel.

While the preceding purification and refolding procedure assumes that the protein is best recovered from inclusion bodies, those skilled in the art of protein purification will appreciate that many recombinant proteins are best purified out of the soluble fraction of cell lysates. In these cases, refolding is often not required, and purification by standard chromatographic methods can be carried out directly.

Yeast Expression Systems

Polypeptides of the invention can also be expressed in yeast host cells, preferably from the Saccharomyces genus (e.g., S. cerevisiae). Other genera of yeast, such as Pichia or Kluyveromyces (e.g. K. lactis), can also be employed. Yeast vectors will often contain an origin of replication sequence from a 2μ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionine, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980), or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are further described in Hitzeman, EPA-73,657 or in Fleer et. al., Gene, 107:285-195 (1991); and van den Berg et. al., Bio/Technology, 8:135-139 (1990). Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. (J. Biol. Chem. 258:2674, 1982) and Beier et al. (Nature 300:724, 1982). Shuttle vectors replicable in both yeast and E. coli can be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Amp gene and origin of replication) into the above-described yeast vectors.

The yeast α-factor leader sequence can be employed to direct secretion of one or more of the disclosed polypeptides. The α-factor leader sequence is often inserted between the promoter sequence and the structural gene sequence. See, e.g., Kurjan et al., Cell 30:933, 1982; Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984; U.S. Pat. No. 4,546,082; and EP 324,274. Other leader sequences suitable for facilitating secretion of recombinant polypeptides from yeast hosts are known to those of skill in the art. A leader sequence can be modified near its 3′ end to contain one or more restriction sites. This will facilitate fusion of the leader sequence to the structural gene.

Yeast transformation protocols are known to those of skill in the art. One such protocol is described by Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929, 1978. The Hinnen et al. protocol selects for Trp+transformants in a selective medium, wherein the selective medium consists of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 μg/ml adenine, and 20 μg/ml uracil.

Yeast host cells transformed by vectors containing ADH2 promoter sequence can be grown for inducing expression in a “rich” medium. An example of a rich medium is one consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 μg/ml adenine and 80 μg/ml uracil. Derepression of the ADH2 promoter occurs when glucose is exhausted from the medium.

Mammalian Expression Systems

Mammalian or insect host cell culture systems could also be employed to express recombinant polypeptides of the invention. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988). Established cell lines of mammalian origin also can be employed. Examples of suitable mammalian host cell lines include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., Cell 23:175, 1981), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, and BHK (ATCC CRL 10) cell lines, and the CV-1/EBNA-1 cell line (ATCC CRL 10478) derived from the African green monkey kidney cell line CVI (ATCC CCL 70) as described by McMahan et al. (EMBO J. 10: 2821, 1991).

Established methods for introducing DNA into mammalian cells have been described (Kaufman, R. J., Large Scale Mammalian Cell Culture, 1990, pp. 15-69). Additional protocols using commercially available reagents, such as Lipofectamine (Gibco/BRL) or Lipofectamine-Plus, can be used to transfect cells (Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, 1987). In addition, electroporation can be used to transfect mammalian cells using conventional procedures, such as those in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1-3, Cold Spring Harbor Laboratory Press, 1989). Selection of stable transformants can be performed using resistance to cytotoxic drugs as a selection method. Kaufman et al., Meth. in Enzymology 185:487-511, 1990, describes several selection schemes, such as dihydrofolate reductase (DHFR) resistance. A suitable host strain for DHFR selection can be CHO strain DX-B11, which is deficient in DHFR (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980). A plasmid expressing the DHFR cDNA can be introduced into strain DX-B11, and only cells that contain the plasmid can grow in the appropriate selective media. Other examples of selectable markers that can be incorporated into an expression vector include cDNAs conferring resistance to antibiotcs, such as G418 and hygromycin B. Cells harboring the vector can be selected on the basis of resistance to these compounds.

Transcriptional and translational control sequences for mammalian host cell expression vectors can be excised from viral genomes. Commonly used promoter sequences and enhancer sequences are derived from polyoma virus, adenovirus 2, simian virus 40 (SV40), and human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and later promoter, enhancer, splice, and polyadenylation sites can be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment, which can also contain a viral origin of replication (Fiers et al., Nature 273:113, 1978; Kaufman, Meth. in Enzymology, 1990). Smaller or larger SV40 fragments can also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the SV40 viral origin of replication site is included.

Additional control sequences shown to improve expression of heterologous genes from mammalian expression vectors include such elements as the expression augmenting sequence element (EASE) derived from CHO cells (Morris et al., Animal Cell Technology, 1997, pp. 529-534) and the tripartite leader (TPL) and VA gene RNAs from Adenovirus 2 (Gingeras et al., J. Biol. Chem. 257:13475-13491,1982). The internal ribosome entry site (IRES) sequences of viral origin allows dicistronic mRNAs to be translated efficiently (Oh and Sarnow, Current Opinion in Genetics and Development 3:295-300, 1993; Ramesh et al., Nucleic Acids Research 24:2697-2700, 1996). Expression of a heterologous cDNA as part of a dicistronic mRNA followed by the gene for a selectable marker (eg. DHFR) has been shown to improve transfectability of the host and expression of the heterologous cDNA (Kaufman, Meth. in Enzymology, 1990). Exemplary expression vectors that employ dicistronic mRNAs are pTR-DC/GFP described by Mosser et al., Biotechniques 22:150-161, 1997, and p2A51 described by Morris et al., Animal Cell Technology, 1997, pp. 529-534.

A useful high expression vector, pCAVNOT, has been described by Mosley et al., Cell 59:335-348,1989. Other expression vectors for use in mammalian host cells can be constructed as disclosed by Okayama and Berg (Mol. Cell. Biol. 3:280, 1983). A useful system for stable high level expression of mammalian cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986). A useful high expression vector, PMLSV N1/N4, described by Cosman et al., Nature 312:768, 1984, has been deposited as ATCC 39890. Additional useful mammalian expression vectors are described in EP-A-0367566, and in U.S. patent application Ser. No. 07/701,415, filed May 16, 1991, incorporated by reference herein. The vectors can be derived from retroviruses. In place of the native signal sequence, a heterologous signal sequence can be added, such as the signal sequence for IL-7 described in U.S. Pat. No. 4,965,195; the signal sequence for IL-2 receptor described in Cosman et al., Nature 312:768 (1984); the IL4 signal peptide described in EP 367,566; the type I IL-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; and the type H IL-1 receptor signal peptide described in EP 460,846.

The polypeptides of the invention and the nucleic acid molecules encoding them can also be used as reagents to identify (a) proteins that the disclosed polypeptides or their constituent proteins regulate, and (b) other proteins with which it might interact. The disclosed polypeptides can be coupled to a recombinant protein, to an affinity matrix, or by using them as a bait in the yeast two-hybrid system. The use of the yeast two-hybrid system developed by Stanley Fields and coworkers is well known in the art and described in Golemis, E., et al Section 20.1 in: Current Protocols in Molecular Biology, ed. Ausubel, F. M., et al., John Wiley & Sons, NY, 1997 and in The Yeast Two-Hybrid System., ed. P. L. Bartel and S. Fields, Oxford University Press, 1997.

Antibodies and Peptide Binding Proteins

Purified polypeptides of the invention can be used to generate antibodies that bind to one or more epitopes of the disclosed polypeptide. Such anti-polypeptide antibodies includes polyclonal antibodies, monoclonal antibodies, fragments thereof such as F(ab′)2, and Fab fragments, as well as any recombinantly produced binding partners. Antibodies are defined to be specifically binding if they bind pine tree polypeptides with a Ka of greater than or equal to about 107 M−1. Affinities of binding partners or antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al., Ann. N.Y. Acad. Sci., 51:660 (1949).

Polyclonal antibodies can be readily generated from a variety of sources, for example, horses, cows, goats, sheep, dogs, chickens, rabbits, mice, hamsters, guinea pigs, or rats, using procedures that are well-known in the art, for example, as described for example, U.S. Pat. No. 5,585,100, incorporated by reference herein. In general, a composition comprising at least one of the polypeptides of the invention is administered to the host animal, typically through intra-peritoneal or subcutaneous injection. In the case where a peptide is used as the immunogen, it is preferable to conjugated it to a suitable carrier molecule, such as a T-dependent antigen (Bovine Serum Albumin, cholera toxin, and the like). The immunogenicity of the disclosed polypeptides can also be enhanced through the use of an adjuvant, for example, Freund's complete or incomplete adjuvant or alum. Following booster immunizations, small samples of serum are collected and tested for reactivity to the disclosed polypeptides or their constituent epitopes. Examples of various assays useful for such determination include those described in: Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, 1988; as well as procedures such as countercurrent immuno-electrophoresis (CIEP), radioimmunoassay, radio-immunoprecipitation, enzyme-linked immuno-sorbent assays (ELISA), dot blot assays, and sandwich assays, see U.S. Pat. Nos. 4,376,110 and 4,486,530, each of which is incorporated by reference in their entirety.

Monoclonal antibodies (or fragments thereof), directed against epitopes of the disclosed polypeptides can also be readily prepared using well-known procedures, such as, for example, the procedures described in U.S. Patent No. RE 32,011, U.S. Pat. Nos. 4,902,614, 4,543,439, and 4,411,993; Monoclonal Antibodies, Hybrddomas: A New Dimension in Biological Analyses, Plenum Press, Kennett, McKearn, and Bechtol (eds.), 1980, each of which is incorporated by reference. Briefly, the host animals, such as mice, are injected intraperitoneally at least once, and preferably at least twice at about 3 week intervals with isolated and purified polypeptides optionally in the presence of adjuvant. Again, if peptide fragments are used they may need to be conjugated to a suitable carrier protein. Mouse sera are then assayed by conventional dot blot technique or antibody capture (ABC) to determine which animal is best to fuse. Approximately two to three weeks later, the mice are given an intravenous boost of pine tree polypeptides. Mice are later sacrificed and spleen cells fused with commercially available myeloma cells, such as Ag8.653 (ATCC), following established protocols. Briefly, the myeloma cells are washed several times in media and fused to mouse spleen cells at a ratio of about three spleen cells to one myeloma cell. The fusing agent can be any suitable agent used in the art, for example, polyethylene glycol (PEG). Fusion is plated out into plates containing media that allows for the selective growth of the fused cells. The fused cells can then be allowed to grow for approximately eight days. Supernatants from resultant hybridomas are collected and added to a plate that is first coated with goat anti-mouse Ig. Following washes, a label, such as, 125I-pine tree polypeptides is added to each well followed by incubation. Positive wells can be subsequently detected by autoradiography. Positive clones can be grown in bulk culture and supernatants are subsequently purified over a Protein A column (Pharmacia).

Monoclonal antibodies and specific-binding fragments of the invention can be produced using alternative techniques, such as those described by Alting-Mees et al., “Monoclonal Antibody Expression Libraries: A Rapid Alternative to Hybridomas”, Strategies in Molecular Biology 3:1-9 (1990), which is incorporated herein by reference. Similarly, binding partners can be constructed using recombinant DNA techniques to incorporate the variable regions of a gene that encodes a specific binding antibody Such a technique is described in Larrick et al., Biotechnology, 7:394 (1989).

It is understood of course that many techniques could be used to generate antibodies against the polypeptides of the invention and that the above embodiments in no way limits the scope of the invention.

Nucleotides. Proteins, Antibodies, and Binding Proteins As Probes and Reagents

The disclosed nucleic acids, polypeptides, and antibodies directed against the disclosed polypeptides can be used in a variety of research protocols, such as in DNA arrays or as reagents. A sample of such research protocols are given in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1-3, Cold Spring Harbor Laboratory Press, (1989), incorporated by reference. For example, the compiled sequences, polypeptides, etc., can serve as markers for cell specific or tissue specific expression of RNA or proteins. Similarly, this system can be used to investigate constitutive and transient expression of the genes encoding the cDNAs of SEQ ID NOS: 1-327 and the proteins encoded by these genes.

Further, the disclosed cDNA sequences can be used to determine the chromosomal location of the genomic DNA and to map genes in relation to this chromosomal location. The disclosed nucleotide sequence can be further used to identify additional genes related to the nucleotides of SEQ ID NOS: 1-334 and to establish evolutionary relatedness among species based on the comparison of sequences. The disclosed nucleotide and polypeptide sequences can be used to select for those genes or proteins that are homologous to the disclosed cDNAs or polypeptides, using well-established positive screening procedures such as Southern blotting and immunoblotting and negative screening procedures such as subtractive hybridization.

Method for Using Nucleic Acid Probes or Antibodies to Stage Embryos

Accurate staging of tree embryos is critical. It is known that different stages of tree embryos have different capacities as subjects for genetic transformation and genetic engineering. In addition, environmental requirements exhibited by embryos vary due to increasing physiologic age. Currently, the staging of tree embryogenesis is most accurately performed by an expert in the field who is very familiar with the morphological appearance of embryos at different stages. The cDNAs and related molecules of this invention can be used as markers for different stages of tree embryogenesis, thereby eliminating the need for a subjective eye to assess maturity and potentially allowing for more accurate staging of tree embryos. Moreover, by monitoring the expression of the underlying genes, it is possible to determine when an embryo has reached a certain level of development even if that level does not correspond to a visible difference in embryo morphology. The relational database of this invention aids the ability to monitor expression levels and tailor research approaches, such as the use of DNA arrays, to the specific needs of the objective, i.e., staging.

The information provided in this invention can be used in whole or in part to stage embryos. For example, one or a multiplicity of nucleic acid molecules from SEQ ID NOS: 1-327 having an expression profile consistent with a particular embryo stage can be used in this invention. A researcher may find it beneficial to use oligonucleotide probes or antibodies, for example, that specifically recognize proteins derived from genes expressed during middle embryonic stages, or that specifically monitor expression levels for embryos that have reached maturity associated with late developmental stages. A researcher can quickly determine that an embryo subset has progressed to or through an embryonic stage with the use of this invention and make appropriate changes in conditions if necessary, e.g. alter growth media or other environmental conditions.

Method for Monitoring, Enhancing, or Determining Expression of Stage-Specific Genes

Expression patterns of SEQ ID NOS: 1-327 indicate that gene activation can be classified as stage-specific, such as in the case of SEQ ID NO: 327, otherwise known as “LP2-3.” The promoter that drives such a gene can perform valuable functions. For example, a promoter from LP2-3 operatively linked to a reporter gene presented within an embryo system is expected to produce the reporter product under the conditions for expression of gene LP2-3. Thus, the system allows a rapid determination of stage specific embryos by a simple phenotypic reporter screen, perhaps by visualization of green fluorescent protein (GFP) or by loss of fluorescent protein product. Similarly, a set of promoters from known, differently staged genes operatively linked to reporter genes will be effective for monitoring developmental changes within the system as the embryos mature. The LP2-3 promoter is identified as SEQ ID NOS: 328-334 in Table I. The promoter expression pattern is that of the natively linked gene, LP2-3.

Virtually any indicator or reporter gene can be used for this approach or for other methods associated with this invention provided they are compatible with the system studied. Generally, reporter genes are genes typically not present in the recipient organism or tissue and which encode for proteins resulting in some phenotypic change or enzymatic property. Examples of such genes and assays are provided by Schenborn, E. and Groskreutz, D., Mol. Biotechnol., 13:29, 1999; Helfand, S. L. and Rogina, B., Results Probl. Cell Differ., 29:67, 2000; Kricka, L. J., Methods Enzymol., 305:333, 2000; Himes, S. R. and Shannon, M. F., Methods Mol. Biol., 130:165, 2000; and Leffel, S. M. et al., Biotechniques, 23:912, 1997, which are incorporated in their entirety by reference. In one embodiment of this invention, the reporter used is GFP, or any ariant of the fluorescent protein.

Additionally, one skilled in the art would recognize that a promoter, like that from LP2-3, has potential to stimulate production of products not ordinarily observed at a particular stage. A promoter derived from a gene that expresses during a known stage, for example an early stage, can be operatively linked to a gene that does not normally express during that stage, yielding controlled expression of any targeted gene. It may be shown that earlier or later expression, or prolonged expression of a particular gene may give a desirable genotype or phenotype in a mature plant, may result in increased vigor in culture, or may be sufficient to alter the normal maturation process of the embryo. Prolonged expression of any desired gene also may be achieved from linking a constitutively expressed promoter to the targeted gene. Further, the ability to manipulate gene expression during embryogenesis allows for a detailed study of the effects of an individual gene or multiple genes on embryogenesis, leading to a better understanding of the developmental processes involved in embryogenesis.

Method of Correlatinq Gene Expression with Improved Tree Stock or Culture Conditions

Importantly, the cDNAs and related molecules of the invention can also be used as markers to examine genetic heterogeneity and heredity through the use of techniques such as genetic fingerprinting. These markers can also be correlated with improved agronomic traits including good initiation frequency, embryonic maturation, high frequency of germination, rapid growth rates, herbicide tolerance, insect resistance, pathogen resistance, climate and environmental adaptability wood quality, and wood fiber quality and content, to name a few. Additionally, the expression of these developmentally regulated genes can be compared among genetically identical clones grown under different culture conditions to determine the best protocols and media for somatic embryogenesis.

Cryogenic storage of pine tree embryos is effective for maintaining stocks of embryos determined by this invention to have the desired fitness traits or exist at the appropriate developmental stage. With such storage, one can specifically target desirable embryos for expansion many years after they are frozen. For example, a culture of somatic embryos can be divided into at least three portions, one of which is cryogenically stored, one which is used to study gene embryonic gene (and protein) expression, and one that is used to produce seedlings for field testing. Clones producing valuable mature plants could be selected and expanded from frozen stocks. Additional clones exhibiting similar expression patterns could be selected for future expansion and cultivation.

As will be evident to the ordinary practitioner, there are numerous ways in which the nucleic acids, polypeptides and antibodies of this invention might be used to characterize the gene expression of embryos. Ideally the stage-specific gene expression of embryos of several different genotypes and at several different stages of embryogenesis are characterized. For example, sets of oligonucleotide primers designed using any one of SEQ ID NOS: 1-327 may be used in RT-PCR assays to characterize expression of a gene product. In situ hybridization assays or antibody staining protocols may also be used to characterize RNA and/or protein expression and localization.

Embryos of the same genotype in which gene expression has been characterized may also used be to generate plantlets that are used in field testing. Once the embryos have developed into mature trees, the various genotype trees can be evaluated for important traits such as growth rates, herbicide tolerance, insect resistance, pathogen resistance, climate and environmental adaptability, wood quality, and wood fiber quality and content, among others. Finally the phenotypic data collected from the field testing can be correlated with gene expression during early embryogenesis to further enhance the database of the present invention. This will allow further identification of gene products which whose expression is correlated, either positively or negatively, with commercially valuable tree characteristics.

It will be clear to those skilled in the art that identification of such gene products can have several uses. Determining the correlation between a desirable phenotype and a genotype would allow for the “pre-selection” of tree embryos for field testing. It would also be useful in evaluating experimental tissue culture conditions for somatic embryogenesis; in other words, the expression level of a gene known to correlate with the development of trees with desirable characteristics could serve as the criterion on which culture media is evaluated, as opposed to assessing the phenotype of fully matured trees. The ability to evaluate culture conditions without having to develop fully mature trees and do field testing would save a great deal of research time and expense. And of course, the knowledge of the correlation between gene expression and desirable tree phenotypes would serve to identify target genes for genetic engineering.

Genetically Engineering Trees and Other Plants

There are several methods known in the art for the creation of transgenic plants. These include, but are not limited to: electroporation of plant protoplasts, liposome-mediated transformation, polyethylene-glycol-mediated transformation, microinjection of plant cells, and transformation using viruses. Because the invention is especially concerned with the transformation of woody species, the two prevalent methods for transforming forest trees, namely Agrobacteriurm-mediated transfer and direct gene transfer by particle bombardment, will be discussed in more detail, though it is understood that the present invention encompasses generation of transgenic plants via standard methods commonly known in the art.

Agrobacterium Mediated Transfer

A. tumefaciens and A. rhizogenes are two soil microorganisms that naturally infect a wide variety of plants including dicotyledonous plants, gymnosperms and some monocotyledonous plants. Infection by these organisms results in the growth of crown gall tumors or in hairy root disease, respectively. Each of these organisms carries a large plasmid, the tumor inducing (Ti) plasmid, in the case of A. tumefaciens and the root-inducing (Ri) plasmid in the case of A. rhizogenes. These plasmids have two critical features, a set of virulence genes and a segment of DNA called T-DNA that is delimited by conserved regions of approximately 25 base pairs known as the left and right borders. During infection, the T-DNA is transferred to the plant cell where it is able to stably integrate in single copy in the plant genome. Transfer of T-DNA requires the function of the virulence genes.

In its natural state, T-DNA contains genes that mediate progression of disease such as growth hormones or genes controlling root morphogenesis. Using recombinant DNA technology, however, T-DNA may be modified to contain an expression cassette encoding a foreign gene of interest. There are several T-DNA vector systems commonly in use for the transformation of plants. Several of these vector systems are reviewed in Hansen et al., Current Topics in Microbiology and Immunology 240: 21-57 (1999) which is hereby incorporated by reference. T-DNA vectors must include the left and right borders. In addition they must either be capable of replication in Agrobacterium or be designed so as to recombine with a plasmid that does so. The latter type of vector is known as a co-integrate vector. For transformation to proceed, there must also be a source of virulence (vir) genes. The vir genes may be on the same plasmid with the T-DNA or more likely supplied by a helper plasmid. For example, binary T-DNA vector systems are comprised of two plasmids, one containing the vir genes and the other containing T-DNA. Some plants known to be recalcitrant to Agrobacterium-mediated transformation may be transformed if additional copies of some or all virulence genes are provided. Extra copies of VirG and VirE can be particularly useful.

Additionally, it is convenient to include in the T-DNA a selectable marker that will allow identification and selection of transformed plant cells. The selectable marker should be one that works in both Agrobacterium and the target plant. For example, the genes encoding chloramphenicol acetyltransferase and neomycin phosphotransferase are suitable marker genes that confer resistance to chloramphenicol and kanamycin, respectively. Additionally, a selectable marker may be provided on a separate T-DNA from the T-DNA encoding the gene of interest. Co-transformed T-DNAs can integrate at separate sites in the plant genome. This can be useful because it will later allow segregation of the marker gene in progeny enabling the generation of transgenic trees expressing the gene of interest but not the marker gene.

The gene of interest and the selectable marker genes must also be under the control of promoters that function in the transformed plant cell. Examples of suitable promoters include, but are not limited to: the abscisic acid (ABA)-inducible promoter from the early methionine (Em) gene from wheat (Marcotte et al., Plant Cell 1:976-979 (1989); the cauliflower mosaic virus (CaMV) 35S promoter (Odell et al., Nature 313:810-812 (1985); and the nopaline synthase (nos) promoter (Sanders et al., Nucl. Acids Res. 15(4):1543-58 (1987). Tissue-specific plant promoters or plant promoters responsive to chemical, hormone, heat or light treatments may be used. Additionally, the gene of interest may be expressed under the control of its endogenous promoter to ensure proper regulation.

The process of transformation requires plant cells that are competent and that are either embryogenic or organogenic. The plant cells to be transformed are then co-cultivated with Agrobacterium containing an engineered T-DNA vector system for 1-5 days. Following the co-cultivation period, the cells are incubated with the antibiotic against which the selectable marker confers resistance, and transformed lines are selected for further cultivation. The use of Agrobacterium mediated transfer in woody trees is described in Loopstra et al., Plant Molecular Biology 15:1-9 (1990), Gallardo et al., Planta 210:19-26 (1999) and Wenck et al., Plant Molecular Biology 39:407-419 (1999), each of which is hereby incorporated by reference.

Direct Gene Transfer by Particle Bombardment

Direct gene transfer by particle bombardment provides another method for transforming plant tissue. This method can be especially useful when plant species are recalcitrant to transformation by other means. In this technique a particle, or microprojectile, coated with DNA is shot through the physical barriers of the cell. Particle bombardment can be used to introduce DNA into any target tissue that is penetrable by DNA coated particles, but for stable transformation, it is imperative that regenerable cells be used. Typically, the particles are made of gold or tungsten. The particles are coated with DNA using either CaCl2 or ethanol precipitation methods which are commonly known in the art.

DNA coated particles are shot out of a particle gun. A suitable particle gun can be purchased from Bio-Rad Laboratories (Hercules, Calif.). Particle penetration is controlled by varying parameters such as the intensity of the explosive burst, the size of the particles, or the distance particles must travel to reach the target tissue.

The DNA used for coating the particles should comprise an expression cassette suitable for driving the expression of the gene of interest. Minimally this will comprise a promoter operably linked to the gene of interest. As with Agrobacterium mediated transformation. Suitable promoters include, but are not limted to, the the abscisic acid (ABA)-inducible Em promoter from wheat (Marcotte et al., Plant Cell 1:976-979 (1989), the CaMV35S promoter (Odell, et al., Nature 313:810-812 (1985), and the NOS:promoter (Sanders et., Nucl. Acids Res. 15(4):1543-58 (1987).

Methods for performing direct gene transfer by particle bombardment are disclosed in U.S. Pat. No. 5,990,387 to Tomes et al. Additionally, Ellis et al. describe the successful use of direct gene transfer to white spruce and larch trees in Bio/Technology 11, 84-89 (1993).

Researchers skilled in the area of DNA or gene transformation will recognize that additional procedures, or combination of procedures, may be useful for the successful tranformation of genetic stock.

Antisense Expression

The cDNAs of the invention may be expressed in such a way as to produce either sense or antisense RNA. Antisense RNA is RNA that has a sequence which is the reverse complement of the mRNA (sense RNA) encoded by a gene. A vector that will drive the expression of antisense RNA is one in which the cDNA is placed in “reverse orientation” with respect to the promoter such that the non-coding strand (rather than the coding strand) is transcribed. The expression of antisense RNA can be used to down-modulate the expression of the protein encoded by the mRNA to which the antisense RNA is complementary. This phenomenon is also known as “antisense suppression.” It is believed that down-regulation of protein expression following antisense RNA is caused by the binding of the antisense RNA to the endogenous mRNA molecule to which it is complementary, thereby, inhibiting or preventing translation of the endogenous mRNA.

The antisense RNA expressed need not be the full-length cDNA and need not be exactly homologous to the target mRNA. Generally, however, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous mRNA will be needed for effective antisense suppression. Preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. The length of the antisense sequence in the vector may be greater than 100 nucleotides. Vectors producing antisense RNA's could be used to make transgenic plants, as described above, in situations when desirable tree characteristics are produced when the expression of a particular gene is reduced or inhibited.

METHODS

Tissue Samples

The cDNAs of the current invention can be derived from any sets of plant tissue. The cDNAs of SEQ ID NOS: 1-334, for example, were originally derived from embryonic tissues of pine tree embryos staged 1-9.9 as classified in Pullman and Webb TAPPI R&D Division 1994 Biological Sciences Symposium, pages 31-34, which is hereby incorporated by reference. LPS and LPZ clones are derived from somatic and zygotic embryos, respectively. As noted, embryos may be of either somatic or zygotic derivation, and the embryos may be grown in either semi-solid or liquid tissue culture systems. Applicable methods for growing embryos in semi-solid or liquid tissue culture systems are disclosed in U.S. Pat. Nos.: 5,036,007; 5,236,841; 5,294,549; 5,413,930; 5,491,090; 5,506,136; 5,563,061; 5,677,185; 5,731,203; 5,731,204; and U.S. Patent Application 60/212,651 filed Jun. 19, 2000, which are hereby incorporated by reference.

RNA Isolation

In one embodiment, RNA isolated from staged cell populations provides the starting material for reverse transcription, differential display, and cloning of amplified cDNA. Methods and kits for isolating total RNA from cellular populations, or for generating poly(A)+ RNA, are commonly known in the art. For example, several procedures for isolating RNA are disclosed in Chapter 4 of Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, Inc. (1987) (incorporated herein by reference). As an example, the TRI Reagent7 available from Molecular Research Center, Inc. (Cincinnati, Ohio) is a suitable reagent (used according to the manufacturer's instructions) for isolation of RNA from plant tissues.

Differential Display

Differential display provides a method to identify individual messenger RNAs that are differentially expressed among two or more cell populations. In the practice of the present invention, these cell populations may be provided by pine tree or other plant embryos of different developmental stages. The differential display procedure is taught in Liang et al., Science, 257:967-71 (1992) and in U.S. Pat. No. 5,262,311, which are hereby incorporated by reference. Briefly, mRNA sequences are PCR-amplified using two types of oligonucleotide primers known as “anchor” and “arbitrary” primers. Anchor primers are designed to recognize the polyadenylate tail of messenger RNAs. Arbitrary primers are short and arbitrary in sequence ard anneal to complementary sequences in various mRNAs. Products amplified with these primers will vary in size and can be differentiated on an agarose or sequencing gel based on their size. If different cell populations are amplified with the same anchor and arbitrary primers, one can compare the amplification products to identify differentially expressed RNA sequences.

Cloning

PCR-amplified bands representing differentially expressed RNA samples are excised from the gel, transferred to tubes and reamplified using the same primer pairs and PCR conditions as used in the differential display procedure. Methods for the cloning of PCR products are commonly known in the art and there are several commercially available reagents and kits for cloning PCR products. For instance, the pCR-Scipt™ Cloning kit from Stratagene, La Jolla, Calif.) is suitable for this purpose. Using this kit, E. coli transformants containing plasmids with PCR fragment inserts can rapidly be identified using blue/white color selection followed by plasmid purification and restriction digests. The pCR-Script vector contains T3 and T7 polymerase recognition sites allowing for in vitro transcription of the inserted fragment.

Sequence Determination

Methods for sequencing DNA, including cloned PCR products, are commonly known in the art. The selection of cloning vectors having M13, T7 or T3 primer annealing sites flanking the PCR-amplified insert can be used in sequencing reactions directly. Most sequencing procedures in use today are modifications of Sanger's dideoxy chain termination sequencing reaction as disclosed in and Sanger et al., Proceedings of the National Academy of Sciences, 74:5463-5467 (1977); which is hereby incorporated by reference.

Homology Searching and Identification of Protein Coding Sequences

As understood by one of ordinary skill in the art, the sequence of a cloned cDNA insert obtained, may be compared against public databases such as Genbank to discern any identity or homology to known sequences. Programs, such BLAST, for performing such a search are available on the National Center for Biotechnology Information's web page located at hftp://www.ncbi.nim.nih.qov. The results from Genbank search may reveal the potential function of a polypeptide or RNA molecule encoded by the cDNA. In addition to searching gene sequence database, the use of commercially available analysis software is well known in the art. For example, software packages such as the Wisconsin Package™ (Genetic Computer Group, Madison, Wis.) include programs such as FRAMES and CodonPreference that help to identify protein coding sequences in a query nucleotide sequence. FRAMES displays open reading frames for the six DNA translation frames, allowing one to quickly assess the presence or absence of stretches of open-reading frames that are likely to be protein encoding regions. CodonPreference is a more sophisticated program that identifies and displays possible protein coding regions based on similarity of the codon usage in the sequence to a codon frequency table (Gribskov et al., 1984).

EXAMPLE 1 Differential Gene Expression Analysis in Pine Tree Embryo enesis

cDNA libraries were prepared from staged pine tree embryos, as described above. The differential display technique was used to identify 327 novel cDNAs that were preferentially-expressed during early, middle, or late stages of pine tree embryogenesis, as set forth below. Clone nomenclature is divided into subsets based on tissue type; a clone is designated LPS to indicate somatic origins and LPZ for zygotic origins.

Plant Materials

Somatic embryos were collected at different stages of development. Cultures of somatic embryos of were initiated from Loblolly pine immature zygotic embryos as described by Becwar et al., Forestry Science 44:287-301 (1994) (incorporated by reference) or with minor modifications in media mineral composition. Somatic embryos were grown in cell suspension culture medium 16 (Pullman and Webb, Tappi R&D Division 1994 Biological Sciences Symposium) and a maturation medium similar to that of a standard maturation media. Resulting somatic embryos were selected and classified as stages 1-9 according to morphological development following the teachings of Pullman and Webb, Tappi R&D Division 1994 Biological Sciences Symposium pp.31-34. Somatic embryos were sorted into tubes containing the same stages and stored at −70° C.

RNA Isolation

Total RNA was isolated from all stages of somatic embryos of loblolly pine and grouped into early, middle, and late phases of development. The early phase is represented by a liquid suspension culture containing embryos of stages 1 through stage 3. Middle phase contains embryos of stages 4 through stage 6, while stages 7 through 9 formed the late phase. 60-100 mg aliquots of staged frozen embryos were ground in 1.0 ml of TRI Reagent® Isolation Reagent (Molecular Research Center, Inc.), a commercial product that includes phenol and guideline thiocyanate in a monophase solution and extracted according to the manufacturer's instructions.

Reverse Transcription of mRNA (RT-PCR)

The total RNA was used as a template to synthesize single stranded DNA mediated by MMLV reverse transcriptase (100 U/μl). The method involves the reverse transcription by PCR of the mRNA with an oligo-dT primer (H-T11G: 5′ B AAGCTTTTTTTTTTTG 3′) anchored to the beginning of the poly(A) tail, followed by a PCR reaction in the presence of a second short (13-mer) primer which is arbitrary in sequence [AP1 (5′ B AAGCTTGATTGCC-3′) or AP2 (5′ B AAGCTTCGACTGT-3′)]. Reverse transcription and Differential Display were conducted using the GenHunter RNAimage Kit 1.

A 19 μl reverse transcription reaction (10 μl sterile water, 2.0 μl 5×RT buffer, 1.6 μl dNTP (250 μM), 2.0 μl anchored primer (2.0 μM), 2.0 μl RNA template at 100 ng/μl) was prepared for each embryo phase sample. The reaction mixture was heated to 65° C. for 5 minutes in a thermocycler, cooled to 37° C. and paused after 10 minutes while 1.0 μl MMLV was added. The program was allowed to resume at 37° C. for 50 minutes. The reaction was then heated to 75° C. for 5 minutes, cooled to 4° C. and stored at −20° C.

Incorporation of Radiolabeled Nucleotides by PCR

Differential Display PCR was performed in a 20 μl reaction containing 2 μl of the reverse-transcribed cDNA template; 10 μl sterile water 2.0 μl 10×PCR buffer, 1.6 μl dNTP (25 μM), 2.0 μl anchored primer H-T 11G, (2.0 μM), 2.0 μl 13 mer arbitrary primer (AP1 or AP2 (2.0 μM), 0.2 μl Taq DNA polymerase, and 0.2 μl α32P-dATP (2000 Ci/mmole). The cDNA was amplified by PCR: 94° C. for 3 minutes, 40 cycles of 94° C. for 30 seconds, 40° C. for 2 minutes, and 72° C. for 30 seconds, followed by 72° C. for 5 minutes. The reaction was cooled to 4° C. and stored at −20° C.

Differential Display

The PCR products were separated on a Stratagene (La Jolla, Calif.) pre-cast 6% polyacrylamide sequencing gel at 30 watts constant power for approximately 2.5 to 3 hours. 3.5 μl of sample was mixed with 2.0 μl, of loading dye and incubated at 80° C. for 2 minutes immediately before loading onto the gel. The gel was rinsed in water and dried. Dilute 35P-dATP with loading dye was spotted at the corners as alignment markers and the gels were exposed to Kodak BioMaX™ autoradiography film. An exemplary gel is shown in FIG. 1.

Bands that appeared to be possible markers for phase specific gene expression were marked on the film and aligned over the gel. The bands were excised by cutting through the film. The gel pieces were scraped from the gel and transferred to tubes and re-amplified using the same primer pairs and PCR conditions as used for incorporation of radiolabeled nucleotides.

Cloning of DNA Fragments from Differential Display

The PCR products from the gel fragments were purified, polished, ligated and cloned into XL 10-Gold Kan ultracompetent cells by heat shock with the Stratagene pCR-Script Amp SK(+) Supercompetent Cell Cloning Kit according to manufacturer's instructions. The transformed cells were spread on LB agar plates containing ampicillin, IPTG, and X-Gal each at 50 μg/ml. The plates were incubated overnight at 37° C. Plasmids containing PCR inserts were identified using blue-white colony screening. The presence of inserts was confirmed by digesting the clones with restriction endonucleases, Msc I and Nla ll, followed by standard DNA gel electrophoresis. Transformants representing early, middle, and late phase embryos were sequenced using standard dideoxy protocols known in the art with the T3 primer.

Sequence Analysis

All sequences were analyzed using a program-database pair search of the NCBI BLAST 2.0 server, blastn-nr, blastn-others ests, and blastx-nr. In each case, the query sequence was filtered for low complexity regions by default and entered in FASTA format. Other formatting options were set by default; alignment view-pairwise, descriptions-100, and alignments-50. Using these parameter settings, significant similarity to known DNA, RNA, or protein sequences was found for several of the nucleic acid molecules of SEQ ID NOS: 1-334, for example, those described herein. (Alignment data not shown).

EXAMPLE 2 Characterization of Full Length LP2-3 cDNA Sequence

SEQ ID NO: 327, designated LP2-3, was first identified through differential display with T12MG and AP1 primers (GeneHunter). The differential display band appeared to be present only in liquid suspension cultures of Loblolly Pine somatic embryos. The conditions for mRNA isolation, reverse-transcription, differential display-PCR, and gel separation/visualization for producing this band were all as described in Example 1. Likewise, the band containing the original LP2-3 fragment was excised from the differential display gel, amplified, and cloned into pCR-Script AMP SK(+) according to standard protocols known in the art.

Northern Hybridizations Demonstrating Early-Specific Expression

Northern analysis demonstrated that the LP2-3 differential display clone hybridized to an approximately 1.2 Kb mRNA from liquid suspension culture embryos but was undetectable in late (6-9) stage embryo RNA. (FIG. 11) In general, LP2-3 is most highly expressed in early stage embryos in liquid culture. LP2-3 mRNA is found most abundantly in early stage somatic embryos, especially for embryos grown in liquid multiplication medium. (FIG. 12) Further, transcription decreases rapidly as embryos are transferred to maturation medium (stage 3 and stage 4) and begin to mature. LP2-3 transcripts are virtually undetectable at stage 6-9 somatic embryos grown on maturation medium. (See FIG. 12) Additional studies indicate that LP23 mRNA is expressed zygotically, particularly in early stage zygotic embryos, but is undetectable in mature vegetative tissues. (FIGS. 13 and 14) Specifically, the signal intensity from liquid suspension somatic embryo RNA was about 3 times greater than the signal from the analogous stage 1 zygotic embryo RNA. (FIGS. 13 and 14) LP2-3 transcripts were not detectable in total RNA from needles, stems, or roots of one year old seedlings, including those exposed to cold, ozone, wound stresses, or the hormone jasmonic acid (not shown).

LP2-3 Differential Display and ‘Full-Length’ cDNA Sequences

A ‘full-length’ cDNA was captured from SMART™ cDNA made from somatic embryo liquid suspension by using a biotinylated LP2-3 differential display fragment as a capture probe. The “full-length” cDNA was cloned and sequenced according to standard protocols known in the art. This sequence was designated at LP2-3+.

GenBank blastx searches conducted with the above sequence translated in all 6 reading frames indicated that LP2-3+likely encodes a member of the major intrinsic protein family. This family of proteins encodes membrane channels for the transport of water and/or ions across cell membranes. They may play a significant role in osmoregulation and may play a role in the cellular responses to water and salt stresses. As is known in the art, the MIPs are induced by dessication, flooding, and high levels of the plant hormone ABA. In contrast, the LP2-3 sequence was not detected in desiccated late-stage embryos which have high levels of ABA and, thus, appears to be regulated by some embryo-specific signal.

EXAMPLE 3: Hypothesis Development for Improved Protocols

Currently the improvement of tissue culture practices arises via hypothesis, evaluation and adoption. Hypotheses arise from observation of size, shape, weight, etc. and physiological measurement of ion or sugar content (FIG. 6, box 1). These observations are limited in scope and this limits the improvements that can be made to the tissue culture process. Gene expression is closely linked to metabolic condition, thus the observation of which genes are induced or repressed under a given growth condition, naturally, on the tree, or in a culture vessel, provides insight into the metabolic state of the embryo. This information can be used to create new hypotheses that can be evaluated by modifying tissue culture.

To this end, mRNA levels of two cDNAs (LPZ-202 and LPZ-216), similar to “Late Embryogenesis Abundant” (LEA) proteins, identified in other plants, were monitored. These genes are induced by the plant hormone ABA. Two peaks of mRNA were observed in these clones rather than the typical single peak in most plants. (See FIG. 4 for clone LPZ-216; clone LPZ-202 is similar but data is not shown.) It was subsequently confirmed that two peaks in ABA activity are observed during development and that these correspond in timing to the elevation in mRNA for LPZ-202 and LPZ-216. Thus mRNA abundance profiles are providing insight into embryo physiology. (See FIG. 7) The effect of giving two pulses of ABA to our somatic embryos is assessed; a tissue culture modification that we might not have considered as important had the gene expression data been unavailable. Internal data shows fluctuations in the abundance of mRNA for cDNAs listed in this collection (data not shown.)

Zygotic and Somatic Loblolly Pine Embryos

Loblolly pine cones were collected weekly from a breeding orchard near Lake Charles, La., and shipped on ice for experimentation. Embryos were excised and evaluated for developmental stage (Pullman et al. 1994). Stage 9 embryos were separated by the week they were collected-9.1 (week 1), 9.2 (week 2), etc. Staged zygotic embryos were sorted into vials partially immersed in liquid nitrogen and stored at −70° C. Somatic embryos for loblolly pine were initiated as described by Becwar et al. (1995) or with minor modifications. Somatic embryos were grown, selected, and staged as described by Pullman et al. (1994) and stored at −70° C.

cDNA Probe Preparation and Hybridization

30 ng of purified Lea protein cDNA fragments was labeled with 32P dCTP using the Ready-To-Go cDNA Random Labeling kit (Pharmacia). The labeled cDNAs were purified using NICK Column (Pharmacia) and heat denatured for hybridization. The RNA slot blot was pre-hybridized in hybridization buffer (0.5 M sodium-phosphate, pH 7.2, 5% SDS, and 10 mM EDTA) at 65° C. for 2 hours in a hybridization oven (Model 400, Robbins Scientific, Sunnyvale, Calif.) and the hybridized in the same conditions with the cDNA probes. After hybridization, the membranes were washed at 65° C. in 0.2×SSC and 0.1% SDS. Each wash was 15 min. The membranes were then exposed to Image Plate.

The probes can be stripped from the RNA slot blot by pouring boiling 0.5% SDS onto the membrane twice and incubating without heating for 30 min. The stripped blot was then exposed to Image Plate for overnight to check the completeness of the de-probing before next round of hybridization.

To ensure the equal loading of the each RNA sample, the same membranes were stripped and hybridized with a 32P-dCTP labeled 26S ribosomal rDNA fragment. These results were used as controls to normalize the Lea protein gene expression levels.

As a means of evaluating the usefulness of these arrays, we followed the expression of three cDNAs that have strong sequence similarity to late embryo-abundant proteins, (Lea) proteins from cotton (Baker et al 1988). Lea proteins and mRNAs appear in embryos at a stage when ABA is high and the genes can be induced in vegetative tissue by application of ABA. The transcript level of Lea genes LPZ-202 and LPZ-216 showed two peaks, rising from stage 5 and returning to a base line about stage 9.2 then rising again around stage 9.5. (See FIG. 4 for clone LPZ-216).

To confirm the fluctuation in lea transcript levels by Northern analysis. RNA was extracted from zygotic embryos at different stages of development A in ‘dehydrin’ cDNA from the North Carolina State University cDNA collection (hftp://www.cbc.med.umn.edu/ResearchProiects/Pine/DOE.pine/index.html) was used as probe for some experiments. Dehydrins are a class of lea protein, originally identified as water deficit inducible proteins. Since the expression of this class of protein is well characterized, in contrast to our lea genes, the dehydrin expression profile could act as a reference point. After probing with dehydrin, blots were stripped and probed with a 26S rDNA probe from Arabidopsis to check the loading of the original gel. The normalized expression pattern of dehydrin in the zygotic embryogenesis is illustrated in the top panel of FIG. 4. The expression of the dehydrin gene was induced at stage 5 and reached a peak at stage 6. It declined at stage 7-8, just prior to the onset of the desiccation. Then the mRNAs level remained low from stage 9.1 through 9.5. The dehydrin mRNA levels rose again late in development, from stage 9.6 on, apparently dropping in very late development. A similar pattern of expression was observed in a parallel experiment when our lea-like clone, LPZ-216, was used as a probe.

This pattern reveals two significant peaks at the early development of the embryos and high expression levels for the stage 9.6 and beyond. The expression pattern of these two lea genes in loblolly pine embryos is consistent with the changes in ABA concentration observed in pine during embryogenesis. (See FIG. 5)

EXAMPLE 4 Evaluation of Metabolic State of Somatic

Embryos as Compared to Zygotic Embryos for Fitness Determination

The model and goal for somatic embryogenesis is to produce an embryo that in vigor, germinatability, etc., resembles a zygotic embryo. Standard measurements reveal relatively little about the embryos; thus the metabolic state of somatic and zygotic embryos is unknown. The metabolic state of zygotic (natural) embryos can be evaluated by DNA arrays containing the cDNA clones described in this application. A database of mRNA levels for the genes represented on the DNA arrays can then be established. Embryos growing under a new tissue culture protocol (FIG. 6, box #2) can be evaluated by DNA array southerns (FIG. 6, box #3). The array elucidates patterns of gene activity and reveals whether those patterns are similar to the natural state (FIG. 6, box #4). The germination, or further development can be checked (FIG. 6, box #5) to confirm the conclusion. Where a link between specific gene activity and embryo performance has been demonstrated, protocols can be modified with efficiency as seen in FIG. 6, box 6.

To illustrate this process, elevation of plant hormone ABA in maturation medium was evaluated as a protocol modification, as described below. This modification proved beneficial, elevating the number and quality of the embryos produced. The mRNA abundance for cDNAs was assessed by DNA array using RNA isolated from control and elevated ABA conditions; several differences were observed in the mRNA levels of specific genes. Further, abundance of mRNA in the elevated ABA condition, more closely resembled the mRNA abundance observed for the these same genes in zygotic embryos. Thus a protocol which produces higher quality embryos produces, in these embryos, a mRNA profile that more closely resembles that observed in natural embryos.

Zygotic and Somatic Loblolly Pine Embryos

Loblolly pine cones were collected weekly from a breeding orchard near Lake Charles, La., and shipped on ice for experimentation. Embryos were excised and evaluated for developmental stage (Pullman et al. 1994). Stage 9 embryos were separated by the week they were collected-9.1 (week 1), 9.2 (week 2), etc. Staged zygotic embryos were sorted into vials partially immersed in liquid nitrogen and stored at −70° C. Somatic embryos for loblolly pine were initiated as described by Becwar et al. (1995) or with minor modifications. Somatic embryos were grown, selected, and staged as described by Pullman et al. (1994) and stored at −70° C.

Mass Isolation of Genes Differentially Expressed in Loblolly Pine Zygotic Embryos

The following RNA differential display method is sensitive enough to produce banding patterns from one mid- to late-stage embryo or 10-20 early stage embryos. This technique, which extracts mRNA directly from tissue using oligo(dt) beads, avoids losses inherent in conventional RNA extraction methods, is fast, reliable, and inexpensive. Differences in gene expression during development, as well as between somatic and zygotic embryos, can be easily detected.

To achieve these results, 50-100 μl lysis buffer containing 100 mM Tris-HCl, pH 8.0, 500 mM LiCl, 10 mM EDTA, 1% SDS and 5 mM DTT was added to 10-100 mg of staged embryos in a 1.5 ml tube. The mixture was ground thoroughly with an electric drill containing a plastic pestle bit (VWR, Cat# KT95050-99) that had been sterilized by autoclaving. An additional 50-100 μl lysis buffer was added and ground briefly. The grinder and vortex was washed with 100 μl lysis buffer. If multiple samples were processed, each is stored on ice until ready for the next step. The grinding tip was washed with sterile water and dried for the next sample.

After all the samples were ground, they were spun at 4° C. for 15 minutes in a bench top centrifuge at 14,000 rpm. 8 μl oligo(dT) coated Dynal beads (mRNA DIRECT Kit, Dynal, N.Y.) was placed in a 1.5 ml tube. The Dynal beads were washed twice with a 100 μl of the above mentioned lysis buffer and suspended in an equal volume of the lysis buffer used in tissue grinding. If more than one sample is handled, the beads for all the samples can be washed together and dispensed in several 1.5-ml tubes. The cleared embryo lysate (after centrifugation) was added to the beads and mixed well.

The mixture was then incubated on ice for 5 min., placed on a magnetic stand (Promega) for 5 min., and partially dried by careful removal of the liquid. To this, 100 μl of washing buffer with LiDS containing 100 mM Tris-HCl, pH 8.0, 0.15 mM LiCl, 1.0 mM EDTA, and 0.1% SDS was added, (mRNA DIRECT kit.) The mix was transferred to a 200 μl PCR tube. The beads were washed once with 100 μl washing buffer with LIDS and once with 50 μl washing buffer containing 100 mM Tris-HCl, pH 8.0, 0.15 mM LiCl, and 1.0 mM EDTA. (mRNA DIRECT kit.) The beads were then washed quickly with 20 μl 1×RT Buffer (25 mM Tris-HCl, pH 8.3, 37.6 mM KCl, 2.5 mM MgCl2, and 5 mM DTT) and 20 μl RT Mix containing 1×RT Buffer and 20 μM dNTP was added. The tube was heated at 65° C. for 5 min. and cooled to 37° C. 1 μl MMLV reverse transcriptase (Promega) was added and the mixture was incubated at 37° C. for 1 h. with occasional shaking. Next, 20 μl of water was added to the RT reaction, mixed and a 1.0 μl to 20 μl aliquot of the PCR mix containing 1×Perkin-Elmer PCR buffer, 2.0 μM dNTP, 1.0 μM T12VN, 0.2 μM arbitrary 10-mer, 1 unit AmpliTaq (Perkin-Elmer), 50 μCi α35S-dATP (Amersham) was taken. PCR using temperature settings of 94° C. 30″, 40° C. 1′, 72° C. 2′, 40 cycles, and 72° C. 10′ extension was performed with the Perkin Elmer 9600 Thermal Cycler. All PCR product was run on appropriate gels for band visualization.

cDNA cloning of Differential Display Bands

All dried gels were marked with radioactive ink prior to film exposure for proper alignment between the X-ray film and the dried gel plate. Appropriate bands were marked by puncturing. A scalpel blade was used to score the gel around each band to be excised. The excised gel pieces were placed into a PCR tube containing 2 μl water. PCR was performed using a 50 μl PCR mix (same as for differential display with the following modifications: the primer concentration was 1 μM, and the dNTP concentration was 200 μM; no α35S-dATP is added.) The cycle settings were the same as above.

A portion of the PCR products was run on a gel to determine amount and size of PCR products; DNA that did not correspond to the size of the original differential display band was discarded. The remaining PCR fractions were purified using CHROMA SPIN-100 columns (Clontech, Palo Alto, Calif.) according to the manufacturer's instructions. The purified PCR fragments were cloned into the pCR2.1 TA cloning vector (Invitrogen) according to Invitrogen cloning protocols supplied with the vector. The only variation from the standard protocol was an increase in the molar concentration of PCR product to vector (over 100-fold); multiple insertions were not found to be a problem. All ligations were performed at 16° C. overnight, transformed into E. coli strain DH5α, and plated onto LB with X-gal/IPTG.

Five colonies were chosen for PCR verification; PCR products of expected size were selected. About 10 μl of the 30 μl PCR reaction was simultaneously digested with Nla III and Mse I overnight at 37° C. (a 5 h digestion was used as well.) cDNA clones were selected according to the colony PCR and the restriction enzyme digestion pattern.

The differential display protocol for finely staged zygotic embryos of loblolly pine as described above, has produced more than 600 differential display patterns and more than 60,000 bands. Within that set of bands, we have identified bands that increased and/or decreased during embryo development. From those bands cDNA clones of this invention were isolated and sequenced.

Detection of Gene Expression by Micro-Array Assay

In order to verify expression patterns of the cloned DNA in loblolly pine embryos a micro-array assay was developed. The cloned cDNAs were amplified by PCR and adjusted to equal concentrations (0.1 μg/μl). The cDNAs were then dispensed in the wells of a 384-well plate, denatured in 0.3 M NaOH at 65° C. for 30 min. and neutralized with 2 volumes of 20×SSPE mixed with 0.00125% bromophenol blue and 0.0125% xylene cyanol FF (5% gel loading dye). The denatured DNAs were then blotted on to Hybond N+membranes (Amersham) as arrays using a VP 386 pin blotter (V&P Scientific, Inc., San Diego, Calif.). Each DNA was dot-blotted four times as a quartet on the membrane. An example of quartet spotting is seen in FIG. 7. Each dot is about 1.2 mm in diameter and contains about 3 ng of DNA. DNA was then cross-linked to the membrane at 120,000 mJ/cm2 in a CL-1000 UV-linker. (Strategene, Inc., Upland, Calif.) The dot image of each membrane was scanned, numbered and saved in computer for later use in data digitizing.

The cDNA array membranes were pre-hybridized in hybridization buffer (0.5 M Na-phosphate, pH 7.2, 5% SDS, and 10 mM EDTA) at 65° C. for 30′ in a hybridization oven (Model 400, Robbins Scientific, Sunnyvale, Calif.) and then hybridized under the same conditions with total cDNA probes made from mRNA. The membranes were washed twice at room temperature in 2×SSPE and 0.1% SDS, twice in 0.5×SSPE and 0.1% SDS, and twice in 0.1× hybridization buffer. Each wash was roughly 20 min. Each membrane was then exposed to Kodak Biomax MR films.

The total cDNA probes referred to above were made by initially creating the first strand cDNA. This was accomplished by mixing loblolly pine embryos (0.05-0.1 gm fresh weight) with 100 μl lysis buffer (containing 100 mM Tris-HCl, pH 8.0, 500 mM LiCl, 10 mM EDTA, 1% SDS and 5 mM DTT) in a 1.5 ml Eppendorf tube. The mix was then ground with an electric drill as described above. Another 100 μl lysis buffer was added and the lysate was ground again briefly. The drill pestle was washed with 100 μl lysis buffer that was pooled with the lysate. After centrifugation at 14K at 4° C. for 15 min. in a Beckman bench top centrifuge, the clear embryo lysate was mixed with 10 μl Dynal beads washed twice with lysis buffer. The suspension was incubated on ice for 5 min., with occasional mixing to allow binding of Poly (A) RNA to the oligo (dT) on the beads, and then left on a magnetic stand at room temperature for another 5 min. The liquid was removed and the beads were moved to a 0.2 ml PCR tube by suspending in 100 μl lysis buffer.

The beads were washed twice with 100 μl of washing buffer with LiDS and once with 50 μl of washing buffer. The mRNA was eluted from the beads in 6 μl water at 65° C. for 2′. One μl T21VN primer (10 μM) and 1 μl SCSP oligo (cap switch primer, 5′-ctcttaattaagtacgcggg-3′, 10 μM) were added to the mRNA eluate. The mixture was incubated at 70° C. for 2′ and cooled on ice. Three μl 5×First Strand Buffer, 1.5 μl DTT (20 mM), 1.5 μl dNTP (10 mM each) and 1 μl MMLV Superscript II (Gibco BRL) were added to the mRNA-primer mixture followed by incubation at 42° C. for 1 h to synthesis first strand cDNAs. The cDNA was heated to 72° C. for 1 min. to degrade RNA and then diluted to 100 μl with water. The lysis buffer, washing buffer and Dynal beads are components of the mRNA DIRECT kit (Dynal, N.Y.). The first strand buffer (5×), 20 mM DTT and 10 mM dNTP are components of the SMART PCR cDNA synthesis kit (Clontech, Palo Alto, Calif.).

The first strand cDNAs synthesized as described above contains a T21VN sequence at their 5′ ends and the SCSP sequence (see “SMARTTM cDNA, Clontech, Palo Alto, Calif.) at their 3′ terminals. Total cDNA probes were made by PCR amplifying the first strand cDNAs using SMART cDNA PCR (Clontech, Palo Alto, Calif.) in the presence of labeling agent. Five 5 μl first strand cDNA solution was mixed with 5 μl 10×KlenTaq PCR buffer (Clonetech), 5 μl dATP+dGTP+dUTP (5 μM each), 1 μl T21VN primer, 1 μl SCSP oligo, 1 μl KlenTaq Mix, 5 μl 32P-dCTP (10 mCi/ml, Amersham) and 27 μl water. The PCR was performed using the setting of 94° C. 2′, 15 cycles of 95° C. 15″, 52° C. 30″, 68° C. 6′. The PCR products were purified using NICK column (Pharmacia) according to the manufacture's instructions.

Currently, high-density array Southerns for both somatic and zygotic embryos at all the developmental stages have been performed. The dot array Southern data indicate that gene expression of late stage somatic embryos resembles middle stage zygotic embryos; many transcripts present during late zygotic embryogenesis (ZE) are absent in somatic embryos and late stage somatic embryo gene expression patterns resemble the patterns of middle stage zygotic embryos.

Cairney et al. (In Vitro Cell. & Devel. Biol.-Plant. 36:155-162 (2000); Appl. Biochem. Biotech. 77-79:5-17 (1999)) have discussed how this gene expression information may be used to improve the process of somatic embryogenesis; the rare incorporated in their entirety. As shown in FIG. 2, the high-density array Southerns allows rapid evaluation of embryos subjected to protocol changes. Following the expression of a known gene permits inferences about metabolism and is very valuable in developing media-improvement hypotheses. Further, detailed gene expression studies may help by providing an understanding of the timing and location of gene expression (e.g., in situ hybridization). The isolation of key genes also provides the ability to monitor the expression of these genes as stage specific markers and allows protocol variations to be quickly evaluated.

EXAMPLE 5 Identification of Markers for Superior Performance in Tissue Culture”

The evaluation of tissue culture modifications for pine somatic embryogenesis, depicted in FIG. 8, is typically a lengthy process. However, where molecular tools are available, potentially improved media or genotypes can be discerned more rapidly, thereby avoiding the months of costly evaluation. (See FIG. 8) Table 5 illustrates this proposition.

Table 4 describes several publicly available clones. Lec. Fie, and Pkl, used to provide a representative model for this example. Any clone within Table 1, SEQ ID NOS: 1-327, can be substituted for those in Table 4 to assay increased performance in tissue culture. Any promoter within Table 1, SEQ ID NOS: 328-334, can be incorporated with those in Table 4 or SEQ ID NOS: 1-327 to assay increased performance in tissue culture. In this scenario, Table 5, a representation of the information contained in FIG. 9, shows performance of selected genotypes (260, 480, 499, and 500) in various media (1133 or 16) determined by the total number of embryos produced per medium as described by Pullman and Webb (1994), incorporated herein. Embryo maturation was determined by the presence of recognized morphology according to methods previously mentioned above. (Pullman and Webb, (1994)) Genotypes that produced high, medium, and low numbers of embryos were selected for RNA extraction. Gene expression assays, such as DNA arrays, Northern blots, slot blots, etc., were used in attempt to correlate embryo performance with mRNA abundance for selected genes. In the example shown in FIG. 9 and Table 5, expression of loblolly pine genes, designated as Lec, Fie, and Pkl, obtained from the Pine Gene Discovery Project, was evaluated. The preliminary correlation appears to be that the high levels of the Lec gene's mRNA correlates with greater number of pine embryos. (See table 5.) These experiments can be further expanded to incorporate additional or alternative genotypes with the prospect of identifying a large collection of gene indicators of good or poor performance in tissue culture based on high or low mRNA levels. It is clear from the above that this approach, using the sequences disclosed in this application, can evaluate a genotype entering tissue culture, saving both time and expense.

Somatic Embryos

Immature zygotic seeds were collected from loblolly pine genotype 260 (mother tree BC-3, Boise Cascade). Somatic embryos were initiated as described by Becwar et al. (1990) or with modifications in media mineral composition. The early stage somatic embryos were grown in cell suspension culture medium 16 and sub-cultured every week (Pullman and Webb, 1994). The embryos collected from the suspension, which include stage 1 and stage 2 somatic embryos, are referred to as stage S embryos. At the end of the subculture week, the somatic embryos in the suspension were settled in a cylinder and transferred to maturation medium 240 (Pullman and Webb, 1994). Resulting somatic embryos were selected, staged, sorted into vials containing the same stage, and stored at −70° C. until analyses were performed.

Probes

For the following example analysis RNA was isolated from embryos at different stages in development, early stage somatic embryos and late-stage somatic embryos. The cDNA probes used in this example are not contained in the SEQ ID NOS: 1-327, but rather, are generic, publicly available pine sequences obtained from the Pine Gene Discovery project located at (http://www.cbc.med.umn.edu/ResearchProiects/Pine/DOE.pine/index.html). These clones are homologs to the well-studied Arabidopsis genes that have been shown to have significant influence on embryo development in this plant. The pine clone names (first column) and corresponding references for the Arabidopsis homologs are shown in Table 4. The three clones listed, Lec, Lie, and Pkl, are for representative purposes within this example and it will be clear to one skilled in the art that any of the SEQ ID NOS: 1-327 could be substituted for those here as all will help identify conditions for improved performance in culture.

Probes were made by preparation of DNA using Wizard Minipreps (Promega, Madison, Wis.) and cDNA inserts isolated by restriction enzyme digestion. For the cDNA probes, 50 ng of the isolated cDNA insert DNA was used to make 32P-labeled probes with Ready-To-Go DNA labeling beads (Amersham Pharmacia Biotech) according to manufacturer's instructions. Blots were prehybridized (7% SDS, 1% BSA, 0.25 M NaPO4 (pH 7.2), 1.0 mM EDTA) for 3 hours at 65° C. and hybridized in fresh buffer at 65° C. for 12 to 18 hours (4). Each blot was washed 6 times with the following conditions: 1) RT, 2×SSC, 0.1% SDS, 15 min; 2) RT, 2×SSC, 0.1% SDS, 30 min; 3) 42° C., 0.2×SSC, 0.1% SDS, 15 min; 4) 42° C., 0.2×SSC, 0.1% SDS, 30 min; 5) 60° C., 0.2×SSC, 0.1% SDS, 30 min; 6) 60° C., 0.2×SSC, 0.1% SDS, 30 min. Blots were exposed to a phosphorimaging plate for 10 minutes. Screens were read with a BAS1800 (software v1.0) and images were manipulated with ImageGauge (v2.54) (Fuji Photo Film Co., Ltd., Kanagawa, Japan).

The hypothesis tested within this example is that genotypes that produce large numbers of embryos have high Lec expression and low Pkl expression, poor genotypes have the opposite pattern, and that Lec and Pkl expression act as indicators of embryogenic potential. FIG. 9 shows that Lec is not expressed in late stages of embryogenesis in somatic embryos. The Lec gene is expressed throughout embryogenesis in Arabidopsis. The blot reveals that the Lec gene is a useful early expression marker for embryogenesis. One interpretation of these results is that the somatic embryos do not express Lec in the manner that Lec is expressed in zygotic embryos, i.e. the use of Lec expression has highlighted a defect in gene expression in somatic embryos. This defect could be used to identify desirable genotypes, i.e. those likely to progress through development and produce a large number of healthy plantlets compared to undesirable genotypes that will cease development prematurely or produce low numbers of plantlets. This is an example of the principle described pictorially in FIG. 8.

The results described in the previous section of Example 5 reveal ways in which gene expression analyses can be used to improve somatic embryogenesis based on several genes. However, this principle applies as well when the assay is expanded to determine the expression of hundreds or thousands of genes simultaneously (e.g. by DNA arrays). We can create hypotheses which state that expression of a single specific gene can be used to determine the potential of a culture, or hypotheses that state that the expression of a group of genes (e.g., hypothetical genes A, B, C, D, E, F) acts as an indicator of high embryogenic potential. For example, all these genes may be expressed at a high level in cell lines that produce large numbers of embryos, thus we would select cell lines which exhibited this characteristic. Alternatively specific levels of expression for genes A, B, C, D, E and F may be required and a combination of high and low expression of particular genes will identify desirable cultures. Alternatively, experience will determine that certain exceptions can be tolerated.

While the previous paragraphs discuss numbers of embryos produced, the principle applies to ANY desired characteristic: by establishing a correlation of gene expression with e.g., germination potential, embryo size, growth of plantlets in their first year, disease resistance of mature plants, environmental hardiness or wood quality. Any trait where could be evaluated by these gene expression assays and correlations with gene expression established, resulting in a molecular tool which could be used to predict desirable characteristics. Explicitly, we could use these gene expression tools to select cell lines which will produce high quality plantlets months before they grow into plantlets, or cell lines or juvenile plantlets which will produce hardy trees with desirable wood quality, years before these traits are expressed.

TABLE I
Embryo
cDNA Phase Clone Nucleotide Sequence
SEQ ID NO:1 Late LPS-001 GGTACTCCACCGTAATAACCCTTGGGAAATAGCCTATGATCCAGGGGAGGCAACC
ACCTATATCATTGACAACAGCGAAAAATGTGGCGCAAGAAGTTTCACATACAATTCA
TGGTTACAAAGATCACATACCAGGTGTTGGAGCAGATTCGATAGATATTGAAGATAT
GAAGCCAAGGAGTGGAGCAGTTATTGAAAAGGGCACAAAAAAATTTGCCATTTACA
AAGATGAAAATGGGCTGATTCACAAATACTCGGCAATATGCCCACACATGAACTGT
ATTGTGAAATGGAATCCTATAGACTCAACTTTCGATTGCCCCTGCCATGGTTCAATG
TTTGATAATCTGGGTCGATGCATCAATGGACCTGCCAAGGCGGACCTATTTCCCGA
AGATTAACGATAGTTGTTTGTACATGTAATTATCTTGATATTGTATATATATGTATTTA
AATTATACAGTACAATAAATCCATGTTGCAGGCTATTTCTGCTTGATAATTTAGCTC
CAGATTATACATAACCAGTTATTGGCTGTTTTCCCCTGGCAAAAAAAAAAAA
SEQ ID NO:2 Late LPS-003 003GGTACTCCACAGAAAGAAATGATTTGACAGAAAAAGAGAGCTGTAGGATTGGG
AAACCCTGCAGTGGATATATACAATGTATATGTACTCTGTCTGTTTTTCTGTTATTTG
ACGGAAATAAAAACGCCATAGCGACGGATGACTGTAAATCCTTAGGGACGGATGAC
TGTAAATCCTTAGGTTGGAAGATTACAAACGACATATGGGTCTTTCAATTTTCAGAT
TTCTGTAAGACTTACATTTCAAAGACTGTTTGGATGGGCAAAAAAAAAAAA
SEQ ID NO:3 Middle LPS-004 GGTACTCCACCAGAATGCCGCAGTTTAGTTCTCTAAAGCAAGCAGTAAATTAATTTT
GTCAAAATCTAAAGAGTGTATAGTATCAGTGGGTTTGTATTTCCTAGTTTGCCTACA
ATAACGATGGGGATTCACCAGTTTTTGTAGAATTTGCAATCATCGGATGACAATTTC
AAAGTTTTCTCTAAGTCACCCGCATTGATATCGAGAAGCCTTCCATTTTCAATTATTT
AATATCAGAAAATCTTTTCAGTTGGCAAAAAAAAAAAA
SEQ ID NO:4 Middle LPS-006 AGCCCAGCTGCGAAGGGGATGTGCTGCAAGCGATAAGTGGTAACGCCAGGTTTCC
AGTCAGACGTGTAAACGACGCCAGTGATGTATACGAATCACTATAGGCGATGGCCT
TCTAGATGCATGCTCGAGCGCCGCAGTGTGATGAATTGCAGAATCGGCTGGTACT
CACGGGCTAGAGAAAGGCACAAGCACTTTTTGTCATTTTAGGATCAGAGGCATTCA
GGTATAGGAAGGGTGGCTCAGATAGGCAGATGGATCGGCATTTTGCCCAGTCATG
AAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCTTTGTGCCTTCT
GGTGATATCACTTCAAACAAAAGGCAACAGTTCTGTGATTTCATATGGTTTGTCACT
GAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAAGTGATTATTTG
TTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTACCAGTCAACA
AACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGTAAACGTGTAG
CTAATTGTTCTGGCAAAAAAAAAAAA
SEQ ID NO:5 Middle LPS-007 TCCAAAATACAAAGGCTTTATTTGCATCATGATATAATACAAAGTAAGAAATTTACCC
AACTGTTTAACCTAATAATAATACAAAGGAAGCATTTTACCCAACTCTTTAACGTAAT
AATACCAAAGAGTGGAATGCTTTATTGACCAGCAAGACCTTGAAATTTTTATAACCA
ATGCCCATCAACAGAGCCTTTCTTAAAAAACGCAAAGCCCAGCTCTGTCACCTTATT
AGTTAGTATAAACTGACATTCTTCCAAGCTTGTGTGCGCAGAAACAATAAAGAACT
CACCTTGGTTTAAAGAACGTGCCATGAAGAAAACGTCCCAAGAAAAATGAAATGGC
TCCTTCGACCATTCAGTCCTCCCTAGAAAAATCAAAAGACTCCTTCGACCATTAGGT
CCTCCAATTGGGCATCTAACTACAAGCGGTC
SEQ ID NO:6 Middle LPS-008 GGTACTCCACGGGCTAGAGAAAAGGCACAAGCACTTCTTCGTCATTTTAGGGATCA
GAGGCATTCAGGTATAGGAAGGGGTGGCTCAGATAGGCAGATGGATCGGCATTTT
GCCCAGTCATGAAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCT
TTGTGCCTTCTGGTGATATCACTTCAAACAAAGGCAACAGTTCTGTGATTTCATAT
GGTTTGTCACTGAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAA
GTGATTATTTGTTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTA
CCAGTCAACAAACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGT
AAACGTGTAGCTAATTGTCTGGCAAAAAAAAAAAA
SEQ ID NO:7 Middle LPS-010 ACGACGTGTAAACGACGGCCAGTGATTGTATACGACTCACTATAGGGCGATTGGC
CTTCTAGATGCATGCTCGAGCGGCCGCAGGTGATGGATATCTGCAGAATTCGCTT
GGTACTCCACGGCTAGAGAAAAGGCACAAGCACTTCTTCGTCATTTTAGGATCAGA
GGCATTCAGGTATAGGAAGGGTGGTCAGATAGGCAGATGGATCGGCATTTTGCCC
AGTCATGAAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCTTTGT
GCCTTCTGGTGATATCACTTCAAACAAAAGGCAACAGTTCTGTGATTTCATATGGTT
TGTCACTGAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAAGTGA
TTATTTGTTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTACCAG
TCAACAAACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGTAAAC
GTGTAGCTAATTGTTCTGGCAAAAAAAAAAA
SEQ ID NO:8 Middle LPS-011 GGTACTCCACGAAGCAAAAAGAGTCAGGGGAATGAAGATGGGGGGCTCCGACAAG
AAGCGGATCAGAGAAGAGCAGGAAATGAGTCCACCTGAGGAATCCTGGAGACAGA
AACAGGGGCGTTTTAATGGAGTTTGAGGCAGGGATGGCCTATGATAAACCTGAAAAT
GCCGGTGCAGGTAATGAGAATTTGCCAGAGTTTTGCTCTCTTTCAAATGAGTACTC
GATGTTATTGAAAGATCCATGGAGTTGGGAGGATAGCACTGGTTTCGGAATCCGAA
GCTTAGCTGCTGTCAGGAAGCAGTCTTGTATATTGGACTATCTCCATGATTCTGCT
GTAGATAATCGCTGTGAAAAGGATTTTGCCGAGCAGCACAAGGTACAGGAAGAGG
AGGATTGTTTGAGAAGGTCTCTTTTTGAAGCCACAGATGATCAGCTCTGGAGGCTT
CAGAGTCTTTGCAGGATACAGAAGGTCTGTTTCCTCTGGATTCCGTGGGTAGCCAT
GATTGCACGACCTTGTTGCAGGATGAGAGCATTGTTCAGGGCGCTGCTCTTACTT
CAGAATTTGGGAACAGGATGATGGTCACAAGGATGCCAAAATTCATGAAGATGGCA
TTGGTTTTGTGTATGGGAGTGGGATCTCGGATTGGATTCGGAGGGCTCCCTCGAA
TCAATCTGAGTTTTCTGAATCTGTTGAATTTGAAAGCTCTATGTTTTCACTGTAATTT
GGGTCTTTTTAATTTCTTCCTATGTAATTTGGGTGTTTCTAATTTCTTCCTTCAGCAA
AAAAAAAAAA
SEQ ID NO:9 Middle LPS-012 GGTACTCCACCATATCCAGGTAACAAGGGAAAACAGAGTCAGCTTCTAGTATGTT
GTATGCCTTGCTCTGTCTGTTTTCTTTGATCTTTGATGCCAAGCAAGTTGAATGTGA
TCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTGTCTCTTTGGTGTCATTA
GCACAGAAGCTATTGGAGAAATGATTATTATCTGTTTGATAACTTCTAGAGCATTTT
TCTGCTTCCAATTCCACAAGGTGGAAAGTGCAAGGATGTTTACTTTCTTAAACTGTA
CTTGCCTTGTATTTGATGATGTAAGGTTGTGTGGCAAAAAAAAAAAA
SEQ ID NO:10 Middle LPS-013 GGTACTCACCATATCCGGTAACAAGGGAACAAGTCAGTTTTAGAAAGTGGACCCCC
GGTTCCGTCGTTTTCTTGATCTCGGAGCCAAGCAAGTGGATGTGATCACTAAATGT
TGCTGGCAGTAGAGGTGGAGATGTGCTGTCTCTTTGGGTCATTAGCACAGAAGCTA
TTGGAGAAATGATTATGGTATTCCACCATATCCAGGTAAACAAGGGAAAACAGAGC
TCAGCTTCTAGTATGTTGTATGCCCTGCTCTGTCTGTTTTCTTTGATCTTTGATGCC
AAGCAAGTTGAATGTGATCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTG
TCTCTTTGGTGTCATTAGCACAGAAGCTATTGGAGAAATGATTATTATCTGTTTGAT
AACTTCTAGAGCATTTTTCTGCTTCCAATCCACAAGGTGGAAAGTGCAAGGATGTT
TACTTTCTTAAACTGTACTTGCCTTGTATTTGATGATGTAAGGTGTGTGGCAAAAA
AAAAAAA
SEQ ID NO:11 Middle LPS-014 GGTACTCCACCATATCCATGTAAACAAGGGAAAACAGAGCTCAGCTTCTAGTATGT
AGTATGCCCTGCTCTGTCTGTTTTCTTGATCTTTGATGCCAAGCAAGTTGAATGTG
ATCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTGTCTCTTTGGTGTCATT
AGCACAGAAGCTATTGGAGAAATGATTATTATCTGTTACATAACTTATAGAGCATTTT
TCTGCTTCCAATTCCACAAGGTGGAAAGTGCAAGGATGTTACTTTCTTAAACTGTA
CTTGCCTTGTATTTGATGATGTAAGGTTGTGTGGCAAAAAAAAAAAA
SEQ ID NO:12 Late LPS-015 GGTACTCCACTAGACCGGGTAGGGTCTCTCCATGGTTTTGCGACTAGGTTAGGTG
TCCTGTTCTGTTAATGATTTTGAGGTTTTGTTAATTGTGAGTATGTTTCCAGGGTTTT
GAACCTGGGTACTCGGCCTTTGTTGGAATGTAGTCTGGTTAATTTATATGTATATGT
AACCTTGGGGTTTCGAGCCCAGTTCTCTGTTCTTCTTGAAATGAAATGCGATTTGTT
CTAAAAAAAAAAAA
SEQ ID NO:13 Late LPS-019 ATATATACGTATGGTATTCCACAGCATGAACTCTCGACATTATATGCTTGTTATAGT
TTTTAAGAGAGGAGACTTACCTCACACATGTACAGCTTTTTATTGTCGTGCTTTCAG
TTGATGGATGATTGTTGTAGTCCTGTCATTGGTTGGACAATTTCATCATCCTAAAG
ATCCAAGAATTCATGTGGCAAGAAACTTTAATAAAGTCAAATATAATCCGATGACGT
AACCCTAAAAAAAAAAAA
SEQ ID NO:14 Late LPS-020 GGTACTCCACTAGTGATCGATTCTCTGTATGTGACGCTGCGCGGCGGCTATAGC
GCTTCACTGAGAATGTACGGTATATTATGATTGATGTGATGGATTTGCTCCGCAGC
TTCGGCTGTTGTATCTGCTCACTTCGGCGTATATATGTAATATGTTGCTTCTTCAGA
GAGATGAACTTCCCCCTAAAAAAAAAAAA
SEQ ID NO:15 Middle LPS-023 ATAGATCATTTTAAAGTTTCAGTGATTTGAATCTAATTCCACTGCATTTCCTCGCAAA
CTGGCAGTCAAATAGTATTCCCTCTTTCAGTGACAGGCTGGCAGGTGTTCATTCT
TATACAAACATGATTATCATAATTCCATTAATTCATGGCGTTTTCTTTGCCAAAAAAA
AAAAA
SEQ ID NO:16 Late LPS-024 TTTTTTTTTTTTAGGGAGAAAGGTAACTTCAGCCAGCTTTCAAAGGCAACACCTACA
AAAGGGGTGACTGAGAACTCAGACACAGACGACAAGTGATCATTCGGGCCAGATT
TTTGTTGAGAGAGTTGTAGTGTGTAATTGATTCATTTCATACATTTGATATGCAAGC
CTGTACAATAGCCTGTGACTGTTAAGGGCATTCTTTTGTCTCCCTGTTGCTATTTGG
GTTTCCGGTGTGTTCATTTTCACTTATTTTTGTGTTTTAGCTGGAAGAATTTGAGAG
GGTAGAATTGTGTCATCGCTATGGCTTGTGCATGACTCATGAGCCAGCAGTTGAAA
CTTTTATTTATTAAGTTATAATACTATGTCTTGTCAATTCTCAATAAAAGATATTTTAT
GCTGTTGGGCAGCATCTAAAATGTTTTGTATGTTAGCATAAAATCCCATTTTCTATA
AGTTTTTGCCAAAAAAAAAA
SEQ ID NO:17 All LPS-025 AGCAGGTTCAGTCAGACGTGTAAACGACGCCATGATGTATACGAACTCATATAGGG
CGATTGGCCTTTAGATGCATGTTGACGGCCCGCAGTGTGATATTCGCAGATCGCT
TTTTTTTTTTTTAGGCATGGTGCGCGATGAGCTGATAGCGATGATGAAGACCAAGA
CCACCAAAGGAAGATTCTTCAGAGCAAAAGCTACGGAGACAGAACCAGAGGACTC
AAAGCCGGAATCCATTGGTGAGGTACCTGCAAATGTGTGATGGACTAACTAAGAAG
GCTCCTTGAGAGGACCCATTAAGCACAGTGTTTTAGTCCCAAATTCTGTGCAAT
TCCGTTGAAAATCATTTTTACGATTTTAGGTATGATGTGTGCAATTTAAAGTTGGAA
TTATTGTGGGCAAAGGCTATAAGTGATTGTCTAATCCATTTAATTTATTATCTTTTGA
CTAAGAGCATATCTAGGCTGGAAGAAATTAGGGCACATATGTTTTGTGAATTT
GAACATTCTGGGTTTTGCAATGCAAAACACCACAAATATTTTATAATGTAGAGGTG
TACTTTTTCTGGCCAAAAAAAAAAAA
SEQ ID NO:18 Middle LPS-026 GGTACTCCACCAATAATACTGTCTGTTCTGCTCCCTGCTGATCCACTAAGCAGA
TTATTTCTGTCCACCCCACTTTAGAGTCTCAGTTTGTAAAGCACTCCCTAGGAGCTA
AACTCATTTCCAATGGATTAAAGCACTCCATAGGAGCTAAACTCATTTCCAAGGGAT
TTTTGTCCATTTCTCTGTGCTAAAAAAAAAAAA
SEQ ID NO:19 Early LPS-027 ATGTATACATATATGTGGTACTCCACACACTCAATAACAGCATCACAATCAAAACA
AGAAGGCGGCCAGAAAGCTTTAAAATGCTAAGCCTACAGGTAATATTCACAACTGC
ATTAAGCACCCCGCTCCTAGTTCTGAAGAAGCCAGAAAGCTTTAAAATGCTAAGC
CTACAGGTAATATTCACAACTGCATTAAGCACCCCGCTTCCTAGTAGGCTAGTACTA
GGACTAGGACCGCATTACCAGTTCCCTTATCTTCTACTCATCCTCTACAGGAAAAC
TATGACTAAAACTGCATTACCAGTTCCCTTATCTTCTCAACTCGTCCTCTACAAAAAA
AAAAAA
SEQ ID NO:20 Early LPS-028 GGTAATTTCCACCCACCACGGGCTTTTTCAATTAACCCATTTCTACCACTCCACAT
AGGGTTCTAAGTTTTGTGACTCACCCCCAATTTCGCTGATATTTTGCATTGCAGCT
GTTTATCTACAGGAAATGGCTAATCAGTACTTTCAGAATTGGTTGCTTCTGTACAG
GAAATGGATAATCAATCAGTACTTCTATACTAAGTTGCTTACGCGGGGATCAGAG
CCTTACTTCAGAAAATTGAATACATTTTCTTCTTTGTGTATGTATCAGGCATGGAAT
ATATGTAGCATGCCATGGAATGCGTATTTACTAGATTATCTTTTAATTTAATACATAT
GTTGCTTACTAATTTGTCCACAAAAAAAAAAAA
SEQ ID NO:21 Early LPS-029 GGTACTCCACACACTCAAACAACAGCATCACAATCAAAACAAGAAGGCGGCCAGAA
AGCTTTAAAATGCTAAGCCTACAGGTAATATTCACAACTGCATTAAGCACCCCGCTT
CCTAGTTCTGAAGAAGGCCAGAAAGCTTAAAATGCTAAGCCTACAGGTAATATTCA
CAACTGCATTAAGCACCCCGCTTCCTAGTAGGCTAGTACTAGGACTAGGACCGCAT
TACCAGTTCCCTTATCTTCTACTCATCCTCTACAGGAAAAACTAGGACTAAAACTGC
ATTACCAGTTCCCTTATCTCTCAACTCGTCCTCTACAAAAAAAAAAAA
SEQ ID NO:22 Middle LPS-030 GGTACTCCACTATTAGATTGATGCAAGACCAACTGATCATGGCTAGGGTGTATCA
AGCATTTCCCAGGCTAGGAATAATCTTGATTTATACCATGAATGATGCTTCGTATT
AAAGAATGTCAACGTACATGGGTGAGACTAATGCCGATCTGATCTACCTCAAG
GTAATAATTTTTGCATTAGCTGCTTCTAATCAAGAGTAGTAAGTGCTTCCATTTGC
AAAAAAAAAAAA
SEQ ID NO:23 Middle LPS-031 GGTACTCCACAAGGCATATATGGGCAATTGATTTTGCCTAGCCCAAATCCTATCA
AGCTTGCGTATTTCTAAAAGATGCACTATTTTTTGTCCGAGTGTAGGTTTTGAATTC
ATTGTAACATTCAGCAATATTAATTCAGGGGTAGCATTTCTGGCAAAAAAAAAAAA
SEQ ID NO:24 Middle LPS-032 TTTTTTTTTTTTAGGGTAGAAAACCATGCTTCACTAACAAGGTATTAAAATTACAATAT
AATTCTGGGTGTAAACGACCTGATAGATGATCTGCAAGTGCCAGGAGGCAATATCT
AGCAGAATACGTACAAATAAATTGCCAAAAAAAAAAA
SEQ ID NO:25 Late LPS-036 GGTACTCCACCAATGATCACCCATGTCCATTTGGTTAATTCAATGTCAAGATTTAGT
AGTTCCGTATTCCCTTGGGTAAGCTGTAATGGTCCATTTGGGAACAGTCCATGTTT
GGGACACAAGTTCAATAGAGATGTCATCCATAAATATCCATAAATATGGGTATGAATCTCTTCCTC
CCTCTCCGCCCAATAATAAAAAAAAAA
SEQ ID NO:26 Late LPS-037 TTTTTTTTTTTTAGTAGCAATAGCAATCCATTTTAGGGATCTGCAGATCAGTGACTAA
GTGACCCCTACCCCCAAAGGATTAATTGTACTTTGGCTTAACCACAAAACCTGATC
AATGTGAAGTTTTTACCCATATTAATTCCCAAAAGTAACTACAAATTCCAG
AGTACATTTTTACCCAAAAAAAAAAA
SEQ ID NO:27 Middle LPS-038 GGTACTCCACTATACAATATCAAGGCATATCTGCCGGTGTGAATCATTCGGATC
TCAAGCACTCTCCGTGCCGCAACTTCTGGCCAGGCTTTCCCTCAATGTGTGTTTGA
CCACTGGGATATGATGGGATCTGATCCATGGAACCTGGTCCCAAGCTGGGCAG
CTTGTGACTGATATCCGTAAGAGGAAGGGTCTTAAGGAGAGTATGACTCCCTGTC
AGAGTTCGAAGACAAGCTGTAGAGCTTTGCTATGTTTGCATGTCGGATGCTGTCAA
GATTGAGGAACCTCCGAGTATTAACACAGTTTTGTGTGCTAGGACTAAATT
TATGCTATTCACGTATTTTTGTGATCTGTATTTATGTTATCACGTATTTTTGATTG
GAAAATACTTTTTACAAGTCATCCATTAATCTTTTAAATGTTACATAATTCTCTCTGT
C
SEQ ID NO:28 Late LPS-040 AAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATC
GGCTTGGTACTCCACTATACAACATCAAGGCATATCTG
SEQ ID NO:29 M,L LPS-041 CTTTTCTTCGTGCTTTCGTGGAGTACC
SEQ ID NO:30 Middle LPS-042 GGTACTCCACAAAGTGAGATGAGTGATATGAGGTCAAACACGTAAATGACAATAGC
TATTATTTCCCCACTTGTTTGTGGCTGTGTATATTATACTTCATTGTCAGGACTTTTG
TATGGTTGAAGTTGCAAGGTTTTGGCAAAAAAAAAAAAAAAA
SEQ ID NO:31 Middle LPS-043 GGTACTCCACCTCCAGCTGCTTATCCAAGTACTACGGATAGTTCATACTCCTATTAT
GCTTCTGCCAAGTGAACCAGAAGGCTTCTGTTCTACACTAGCAAACTGATAGCTC
GAGCATCTCATTTACTAAGGATGATAATTCAAAATTGTAACATTGCAAACATCAGC
AAACATCAGCATCAACTCTGTTACTATACAAGCAATGGATGCGTCGCTGATGCTG
CGGGAGAGTAAATTTTTAGTTTACTGCGGTTGGTAATTGAGTAGGTTGACTTACATT
TCTGTTGTAAAGCCGTTGTCGGGCATTGTTTATCTGGCCGAGTTAGCGCCAGGAAG
CTAAATGTACCAAATATTTATTATTTTTATTAAGAATATAAAATTTAGTCGTCTTCT
GCTGCCCAAAAAAAAAAAAAAAA
SEQ ID NO:32 Late LPS-044 ATGGCCATGGACTTATGACTTTCAAAACCCTAAAACCTATCTACAACTTTCCACGCT
GAGATTTTCCGAGGAAGGCATTCTAAGCCATTCCCACCGTACTTTAATAAAATAAAA
ACAAGAAGATAGTAAAGCTAAGCTACAACCTTCCGCCAAAAAAAAAAAA
SEQ ID NO:33 Late LPS-045 GACCGCTGTAGGAACACTAGCAGATTCCGGAACATAGGTACTTTGAACATCTTTC
ACTCCTCACCATATGAATAGTGAGTCGATGGCGGCCTTAACAGTCGAGCATGCTTT
GATTTCGTCTCTCTCTCTAGTGACCGGAAATCAATCTCATTATATATGTCATTATGCAT
TCATTCCCACTTCCTAACTTTCATTATTGTTCAAAACTCGCCTTCCTGAAAATGCTA
TAATAGTAGGGGAATATTGAAAAACTTCCGCCAAGCTAAAAAGGCACTTAAAGCAC
CTGGATTTGAACGAGGATTTCCCACCCCGATGAGGGGGGGTGTCTTTCCATTGAG
ACGATGCCTTACTCGGCAGACCCTGTGGGGGTCTTTATAGGTGACTTAATACTTAA
GTATAGGACTAAGAGAGAGGAAGCGACCGCCTCTCTGATCAAGCCTTTACGTGC
GACGTGCCCAGGTAAAGGCTGATCTCACCAAATAATTCAGAGAAAGAAGATGACTC
CACAGTAGCGAAACTCCTACATTGTCTTACATATCGTAACAAGCGGTC
SEQ ID NO:34 Middle LPS-046 GACCGCTTGTGCGTGGTGTCCAAACTAGGACGCCTTAGTTTTCCTAAGAAGGAAAC
CCAGGCGTTGACTTGAGGCAGACTTGTGCTTCTGGGTACTCTCATCACTGCGTGA
CCTTGAGAAAGGGACTTTACCTCCAGGATCCTCAAACTTCTTCTCTGTAAAATGAGC
ATTGTAATAATTATATCCCAGGCTTATGTTGGGAATATTCAATAAATGCTCCCTTCAT
TCTTTAAAAAATAAGTAAAGACAGCCTGAATGGGAGCCACGTTCTCATTCTTCTTTC
TCTTTAAAAAATAAGTAAAGACAGCCTGAATGGGAGCCACGTTCTCATCTTCTTTC
TCTATGCAAAATGTATTGTGTAATGTTTGTGTACTAGTAGTTCAAGAGCAAATAAGT
AGTTGGTTAATGGCTAACATATTTCTTAAATTTGTAACTGTTAAGATAAACATTGAAC
AAGGAAAAAGATTCGTAACTGAAATGTAAAGTCATTTGACCCTGGATAGTCAATGAC
AATCTTATTCACAGTGTAATAAGTAATTCATAACGAGATGATTATTATGAAATTATCA
ATAGCCTGCTATATCACTTTATGTTTATGATCCACAAGCGGTC
SEQ ID NO:35 All LPS-047 GACCGCTTGTGGAAGAAAAGAAAGAATCTCTTTCGGATTCAATAGGCGGTATGGGA
GAGTCTGCTACTGCCTCTTGGATTCCAGGAATCCTAGAGCTGGGAGTATGAGTTGG
AGATGATGAAGGTGTCTCTTACCTATTTCTTGAAGTGGATGGAGTTGTGAAAATCG
ACTTCTAGCTTCAGCTAAAAACCTTCCCCTAGAATCTCTTGCTCTATGCATATCATTT
TTATTTTTTCTTTCAAGATAGGGTAATAATTCTCTTTCTGATCTTCCAGGTCACTCTA
GGTGCAAGAAGAGAGCATAGTCAAGGAACTATTAAACCAATAACTTTCTCTTTTCTG
ATCCTCCAGTTCACTCTAGGTACAAGCGGTC
SEQ ID NO:36 All LPS-050 GACCGCTTGTGCAAAGTAGATACCGTCCTGTTCCGGTGAATTGAAGTACATTTTCA
AAATGCGCTACTATGACATTTTATAGGATGTCTGAGTGTAAAATAATGGTACTGGTT
GTTGCAAAGAATCTGATGTTTGGATGTATGGAACTATAAATAGATGTTATTTTCTGA
TCCAGAAGGCTTTCCTTACCAACTGATTTCATCTCAGAAACTAAAAGCTCTTGAAC
TTGTGTAGATGGGGCTTGGTCATTGTAGTTTAAATGCATTATGTAGTGGCAAAAAAA
AAAAGTTATAGCCTACGTTCAAATGGATTTGCTCGACAATCAAATGAATTACAATT
GAATATTCATGTATACCCAAATTTTAAATGTAGAATGACATCATCAATGTAGACAAAC
ACCACTGTGCTTGTCCTTGATATCCTCTTTCACCATATAATTGGTGGCTACTCAAA
GTCACTATCTGATGCAACTACAAGCGGTC
SEQ ID NO:37 Late LPS-051 GACCGCTTGTTCAATGCAGAATCTCGAAGAGATGTCTTGGACAAATACTGAACTGG
CACGATTGGTGTAGTGCGGTTCAAAAGGCGCTCCAGATTCGTCTGGAACGAATCTT
CATACGCTGAACAATTAGACATCTTGTACGCAAGAGAATTACGATCGGCCATATAAA
AACCCCAAAGAGAAGAAAGTGTTTCGAAATTCTCCCAGAAAACAGTCTTATGCCAC
CGATTTGTCTTTTCAACATGCATTTGCAATGAAGTCTTTGGATTCTTACTGTGAGTG
CTGATCAGCAACGGATTTTCGATCTGTATAGCTCTGCCGATTCCTGGTTAAAGCAG
CTAAGAGTTAGGCATCCAGATTTGAGTTTTTTGCATCTCACAATGTTTGAATACAT
TCAAATCCATTGTTGGAGTAACCTAACAACAACTGTACTCTTCTTCCTATTTCTGAA
GCCCTCTGCCAGTTTAAGGCAGAGAACTGAGTATCTACAAGCGGTC
SEQ ID NO:38 Late LPS-052 GACCGCTTGTATAATAAAGTGGTACCGCGTCCTGCAAACAGGGTTCTCTTGCCATC
CTGCTACAACCCTGCAGTGGTCGCAGTAGAGAGAATCGGAGCAACGAACGTTTTC
CCGAATATATGGAGCGGGAGGAAGAGTTTTCTTGCTGATGATCCAATCGGAGTCGA
ACTGCCACCGCTGGATGAAGGGCGGCGAGGAAATCTTGGGGGGCAGAGGCCCGT
CGGCGTAGGAAATAAGAAACGATTTGATATGGAACGAAAGGGCCCGTCCAGGGTT
CGATCCCCGGCAGGGCAGCCAGCCCCGAACTAAACAAAACAATAAGAACAAACAG
CAAAGTAAAAGAAAGCACCAGAAGAAACAGCAGCAGACGAAGAGTAAGGAGCTGC
CCACAAGCGGTC
SEQ ID NO:39 All LPS-053 GACCGCTTGTAATCCACAGCATTTTCAATAACTTCCTGAGGTGACATCCACCTCCAC
TCAGAAAACTCGGCTGCATCTGTCCCATCACCAGCTAGATTGATCTCACTCTCGTC
TCCTCTAAATTTTAGGAGGAACCATTTCTGTGCTTGACCTTTCCATTCGCCTCCCCA
CAAGCGGTC
SEQ ID NO:40 Middle LPS-054 GACCGCTTGTATATAATGTGAAGACACAATAAAATTTTGTCCAACAAAGCAACCAAA
CGACCAAAAATTTAGCTGTGACATCAAAAAGCTCAACCCCTACAATGAATGTAACCT
TAATCTAGAAAATTGATCCATGATCTCCACTGAATTTCTCGTCATCCTGAAGAAT
GAGAAACTTAAATGTACCCGATTCCCTCAACCAAGCCCCCACAAGCGGTC
SEQ ID NO:41 Early LPS-055 GACCGCTTGTAATCCACAGCATTTTCAATAACTTCCTGAGGTGACATCCACCTCCAC
TCAGAAAACTCGGCTGCATCTGTCCCATCACCAGCTAGATTGATCTCACTCTCGTC
TCCTCTAAATTTTAGGAGGAACCTGTGATTGGTAGGGGCTTGTCATAAATGATCAAG
ACGACCCGCATCGTGATGCCAAGCTTAGTCTTTCTACTTACTGTCTATGTAATGGTC
ACGGGCCCTTCTTATGTTTATGTCTCTTTGAAATGGACGATTTTTTTGTTTTAGGTAT
ACGGGCCCTTCTTATGTTTATGTCTCTTTGAAATGGACGATTTTTTTGTTAGGTAT
TCAGTTTCTGAAGCTGTTTTGGTAGTAAACTGGGCTCAATCATTTCTGTTGCTGAA
CTTTCCATTCGCCTCCCCCACAAGCGTCAGCCGAATTCTGCAGATATCCATCACCT
GGGGGGGCCGCTCGAACATGCATCTAGAAGGCCAATCCCCTATATGAATTCTATTA
AATCCCTGGCCTCGTTTTA
SEQ ID NO:42 Early LPS-056 GGTGCGATCCAGAACTATCATCTCTCACTGCTCGTGAACAAAATGCTGGTCAT
AGCCATCACTAAGGCTAAGGTACTATCCAGCCAAACTGATCTCAAATAATAATTTCA
TAAGCTTAAATAAATAGTCCAGCCAGTAGATGGAGCCAAAAAGCCATAGAAGCTC
AAATACTTGTGGTATCAATCTCTCCTCTGTTAAGGGAGGTATCAGATCAGAAGCACT
AATCAAATGCATACATAAATGCAGTAGACTGCAATAAAACAAAATCTGCAGATAGCA
ACAGAGCGCTTAACGAACGGAAAAGAGTTTAACTTGATCTATCACAGGATCGCACC
SEQ ID NO:43 All LPS-057 GGTGCGATCCACAATAGTTCGTACGAGCGACGTCTATCTGGTTAATCAGAACACAT
ATCTAATTTGGAAATTTGTGGGCATAAAGCTCCACAGTGTAGGTGGGCTAATCCCA
TGAAACATTACTCTTCAAACATCATACAACTGAGGTGGAAATGCAAAAGATTATT
ACTGGATGCTGATCTGGGACTAAGGTGGTGGCCATTGGTAATGTGTGTTTCAGAA
ATATATCTTCATGATGATCAGTAGTTGCATCTGGTTGGAAGAATGATAAATTCTGGT
AATTTGTCTTGGGATCGCACC
SEQ ID NO:44 Late LPS-058 GGTGCGATCCAACTAGAAGAATATAAAGAAAAATTACGGACTACCAGAAAACATCA
CATCACAGTGTATGCATTCTCAATAATCAGAACTGTACTGGCTAATATCGCTGTGC
CTGTCGTTTCATTTTCCTGTCATCCGCATAGGGCCCCTCATTTTCCCTATCTTGCAG
AAATCCAAGAAATGCAAGAAAACCAAAAAGGAAGAAACCCCCAGAGGAAGAGTCCG
AAGAGGATATGGGTGTCAGTCTTTTTGACTAGATTGGAGGATCGCACC
SEQ ID NO:45 Early LPS-059 GGTGCGATCCCAGAACATTTCAGACAGATTAAAACAAGATCTAGTCAATCCTACAA
GGGAAACTTTTGTCAAGATCCGGATCCAGATTTTCCTCAAGTAAAACTAATCTCATT
AAATCCAAGCCAATCTCTAGCAAAATTCAAACACTTTTTATTAAATCCAAGCCATATA
TCTGGCAAATTCACCGAAATATGTACAATCGCAGCGCATTGCTTGGCTTGCGACAG
AAACCATATTCGCACGTCTTCATAAGGCTTTGGATCGCACC
SEQ ID NO:46 All LPS-060 GGTGCGATCCAACAACACAGCTTCACACTTACTCCATCCTCTGGAACTCTCATCAG
ATTGTGTTCTTCGTAGACCAAGTTCCTGTGAGAGTCCACAGGCACACTGAGGCTAC
AAGCGATGTGTTCCCTAAAGAACAGGGGATGTACATGTTTTCCAGCATTTGGAATG
CAGACGACTGGGCAACCAGGGGTGGGCTTGGGAAGACAAACTGGACTGCCGCTC
CATTCAGCGGATCGCACC
SEQ ID NO:47 All LPS-061 GGTGCGATCCCAACACCAAGTGAGAATGAAGCAATATAAATCAGCAGACTCACTAA
AGCCAAAACAGTGAAAAATGTTTCATATTGGGAATCTGCTCCAGAATGAGCCTTCAA
GTAAAATGACAAACTAACGAGGAAGAGACATACGGCCATGCCCCCAGATGAGACC
ATGAGGAGGAGACGTCGTCCGGCTTTATCCATGAGCCATACAGCAACTGCAGTCAT
GATGACCTGGATCGCACC
SEQ ID NO:48 Late LPS-062 GGTGCGATCCAGGAAATCATCAAAGGGGAGCACATCCAATGTGCAAAATAAGATCA
TCATGCAGCAAGATCTCTGAAATATAAGCTCTGTAAGACCAATCTGAAGTGCTGATG
ATCAATATGAACTGAAACATCATGCCACAATGGGCTGGTACTTGTGCAAAATTCTCT
GGCATGTGATGAGAATCACATGGTTACCTCTTTGGATCGCACC
SEQ ID NO:49 Early LPS-063 GGTGCGATCCAAAGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATA
AATTCCCAGTTTGGAATTCTAAATAAAACTGTTCAATATTTGAAGGCCTCTGATATCA
CAGAGACTGATATTAGAATGGAAGCATGTAGCAACCCTAGAAGCTTTCGCATAAAG
ATACCAGATTAATTCATAAGAAGGATCTCTCGTTCACCAGTCACATATCACAGTCGG
ATCGCACC
SEQ ID NO:50 Late LPS-064 GGTGCGATCCGTTAGATGAGCTGCCAAGTATGGAATTATTGACATTTTTGGACGGG
TTATGGGCAGAGGGATGTGCCAAGCTGAAGAAGATACCGGGGTTGGAGCAAGCCA
CAAAACTTCGAGAGTTAGATGTTAGTGGGTGCCCTCAGTTAGATGAGCTGCCAAGT
ATGGAATTATTGACATCTTTGGACGGCTTGTGGGCAAAGGGATCGCACC
SEQ ID NO:51 Middle LPS-065 GGTGCGATCCACATAGTTTGAATGCAAGGAAATTGCACATACTTCGTGGGGAATTT
CGATGGCAAATCAGTCCAGGTAAATGACTTCTCAACATAGGTCCAAAACTCTTTCAT
AGACCAGATCTTGACCGTGTTGTCCATGCCACAGCTGCAATACGATATACATCTG
AAGGATGAAAATCTACACTGAGAACTTCATTGCGATGTCCCCCAGCTCCAGCAAAT
ATCAAAATGCATATTCCAGTTTGAACATTCCAGAGTCGTACAGATTCATCTTTGCTA
GCAGATAAAATAAGGGAAGGTTTCAGTTGCTTGGGTCCTTATTTCATTCACAGAACT
CCATGGCCAACGAAACTCTTATGGACTTTTCATTTGCACATCCATTCTCGAATTATA
CATTGTGACCGCAGCCACTAATAATGGGGAACATCACTCGCCTGCCGACTTATGTG
TTAAAGAATC
SEQ ID NO:52 Late LPS-066 GGTGCGATCCCCTCCATTTACCATGGTATACTGTTCCAAAGGTTCCAGAGCCTAGC
TCTTTCAATTCTTCAAGGTCAGCATTCTTTATATCTGGAAACTTCGCTAGCTGTGT
CTATAATCACGAAACCCAGACGGGGAACTAATAGGCGATGAAGTTCTCTTATCCA
TAACCGTTGCAAAGATCTTACACGGAGTTTTCTCTTCTTCTGCGTGGCTTTtCTTTC
CCGTATTCTCGGATCGCACC
SEQ ID NO:53 Late LPS-067 GGTGCGATCCATACATGCGAGGGCGCATGAGAGACTACCACAAATCCTACATACCT
CCATTCACCCCTGGATCGGTTATACAAGGATTTGGGGTGGCTAAAGTGATACTCTC
AAATCACCCAGACTTCAGAGAGGGTGACTTGTATCTGGTACTATAGGATGGGAAG
AGTACAGCATAATACCAAAAGGGAGTAACTTAAGAAAGATCAAATATACGGACGTAC
CACTTTCATATTTTGTGGGTGTTTTAAGAATGCCCGGGTTTACTGCTTATGCTGGAT
TCTTTGAAGTTTGCTCTCCTAAAAAGGGGGAGCATGTTTTTGTCTCTGCCGCTTCA
GGAGCTGTTGGCCAGCTTGTTGGGCACTTTGCAAAGTTGATGGGTTGCTATGTTTGT
TAGGGAGCGCGGGTAACAAACAGAAGGCTGATCTGCTGAAACATAAAATGGGCTTT
GATGATGATCTCCACCATAACGAGGAGCATGACTTCGATGTGGCTTTAAAAAGGCA
TTTTCCAGATGGGATTGCACC
SEQ ID NO:54 Late LPS-069 GGTGCGATCGAACTGAATGAATGAOGTTGCCAAGCTATGTTTGGGAATTAAAACTT
GAATGCCGTTATTCTCTCCTTTTTCCAAAAGGGCCTTTTCTGCCAGAAAACCTTAAA
TTTCTGACTGGTTTCCAAGTCCAATTTTTCCAAATATGGATTGGTTTACCATTGAAGG
CACCACCATGCTCTGAAAGTTATGGACTGCACTTGCCCCAGTGCTATATTTAGTCC
AGATAGCGCTTGTGTCTCTAAATGCATCTCCCTGCTCGGATATCACC
SEQ ID NO:55 Late LPS-070 GGTGCGATCCGAACAGAGGGAGCAGATTTTGCCCTGCAAGTATTCACAACATTAG
AGAAGCCCTGCCAGAGATATGGGAGGAAGAAGATGCAGAGAACACCAAAAATGTT
GTGGGATCAAGAGGAGCGGATGCAACTATAGAAACTGTTGTCACGGCATAAGCCA
TCGCCTCATTGAATGAGGGAATGGAGGACTAGACAAATCCCTTTGGATCGCACC
SEQ ID NO:56 Middle LPS-071 GGTGCGATCCGATTGGGCAGCTGCAGCCTTGGGAAGCTTTAGAATCAAATTGCAC
TCATCCTCCAGGAGGTATTGAGAAGTCAATTTCTCAAGGTCTACAGTGACAGAAGG
AACCATCTTGACAATCTTATCAGGTTTCCTGCTCTGGTTAAACACTTCAACTTTGAC
AGGACGAGAGTATGTGACTAATTCATCTTCTTCATCAGACTCTACATCTCCTGTTT
CAAGAAACAAAGATACTGATCATCACTAGGGCAAGAATTGATGATTTTGATATCTCT
GGAGAAGCCAGTGTTTACATTGGTTTGCTTCATGGCCACCAGTCTATGGCATAAAG
CTTTCCCGAAAGGGTACTTGGCAGATTTAACAGAGCCCAACGTTATATTTAAGGCC
CATCTCTTTGCTCTCAAAATTTTTCTTGCATCCTCTGGAGAATATAAAACCCCTTGG
TGTCTCTTTCCACAAACACCTTCTCATTGATC
SEQ ID NO:57 Late LPS-072 GGTGCGATCCAACTGAGAGGGTGTTGGTGGAAAGATGACACCAAGTGGGTTCT
ATATTCTCCAGAGGATGCAAGAAAAATTTTGAGAGAAAGAAGATGGGCCCTTAAAT
TAACGTGGGGTTCTGTTAAATCTGCCAAGTACCCTTCAGGAAAGTTTATGCCATAG
ACTTGGTGGCCATGAAGCAAACCAATGTAAACACTGGTTCTCCAGAGATATCAAAA
TCATCAATTCTTGCCCTAGTGATGATCAGGAAGATGTAGAGTCTGATGAAGAAGAT
GAATTAGTCACATTCTCTCGTCCTGTCAAAGTTGAAGTGCTTAACCAGAGCAGGAA
ACCTGATAAGATTGTCAAGATGGTtCCTTCTGTCACTGTAGACCTTGAGAAATGAC
TTCTCAATACCTCCTGGAGGATGAGTGCAATTTGATTCTAAAGCTTCCCAAGGCTG
CAGCTGCCCAATCGGATCGCACC
SEQ ID NO:58 Late LPS-073 GGTGCGATCCATGTAGTGCCAACTTACGAGATCACTAACTTTAAAACTATCATGCAA
TTGGCCAATAGAAGCGACACTTGCTGTGCCAAAGTATCGATAGGCTACTCCCGATG
GCTCAATCATATATAGTTGGGGCCCATCTCTATCATAACCTCCAAGGATAACTCCAG
ATCCAAAAGGCCTTAACCACCAATATAGTGTGCACAAATGCACATAACTGGCAACA
CGTTCACAAAGTTCCTTAAT
SEQ ID NO:59 All LPS-074 GGTGCGATCCCATGGGATAGTTGCAAGACACACAAATTTGTTGTGAAAGAAGAGAG
ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTAGCAAAATTCAAACACTTTTTATTAAATCCAAGCCATATATCTGGCAAATTCACCG
AAATATGTACAATCGCAGCGCATTGCTTGGCTTGCGACAGAAACCATATTCGCACG
TCTTCATAAGGCTTTGGATCGCACC
SEQ ID NO:60 Early LPS-075 GGTGCGATCCCACTGTAGTGTCCTTGTTGAGCATAGTTCAAGCTGTTCTGATTCC
ACCAGTTAGTGGCCCAACACTGCGAGGTGCTGCCATTTCCATTCCATTCACAGACG
TCAGTGTTGAAATTCATATAGGAAGCCACAAAGGGTGAGGAAGACCAATCTATTTT
ACTCGCCCCCCTTGAGTTGCCCACTGGTCTCCGCTCCATATGCTAGAGAATACTCT
CATTGCCTGCTCATTCGGATAGGGAACGCCTATGTTTTCATTGTTTGCAAATACTCT
GATTGGCAAACCATCAACGAAAATCGCAATTTGCTGGGGGTTCCAGAGAATAGAGT
AATTGTGGAAATCTGCTGTAGGATCGCACC
SEQ ID NO:61 Early LPS-076 GGTGCGATCCCACACTCCTAACCCTATTATATGTCTCCCGTCCATGGAGTCATAGA
AGGAGTACGATAATATGCCCTTCAGCCAAGCGAAGTATGACTTTAGTATGGCCAGG
CAGCAGTATGAAAGCACATCTTGTTTCTTCCAGGTCGGCATGTATAGTCTCCGGAG
GCTAACAATGTCACCCAAAGCTAATTGCGCAAACGGAACTCCTCTGCTGATCTCCC
GGGAACTTAGGCGGAACCACCCTGAATCCACTATTCTCACCGCGCATTTCATCCCT
TTGGTGAACGCCGCTGCCTCTGGTAGATACAGAGCTGGCTTGTCTCCACTGGAAC
CCCCTTTCCGGATCGCACC
SEQ ID NO:62 All LPS-077 GGTGCGATCCAAACTGTGGTTATCGGTGGAGAGATTAAGCAATTTATTGGAGTAGC
AAGTACGCTGAATTAAGGGGGTCCATCTTCAAGCAAAGGTTCCTTTGGATGACTAT
GTGTTCTGGAAGTGTTTATGGATCAATCATCTCATAAATTTTGGTAATATATAACAGA
AGATTATGGCATCCAGTTAGGATGGTAGTTTCATTGAGGTATAGTAAAAACTACACT
AGTCTTGTGTTGCCACCCACTTTTCAGAGAAGTCAGGAGGTCTCTTTGTGAATCATT
GATAACTTTATGAGTGGGTACCTAAATGAAATATTTGCATCTTGAGTATATACTCAAT
TGATCTTACTTGTGGATCGCAC
SEQ ID NO:63 Middle LPS-078 CTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTTACG
GCTGCGAGAAGACGACAGAACACCTATCATAACTTGAATTCTGATGCAAATCGGAA
TTTGCCAAAAACTTGGACGGAAATATAATAGGCAATATCATCCCCGCAAGTAACAAA
AAAATTGCATGAAAGCTCAAATCCTATGTGCTTTACACCTTGACTGCATACTTTCTC
ATTGGAAAATACATCTCTTTCTTTTTCTGTCTCTCAGTCTTCAATGACGGCTGATGC
TGGTAAGGCGTCGCCTGATAGCACGAGTCTTCTTGGGACGCAAATCAAGAGGCAG
GTACTTCTTTTTTTTGTATGCTTCTCTTAATGCGGATCGCACC
SEQ ID NO:64 Late LPS-079 GGTGCGATCCAAGATTGTACGGCACAGGCAAATGCTGTTCTTTTTCTTAATCACGA
TGTGCTTGAAGAATATGAGCGCCGATGTGAACAGATCCACAACCTGGAGTTAAAAT
TGGAGGAAGACAGAGCAGTGCTGAATAGGAGCTTGGCAGAAATAAATAGTCTTTAAG
GAATCCTGGCTTCCCACATTGAGGAGTTTGGTTACCAGAATTAATGAAACTTTCAGC
CACAACTTTCAAGGGATGGCTGTTGCTGGAGAAGTTACACTAGATGAACATGGCAT
GGATTTTGACAAGTTATGGTATTCTAATAAAAGTCAAGTCAGGCAAACTGGACAGT
TGCAGGTATTGAATTGCTCATCATCAGTCTGGAGGGATCGCACC
SEQ ID NO:65 All LPS-080 GGTGCGATCCGAGGGAAGCGATGTAGTCTTGCCCCAAGCGACGACCATGATCCCT
TATTCTTGGGCAATATGTGCAAGACGTGGACAAATGAAGCGGTTAAAGGGAAGCTT
ATGGACTATGGAATAGAGGGTCTTGAAGAGCTAACTCTAGTGGGTGATACTCAAAA
TGAAGGAATAAGCCGTGGTTTTGCATTTATAGCATTTCTACGCACATGGATGCGAT
GAATGCATACAAACGCCTTCAGAGGCCAGATGTTATTTTTGGTGCTGATCGAACTG
CGAATGTGGCATTTGCAGAGCCACTGCGTGAGCCTGACGAAGAGATCATGGCCCA
GGTTAAGTCAGTGTTGTTGATGGGATCGCACC
SEQ ID NO:66 Late LPS-081 GGTGCGATCCAGTCCTGAAAATGTACTTTACCATTTGTATAATGATGTAAAAATCTT
GGCCATAGTCTGGTCAAACCAGACTGTATTGTTGCTAAAGTATGGAAATTCTGGC
CATATTTTTGTCTAACCAGACTGTATTGTTGCCAAAGTTATGGGAATTCCGGCTATA
TTTTTGTCTTCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGATCATAGGG
TTGTCTGTGCGTGTCTCTCTTCTTACACAACAAATTTGTGTGTTTTGCAACTATCCC
ATGGGATCGCACC
SEQ ID NO:67 Early LPS-083 GGTGCGATCCGCTGGAAGGTGGGCAGCTGGACATCTGGGAATTATAAGTCGAATG
TCAATTGCTGGGCCATCTGGGGGATGAGCAATAGCATCGGAGGCCAAGTTCTTCT
GCAGCCGGGCACCAAATGCCATGTGGAGGTCTGAATCTTAGTTTGGAGGTCGAAG
TTTCAATCCCCTTGTGTTTACTCTGTTTCTGGTTTTATTTGAATAATTTGAGCAATTT
AATGTGGGTCCTTAGTGCTTCTGTGGATCAGATTCTAGGGAACGCCATCCTGATAA
GTAAAGATCCGAGTTTTAATGGAGATTCAATCTATCAGAATTCCATGGTGGTTTAA
ATTCCCTTGTACTGTTGATCTACGTCGCTTTGTATATCAGTGTGTGTTAAGATTTTCT
CAGAATCCACAGCTTTGTTATGGATCGCACC
SEQ ID NO:68 Middle LPS-084 GGTGCGATCCAAGCACTTACGACTCCCAACAAGGACGGGAAACTCTAAAATCGG
AAATATCATATACTGAGGCATCAACTTTGTTGATAAAACTTTAAACAAGAACAATATT
TGCAGCATATTAGCCCACATGCCATAATGACAAACAAATATGAGAACACTGCCTACA
GGTTTGCCAAAAGCATGGCCCTCACTTTTGCCCTGAGGTCATCAGGAGCTTCTGAG
GCTCGAGAAGGAGAAAAAGATTGTGTCACTTCAGGAGCTGAGGCCTCCACATCTTT
SEQ ID NO:69 Early LPS-086 GGTGCGATCCAAGGTACGAGCGAACAAGTTTCTTCAGCAAGCCACCTGGAACTTTC
CATGAGTCCAAAACAAGTTGAAGAAGGCTTCTTTGGCTACTTTTAAGATGCTGAAGT
GATTGTGCTCGCCTCTTGCACAGTTCAACCGCAATAACATTGGGTTTTACAAAACC
GATTACCTGTTTAACCTGCTGTGCACTCTTTTTCGAAACATGACAAGTTCCAACAAG
ATAAACTTCGGCCCCATTCTCGCCATTCCGCAAATAAACCACGCTCTCATCTTCTGT
TATCGAACTCGAGTGCATGCCACGACGCTCAATTGCAGGATTCCAACCCCGGACTT
GCGAATGGTGCAAAGCGATGCCCGTTTCGTCTCAGCGATACTGCTAAAGATCGGCA
GACCCGAACCAGTTTGATGCTTCCATTGCCTTAAACATCCAGAGTTTTCCTTCGACC
TTAAACCCTAACAAGATTACTGATTTCTGGTCCGGATGTTCACTGTCTGTTATACTT
CTCACAAATCTGTCACACTCCTGATAATCTTCGGTATTGAACTTCATTGAATTGAATT
TTCCTTCTCATTGGAATTCAATTGTACCTTGTAAATGTCTGGATCCTACACTATACCA
ATATTTACAGGTCTGAGTATTTTGCCTGTAGTATAATTATCTTTCCTTCGGTCTCGT
GTTTCCGTATTATTCGTGTAGGATCGCACC
SEQ ID NO:70 Late LPS-087 GGTGCGATCCCGGGGGGAGGTTGATGTTCTGAGAGAATCAATGAAGGGATTTCAG
CTGAGCTTGCCTTTTTGAAGACGGAATGCGAACAACCAGTCATTTGCAATAGCGAG
AATTCTCTTAAGCCACTGCCTGCTGGGGAGGCGAGTTCTGATTCCGGTGATTGCAT
CACTCAACGGCAGCAGCAGCGGCAGAACCTTTAGTTTCCCATGACAGGTCTCTCTG
TACAAGTATCTTCCTGTATGATCTAATCCGGGTTGTTCGATTATCGTGATGTCTC
CTGTATTGACATATTAGCAGAATATTACCATGATACGATGTTAAGTGGCATGGTTTA
TGCCCTGCATGTTATGTTATGGAGGAGGTGAGGCATGTGGCGCTCATGGGAGGGC
CCACATGGTCCATGGACGTCTTATTAAACGCATAGTCGTGAATGAAAATAGTTCAAT
ACATTCAAAATTCCAACACAATTTCATTACAATGGAAGTGACTTCGACTTGAATGTT
CATTGAAGCATTTGCATGCACAAACAAAGTATACTAGATTAGAAGAAAATTGCAAAA
AAGGACATTGTGCCCTTCTTAGTGAATATATAAAGATGTTCTTCATGCTGGATCGCA
CC
SEQ ID NO:71 Middle LPS-088 GGTGCGATCCCAATAGCCAATATTGCCTCCAAGATAGCCTAGACTGCCTTTGCAT
AGTTCTAGAAGCCAGTCACCCAACCTCCCAAAAGAAATTGCGCAATCTTTCCCATC
AGTTTCCCGGGTATGTGTTCTGTCATTCCCCGAATTTTCTTTGGTTTCACTAATAG
ATTTCTTTCCATGCACATTGCTTGTCTCCAGATCTTTTAGGTGTTCATCCATCTCTTA
GTAGTACTAGATCGATGGCTTCCAAGAGAACAGGATCATATGACACTGTTGGAAAT
GTAGCTGGAGCAGCAGTTGAGCAAGTGTCCTCTAGTCTATCTATCTATGAAAGATA
CACATTGTTTCTAGACATGGATATCAAATTGAAATTGCCAGAAGTCCATGAAACATT
TGCCGCCTTTTGAAGAAAGGCTCCAAACTGTCAGGGTTCGTGAACATCACATGTT
CTCGCTGTCTGATCCCCCC
SEQ ID NO:72 Middle LPS-089 GGTGCGATCCTCAGGGTAATGGCCTGGCTGAATCAAGTAACAAGAATCTTATAACC
ATTATCTAAGAAGATAGTAGGAGATAACAAGCGGTCTTGGGACAACAAAATCAAGT
GCGCTTTGTGGGCAGATAGGATAACTAAAAAGAAAGCCACTGGTAAAAGTCCCTTT
GAACTTGTCTATGGCATGGATTTGACATTACATGCCCATCTTAAATTACTAGCTTAC
CAACTCCTTCAACATTTTTCTAGTGATAAAGGTGTTGTCCAAAACATGGTTGATCAA
ATTGTGCAGTTGGATGAAATCCGCAGGAAAGATTTTGATAGTGCAAAAATCAGTCT
CCATTAAGAAAATCTTTGACAAATCTTCTCGGTCTAGATATTTACAGGTTGGAGATA
TGGTTTTACTATGGATTCCACC
SEQ ID NO:73 Late LPS-090 GGTGCGATCCTGCAGGCTTAGATAGTTTCGGCGCTCCTCTGAAAGAAGCACGAGT
AGGTGTCTCCACATTAGGTGGCCTGATCCCTTGCCTGCACTTGCAGCTTGTCTTA
CAACATCTCCTATGCTTTGATCCAGGCTTTTCACTGACATAACTTCAGGGGCTTCCT
TCTCCCAGGGCCGTGCTGCCATCCAGCGTTCTAGCCAGCTCCATCCCCAATTTGG
CTTGTTTGGGTCAATTTCCATCAGCATAGGATGAGCTGCTCCTCGTGTGCTTTTCAA
TGACTGATGAGAATATGCGTTATGCCAATGCCCTTTCTCGCTTCATGGCTGCTTCTT
GCTTGCTTTGCAAACTAGCCTCAATTTCCTCTTTGGATTGCAACTGTCATCCAATCC
TTTGCTTCCATACTGGATCCAC
SEQ ID NO:74 Late LPS-091 GGTGCGATCCCAAATGAACATTCAACATTCGATCATGTCAAGCGCTAAATGCCTTG
GCAGCTTAAAAGCTAGACTCCGCAAGTGACCCTTCTGACTTAGTACACATATTAAG
CTCATCAAGGGTCCAATTCCATGAAAAGAAATTTTAAAACGGTTACATATTCACAAG
AACAGCACGAGATTTCCCAGATAGTCAACCACCAACTTGCCCTATCAGCCCAAATA
TTACTCATTCCATGTTAAAAATAGCAAATTTCCAGATAGAATGTCGAAAGAGATCTT
CATGCACCATATATGGACTCTTAAAACCAGCCAAAATCTATACTGCCATGCTTGGAT
CGCACC
SEQ ID NO:75 Late LPS-092 GGTGCGATCCTGGAGAGAGAAGCAAAAAGCCTACCATCTAAATCTACATCTAAAT
CAGATATCTTTACTGTGAAAGGAATTGAATGCTGCTTCAGATATCCTACAAGAATA
AGAAGAAAAGAATGATCAACTCCAAATCAGGCAGATGGCTCAGAATTTCCCGCAGC
TTCATTTTCGACGGCCTCCACAACACCAACCTCGGCAGGACGTATTACTCTGCCAT
GAAGTGTATAGCCAGGCTTCAAAACCACAGCCACACTGCCAGGCTGCTTACTAGCA
TCTTGAACTTGAGATACTGCCATGTTGCATATGAGGATCAAACTCTTCATTTATTGG
ATCGCACC
SEQ ID NO:76 Late LPS-093 GGTGCGATCCCCAGAGGTTATTTGGGTTCAAAGTATTCTACACCAGTTGACATGT
GGTCATTTGCTTGCATAATTTGAACTGGCTACAGGTGATATGTTATTTGATCCTC
AGAGTGCAGAAGGTTATGACCGCGATGAGGACCACCTTGCCCTGATGATGGAGCT
TCTTGGAAAAATACCTCGTAAGATCGCCTTAGGTGGGAGCTATTCACGGGAACTTT
TTGACAGGCATGGGGATTTAAAGCACATTAGACGGCTTCGGTATTGGCCCTTGGAT
CGCACC
SEQ ID NO:77 Late LPS-094 GGTGCGATCCTAAACTGTATGTCTCCACAATTGTCTTCAATATAGAAGCAGCTACG
CCCCTCCTAAGTCATCATAAGTTAAAAACTTCATCTTTCCAATACAATTAAACTATCT
AGCTTATCAGTTTGGAATAGAGATACAAAATTACAGATAGATTAGCGAAACTGTGCC
ACAAAACCTCTTCAAAATTAGAAGCATGATTGTCTACAACTCCACTTCAAAAAGGAG
CTGAACCAGTCCTTCGAAGGGTGTGCTTTGGTTGTGGTGGAGGTACAGAAGGCAG
CTAATTTCTCCAAGAACTGCTGTTTTTTTAGCCTCTCATTCTCCTCTTTAAGCTGCATC
ACTTCATTCTCTAGCTCATTTGTGTATGCCTGCTTTCTTGCCCTGGATCGCACC
SEQ ID NO:78 Middle LPS-095 GGTGCGATCCGAGTGATGGCACAAAGAAAAGCAATGATAGAAAACAAAGAACAGGT
AGCTCAGAAGGTTCAGCAACTAGAGAGTCAACTTCGAGTTAAGGAGGGCGGGAG
CAATTGGCAGATTCTTCCAAATTTGTCAAGATCTCTTGGCATGAGATGACCTTATAG
GATGTTAAGGAGCAAGAGGATTCTAGGAATAATGCCAAGGATAATAAGACTAAAAG
GATGCTTCAAGACCAGGTGGCAAGGAAGGCTTCTAATTCAAAGGGAGTTAGCAAC
GGCAACAGATGCAATTCTAGGATCGCACC
SEQ ID NO:79 Middle LPS-096 GGTGCGATCCTAGAATTGCATCTGTTGCCGTTGCTACTCCCTTTGAATTAGAAGCC
TTCCTTGCCACCTGGTCTTGAAGCATCCTTTTAGTCTTATTATCCTTGGCATTATTC
CTAGAATCCTCTTGCTCCTTAACATCCTATAAGGTCATCTCATGCCAAGAGATCTTG
ACAAATTTGGAAGAATCTGCCAATTGCTCCCGCCCTCCTTAACTCGAAGTTGACTCT
CTAAGTTGCTGAACCTTCTGAGCTACCTGTTCTTTGTTTTCTATCATTGCTTTTCTTT
GTGCCATCACTCGGATCGCACC
SEQ ID NO:80 Middle LPZ-001 ATCTAGATCATCGATCTTGTCCAAATTTTAACTAGTGAATAGTTTAAAAAAAAGCAA
CTAGCAGAAGAGAACCTAACCACTGACAAATTGCAAATACTCTAGAACACTATTCAT
CATTTTTTGCGATTCACGCTGGACCCACAAGAACCCCTTGAGCTGAACTTTCTTTTC
GTTCTCCCTCCTTTTGGATCGCACCATCTAGACCATCGATCTTGTCCAAATTTTAAC
TAGTGAATAGTTTTAAAAAAAAGCAACTAGCAGAAGAGAACTAACCACTGACAAATT
GCAAATACTCTAGAACACTATTCATCATTTTTTGCGATTCACGCTGGACCACAAGAA
CTCTTGAGCTGAATTTCTTTTCGTCTCCTCCTTTTGGATTGGACATCNAATCCTGCA
GCCGGGGATTCATATTCTTAACGGCGCNCGCGNGGACTCCATNCCCCATATGATC
TTTTCATCCTGGCGCNTTTAACTCTGAAGGGAAACCGGNTTNCCCTTATCCCTGGA
NATCCCTTCC
SEQ ID NO:81 Middle LPZ-002 GTGGAGTGTAAAGGTCAACGTGCCATCCGGGTACAAACTATTGTAGAAAAAATGGC
AAAGTTAGGTCTGAAAATATCCATTTGGCCTGCTCTAGTTGTACAGTACATGATTTT
GCACTCGCACAACAATGGACTATAATTATTTTCCTGGCAAAAAAAAAAAA
SEQ ID NO:82 Late LPZ-003 GGTGCGATCCAGGACATGAGGCCGAGTTTGCCATTGTGATATGATTGAGGAAGTC
CAGTCCTAAAATAGGTTTATCTTGATGTTTGACAAGAGATATAGAGGGGCATGATG
ATTCATTGATCTGTTTGCAGATCTGTAACTGCAACCATTCTAATGACATAATAGCGC
TATTGTTGGGTTCGTGTGATGACATAATAAATTGATTTAATTTAATAACATCTGTTA
ATGCAATGGCTGTAGCTGCATCATCACCGTATCCATCGAATGTTCCATTTTTCCAAA
TGTTTGTTTCCAAAACCAGAACACCAAAATGTCCCCTGCGTTTGTNTTGAAAAATAT
TGGGCCCNTACTATACTATAATNTTTNGGCATACTATACTATAATGTTTCTCCCATTC
CCCCCAAATGANTCCTATACAATCCTGGCCGNCTTTACACTCCTGACNGGAAACCC
GGCTTNCCACTAATCCCTGGNCNANCCCTTC
SEQ ID NO:83 Late LPZ-004 GGTGCGATCCGACTGTGATATGTGACTGGTGAACGAGAGATCCTTCTTATGAATTA
ATCTGGTATCTTTATGCGAAAGCTTTTAGGGTTGCTACATGCTCTCCTCTTTTGTAT
GAATTTCCATTCTAATATCAGTCTCTGTGAT
SEQ ID NO:84 M,L LPZ-005 GGGGAGTGTCAAGGGATAAGTGGTAAGCCAGGTTTCCAGTCAGAAGTGTAAAGGC
GGCCAGTGATGTAATAGATTCATATAGGGGAATGGAGTCACCGGGGTGCGCCGTT
TTAGAATAGTGGATCCCCGGCTGCAGGATTTGATGGTGCGATCCTGCCCCTGATAA
TTTGGTTGCAATGGAAAATGCAGTATTAGGTGCGAGATGTAAAGCCCGCCCGGAG
CGGTGCATGAAGTACTGCAATATTTGTTGTAGTAAATGTGCTGGTTGTGTTCCCAG
CGGTCACTATGGCAACAAGGACGAGTGCCCCTGCTACAGAGATATGAAGTCCGCA
GCCGGCAAGCCCAAGTGTCCCTGATCTAGCACTCAGTCCAGTCGCTCACTTCTT
TTATTCTTTTTTTTTATAAAAGTGACGAGGCCGTTTTTCTTGTACTTGGTGGCCATAT
GTAGAGCGGTGGCTACTTCTCCTGTGTTAGGAAATGTTGCAGTACTAATAATAAGA
ACTTCTTTGGCAAAAAAAAAAAA
SEQ ID NO:85 M,L LPZ-006 GGGTTTCCTTAAGAGTTAAAGGCGCATGATGTATAGAATCATATAGGGGATGGATT
CCCCCCGGGGGGCCTTTCAGAATAGGGATTCCCGGCTGCAGGATTGATAGTGCGA
TCCAAGACACAGTGGAGTACCACAATGGGGATCTGGCCAGTGCTTTGTGGCTATTC
ACTGCAGCTGTATTAAAACAGGAAGCCGCAAATGGCCAGAAGGCCATTGAACTTGC
TGAGAGCAGACTATCTAAGGATGGCTGGCCTGAATATTATGATGGGAAGCTTGGAC
GATATATGGAAAGCAGTCTCGAAAGTGGCAAACCTGGTCAGTTGCTGGATATCTT
GTAGCCAAGATGATGCTTGAAGATCCATCCCATTTAGGTATGATAGCATTGGAAGA
GGACAAAAAGATGAAGCCGTCCCTCACTCGATCAGCTTCTTGGATAATGTAAAATG
GGGAAATCCTAAACTTTCAGGCCACTCTTGAATGTTTTGTCACTTCTGTATGACAAA
TGAGGCAATTCATAGTACATGTTGTGCAAAAAAAAAAAA
SEQ ID NO:86 M,L LPZ-007 GGTGCGATCCCAGAGAATATTAGTTCATGTGTTGCTCTCATTTTCTTCAATATGCAG
GGCAACCATTTGAATGAAATTATTCCTTTCGAATTTCAAAAACTTAATAGGCTAACTT
ATCTATCTGGAGCCGATTTTCATTGACGAGTAACCTGTAAGCTGGCCAGCAAAAGC
CAACAGATGTTCAGCTCGTTGGAACCAGTTGAAGATGTAATAGAGATGGTGAATA
ATCGCGGACGGCTCGGCCAATGGAATATTTGTTGCATCATCATCAAGGGGGTATGA
ATTCCAAAGAACTTGTTGATTGAAATTCCCAAGCAAAATTCTGTGAAATGAAAAATTT
ATTGAGACCATTGGGCAAAAAAAAAAAAA
SEQ ID NO:87 Late LPZ-008 GGTGCGATCCAAAGAACACAAGATGGAGTTACCACAATGGAGGATCTTGGCCAGT
GCTTTTGTGGCTATTCACTGCAGCCTGTATTAAAACAGGAAGGCCGCAAATGGCCA
GAAGGGCCATTGAACTTGCTGAGAGCAGACTATCTAAGGATGGCTGGCCTGAATAT
TATGATGGGAAGCTTGGACGATATATTGGAAAGCAGTCTCGAAAGTGGCAAACCTG
GTCAGTTGCTGGAT
SEQ ID NO:88 Late LPZ-009 GGTGCGATCTGTGTGGCTCTGAAACATCCCGGCTCCCCTCTGCACTATAATAATCC
CAAAATTAAGTGAACCCAACAGAATTTGCTCATATCTCTACAGTTATTGCAGACTGA
GCAAAACCCTCAAACTCATGTGACCTCTCAATAGGAGCCCACGCCCAAGATTTGTC
CAGCATGTAACACACCTGATCGCCGCCACTGCAAGCACAACCGCTCACAAATATCT
TGTCACACCACACTGTTGCGCAAGTTAACAATATTCATGTCTCCAGGAAAGAAATGC
CACACTTCCCAACATTCTCTTTACTATTATAGAACTTCCTTGTTGCTATGGAAAAAAT
ACATTCCCAACGCAGAACCCCAACGGGGGTTCCCAATANCCCATTTCCCCCCTNTC
CAANCCNNTNTGAATGCNCCCCATNCCCTATTGNATNNTTTAAATCCNGGCGCNTT
ANCTGGAAGGNAACCCGNTTCCCN
SEQ ID NO:89 M,L LPZ-010 GTTTCCCAGTCAGGACGTGTAAAACGACGGCCAGGGATTGTAATACGATTCACTA
TAGGCGAATTGGAGGTCGATCCGTATAGGTAGTTGGATGATGAACGGGCAAAGAA
GGCAAAGGAGTACAGTGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCT
GCAATATAAGGATGGCTAAGCTTTTCAGCTATGAAAATATATGGTGCAGTGGCACT
CATATCAGTTGCAGAGTTGTCAATATAACTTTTGTGAATAGGAAAGTTGTCCTCTTT
TAGAGTGCAGAAATCCTGCAATATAAGGATGGCTAAGTTTTTCAGCTATATGAAAAT
ATATGGTGCAGTGGCAAAAAAAAAAAA
SEQ ID NO:90 All LPZ-011 GGTGCGATCCTACAGAGAGCAGCTTGACGAGGGCCAAAAGGTTAAGGATGAAGAA
TGACCTCAGCTAGTAAGGTTTACAGAAGCAGCAGAGGCATCTTAACTGTTTTTATGT
TTTGGCAAAAGTTGTTGCGTCGGTTGTTTAATCCAGGATTTCAGATGTATTTTGTAG
A
SEQ ID NO:91 Late LPZ-012 ATTGTAATACGACTCACTATAGGGCGAATTGGAGGGTCCGATCCTGCGAGACCGA
GGGTTCATTTTCCTTTAGACAACGACGTTCAGTGGCGACCAGAGTTTCCCAATCAC
TTCAGCGATTCTATTCCTTCGTTGTAATAAAGCTTAAGGAATCCATGCAAATTCCT
GGAAGGTTTGAATATTTATATTTATTGGCAAAAAAAAAAAA
SEQ ID NO:92 Late LPZ-013 AGGTGACCGTCAAAATGATTGCAGAGGACTTAGAGAGGGAAAACCGTTCCGATCT
GGTGAAGCAATTGGATGAAGCAGCTCTGGAATTGATTCCCGTTCTGATGATATCG
TACGGCTAAGCTCAGCTCTTCAGGCAATTGGCAGAGAATACGATTCTTCAAATGAG
ATGACAGATTTTAAGAAACTTATAGATGAACATATTTCCAAGCTTGAAGCGGATTCC
CCTACGGTCACCT
SEQ ID NO:93 Late LPZ-015 AGGTGACCGTAAAATACTATGAGAAATGCTTTCATCAGGCACCGCTGGTAGGTTTT
CTTCAAGCTTTTCATTAGGCAAAAGAGGCTCCGTGAGTTGATCGTAATCTCTCCT
TGAATGGCCATATTGACCAGACACTCTGATTAGAAACTGGAATACAACTGCACATAT
AGTCATTCTTATATGATCATCCTTCTGCACTTCAGCATCCTGCGGCAACTCTCAT
CCCGCCATACTGCAGAAAAATTATTTGACTCTTGATCATGTTGTAGATGAATCTTCA
TGAATCTTCTCATCTTGCATTCTTGTCTTTATATCTTTAGGAAATTGCATCTGGTAAA
AGTATAAATGCATCTTCACTGGTTGCTTCAGTTTTGCATGCTCCTGTCTTCTTGTT
TACATGTGATCTACCAAATCATCTAATGTATTCTCTCAATGTCTTGTGGACATCTCC
TTCATTCCGAGATTACCAATCATCTACCCGAATAAATGTGCCCCGTCAGCAATGCC
GTTTTGGTCC
SEQ ID NO:94 Late LPZ-016 AGGTGACCGTAGTAGGCGTCCAGAGGCTGACAAAATCCCAGGCCTGTGCAAATCT
GGAAGCCGCATGCAGGGCCGTGGCACCTACACTTGCGGCCTTAACAAAGTGGCC
CGCGGCACCCACTTCTACCAGTGTGTTTATATTCTTGTGCAGCCAACACCAGAGGT
TATGCAGGCGAATGTGCTGGCCAAGCGTTGTTTCGGCTGTCCGCAAACCCTCTC
GAGTCTTACATGCCGCATATGAGTCTTGTGTATGGCGATTTGCCTGACGACGAGAA
AGAGAAGGCCAAGGTTAAGGCGCAGCTAAATTCGATGAACTTATCCGCAACACGG
ATTCCAAGTCTCCAGCTTGTGCTTGTACTCGACAGATCTGAAAATAATCCTCACTCA
TGCATAAGTGCAAAATGTGATCTTAACCTGCTCTGAAAATTACATAA
SEQ ID NO:95 Late LPZ-017 AGGTGACCGTCCACGAGAATTTGGCTTCAAAACCCTAGGAGAGGGATATGAACTTG
CCAAGGCACAACTGACGCATGAACAAGACGTAAAATGACTCATTAGACACTGACAT
GATAATGAAAAACCTATGAATGATGATAGACTCAGCTACTTGATGACATCGCCCGC
CATTTGGACATCTTTATAAGGAGTTTAAGCAAACCCTAGACCTACTGCCTAGTGACC
AACTTTTGCTTGACGACTCACTGAAATGACAATATTTGACCTTGACACTTCAAAATC
ACTTTGTAGGAACTCATTTGATCACTGGAGGACGGCTGGAAAGACTGACACTAACA
GGACTTTATATATGCACCTCGTCTATCCGAACTT
SEQ ID NO:96 Late LPZ-018 AGGTGACCGTAAGCACAAGTCGTCAAAATTATCTCTATTCCGGCAGTAAAAACCTAT
AGCTAATGATGGATCAATAGCACTAAGTGGCAGCTGGCGTACATCACTGCAATGAT
AAGAACCAGTATCAACCCCCATATTATCAGGAGATATCTCCACCACCTGCTGCACT
ACATGTGGATCTAAGTACAGAGCCTGATCATCCTGAACACCAACAATATACGTTG
GCTCCAGGCTTTCCACCAGCAATACCAAGACTTTGGGGAAATGTGAACGTTTCACG
AAGTGATGGTACATACCTGGGTTGATCTCTCTACACCAAGAACAAGCGGCACCA
AAATCAGGATAGGCACTTGGTCTTCCCCTTCTCCATTGGACCACTCTGAACACAGC
CTCGCAGCATCATCAATGCAGATAACTGGAGTCCCTCCACGGTCACCT
SEQ ID NO:97 Middle LPZ-019 AGGTGACCGTGAATATGGTGGGTATTTGCAGGGCAAGATTCAGGATGCTGCTCCC
GGAGCTTAAGTAAGGTCTTGGACCCTAATAAATTCAGGGTATATGCATTATGTATAT
GCTCTCATTTAGCTGCTCATCTGATTTCCATTGGGTGAATCAGTTGTTTTGCAGTAC
GTGGGGGTCTGTTATTTTGTGAGTTATGGTGGAGTCATTTTGTTGTTGTTGTT
TTTCTTATCTAGGGTTTAGGGTTTTGCCCTGTAATCGGTCTTCCCCTCTCTCCTGCG
CTTGAATTTGACCTGAAACCTCTTGAAGTAGGCCCTGGTTTTCTGGGCTTTGACGA
AAACCATGGTTGTGGATCTCCTCTCTCCTGCTACGGTCACCT
SEQ ID NO:98 Late LPZ-020 AGGTGACCGTCCTACTTCACCGCAGTGACTTCCATCTGGTTTTAGGAAACTATCCC
TAAATCCTTCACTAGTTGACGAATTGATTGACTCAAATCAACTGTCGGTCAAACCCA
CTCTCTCTGAAAGTGAATTCTATGAGTCTATACCCAACCCAAATCAATAGGTTGAGG
TAACAGTTGACCCGATTTCACCTTCAACAAATCATACCTTTCCCGAAGAGAGTGAAC
ATGATTCAACACAAGTTCTTTTTGGTTCACCAGATTCAAATGAGCTTGGGGGTAATC
CTCCTGTTCCATCAAGACAAGAAGAAAATCCTCCCACTCTCGTAACTCAAGGGTTAA
TCCTCCCATTTCTACGGTCACCT
SEQ ID NO:99 Late LPZ-022 AGGTGACCGTCNCGGGATAGNTGGAGCCNAACAAAGTACNGAANAAANTGAANCG
CNCTGGGAAGCGNGCNGAAANNTGGNCANACNTGCCCTNCNACTCGGTTACCCAG
CCNTTCTCTACCNANAATTATNACNNNANAGCNCCATGCTGGGTTTGTNANAAAAN
AACNGCTNTTGATAAAATTACATAGANTNNNGAACACGTTAAGAGGAATATGGTCC
ANATNCATTNTNAATNANNANTTAAAAACTNNNTATGTNCTAGNGTCNCCT
SEQ ID NO:100 Late LPZ-023 AGGTGACCGTACAGCACAGGTATACAAATCATAGAAATGGGCTTCTGTCCAACTGT
CAGCAGAAGCGATATGAAACCCAGAAGCATCAACTCTGCTTTCAATTTTTCAAGCG
CTTCATATAGAGCCTTTTTATTTCTCTGGAGAGCCAATTGCTAGCATAATGAATAC
CATGTTCAAGAAGTAAAGAGATGACCACAAATGCCAAACAAACAACTGCTACTGCC
CAAGTTAGGAGTTTGCTCTAGAGAACGGTCATTGCCACGGTCACCT
SEQ ID NO:101 M,L LPZ-024 AGGTGACCGTGGATATGGGAGCAGAGCCGTCCGCAGTGGATGCTGCAATTCAACT
TGAAGTGGCAGAAGCTGTGAAGACTCTCCAAATGGACAAGGCACGAAGACAAAAC
CAAGACAAGGATGAGGGCAAGAGTGGCAACGCTGATTCAGATGACTTGAATGAAAT
GGAAGTCAAAGCTAAAGCAGCCGAACAACTGCTTGCTGTGCATGGGGCAGCATTA
CTACAGAATGCTCTGAAAGAAAATTGTCGAGTCATGAAATGCGGGTTGGTTCAAA
TACAAGGGAGGAAGGTGAAGTTAGAAAGAACAGAAAGGGCATCAACGCAGACCCC
TCACTGATATCGGCAACACTACGGTCACCTAAGCCAATTCTGCAAATTTCCATCACT
GGCGGGGCCCGCTCCAACTTCCTCTAAAAGGCCAATTCCCCTATATGATTCTTATT
ACAATCCCTGGCCCTCCTTTTCCACTTCT
SEQ ID NO:102 M,L LPZ-025 AGGTGACCGTAGCAGGAGAGAGGAGATCCACAACCATGGTTTTCGTCAAAGCCCA
GAAAACCAGGGCCTACTTCAAGAGGTTTCAGGTCAAATTCAAGCGCAGGAGAGAG
GGGAAGACCGATTACAGGGCAAGGATCCGCCTGATTAACCAAGATAAGAACAAGT
CAACACACCCTTGCCAAAAAAAAAAAAAAAA
SEQ ID NO:103 Middle LPZ-026 AGGTGACCGTATGAGCAAGGAGGGAACAGTATGACAGGCAGTCAAAGCCCACGAG
GGGTGCCCCACTGCCTGCAGCAGCGCACTTACTTGGACTAACAAACTTGTATCGTG
ATTAAAACGATGAACATCGTATTGTGGAGTGGAGCCACTCGTGACCTGATTCTGTC
CTAAGTACTTGGTCCTGGAATACAATATTGCACGGTCACCT
SEQ ID NO:104 All LPZ-028 AGGTGACCGTCAAAGTACAATGGAGTCATATATCCACTTGAATTGAAACCTCTAATT
TAAAAGTTCTCAAAAAATATTTTATTTACAAAACAGGGAAAATAAAAAATGACTCTAT
CAACTATACAATCCTAACATCCATCTCCCGACAGACCTCCAGTATATGTACAAGGC
GCTGAAAGAAGGCTGATTATTTTCTATTCCAGCTCGCATAACGTGGTCTTCTGAG
GCTTTGCCTATTCCTTTCTTTAAAATCTTTCGCACGAAAGATTGGCATTGACCTTCG
GCTAAATCTCAGACTCCAGGGAACCTTGGACTCCCTTTAAAACCTAGAGCTACTTTT
TACGAACCCCTGCTTCTCTTGAACACTTAGGGAACTTATACTTACAAAACTTCGGGA
ACTCCACCCCCTAGCTTTGCAGGACTCCAGCAGATTCCCCAAACTGCCAGAAGGC
TATTTCCATGCACTGTTAGGGGTGAATTCCTACTATCAAAACCCCCAAAACATCATA
SEQ ID NO:105 Late LPZ-029 AGGTGACCGTATGGGAACAAGTATGGGAACAAGAACGTATTACATAAAAGATGGA
GATGCAACACAGCATAAATTGATGCTAAGTTGTTACAATGATGCATACAGCTTAAC
CAAGCTTGGAATGACATCATTAAGTGCGGTCACAGCCTCTGCATAGTATTTCTCT
GCCTTGGGTGTATCCTTGCTCCTTGCAGCGTAGTCCAGGTTGTCAAGGGTTGTCAA
AAAGCTTGGTGGTGAAGGTTTTGAGGGGCTTCTTCTGGTCCTTGGGCTTTGAGGA
GATAACGGTGTTTGAAGTCCTTAGCGAAAGTAAGAAACCTTTGGAACCGAAGTCCG
TTCTTGACGTTACCGCACGCCTTCCTTATCTATCACTTTTTCACCTCCAGAAATTGC
TTCCCGAATCCCTTGCTCTCCCACCCCCTGTCCCCC
SEQ ID NO:106 Late LPZ-030 AGGTGACCGTAGTGTTGCCGATATCAGTGAGGGGTCTGCGTTGATGCCCTTTCTG
TTCTTCTACTTCACCCTCCTCTCTTGTATTTGAACCAACCCGCATTTCATGACTCGA
CAAATTTTCTTTCAGAGCATTCTGTAGTAATGCTGCCCCATGCACAGCAAGCAGTTG
TTCGGCTGCTTTAGCTTTGACTTCCATTTCATTCAAGTCATCTGAATCAGCGTTGCC
ACTCTTGCCCTCATCCTTGTCTTGGTTTTGTCTTCCGTGCCTTGTCCATTTGGAGAG
TCTTCACAGCTTCTGCCACTTCAATTGAATTGCAGCATCCACTTGCGGAACGGTCT
GCTCCCCATATCACGGCACCTT
SEQ ID NO:107 Late LPZ-031 AGGTGACCGTAGTGTTGCCGATATCAGTGAGGGGTCTGCGTTGATGCCCTTTCTG
TTCTTCTACTTCACCCTCCTCTCTTGTATTTGAACCAACCCGCATTTCATGACTCGA
CAAATTTTCTTTCAGAGCATTCTGTAGTAATGCTGCCCCATGCACAGCAAGCAGTTG
TTCGGCTGCTTTAGCTTTGACTTCCATTTCATTCTAAGTCATCTGAATCAGTGTTGCC
ACTCTTGCCCTCATCCTTGTCTTGGTTTTGTCTTCGTGCCTTGTCCATTTGGAGAGT
CTTCACAGCTTCTGCCACTTCAATTTGAATTGCAGCATCCACTGCGGACGGCTCTG
CTCCCATATCCACGGTCACCT
SEQ ID NO:108 Late LPZ-032 AGGTGACCGTCGTGAAATAGCGAGAACGGCGTGGAACATCGCAACGGCGGGGAG
GCTGGCGGACGTTGCACGTTTCTGGAAGGTATGCGGCTCTCTCCTCCGCCTCAGT
TTCCATGAAGAGGTCCTCCCTGGTGAATCATACGATTGCGATTGATCGAGTACTT
GCTGTATGGCTCGGCATCGGCATTGTGGAGACATTCTTTCCTATTCCTCGCAGCAT
CTCTCCGATGGTTGCTCTCTCCGGAGCTCCATGTTATCCCCGGCACTGAGACAGTC
GCTGCCGAATCGCAAGAGCTTCTTTGTTTTTTGCAGGCTTCTCCAAACATAATGCCT
CCGGGCCCCTCAACCGAATTCTGCCAAATCCACCCC
SEQ ID NO:109 E,L LPZ-033 AGGTGACCGTGGACGACAGTGAGTGCAGTCATCATGCTCTCCAGTGGACTTTAAG
CAATCTGCATCTTTATGGAAGTGATGTATCTCTTGTGGTTTTTCATGCTCAACCATT
GGCAGTCTTCAACAGTGCTGCAACAATGGGCATAACGTCTCCCGAATTAATTGAAA
CTATTGTGAATCAACAGATAGGTTTCTGGTCACATCTAGCAATACAAACACAAATAA
CTGTGGAACAGAGCCACAAAACTATGCTTCAGAGCATCTAATTACACATATCTCTC
TAAAACCCTTGCATAAAAAATAAACTGAATCTCGACCTTAGCACTATTGCCACCATC
ATCTCAAGCAAACATTCTCTAGAATACCATCTTCACAATGCACTAAAGTTACATAAG
CACTGAACTTAAAACATTTCTGTGACGAATGAAGGACCAATTCATCATACTCAGCCT
TTGCATCCAATCTGTTGAATGTGCTGAAAAATGCCCAATAAACCTCCATCCAACACT
GTCTTCCTCTCTGAGGTGCACACTGATTTCTGCTGCTGAACCAGTCGGGATTCCCT
GCTCAACGTCCC
SEQ ID NO:110 Middle LPZ-034 AGGTGCCCGTGGAACTACTGTTAAATCTGGAATCCCTTGTCTAGCTGTTAAAAACTC
GACAAGTGCATGTTGGTATAGTAGGGTAACAGAAGGGTTCTTACCCAGATTTAC
CCCTTTGGCGGAGATATTTAAAAAAAAAGAATTGTCATTATGGTAAATAGGTGTGAC
AGGTTATCAATAGAATAACTGACGAGAGTAAACTGATAATTATTAAGGTTAAAGTGT
TCGTAAAGGAGACTTGGACTCTAGGTTGGATGCCTACACTTAGAGCCGTCCCGCA
CTTGGACGGTCACCT
SEQ ID NO:111 Middle LPZ-035 AGGTGACCGTCCAGTGCGGGAACGGCTCTAAGTGTAGGCATCCACCTAGAGTCCA
AGTCTCCTTTACGAACACTTTAACCTTAATAATTATCAGTTTACTCTCGTCAGTTATT
CTATTGATAACCTGTCACACCTATTTACCATAATGACAATTCTTTTTTTTTAAATATCT
CCGCCAAAGGGGTAAATCTGGGTAAGAACCCTTCTGTTAACCCTACTAATACCAAC
ATGCACTTGTCGAGTTTTTACAGCTAGACAAGGGATTCCAGATTTAACAGTAGTTCC
ACGGTCACCT
SEQ ID NO:112 Late LPZ-037 AGGTGACCGTATGGGAACAAGAACGTTATTACATAAAAGATGGAGATGCAACACAG
CATAAATTGATGCTAAGTTTGTTACAATGATGCATACAGCTTAACCAAGCTTGGAAA
TGACATCATTAAGTGCGGTCACAGCCTCTGCATAGTATTTCTCTGCCTTGGGTGTA
TCCTTGCTCCTTGCAGCGTAGTCCAAGTTGTCAAGGGTGTCAAAAAACTTGGTGGT
GAAGGTTTTGAAGGGCTTCTTCTGGTCCTTGGGCTTTGAAGAAATAACGGTGTTGA
AGTCCTTACCAAAGGTTAATAAACCTTTGGAGCCGAAGTCGTTCTGGACGTACGGC
CACCCCTTCCTTATCTATCAGCTTTTTCACCTCCAAGAATTTGCTTCCCCGAATTCC
TTGCTCTCCCAGCCGCCTGGTCCCCCGAAAAGGGCTGAATATAAAACCGTCCTCA
ACGGCATTCCATTCCTCCCTCGTCTGAAACACTTCCCCGCTGCCCCCGAGGTGAA
GGGCCATCAACTTGATGAACGGCTTTTGCAAGGCTCTGACCCCGGCCCCGTCACT
AACCAATTCTGCAATC
SEQ ID NO:113 Middle LPZ-038 AGGTGACCGTGGGGAACAACTACATGACAAATCATTTCTTTGTGGTGGATGTACTG
GACACCAAATAAGTGTTGAGAGTCCACTGGCTCTGTACGCGTGGCAGAATCACAAC
GGACTTGAGAAAGTTGAAGATGGAATTTGTATCGCTAGATGGCCAGACCATGTTGC
TTCAAGGGATGCACTCGTAACCCCCACAGTCTGTCTCTACCCACTAGATGGAGGCT
GACATGAGACATGGAGACATTAATTGGGTTGTGGAGTTAAAGATCTCTCACGTTCG
GGGAAAATCCAAGCCATCATACTTATATATCCGTCCCGTGCATGTAACCTCCTCCA
CTCTGTCCCTTAGGCCCGTTGTTGCCT
SEQ ID NO:114 E,L LPZ-039 AGGTGACCGTATGAGCAAGGAAANNACCGCACTGGCTCCCAGCAGCATGAACANC
CAGGTCCCAACCATANACCNCNTGGAGAANGTGATCAAGATATTAGCGACAGTGTN
ATTGTACNTCTCNCCAAACACATTATACACGATAAGAGAGCNTAAACTACTCTATTC
CTTTGACGNAGTGACTACNTGAGTANAAGCGATCATTATCTTGCNAACTTTGCATG
AAAACAACAAACCCACNTCCAGTTTCTCTATANTCTGGCCCCACNATGAATAANANT
CCTGCCATAATAATGANTCTTTGTCCCCANAGANAAATTNNATAAGACAGGAGCCC
ACTGTTGCTTGCATGACTACCANTCACTTTAAGGCGTTGCGAATCCCGGTCCTAAC
CATCTCCATACCATNGGCANNCTTTACTTTCCAACTGCCCAAGACTGTGAACAGGG
CGGTTCNNACCCTATAANTTTTAGCCTCTNNTCGAANCNCTTNTTTTCGTTCCCCGG
AAANCCGNTTCCCACCCTTTGGAACCTTTTTTTTTTGCCGGGCCCCAGGCNAATTC
TNCAATTCCCCNCTGGGGGG
SEQ ID NO:115 Late LPZ-040 AGGTGACCGTGGCGGAGGTTAGGGAAGTTTGACTTCTCATTTTCTCACGCACTCCT
CTCCCTCGTAACCTCGGTCGAGTCGATGGCGGCTTTTTAGTCGAGTGTGCTAACG
CACCCTCCGGGCCTCAAAATTTCCAGCTACTCGTATTTGATCAATGCTGAAATCGC
GTAATCACGTAGATAATAAAGCGTAATGAATTCTATAATGAAGCATGTTTCTCTATA
GTTCATGTTGCCGAGAAGGAATAATGAAAATGAAGCCTTATATATTATCTGGGGCTC
AAGGAGATGTTATCTTTTCTCTTCCTTGGTTAGAGACCGTCACCTTCACTTTGAATT
GGATAAAGCTTCATTTGTTTAAGACCTCCCACCCGTAAATACATACGGTAGCCTTCT
TATGTTAGAAACATACGTCACCTACGCAGAATTGTTAGAATGAAATGA
SEQ ID NO:116 Late LPZ-041 AGGTGACCGTGGAACAAGATGATTAGTTCTCATGCGGGCCAGGATGATTAGTTCTC
CTATGGCAACTGTTGGACAGGATGATTCGTTCTCCTGTGGACAGGATGATTAGTTC
TCCTATCGAGGCATCCTACCCAAGCAGTTTGGGACTCATGGGAAGTACCTCTCATC
TGATCAATGAGTAGGAAATGGGGTTAGGGACCATTAAGTAGTATTATCGATGGATG
CATTGTTGTATCTATTGTACTCCCTATGCTAGAATGAACTCCATTGATCTGGGATCA
ATGAATACTGTTTCTGGGAATCATTGAAAATTTGTATGAACACACTCTGAACACTGA
ATTTCCGGTTCATTGGAAGAGATGGTTTTAAACACTCTCCTCATCTCATTTCTTCCC
CTTCCTTATTCCAACCAAATTTGGGCCACCCTGCCAGGAAATTCATTTGATGGTTGG
AAAATACCACGGGCCCTAACCAATTCTGCAA
SEQ ID NO:117 Late LPZ-042 AGGTGACCGTNCATCTCTACCATNATNCCTCCCTCCCGNCTGTATCANCNGGCNTN
NANGTCNTTNNCTANNNNAAGNTAATCCTATCCCNTTANAGTGACGGTCTCTAN
NCCTAGAAGAGAANCCATAACATCTCCTTGAGCNACACATGGGATATACCGCCANC
TTATNTAATACTTTCNCNGCACGGTAACNGACCANAANCATTCTTCACTATAGAATT
CATGTCGCTTCATTATCTACCTCATTNCNCCANATCCCCCTTNATCTCATNNATTTA
CTAGAAANTTCTGAAGNTCCNNAAGGGTTCGTTTTGCACCNCCCCAANTAAAAAAN
CCCTNCCGNTTACNTCGAACGAAGGTTTCAAANGAACAGNAATTCCTTTACAAAAA
TCAANAATTTTAACTTCCCNAATCCGGCCCCCCNGTNCCCGAAACCCNATTTCTAC
GATTGCATCACCCCGGGGGNCCNCTCAANCCNNCTCTAAAGGNCCATNCCCNT
NNNTGATCCTCTNCCATCCAANGGCNCCTTTCCACTTTTATTGGAAAACCCCCNTT
CCCCNTTTTACCCTTNNAAGGCCCCTCCC
SEQ ID NO:118 Late LPZ-043 AGGTGACCGTGGAACTACTGTTAAATCTGGAATCCCTTGTCTAGCTGTAAAAACTC
GACAAGTGCATGTTGGTATTAGTAGGGTTAACAGAAGGGTTCTTACCCAGATTTAC
CCCTTTGGCGGAGATATTTAAAAAAAAAGAATTGTCATTATGGTAAATAGGTGTGAC
AGGTTATCAATAGAATAACTGACGAGAGTAAACTGATAATTATTAAGGTTAAAGTGT
TCGTAAAGGANACTTGGACTCTAGGTTGGATGCCTACACTTAGAGCCCGTTCCCGC
ACTGGACGGTCACCT
SEQ ID NO:119 Late LPZ-045 AGGTGACCGTGGGGGATGGGGCCGTGGGGAAGACTGTATGCTCATCTCCTACAC
AAGCAACACGTTTCCAACGGATTACGTGCCGACTGTTTTTGACAATTTTAGTGCAAA
TGTGGTGTTGATGGCAATACAGTAAACCTTGGCTTGTGGGACACTGCAGGGCAA
GAAGATTACAACAGACTGAGGCCATTGAGTTATAGAGGTGCAGATGCTTTTCTGCT
TGCCTTTTCTCTGATCAGCAAGGCTAGTTATGAAAATATATCAAAGAAGTGGATTCC
AGAACTAGACATTATGCACCAAATGTGCCAATCATTCTTGTGGGAACTAAATTAGA
TTTGCGTGATGACAAGCAGTTCTTTGCTGATCATCCTGGAGCAGCCCCTATAACAA
CAGCTCAAGGTGAAGAGTGAAGAAGCAGATTGGAGCAGCAGCATATATTGAGTG
CAGTTCCAAAACCCAGCAGAATGTCAAGGCTGTTTTTGATGCTGCTGCAATTAAAGTGG
TTCTTCAGCCACCAAAGCAGAAAAAGCGGAGAAAAAAGCAGAAAAATTGTTCTATTC
TCTAAGAAAAATGTGGATGTTCTGAACGCNCTTCACTGACAATAANGNTGACGTNG
GAATATCTTCCTCC
SEQ ID NO:120 Late LPZ-047 AGGTGACCGTAAGCACAAGTCGTCAAAATATCTCTATTCCGGCAGTAAAAACCTAT
AGCTAATGATGGATCAATACCACTAAGTGGCAGCTGGCGTACATCTCTGCAATGAT
AAGAACCAGTATCAGTCCCCATATAATCAGGAGATATCTCCAGCACCTGCTGCACT
ACATGTGGATCTTAGTACAGAGCCTGATCATCCTGAACACCAACAATATACGTTGAA
GCTCCGGGCTTTCCACCAGCAATACCAAGACTTTGGGGAAATGTGAACGTTTCACG
AAGTGATGGTACATACCTTGGGTTGATCTTCTCTACACCAAGAACAAGCGGCACCA
AAATCAGGATAGGCACTTGGTCTTCCCCTTCTCCATTGGACCACTCTGAACACAAG
CCTCGCAGCATCATCAATGCAGATAACTGGGCGCCCTCCACGGTCACTT
SEQ ID NO:121 Late LPZ-049 AGGTGACCGTGCCATAGCGCATGGCGTGTAACTGGATGAGACCGCATGGCTCAAA
TCTGCTAGGAATCAACATGAAATCAGCTCCAGCTGTTATCATATGAGCAAGTGGCA
CGTTAAACTTTGCTACTCCCCTGACGTTGTCTGGATATTTCTCTTCAAGCTCTTCAA
GCTGCTTCTCCAAGTACTTTTTACCGGTGCCTAGGATAATTAACTGCACGTTTCAT
CTGCAATTAGAGGGACAGCTTCAGCAAGAATATCTGGACCTTTCTGCTCTTCAAGT
CTTCCAATAAATCCTATAACAGGAATATCTGGATCCACGGTCACCT
SEQ ID NO:122 Early LPZ-051 ATGTGACCGTCAAAAGGGCATATAAATCGGGGAGCTCAATGGCAAGAATGTACGAT
TTCTGGCCTCAAGTCGCCCTGAATTTGGTCAACAACATCTTGATAGAGCGAGAGGA
CGCTCCCAATTAAGATCTGGAAACTGTCGAGAGTGATTGAGGTCATTTTTAATCTAA
ACTGAATTGTGGGGACAATTTTTCAATTCAGATCCTTCTAGCAAAGCAAAGCAAACC
TTAACAGTATTGTATCCATGAGAATGGATTCTGCACAGGTCAGGCTCCACGGTCAC
CT
SEQ ID NO:123 All LPZ-053 AGGTGACCGTGGAGAAGAGAACGCTTTGCCGACTCTCTGGGATGCCCTTCCCTCC
ATAGCCGTCGTGGGAGGACAGAGCTCCGGGAAATCCTCTGTGCTGGAGAGCATCG
TTGGAAGGGATTTTTTACCGCGTGGATCAGGTATTGTTACTAGACGGCCGCTTGTC
CTTCAACTTCACAAGACTGATGAAGGCAGCAGGGATTACGCCGAATTCCTTCACCA
ACCCAGAAAGAAATACACCGACTTTGCACTGGTAAGGAAGGAAATTGCGGATGAGA
CTGATCGAATTACAGGGCGTTCCAAGCAAGTCTCAAGTGTCCCAATCACCTTAGT
ATTTATTCACCCAATGTTTGTAAATTTGACTCTAATTGATCTCCCTGGGTTGACAAAA
GTGGCTATTGACGGTCACCT
SEQ ID NO:124 Middle LPZ-054 AGGTGACCGTGCAATATTGTATCCAGGACCAAGTACTAGGACAGAATCAGGTTA
CGAGTGGCTCCACTCCACAATACGATGTTCATCGTTTGATCACAATACAGGTTTGT
TAGTCCAAGTAGGTGCGCTGCTGCAGACAGTGGGGCAGCCCTCGTGGGCTTGGA
CTGCCTGTCATACTGTTCTCTCCTTGCTTCAGGCTCTACTGCTGTTGCTGCTGCTG
ATACGGTCACCT
SEQ ID NO:125 Middle LPZ-055 AGGTGACCGTACATACAAGGTCTTATCACCAGCAGCAAGAATAATCAGTTGGCCAT
CTTCTGCAGGCTTCTTGCTGCCTGAGACAGGAGCCTCAAGAAATTTTCCCCCCTTT
TCAATGATTGCCTCATTGATCTTTGTTGAAGTGATAGTATCAACTGTTGACATGTCA
ATGTATCCTTTTCCTGTACACATTTGCTCTAGGACACCATCCGAGAGGGCAGCAGG
AGGATCAGACAGGATGGCTATGGTATAGTTGCACTTCTTTACAACTTCGGCAGGAG
TGCTTCCTATGGAAGCACCTTGCTGAACAAGTTCTTCACACCTAGACATTGTCCTAT
TCCACACGGTCACCT
SEQ ID NO:126 Late LPZ-056 GGTGACCGTACATACAAGGTCTTATCACCAGCAGCAAGAATAATCAGTTGGCCATC
TTCTGCAGGCTTCTGGCTGCCTGAGACAGGAGCCTCATGAAATCTTCCCCCCTTTT
CAATGATTGCCTCATTGATCTTTGTTGAAATGATAATATCAACTGTTGACATGTCAAT
GTATCCTTTGTCCTGTACACATTTGCTCTAGGACACCATCCGAGAGGGCAGCAGGA
GGATCAGACAGGATGGCTATGGTATAGTCGCACTTCTTTACAACTTCGGCAGGAGT
GCTTCCTATGGAAGCACCTTGCTGAACAAAGTTCTTCACACCTAGACATTTGTCCTA
TTCCGCACGGTCACCT
SEQ ID NO:127 Late LPZ-057 AGGTGACCGTGGAGGGGCTCCAGTTATCTGCATTGATGATGCTGCGAGGCTGTGT
TCAGAGTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGC
CGCTTGTTCTTGGTGTAGAGAAGATCAACCCAAGGTATGTACCATCACTCGTGAA
ACGTTCACATTTCCCCAAAGTCTTGGTATTGCTGGTGGAAAGCCTGGAGCTTCAAC
GTATATTGTTGGTGTTCAGGATGATCAGGCTCTGTACTTAGATCCACATGTAGTGC
AGCAGGTGGTGGAGATATCTCCTGATAATATGGGGGTTGATACTGGTTCTTATCAT
TGCAGTGATGTTCGCCACTGCCACTTAATGCTATTGATCCATCATTAGCTATAGGTT
TTTACTGCCCGGAATAGAAATAATTTTGACAACTTGTGCTTACGGCACCT
SEQ ID NO:128 Late LPZ-058 AGGTGACCGTGGAGGGGCTCCAGTTATCTGCATTGATGATGCTGCGAGGCTGTGT
TCAGAGTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGC
CGCTGTTCTTGGTGTAGAGAAGATCAACCCAAGGTATGTACCATCACTTCGTGAA
ACGTTCACATTTCCCCAAAGTCTTGGTATTGCTGGTGGAAAGCCTGGAGCTTCAAC
GTATATTGTTGGTGTTCAGGATGATCAGGCTCTGTACTTAGATCCACATGTAGTGC
AGCAGGTTGGTGGAGATATCTCCTGATAATATGGGGGTTGATACTGGTTCTTATCAT
TGCAGTGATGTACCCACTGCCACTTAGTGCTATTGATCCATCATTTAGCTATAGGTTT
TGCAGTGATGTACCCACTGCCACTTAGTGCTATTGATCCATCATTAGCTATAGGTTT
TACTGCCGGAATAGAAAAATTTTGACAACTTGTGCTTACGGTCCCT
SEQ ID NO:129 Late LPZ-059 AGGTGACCGTGCTAGGACACACAATTTCTCAGCAAGGATTACAGGTGGATCCTAAC
AATATTGCTATAATTCAAAAGGTTCCACCTCCTTAAAAGGTAAGAGATGTTTGGAGT
TTTCTAGGCTTGGCAGGATATTATAGAAGATTCATCAAAGATTTCATTAAGCTAGCC
TCGCCATTGTCTAGCCTCTTAGGGAAAGATGTTGAGTTTCAATGGACTGATGACTG
CCAAGGGGCTCTGGATGAGTTGAGAGATAAGCTGGTATCCGCCCCGATCTTGAGA
GGTCTAAACTGGGCCCTACCTTTCCACATCCACATTGATGCCTCGAACAAAGCCAT
AGGGGCAGCCTTAGGACAAGTTGAAGAGAAAATACCATATGCCATATACTTGTCA
GCAAAAATCTGTCTAAGGCAGAACTGAACTATACGGTCACT
SEQ ID NO:130 Late LPZ-060 AGGTGACCGTCATATTCCCCTCTATAGCAGCACTAACAATCCATTTTCTGAGTGCAT
CAGAAAATCAACACACGGTAAATGTCTTGAGACTAACGAGAAATTAATAATCACGTT
GTACAAAGAACAGTATGTCCCGTCACGTCACGAGTGCCCTGAGAGATCATCCAACT
TTCTCTGAACCCTCGTGTTACACGCACGCAAAATCAAGGATCAGTTGTAGTTATTGC
TGGCGTGACAGACGTGACACCTACTGTTCCGCTACAAACGATATAATTGAATCCAT
GATCGGATTATGTATTATGATCTTAGCGCAGTGGTTATGAAATTATGATGAATTTGC
TTATGATTTTCTCAGCGTTTGTGGAAGAATCTCGCTATTGAAAACTTCCCCGTATAT
TTCCAAACTTATTATCATCCCACGGTCCCT
SEQ ID NO:131 Late LPZ-061 AGGTGACCGTACAGCATTTATTGATGTTCTATTTTGTTGTTTGCAAGTTTTTCCGA
CGCTGTGAGGCACGGAAAACGAGATAAGTTGTAAAAGTTTGCTCGCTGATTTGAGG
CACGGAAAACGAGATAAGTTGTAAAATTTTGCTCGCTGATTTTTTGCTGAATATTTC
TCTCACTATAAAAAGCATTTTCCAGAAATAAGAAGGAGCTTTCGAACTGGTTTTCCC
CAAGAGTTGTAGGGGGTTTTTCCACGGTCACCT
SEQ ID NO:132 Late LPZ-062 AGGTGACCGTATTTATGGTCGCAGGCACAAATTCTGCTACTGTAGAAGGGTTCTTA
CCAACTTTAGGTAGAAGGCGAGGAGGGCTTTATTAGTACAGTTCTGTGTAATCTTA
ATGATATTTTTTGCACTATTATTTTATGGTAAAAGGATTGATTTGTCTTTTGCAAAGG
CCTTAGGATTGTTTATTTACCTTTGGGCTAAGGGAGGAGGTAAATTTTTCACATTGG
GAAAAAAAATGCCTCGGTCGTTGTCACGGTCACCT
SEQ ID NO:133 Late LPZ-063 AGGTGACCGTGCCAGTATGACAGATGGAACCATGCAGCTAGCCACCAAATTGTAAA
CATCAAATTTTGTCTCAATATAAGTTGCAAATTCTTAATTAATTATGATCACCATTTC
AACGGTCACCT
SEQ ID NO:134 Middle LPZ-065 AGGTGACCGTGAATAGAAGCGAACACATCCTTGTTGCTGAATCTAACGACCAATCG
GTATTTGGGTGTGTTGTACTTGTTCTTATCTTGGTTAATCAGGCGGATCCTTGCCCT
GTAATCGGTCTTCCCCTCTCTCCTGCGCTGAATTTGACCTGAAACCTCTTGAAGTA
GGCCCTGGTTTTCTGGGCTTTGACGAAAACCATGGTTGTGGATCTCCTCTCTCCTG
CTACGGTCACCT
SEQ ID NO:135 Middle LPZ-066 AGGTGACCGTGGTAGAGGAGGCAGGCACTCATCTAACAGTCGAAAGCCCTTTACA
AAGGGGAATGGTACCAGCATAGAGAAGAAACACAGACGGTTTGAAGAGGATGATG
GATCTGCCATAGATGAACGATCAAATAAGGTTCAAAAGCTGGAAAATGATGGTGAA
TTCCATGCATCCCACTTGGCTCTGTCCCTCAAGTTGAATATACCTGGACGAGAGGT
ATTGCATTTCCCAACGGTCACCT
SEQ ID NO:136 Middle LPZ-067 AGGTGACCGTACTGATAATAGAAGAGGCAGGGAAAGAGAAATCAATGATAATAGAA
GAGGCAGGGAAAGGGAGATCAATGGCATCATGCTACTTCTGTAGCTGTTACCT
TAGTGATGTAATCTTCCATGGCAGACTCGGGGGTTTTATCTTTAAGTTGAATTTCCA
TGCATCCCCTTGGGCTCTGTCCTCCAGTTGAATATCCTGGAACAAGAGGTTTTGCT
TTCCACGGTCCCCT
SEQ ID NO:137 Late LPZ-069 AGGTGACCGTGAGAAGGCAACTTTATCCCCTGCTAAACCAAGTCCAGAAATGAGGA
AAATATGTGAAAACTGAATTGCTATATATGATGCCTAGTCTTGGCCTCTCAATTACA
AGTTCAACGTCTTCAAATGATTGAAATATGGACCTTCTTAACCGTTCTGGAAATCTA
TCAATCTTCAAAATTTTGAAACTTTGCCTCGATCTTGGAGTGATCAGACTTGATTTCT
AATCCTAGAAATACCCTATCACTGGCTACCTGGTCTGTACGGTCACCT
SEQ ID NO:138 Late LPZ-070 GGTGACCGTGGGATAGGCAGAAGCAAGAAACACAGAAGTTCTCCGGGAATGTAA
GCGCTGACAGTGGGGGAGAAAGTAGTGAACAAGGACATGGTCGGTATGAAATACA
TGGCAGGCGATGGATTTCAAGGGATTAAGCATCTCAATGGATATTTACTATTGGAC
TGTAGTAACTTTCGCCATCGCTTTTTGAACACATCTGTGGCTTAACTGTCATCTGTA
ATGGTAAGCGAACCAGGTTTTGTTCTGAACCACTTGTATGTACGGTCACCT
SEQ ID NO:139 Late LPZ-071 AGGTGACCGTGGTGGAGCGATTAGTGATTGTGATAAAGGGAGCATCAATATCTATG
TAGACGCCGTATAAAGGTGGAAAAGGTATGTTTTGCAGGTATTTCTTTGTAAATGGT
TTATAATGGGTTAAGCTCGGATATATGAGGTTTATATATAAGTCCTGTTAGTGTCAG
TCTTACCAGCCTTCCTCCAGTGATCAAATGTGCTCTAACAAAGTGATTTTGAAGTGT
CAAGGTCAAATTATGTCATTTCAGTGAGTCTTCAAACAAAATTTGGTCACTAGGCAT
TAGGTCTAAGGGTTTGCTTGAACTCCCTCTAGAGTTGTCCAAATGGGCGGGCTATG
TCATCATTTAAGCTGAATCTATCATCCAATCAATAAGGTTTTTCATTATCATGTCAGT
GTCTAAATGAGTCATTTTACCGTCTTGTTCACGGCTTCACTTGTGCCTTTGGCAAAT
TCAATTCCCTCCTCCAAGGGTTTGAACCAATTCTCTTGGACGGCCCCTAAACCAA
ATCTGCAAAATCCAC
SEQ ID NO:140 Late LPZ-072 AGGTGACCGTGGTGGAGCGATTAGTGATTGTGATAAAGGGAGCATCAATATCTATG
TAGACGCCGTATAAAGGTGGAAAAGGTATGTTTTGCAGGTATTTCTTTGTAAATGGT
TTATAATGGGTTAAGCTCGGATATATGAGGTTTATATATAAGTCCTGTTAGTGTCAG
TCTTTCCAGCCTTCCTCCAGTGATCAAATGTGCTCTTACAAAGTGATTTTGAAGTGT
CAAGGTCAAATTTTGTCATTTCAGTGAGTCTTCAAGCAAAATTTGGTCACTAGGCAT
TAGGTCTAAGGTTTGCTTTAACTCCTTCTAAAAGTTGTCCAAATGGCGGGCTATGTC
ATCATTTACGTCTTGTTCAGCTCAGTGTGCCTGGCAATTCATTCCTCTCTAAGGTT
TGAACCATTCTCTTGACGGCACTAAGCCAATCCACACTGGGGCCGTCTATTGAATC
AACCCGGACACTGGGTTACAGGCAAC
SEQ ID NO:141 Late LPZ-073 AGGTGACCGTCCAAGAAGAAATTGGCTTCAAAACCCTAGGAGAGGGAAATGAACTT
GCCAAGGCACAACTGAAGCATGAACAAGACGTAAAATGACTCATTAGACACTGACA
TGATAATGAAAAACCTATGAATGATGATAGACTCAGCTAAATGATGACATAGCCCGC
CATTTGGACAAATTTTAGAAGGAGTTAAAGCAAACCTTAGACTTAATGCTTAGTGAC
CAAATTTTGTTTGAAGACTCACTGAAATGACAAAATTTGACCTTGACACTTCAAAATC
ACTTTGTAAGAGCACATTTGATCACTGGAGGAAGGCTGGAAAGACTGACACTAACA
GGACTTATATATAAACCTCATATATCCGAGCTTAACCCATTATAAACCATTTACAAAG
AAATACCTGCAAAACATACCTTTTCCACCTTTATACGGCGTCTACATAGATATTGAT
GCTCCCTTTATCACAATCACTAATCGCTCCACCACGGTCACCT
SEQ ID NO:142 Middle LPZ-074 AGGTGACCGTGATAGACCCAAGAAAAATAGATCCAACCCTCAGAGGGACAAAGA
CTTATAAAGACTAGAAGAGTGAATCAACCTATTCTATTTAGAATATATATTTTTGGGG
TGCTTGCTTATCGTTTTGGGGGTTAATGTATGTCGTACTACGGTCTTATGCCCTAAT
TTGCCCATTGAAATCAACTAAATTGACAGTAACCGACTAAAAGTTGGTCCACACTAA
GATATCGATGACCAACGATCATAAAGGTGTCCATGATCCTAATAGTATATGTGTCAA
TTAATGTAACTTTGGTGCTACAACATAAAACCATTCGTGGGGATCCTCCTTTTTATG
CGGTCACCT
SEQ ID NO:143 Middle LPZ-075 AGGTGACCGTGGGACCGACCTTGACTACAGGCCAAAATTTTGACTGTTGACCAGC
GTTCACTTCTGTATTTTTGGTTGGTATGAGCAACATTGACTTGCTGGAAATTGACCA
GGTTTGACTGGTATTTGGACTTGGATTTTGGCACAGATTTCTAGACAATTTGTATTT
GTAAACCTTACAGAAGAATAATTTATCGAAGAAGAAAAATGCTAGGTTTCCCCTCAA
GTTTGGGTTTCCCAAGGGAAAAATTGTTGTCCCAATGGTTGAATTTTCCAAAGGTCT
CCTAACCCGACAATACCTCCTAAGAATTCCTTAATTTAACCTTTCTTGTTTTCACGGT
CACCT
SEQ ID NO:144 Middle LPZ-076 AGGTGACCGTGAAGGAGCAGCAACAATTTGATTTTGTTTGGGTAGATCGGGGATTT
TCTCGTGGAACATACCTGATTGAGTATAAACTAAGTCAAGGTACTGTGCTTGAGAAA
TTACTTGCTCCTCAGTAACTACTCTGGCCTTAGCTACATCCTCAGTGATCTTGGGTA
GTAAAGATTTTACAAACCATTCAGCTAAGATCTGATCCGGGATATAAACTTTCACTA
AACGTCGTCGACGTCTCCATTCATGGATATGATCTGAAATGTAAGTGGACGTTGAC
TGCTTTAACGAAGTTAATAATTCTGTGCCATTTTCATATCTGACGGTCACCT
SEQ ID NO:145 Late LPZ-077 AGGTGACCGTACCTAATGGGAAGACACTTCAAGGTAAAAACAAATCATGATAGTCT
TAAATACCTTTTAGAACAAAGATTATATTCAGAACAACTTGCTGGAAGTGTACCAAG
TATGACTGGTATTGAGACTTAGATCTTCGCACAGATTTCAAGACAATTTGTTGTTGT
AAGACTCACTCACGAAAAGTGATGTGGATATGAAGAACTTCCCTGTCGCCTCTTGG
TTAGGAGTCTCCCACTCATAGGAATTGTGTAACTTATAACTTGGTCCACTAAAGAAG
TTAGGTACAGTGTGTTCCTTTACCAGGTTCCCTGTTGTAACTTACAAATCTACGGCT
ACCT
SEQ ID NO:146 Late LPZ-078 AGGTGACCGTCACTGGAGGTTTGAGATGCTTGATCGGTACTGAAATGAGACATGAT
CAGAATAGGACCTTGTTGAGGCCGTGTCTCACCCCCCATCCACAATCTTTTGTAAT
TTTGAGTTTCGTTTAGAACATACTTGTAGGATAAAACTTACCTTACTCATGGATCAT
GGCTGTATATGTTTATCGACCAGAGACAGATATGCCGAATGAAAGCGAGTCTAGTA
TTCTAATGCAATATATTGGTAGTATGGGACATAGTACTGAACACTTGTATAGTACGG
TCACCT
SEQ ID NO:147 Late LPZ-079 AGGTGACCGTGGTCTCAGTTATGCCATATGTCCGCCCCTCCATATGATGCTCCGCC
TCTATGGGGGTCTTTGCGATGTTGATATCTAGTAGTACTTCTTGTCCTATTGCAGCA
ACCTGTACTGGTGTTGGTGTTGGTATGGGTCTCCTACGCGATGGAGATATGAGAC
ACCCATAGGTCGAACAGGTCTAATATCTGGAATCCAACGCTATTGTTGTAGAAG
ACGTTGCTCCCGTCCTTTAGCTTTGGCTGGTCACTATCCTTACGCTCCACGTACGG
TCACCT
SEQ ID NO:148 Middle LPZ-080 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTTGAGGGAC
AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT
GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCATTGAT
CTCCCTTTCCCTGCCTCTTCTATTATCAGTACGGTCACCT
SEQ ID NO:149 Late LPZ-081 AGGTGACCGTCAAGGCAAAGTGTCATGCCACTCATTGGAATTAGTTAATATAGCTA
ATTTGAGATATTACAGTCAACTGTGGGTATATGTATGTGAGATCAAGGTGCAGTTTA
GATATTATCAGTGGTGCAGTTTAGATATTATCAGTGTTTGTGAATCTGCATACTGCT
TTTGGTTGGTTCTAACTACGGTCACCT
SEQ ID NO:150 Middle LPZ-082 AGGTGACCGTAGACATATATCATGGAAAACCCAAGTAACATACAAACACAAAACACA
TGGAACTTCATAAAACCTCCACTCGTCATAAGCTTTATTGCTATGTTATTGTGGTG
TTGCATCGTACTTAGTGGAGGTTATTGTTATGTTATGTGTTCTATTTTCCTCCCGAA
CGCCCTTCGGAATTGAGCTAACCGTGGTTAACAACATGTGGGCTTTTTTTCTCGAC
AGTATATATATAATAAATCTTTATTTTTTTAAAAACTAATGCTATTGCATTTATATACT
GGAAAAAATGATTTTTCTGTATTATCGAAAATAATAATTTAGTTTCTTGATAATCACT
TGGAATTAAGAAATTACAAACCCTAACAACATCAAGAAATTTTAAAACACATAAGCTA
GAAATTTTAAAACACATAAGCGTGACAACAAGAAGATCAAATCTAATACTTGCTTGG
GCCGGAGATTATGGATTCATGAAGCGATTTGACAGCGTCCATTGATCTTCCTCTCC
CACGGTCACCT
SEQ ID NO:151 Late LPZ-083 GGGGGTAGGGGTGTTTATACTGAGCATACTTCGAAAGTGGTTCACCACCACCATG
TGACTAATTGTTCCTGACTTTGGTAGACCTATAATAAATTCCATAGAAACCTCCGTC
CATATTGATGCCGGAATGGGCAACGGTTGTAATGTGCCTGGTACTTTGACGGTCAC
CT
SEQ ID NO:152 Middle LPZ-084 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTTGAGGGAC
AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT
GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCTAGACA
AATAGCTTTGCTCAACACATCCTGATAGTGTACACTAAATCGCACAACTTTACTACT
ACAAAGAAAGATCGTTGACACCTTGACAAATAGCTTGCTCAACACATCCCAACAAT
TTGGATTGCGAATACCGACTCCAATTTGTACTTGATCCATATGTCGTTGCGATGTAC
TAGTTCCTCTATACATATGTTTCTGCAAGAATCGGAGTTGGACCTCTTCTTCCCTGT
TATCAGCACGGTCACT
SEQ ID NO:153 Early LPZ-085 AGGTGACCGTGGATAAGAGAACGCTTTGCCGACTCTCTGGGATGCCCTTCCCTCC
ATAGCCGTCGTGGGAGGACAGAGCTCCGGGAAATCCTCTGTGCTGGAGAGCATCG
TTGGAAGGGATTTTTTACCGCGTGGATCAGGTATTGTTACTAGACGGCCGCTTGTC
CTTCAACTTCACAAGACTGATGAAGGCAGCAGGGATTACGCCGAATCCTTCACCA
ACCCAGAAAGACATACACCGACTTTGCACTGGTAAGGAACGAAATTGCGGATGAGA
CTGATCGAATTACATGGCGTGCCAAGCANAGTCTCAAGTGTCCCAATTCACCTAA
TATTTATTCACCCAATGTTGTTAATTTGACTCTAATTGATCTCCTGGGTTGACAAAAT
TGCTATTGACGGTCACT
SEQ ID NO:154 Middle LPZ-086 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTGAGGGAC
AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT
GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCATTGAT
CTCCCTTTCCCTGCCTCTTCTATTATCATTGATCTCTCTTTCCCTGCCTCTTCTATTA
TCAGTACGGTCACCT
SEQ ID NO:155 All LPZ-089 AGGTGACCGTACATACAAGTGCTCAGTACAATGTCATATACTACCAATACATTTGAT
TAGAATACGAGACTCGCTTTCATTCGGCATATCTGTCTCTGGATGATAAACATATAA
AGCCTTGATCCATGAGTAAGGTAAGTTTGAAGCTACAAGTATTTTCTAAACGAAGTT
CAAAATTACATAAGATTGTGGCTGGGGCGTGAGAAACGGCCTCAACAATGTCCTGT
TCTGATCATGTATCATTTCAGTACCGATCATGCCTATCATACCCGCCTGGTGACGG
TCACCT
SEQ ID NO:156 Middle LPZ-090 AGGTGACCGTACTGATAATAGAAGAGGCAGGGAAAGGGAGATCAATGGCATCATG
CTACTTCTTGTAGCTGTTTAACCTTAGTGATGTAATCTTCCATGGCAGACTCGGGG
GTTTTATCTTTAAGTGAATTGCCATGCATCCCACTTGGCTCTGTCCCTCAAGTTGAA
TATACCTGGACGAGAGGTATTGCATTTCCCAACGGTCACCT
SEQ ID NO:157 Late LPZ-091 AGGTGACCGTATAGTGTCAAGCTTTTCTGGATTGGATAATGGACGGCGGCTTGCG
CATACATCTACACATTCTGTAACAAGTACACTCTACTGCAACAGCAGACCCAATTTC
ACCTCTTCAGTCAGCCAGAGATCTCGATGGATTTGGGTTGAGGAGGTTGGGGTTC
GCCTGCTTCGGCACGGTCACCT
SEQ ID NO:158 Early LPZ-092 AGGTGACCGTGCTAAGTAATTATCATCTGTACCTGTGCTTGCTGCAGGAAGTAAAC
CAACCCGACTAGTCTTTTTAATAATACAGGGAGCCTTGCCACCAATTTCCTCTTGAA
GCACCCATATTGGACGGGTTTGTGTCATCCTCTGTATTATCCTTTTTCATCCCAAGC
AGGCTGTCTGTTTTTGTAGTAGAAGGATCACAACACAGATCAGGCCCTCCATAGTA
CAAAGAAGAACCGAGGAAAGTATCATTAACGTTCTGACTCCTGCCATGAAGGCTTC
CACTATGACCTTGACCCTTTTGTGAATTACTGCCATTTAGACCTTGACTGGCTCTTG
CAACCAAATGCCCCAGAATGGAACTTCTTTGTGCTCCAGTTCCATTGTGGTTAGTT
GAATCCCTACCACGGTCACT
SEQ ID NO:159 Late LPZ-093 AGGTGACCGTGCAATATTGTATTCCAGGACCAAGTACTTAGGACAGAATCAGGTCA
CGAGTGGCTCCACTCCACAATACGATGTTCATCGTTTTAATCACAATACAAGTTTGT
TAGTCCAAGTAAGTGCGCTGCTGCAGACAGTGGGGCACCCCCCGTGGGCTTTGAC
TGCCTGTCATACTGTTCCCTCCTTGCTCCTGCTCTTGCTCTCGCTGGGCTGTGGTG
AGTTACTAACCTGGTTCGACCCACAAGGGCTTCTCACTAGGGCGTTAGGCTGCATG
GATCTGCCAGATATTGTGGTTGCAAGGGACAGAGGCATGAGACACAGGCCTTTGC
TTTGCAGAAACTGCATTGCTGACCCCATGTTCATCCATCAGTTTTGCTACCTCTC
CTTCTGTTATGGACGGTCACCT
SEQ ID NO:160 Late LPZ-094 AGGTGACCGTATCCGCAGCAGCAACAGCAGTAGAGCCTGAAGCAGGGGACCTAAT
TACAGTCAAAAGTCCAGGGCTACCAATGCCTGCTAACAGCGCACTTACTGGACTA
ACAAACTTGTATTGTGATTAAGACGATGAACATCGTATGTGGAGTGGAAGCCACT
CGTGACCTGATTCTGTCATAAGTACTTGGTCCTGGAATACAATATTGCACGGTCAC
CT
SEQ ID NO:161 Late LPZ-095 AGGTGACCGTATCCGCAGCAGCAACAGCAGTAGAGCCTGAAGCAGGGGACCTAAT
TACAGTCAAAAGTCCAGGGCTACCAATGCCTGCTAACAGCGCACTTACTTGGAACT
AACAAAATTTTTATTGTTAATTAAAAACGAATAACATCGTTTTTGTGGGAGTGGAACC
ACTCGTGAACTGAATCCTGTCCTAAGTTCTGGGTCCTGGGAATAACATATTGCACG
GGTCACCTT
SEQ ID NO:162 Middle LPZ-096 AGGTGACCGTTACAGCTAGGGAAGACTTTAAAAGTTTGTAAAACTAAGCATAGCTC
TAAACACTGAAGTTAAAAGACATGATTGGAATGTGCAAGTGGTTCAGTATCCAAATA
TTGAAGGTTGCAGAATATGGAGCTACTGTGCAAACGAGTAACTTTATCTATATTTTC
ACAAGATCATACAATGGGAAACGTTGAGATAACAACTGCATCGGTGAACCAGAATA
GTTATAAAAGTTCTTGCAAGTAAAGGGATGAATAATTGCATGGTTGGAATTAAGAAT
GACCATGTAGAGCTGCTATACAGATTCTCCAAGGTTTTATATTTGAGGAGTGCGCG
CTATTGATGTTGTGCAAAAATTTCAGAAATTAAGTTCTGCGGCATTTATCAAGGTG
TTTGAGCCATTTAAATAGCAAGTTTTTGTTCTCCAAGTACTTTCAGGAAAGCAGAT
AGCTCTAGTTATAATGCTCCAGTGACAAACACATCTAGTTGGGGCAGTGAATGACG
CTTTTGTCATTCTCTTTTGGTTTCAGGCACGGTCACCT
SEQ ID NO:163 Early LPZ-099 AGGTGACCGTGGACAAACTCTAGAACAGGCATAGCTTTCATGTTCAGTTGTTTTTAA
AGAGCAGTCCTCGCAGCAGATCGTGCAGCTTCCTGCTTCACTTCCGTTGATTTTCC
TGATCTGAAATACCCGTAAACTTGCTGAAGAACCCAAATACTTAATAGCGTCTCTAA
ACAAAA
SEQ ID NO:164 Late LPZ-100 AGGTGACCGTGCCTGAAACCAAAAGAGAATGACAAAAGCGTCATTCACTGCCCCAA
CTAATGTGTTTGTCACTGGAGCATTATAACTAGAGCTATCTACAAGCCAAAACAGTG
TTTGGGAGAGATTCCATAACGTCATTGCCTCTGCTACACATCATTCATTGGTTCCAA
TAATGAAGCCACGTGCTAAGGACATTGAGAGAATCTTATAAAACAAGAAATATAGTA
AATTGGGAAATGCATTTTATCGTCTAACCTGCTTTCCTGAAAGTACTTGGAGAAACA
AAAACTTGCTATTAAATGGCTCAAACAACCTTGATAAATGCCGCAGAACTTAATTTC
TGAAATTTTTGCAAACATCAATAGCGCGCACTCTTCAAATATAAAACCTTGGAGAAG
TCTGTATAGCAGCTCACATGGTCATTCTTAATTCACACCATGCAATTATTCATCCC
TACTTGCAAGAACTTTATAACTATTCTGGTCACCGATGCAGTTGTTATCTCAACGT
TTCCCATTGTATGATCTTTGAAAATATAGATAAAGTTACTCGTTTGCACAGTAGCTC
CATATTCTGCAACCTTCAATTTGGATACTGAACCACTTGCACATTCCAATCATGTC
TTTTAACTTCAGTGTTTAAGAGTATGCTTAGTTTTACAAACTTTTAAAGTCTTCCCTA
GCTGTAACGGTCAC
SEQ ID NO:165 Middle LPZ-101 AGGTGACCGTAAAATACCATGAGAAATGCTTTCATCAGGCACCGCTGGTAGGTTT
CTTAAGCTTTTCATTAGGCAAAAGAGGCTCCGTGAGTTGATCGTTAATTCTCTCCTT
GAATGCCATATTGACCAGACACTCTGATTAGAAACTGGAATACAACTGCACATATAG
TCATTCTATATGATTCATCCTTCTGCACTTCAGCATCCTGCGGCAACTCTTCATCCC
GCCATACTGAGAAAAATATTTGACTCTTGATCATGTGTAGATGAATCTTCATGAAT
CTTCTCATCTTCATTCTTGTCTTTATATCTTTAGGAAGTGCATCTGGTAAAAGTATAA
ATGCATCTTCACGGGTGCTTCAGTTTTTGCATGCTCCCGGTCTTCTTGTTTAGCAT
GTGGATCTAGGAAATCACTAAATGTAGTTCTCTCAATTGGTCTGGTGGAAATTCTCC
TCAATTCGAGAATTACGAATCATCATACCTGAGTAATATATGTTGCCCTGTACATGC
ATATGCTGGTTTTTGGCTCCACCATCTCCAAAGGGCTCAAAAACTATGCGACCCC
TGGTTGCCGTAGTGGAAGGTTATACATTGCGTTCCCAGTAGCCACGGTCAC
SEQ ID NO:166 Middle LPZ-102 AGGTGACCGTGGAGGGGCTCCACTTATATGCATAGATGATGCTGCGAGGCTGTGT
TCATCTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGCC
GCTTGTTCTGGTGTACAGAATATCAACCCAGGGTATGTACCATCACTCGTGAGAC
GTTCACATTTCCCCACTTCTTGGTGGAGCTGGTGGAAAGCCTGGAACTTCATCAAT
CTATCGTTGGTGTGAGGATGATCAGGCTCTGTACTTATATCCACATGTAGTGCAGC
AGGTGGTGGAGATGTCTCTGATAAGTTGGGGGTTGATACTGGTTCGTATCATTTGC
AGTGATGTCCCCCGCTGCCCTTAATTGCTATTGATCCATCATTAACTATAGGTTTT
TACTCGCCCGGAATAAGACAATCTTTTGACACTTGTTGCTTGGGTCAC
SEQ ID NO:167 Early LPZ-103 AGGTGACCGTGGCGCCTGACCTGTGCAGAATCCATTCTCATGGATACAATACTGTT
AAGTTTGCTTTGCTTTGCTTGAAGGATCTGAATTGAAAAATTGTCCCCACAATTCTG
TTTCGTTAAAAATGACCTCAATCACTCTCGACAGTTTCCAGATCTTGATTGGGAGCG
TCCTCTCCTCTCTCAAGATGTTGTTGACCAAATTCAGGGCGACTTGTGGCCAGAAA
TCGTACATTCTGCCATCTACCTGTTATTGAGCTCCCCGATTTATATGCGCTTTTGAC
GGTCAC
SEQ ID NO:168 Middle LPZ-106 AGGTGACCGTCAATACCATTAAACTGGGGATTCGTCTCAACAAGTCAACATGCTAA
CCTCACAGCTCCAATCAAACAACGTCCGTCGAAGGGCGCTCACACTCATCCAAATT
ACTTCCCTCTGCAAGACTCACAAAATCAGATTCTTCATGAATTGCTCAAACGAGGCT
GTTATGGATGATGCAGCTGATTACTCAAGTGACAGCACTCTGAATCCCCGTCCCAT
ATATAGCGACGCGGCGTTTCAGCCGTGACTGGTCGCAACAGCCTCAGTGGGACACAA
AAGGCCAGAAGCCCCCCAAGGTTCTCACGGTCAG
SEQ ID NO:169 E,L LPZ-107 AGGTGACCGTGTCGATGTTGTTAGATGTGATTAGGGTTTTATTTCTTGATACAGATG
CACTGTTTCTCTGTTTATTCTTTTATTTCTTCAATGTATGTTGTCAAATTATACTTAGT
CA1GATCTCCTTTTATCGTTCGTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG
TTTAACAATTAAAAGGGGAAATTAGGCCATATCAGCTTGTCGTATGGACCCACATG
ACTGTAGGTCAC
SEQ ID NO:170 Middle LPZ-108 AGGTGACCGTATGCAGAGTCAAGGTTTAGTTCCTTCAGAGCCTGCCCGAGTAGCA
CTGAGGCAGCTCAAGCCATTTCACGTAGGAAGCCCACAACAAAATAGAAATCAGAG
TGAGTCTTTGATCGAGTAACCCATAAGTTCTTAGCTCCCGTTCCATCTTAACATAAG
CATTTTTCTTCGTCTTCTCGCAGCCGT
SEQ ID NO:171 Late LPZ-109 ATTGCAGAGGACTTAGAGAGGGAAAACCGTTCCGATCTGGTGAAGCAATTGGATG
AGCGCTCTGGAATTGATCCCGTTTCTGATGATATCGTACGGCTAAGCTCAGCTCT
TCAGGCATTGGCAGACAATACGATTCTTCAAATGAGATGACAGATTTTAAGAAACTT
ATAGGATGACATATTTCCTAGCTTGAAGCGGATCCCCCTACGGTCAC
SEQ ID NO:172 All LPZ-110 AGGTGACCGTCCGATAAAGGATGAGAATATAGGTAGATCAACCCAAAAACACTCTC
AGAAAACGATTAAAGCCTAACCCCAAGATCGTTGAGTAAATTTAACCCGGTAACCTC
CACATAAAATATACTTAGCAACAATAAACTCAACAACTAAACTATCCCTTTAAAATTA
AATTATCCTATTTATTTAAAAAAACAAATCCTTTATATACTAAGGTCCCCTGCACAT
CTATTACTAAGGTAAAGGAAGGGAATTATATGCTATCATTGTAAACTTTGACTTCCG
TATTTATGATCAGACCATGAGTTTGATAATTAATTTTACGCTCTTTACTCCCCATTCA
AGGCACGTGCCTGGTGATATATGAACGCCAAATTATT
SEQ ID NO:173 Late LPZ-111 AGGTGACCGTAGAATACAATCTATGTATCTTAAATGCTAACAAAGAGAATTTGTTGTC
TAGCTTGTAAATATACAAAAGAAACTCTCACAAGGAGTGAGAAGCACTAAGGCCCT
TGGAAAGAATACGTTTCTATTCAGCGGAGTGTATTTTGAGCTACGGCTTGGCACAA
CTCATCCTATAAAACAAGACTCTGTGAGAGGGCAGAGACCTTGATCCTGGGCGTG
GCAAGCCGGGTGCCTATTGCGGTAAAATCGAGAAGGGGGACCCTGGAAAAGAGAG
GCTGAAATTTGTTTCATTCTGCAACTGAAACCTAACCGGAGGCCGAATCTGATCATT
TCTAAGACCTTTGGGGTCCTGGGCATCCCATTAAAAGAACGCTGCTAACTCTCCCC
TCCACAAAGGGCCAATGCGCTCAGGTCGGGCTTCTCATCTTCACATTTCTTGCCGA
AATCTATCTGAATTTGTTGTATTGAATAACACTGCCTCCTACACGGTCAC
SEQ ID NO:174 Late LPZ-112 AGGTGACCGTGGGCGCCGTGGCTCAAAAGGCCCTCGCAGACGCCCGCTCCATCA
AGCTCATGGGCCCCCTCCACCCTCGGGGGGCAAGCCGGGAACGTTGCTGTCAGA
CGAGGCGAGGACCTGGAACTGCCGTTGAAGGAACGGTTCTATATTCAGCCCCTCT
CGGCGGACCAGGCGCTGCGAGAGCCAAGGAATCCGCGGAAGCAAATCCTGGAGG
TGAAAAAGCTGATAGATAAAAGGCGTGGCCGTACGTCCAGAACGACCTCCGCTCC
AAGGCTTCTTACCTTCGCTACGACTCAACACCGTTATCTCCTCAAAGCCCAAGGAA
CAGAAAAAACCCCTCAAAACCTCACCCCAAAGCTTTTTTGACACCCTTGACAAACCT
GGACTACGCTGCAAGGAGCCAAGGATACCCCAAGGGCAGAAAAAATACTTTGCAG
AAGCTGGTGAACCGCCCTTAATGATGTTCATTCCAAGCTTGGTTAAGCTGTATTGC
ACTCATTGTTAACCACACTTAACGCCAATCCAATCTATGCTGTGTTGCATCTCCACT
TCTTAGTTAATAACGTCTGTGTCCCAAACTCTGTGCCACACACGGTCAC
SEQ ID NO:175 All LPZ-114 AGGTGACCGTACAATACAAATAGGTAGTTTATCACATTGTAGCTTATAGAATGTACA
ATTGAAATCAAATAAATTCAACCAAACTCAAATAATATGATCATGTGCTCCTCACCTT
CTCAGCAAACTCGTAGAGCAGAAAAAAGGATTATGTTAAATCACAGTTCACACATTA
GGGTAAATCCCACTAAATGACCTCTCTTCATTATCCAAGTATCTGACACCAACATAT
TTCAAACAAATAGTGCAAAAAGGAATGGTGAAGTAAAATAGTCAAAACTAAAAAATA
AGCTTAAAATTTCTCACATGTTTGAATATGTGCACCACAAATTTTGTTAGTGTCATCA
AAATGCATGTAATCAACTTGCCGTGTATATAATTTCACACAATATCCGTAAAATTTTG
CAATTCCTTATGAGCATTTCATGTCTAGAGATTGCAATGACTTGGCTACAAACATGT
TTCTCTACACAAGATCACAATATTTAGTCAGGACACGAATTGCAATGGGGATTCTCA
CAAGCATCACAAGTCATCTCCCATGTACTAATAAAAAATTGTTTAAAT
SEQ ID NO:176 Middle LPZ-115 AGGTGACCGTATAGTGCATATTCAGATTGCAATTACAGACGTATTAGAACCAGATTT
TCGCTTCGATACAGCTCATCGAGAGCAACAGAGATCCAGATCAAAAACCAGACACA
GTTTAAGAACATCGAAATACCAAGCCCAGGGACAGTTACCAGCATATAGCTCTACC
ACCAACAGATTATTACAGAACCAAAACATAAGACCACTTGCAGACAAAAATAAACCC
TAACGCAGAACGTGGCAACTATCTCCTCCAGCTACCACCATCGGAACCACCACCAC
CATAGCGAGAACCCCACCACCACCATAGCCGCCACCGCCACCACCATAACCACCA
CCACCACCACCACTGTACCGCCACTACCGCCATAACCACGGTCAC
SEQ ID NO:177 E,L LPZ-116 AGGTGACCGTCCTTGGAGATACCAGCTTCAAAACCTCCAGTGGTGGAGTCGATGA
CAATACTGCACAGTCAGCCTGAGATGTTCCAGTAATCATGTTCTTGATAAAATCACG
ATGGCCGGGGCATCAATCACAGTGCAGTAGTATTTAGTTGTCTCAAACTTCCAGAG
TGCAATATCATTGTGATACCACGGTCAC
SEQ ID NO:178 E,M LPZ-117 AGGTGACCGTATAGTAGGAACTTTAGGTGCTTTTGGTGGCACTCTCCAATTTTCATG
TCCTTACATACCCCACTACGGAGAAGGGTAGCCCAAGATTTGAACCCAAGACTTCC
GGTTCGTGAGACTTCATTTCCACGGTCAC
SEQ ID NO:179 All LPZ-118 AGGTGACCGTAAGATCAAGAGCACAGAAAGCAGCCATAGCCCCGCCCATTGAATG
CCCATAACAATAATCTGTAACCCATCTCTCTGTTTCTGAGCTTTCTGAACTGCTTCT
ACAACAGTGGTCGTAAGGTTGTGTTGTGATAAGCAGAGTAAAATCCATAATGTACC
ATTGCACCAGCATATTAGGATAGTTGAGATCAAGTGTCTTACAGAATAAATCCTCCA
CCCAATTCTGTAGCTCCTTTCTTGAGTACCCCTGAATGCAATTACAATTGCATTGAT
ATCTTCTGCCACACCACAAAAGCCTGAAGGCAGTGTTGTACATCAACTATAAGCTC
ACCACCTGAAAACCCCAGTCAAACCATTGCACCTAGAACAAGTCCAAGACATTAGA
GCACTCAAATCATCCATATAGACCGCAGAAGCATATTGCACAAGTATCTCAGCAAGT
GTTCGATTATAGACATGGCCA1GGTCAC
SEQ ID NO:180 Middle LPZ-119 AGGTGACCGTGGGAGGGGAGATTTTTGATTTATATTTCCAATATAAAAGAAAATCTA
NGTTGTAAGGACATGGCAAGAGCTCTTATTTCCGGGGTTTTAGCCGTGGCCCGGA
GCGGATGAAAGCAAATGTAAGTCACTCCGTGCTTCTCGGCATTTGGACGCTTCTA
CTCTACCGCACTACAGACGGGATTGAACCTCGCATCTCTGAGTGTTTGGTCGTTTA
CATGGCGGACTTGTTCCGCACCTCTGCGGACGTCAAATGCCGCGACGATAATCCC
TTTGAGAACAGCGATACGGCAGAAAGATCGCCGTTGACGAAGCGAGAAAACTATTG
AGACTTGCAGATGTGGAGCTGAAGAAGAGCTTGAGTCGACGGTCAC
SEQ ID NO:181 Middle LPZ-120 AGGTGACCGTCCGTTCGGGGTGTATTTGTCGAACACGTAGGATGGTGCTACGTTGA
AACCACCGTTACCTTCTTCGATATGTTATAGTTCGAGTTCATACGGAGGGAATACC
GTTTGTAGTGTTATTCAGCACAACCCCGTCCTGATTAAACACCCCCGCAACCAAGG
ACGTATTCGACGTTCGGTATTGTTTGACACACTCAAGTTATAACCCTGAATAGGCG
CTACCCGAAGTAAGCATTGTACCAGTCGTTATTTTTGCCTTCGTATGCGAAGGATT
TTGAAATATATCCGGACAGGCTGCAACCGATCTTCATAAAACTCTTTCTTAAACTGA
GCAAACTGAACAGCATTAGCATTTTGACCCGACCTTCATCGGCACCTGCTGCACA
CCCGCATACGTATTAAAGCTATGTTCGTCTGGCCAGGTTTGCCTTTTTTGGTTGTAA
TCAGGACAACGCCGTTAGCCGCCCGCGATCCGTAGAGCGACGTAGAAAGCCGCAT
CTTTCAGCACGGTCAC
SEQ ID NO:182 Late LPZ-122 AGGTGACCGTGAAATATGTGGGAGATGATATGTGGTTTCCTGAATATTCACCTCTT
GTGTAGAAAAGTGAGATCCTTAAGATGTTTTTGCTAATAAGACTCTTAGGAATGTTGG
ACCCCTTTCAGAATGCCATTTGAATAGATTCAAGGTGGTAGCTGTTGCCTGGGGCT
GTTTTAGGGTTTTAGGCCATGCTCTGTAATTCATTGAGTCAAAATTGGATTAACTG
GTGTCTTTTACCTCATAATAGCTACTGCAGTATTTGTCGATATAGCTTCCCTATTTAT
TGACTCTCCTTAGGTACGGTCAC
SEQ ID NO:183 Late LPZ-124 AGGTGACCGTCCGTCGGGGTGTATTGTCGAACACGTAGGATGGTGCTACGTTGA
AACCACCGTTACCTTCTTCGATATGTTATAGTTCGAGTTCATACGGAGGGAATACC
GTTTGTAGTGTTATTCAGCACAACCCCGTCCTGATTAAACACCCCCGCAACCAAGG
ACGTATTCGACGTTCGGTATTGTTTGACACACTCAAGTATAACTCTGAATAGGCGC
TACCCGAAGTAAGCATTGTACCAAGTCGTTATTTTTGCCTTCGTACTGCGAAGGATT
TTGAAATATATCCGCACAGGCTGCAACTGATCTTCGTAAAACTCTTTCTTAAACTGA
GCAAACTGAACAGCATCAGCATTTTGACCCGACCTTTCATCGGCACCTGCTGCACA
CCCGCATACGTATTAAAGCAATGTTCGTCTGGCCAGGTTTGCCTTTTTTGGTTGTAA
CAGGACAACGCCGTTAGCCGCCGCGATCCGTAGAGCGACGTAGAAGCCGCATCTT
TCAGCACGGTCAC
SEQ ID NO:184 Middle LPZ-126 AGGTGACCGTCGTCAGAAAAAACGTGATTTCCGCAAACTTTGGATCACTCGTATCA
ATGGGCAGCTCGTTTGAACGGACTTTCATACTCACAATTGATGCATGGTTTGAAG
GGCTGAATCGAAGTGAACCGTAAAATGTTGGCTGACTTGGCTGTTAACGATGCAGC
AGCTTTCAAACTCTTGCAGACGCAGCTAAAGCTAAGCTTGGGTAAATAATTAAAAAA
AGAACCGAGGTTTCCTTGGTTCTTTTTTATAACTTTTAATGAAAAGTATGAAGAGAG
AAACAGCCTGTCTTCTACTTATAGTATAAGATAAAAGCTTGTTACTGATAAGACAGC
TTTCATGGTAAAGCAGTTAAAAATAGGGATTTGCGATATAATAGAAAAAACAGACGT
TTATGTAAATAAAAAACAGTAGAATGGAGAAATATGTCAGAGAATCGTTTGGCTTG
GGATCAGTATTTTGCGGCCAGGCTCTCTTAATCGCTAATCGCTCAACCTGTAAGCG
AGCCAAAGGTGGCTCCGTATTGTCAAGGATAATAAGGGTTATTTCAACTGGGTACA
ATGGCTCAGTTTCAGGGACTGGAGACTGTATTGACCAAGGAGTGCCTGGTCATTGA
CGGTCAC
SEQ ID NO:185 Late LPZ-127 AGGTGACCGTGGCGGAGGTTAGGGAAGTTTGACTTCTCATTTTCTCACGCACTCCT
CTCCTCGTAACCTCGGTCGAGTCGATGGCGGCTTTTTAGTCGAGTGTGCTAACGC
CCCTCCGGCCTCAAAATTTCCAGCTACTCGTATTTGATCAATGCTGAAATCGCGTAA
TTACGTAGTAATAAAGCGTAATGAATTCTATAATGAAGCATGTTTCTCTATAGTTCAT
GTGCCGAGAGGAATAATGAAAATGAGGCCTTATATATTATCTGGGGCTCAAGGAGA
TGTTATCTTTTCCTCCTTGGTTAGAGACCGTCAACCTTCACTTGATTGGATAAAGC
TTCATTTTGTTAAAACCTCCAAGCCAGTAGATACATACGGTAGGCACGTATTATGGT
AGAGACATACGGTCAC
SEQ ID NO:186 Late LPZ-128 AGGTGACCGTCCTGTTGCCTTAACCGCGAATCCAAATCGACTTGGGCTGCTTCCTTT
CGTGCAGATATTTCTGGTTTGGACTCTAGTTCTTGCTCCTGGAAATCATGCTTGAGT
GCTGGGTAGCTGCCTCCAAGTTTGGTTGACAGGCCCATTCCTTACAGCTTCTCTCT
TCCGCTTATGACAGAGTAATGACAGGAATTCAACCTGACGGATCCGTCTAGCTCTC
ACAAGGTTGGGACCCTGTCTTCGAGAGGGTTATTTCTTGAGACTGTTGACTATATT
TGGATGAGCCCTCAGCTCTGTGTACTATTGTTCATGTACTGGATACTTTGTAAATGA
TTTTATTCTGGTTTTACCCCGGGGGGGGCATTTTGACTCCTGGGTTTAATACGGTC
AC
SEQ ID NO:187 Late LPZ-131 AGGTGACCGTGGAACATGATGATTAGTTCTTCTGTGGGCCAGGATGATTAGTCTC
TGTGTGACTGTGGGCCAGGATGATTAGTTCTCCTGTGACGACTGTTGGATAGGATG
ATTCGTCTCCTGTGGACAGGATGATTAGTTCTCCTGTCGAGGCACCCTACCCATGC
AATTTGGGATCATGGGAAGTACCTCTCATCTGATCAATGAGTAGGGAAATGGGGT
AGGGACCATTAGAGTACTATCGATGGACACATCGTTGTATCTACCGTCCTATGCTA
GGACGACCTCCATTGTTTGGGATTAGTGAGAGTGGTATGACACTCTGAGACTGACT
TTGGGTCAGTGGAGGATGTATGATACATCCTCGATCATTTCTTCTTCTTCATAGTTC
GAGCAGAGCAGAGCACAACAGGCCAAGTAGTGCAGGGTAGTGCATTTGATGGCTG
GGATAGTAGCGACGGTCAC
SEQ ID NO:188 Middle LPZ-133 AGGTGACCGTAAATAAGATGACCCACATGGAGTTTGGCCCTAGTTTCCAATTTTTAA
CAC1CGCTCTCAACTAGGGAGAACTCCATTCGCTGATCCATTTGTCCGACTATACTA
TCTCTGCATCAGTGCCCTACACTACTCTGCACTGCTCTGCTCTACTAAACCATGAA
GAAGAAGAATGACCGAGAATGTCTCATGCCATTCTCTATTGACCTGAAGTTAGTCC
TATATGAAGAGA1TGTGTCATATCACTCTTATTGACCCAAAGTCAGTTTTATTGATCC
CAGATCAATATCACAGAGAGTGTCTCAAACCACTCATACTGATCCCAGATCAGTTTC
ATTGATCCCATATCAAGGAGATCATCCTAGAATAGGGAGTACAGTAGATACAATGAT
GCATCCATCAATAGTACTTCTATGGTCCCTAACCCCATTTCCCTGCTCATTGATCAG
ATGAGAGGTACTTCCGATGAGCCCACACTGCATGGGTAGGATGCCTCGACATGAG
AAATAATCATCCTATCCACAGGAGACGAATCCTCCTGTCCCACGGTCAC
SEQ ID NO:189 Middle LPZ-136 CTAGGGAAGACTTTAAAAGTTTGTAAAACTAAGCATAGCTCTAAACACTGAAGTTA
AAGACATGATTGGAATGTGCAAGTGGTTCAGTATCCAAATATTGAAGGTTGCAGAA
TATGGGCTACTGTGCAAACGAGTAACTTTATCTATATTTTCACAAGATCATACAATG
GGAAACGTGAGATAACAACTGCATCGGTGAACCAGAATAGTTATAAAAGTTCTTGC
AAGTAAAGGGTGAATAATTGCATGGTGTGAATTAAGAATGACCATGTAGAGCTGCT
ATACAGACTTCTCAAGGTTTTATATTTGAGGAGTGCGCGCTATTGATGTTGTGCAAA
AATTTCAGAAATTAATTCTGCGGCATTTATCAAGGTTGTTTGAGCCATTTAAATAGC
AGTTTTTGTTTCTCCAGTACTTTCAGGAAAGCAGGTTAGACGATAAAATGCATCTTC
CCAATTTACTATATTTCTGTTTTAAAAGATTCTCTCAATGTCCTTAGCACGTGGCTTT
CATTATTGGGACCAATGAAGATGTGTAGCAGAGGCATTACGTTATGGAATCTCTCA
CCAAGAACACTGTTTTGGGCTTTAGATAGCTCCTAGTTATAAATGCTCCAGTGACAA
ACACATCCTAAGTTTGGGGCAATTAATGACGCCTTTTGGTCATTCTCCTTTGGGTTT
CAGGCACGGTCAC
SEQ ID NO:190 Late LPZ-137 TCCCTTTAGTGAGGGTTAATAGATCTATAGTGTCACCTAAATCGCGGCCGCTCTAG
AACAGTGGATCCGCAAGCAGGATAGACGGCATATGCATTGGATGCTGAGAATTCG
ATATCAACTTATCGATACCGTCGACCTCGAGGG
SEQ ID NO:191 Middle LPZ-138 GGTGCGATCCTAAACATGCAAGCTTTGAGTTTGTAACTTTGTAGAAGTGGACATTTC
TAAGTTGGATGTACAAATCTACTGTTGGTTGTATTGTCATCCCATAAACAACTGTTT
GATGAGATGTTTTTTTAAAAACCACATCATAATATTTTTAGGCCTTGTAAAAAAAAAA
AAAAAAAAAAAAA
SEQ ID NO:192 Late LPZ-140 ATTCCAAACTTTTCTTCAAGATGTACACCAACATCATTGTCCCCAACTAGTAGAC
TGACTTTTCACCAGGTCCAAAGAGAGGGGTGGTGGAAGCAGATTTCAGGCTTTCG
AATAAGTATCAATGATATAAGCATCATCCCCTTGCCAATTGTTCTGGATCGCAC
SEQ ID NO:193 All LPZ-141 GGTGCGATCCCATCAGGGGTTGTGTTTCTAAGAATCACTTCCATGTTTCAAATTCAG
CACTTGATCTTGTACATACCCAATTTGTTGCCTGCTACTAGCTAGTATTGTCTTTCA
GTTTGAACCATTTTTTTGAGTAAATCGTGTTTAGTCTTTGGCAAAAAAAAAAA
SEQ ID NO:194 Middle LPZ-143 GGTGCGATCCGCATTAGAGAAGCATACAGGAAAAAGAAGTACCTGCCTCTTGATTT
GCGCCCAAGAAGACTCGTGCTATCAGGCGACGCCTTACCAAGCATCAGGCATCAT
TGAAGACGAGAGACAGTTAAAAGAAAGAGATGTATTTTCCAATGAGAAAGTATGCAG
TCAAGGTGTAAGCCACAGGATTTGAGCTTTCATGCAATTTTTTTGTTACTTGCGGGA
TGATATTGCCTATATATTTCCGTCCACGTTTTTGGCAAATTCCGATTTGCATCAGAA
TTCAAGTTATGATAGTGTTCTTCGCTTTTGAGCAGTTGATATTGTTTATCTTTTAT
TCTCTGAATTGCAACATATTCTAATGCAATGAGTGGATTATATATTGTGGTATTTC
CATGTTGAACTCATATAAATGAGCGTAATTGAGTGGTAGCGCTAGGATATTTACAC
TTGGCAAAAAAAAAAA
SEQ ID NO:195 Middle LPZ-144 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT
ACAGGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGAT
GGCTAACTTTTCAGCTATGAAAATATATGGTGCAGTGGCACTCATATCAGTTGCAG
GTTGTCAAATAACTTTTGTGAATAGGAAAGTTGTCCTCTTTTAGAGTGCAGAAATCC
TGCAATATAAGATGGCTAAGTTTTTCAGCTATATGAAAATATATGGTGCAGCAAAAA
AAAAATA
SEQ ID NO:196 Late LPZ-145 GGTGCGATCCCATATACAATTACATATATTTTCAACAATTCTTTTGTTGTTATGAAAA
TCTATTGAAATAAATTGAAATAGTTTGCATCATTTATTTATCGGAATTCGTATTTATAT
ATTAAATTTCTGATGTCTCAAATCCTTCGTTACTGTAACGATATCATTAATATAATGT
GTCTGCAAGTTTATTGGGCAAAACAAAATTTATTTTTCGGTCACATCATAAGTTTATT
TTTGGTCACATCATATGCACCATCACATTAAGCATAAGCATATACAGTAGCGTAAAA
ATACAATTATTGTTGTTGACTAGGATCGCAC
SEQ ID NO:197 Late LPZ-146 GGTGCGATCCTAGTCAACAACAATAATATGTATTTTTACGCTACTGTATATGCTTAT
GCTAATGTGATGGTGCATATGATGTGACCAAAAAATAAACTTATGATGTGACCGAAA
AATAATTTTGTTTTGTCCAATTAGACTTGCTGTATATGTCTGGAGTCCTACCCTTG
AATTGACTTGTTTCCC
SEQ ID NO:198 Late LPZ-147 GGTGCGATCCCATATACAATTACTTATATTTTCAACAATTCTTTTGTTGTTATGAAAA
TCTATTGAAATAAATTGAAATAGTTTGCATCATTTATTTATCGGAATTCGTATTTATAT
ATTAAATTTCTGATGTCTCAAATCCTTC
SEQ ID NO:199 Late LPZ-148 CCACTGCACCATATATTTTCATATAGCTGAAAAACTTAGCCATCCTTATATTGCAGAT
TTCTGTTTTCTGAAACAGGAATTACAGGATCCATCACTGTACTCCTTTGCCTTCTTT
GCCGTTCATCATCCAAACTACCTATACGGATCGCAC
SEQ ID NO:200 All LPZ-149 AGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATAAAAATTCCCAGTT
TGAATTCTAAAGAAAACTGTTCAATATTTGAAGGCCTCTGATATCACAGAGACTGAT
ATTAAATGGAAATTCATACAAATGAGGAGAGCATGTAGCAACACTAGAAGCTTTGG
CATAAAGCACCAGATAAATTCATAAGAACTAAATCCATAAGAAGGATCTCTCGTTCA
CCAGTCACAATCACACTCGGATCGCAC
SEQ ID NO:201 Middle LPZ-150 GGTGCGATCCCTGGCCCTGATAACTTTGGTTGCAATGGAAAATGCAGTACTAGGTG
CGAAATGCTAAAGCCCGCCCGGAGCGGTGCATGAAGTACTGCAATATTTGTTGTAG
TAAATGGCTGGTTGTGTTCCCAGTGGTCACTATGGCAACAAGGACGAGTGCCCCT
GCTACAGAGAATGAAGTCCGCAGCCGGCAAGCCCAAGTGTCCCTGATCTTAGCAC
TTCAGTCCAGTCGCCACTTCTTTTATTCTCTTTTTTTATAAAAGTGACGAGGCCG
TTCTTGTGCTTGGTGCCATATGTAGAGCGGTGGCTACTTCTCCTGTGTTAGGAAAT
GTTGCAGTACTAATAATAGAACTTCTT
SEQ ID NO:202 Middle LPZ-151 GGTGCGATCCAATAAAGATATACTTTGCAACAATAATCAAAATATCATATGCAAAG
TTTAAGATCAAAATAGAATGCAACAAAAAAATGGTTGTAACATAGGAACCAACAATG
TTGCATTCAAGTAAGACTCTTTGCAAAAAAAAAAAATAAAAAAAAAAA
SEQ ID NO:203 Middle LPZ-152 GGTGCGATCCACAAGTAAGATAATTGAGTATATATTCAAGATGCAAATATTTCATTA
GGACCACTCATAAAGTTATCAATGATTCACAAAGAGACCTCCTGACCTCTCTCAAAA
GTGGTGGCAACACAAGACTAGTGTAGTTTTTACTATACCTCAATGAAACTACCATCC
TAACTGATGCCATAATCTTCTGTTATATATTACCAAAATTTATGAGATGATTGATCCA
TAAACACTCCAGAACACATAGTCATCCAAAGGAACCTTTGCTTGAATATGGACCCC
CTTAATTCAGGTACTTGCTACTCCAATAAATTGCTTAATCTCTCCACCGATAACCAC
AGTTTGGATCGCC
SEQ ID NO:204 Early LPZ-153 GGTGCGATCCAGGACATGAGGCCGAGTTTGCCATTGTGATATGATTGAGGAAGTC
CAGTCTCAAAATTAGGTTTATCTTGATGTTTGACAAGAAATATAGAAGGGCATGATG
AATCAAGAACCTTTTCCAAATCTGTTACTGCAACCAATCCAATGACATAATAACGCC
AATGGTGGTTCCTGTGATGACATAATAAATTGGATTAAATTAATAACATCCCTAATG
CCATGTGGTTAGCTGCATCATCACCGTATCCATCGAGTGTTCAATTTTTGGGATGT
TGTATCAAAAAAA
SEQ ID NO:205 Early LPZ-154 AAATATTTTTCAATACAACGCCATGTGACATTTTTGTGCTTCTTGTTTTTGATACATA
CTTCCAAAAACTGAACACTCGATGGATACGGTGATGATGCAGCTACAGCCATTGCA
TTACGATGTTACTAAATTAAATCAATTTATTATGTCATCACACGAACCCAAACAATAG
CGCTATATGTCATTAGAATGGTTGCAGTTACAGATCTGGAAACAGATCAATGAATCA
TCATGCCCTCTATATCTCTTGTCAAACATCAAGATAAACCTAATTTTGAGGACTGGA
CTTCCTCAACATATCACAATGGCAAACTCGGCCTCATGTCCTGGATCGCAC
SEQ ID NO:206 Middle LPZ-155 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT
ACAGGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGAT
GGCTAACTTTTCAGCTATGAAAATATATGGTGCAGTGGCACTCATATCAGTTGCAG
GTTGTGAAATAACTTTTGTGAATAGGAAAGTTTTCCTGTTTTAGAATGCAGAAATCC
TGCAATATAAGATGGCTAAGTTTTCAGCTATATGAAAATATATGGTGCAGCAGAGT
TGTCAATATAAACTTGTGAATAGGGAAGTTTTGGCAAAAAAAAAAAAAAGAAAAAAA
AAAA
SEQ ID NO:207 Late LPZ-157 GGTGCGATCCTCGTTGTGAAGACGTAGTGATGGAAAGGTCATGTTTGTAGGAGAC
ATAATTATAGGAGTTTCTTTATTATAATAACCAAGAAGTCCGATCCTGGGGGCGTTG
AGTATATAGTCAGTCTTTGGTAATTTGGTGTGGTGCTGTTTGACCTGCCTTTCCTTT
GGAGCAATGATCCTTGAGGATGGAAGAGGTTATGTTGAGGCTCAAGAGATGATTGT
TTGAGTTGTGGAAAGCAAAAGGTTTCCAGATGTAGTCAGATAGTAACTTCTATGCTT
TTAATAAAATTTAGTCTGTGGGGCATGCCCCTTTTTGCTGGCAAAAAAAAAAA&GAA
AAAAAAAAAA
SEQ ID NO:208 Late LPZ-158 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT
ACAGTGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGA
TGGCTAAGCTTTTCAGCTATGAAATATATGGTGCAGTGGCACTCATATCAGTTGCA
GAGTTGTGAATATAACTTTTGTGAATAGGAAAGTTTTCCTGTTTTAGAATGCAGAAA
TCCTGCAATATAAGGATGGCTAAGTTTTTCAGCTATATGAAAATATATGGTGCAGCA
GAGTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAA
SEQ ID NO:209 Middle LPZ-162 GGTGCGATCCCAGGAGAATATTAGTTTCATGTGTTGCTATCATTTTCTTCAATATGC
AGGGCAACCATTTGAATGAAACTATTCCTTTCGAATTTCAAAAACTTAATAGGCTAA
CTTATCTATCTGGAGCCGATTTTCATTGACGAGTAACCTGTAAGCTGGCCAGCAAA
AGCCAACAGATGTTCAGCTTGTTGGAACCAGTTGAAGATTGTAATAGAGATGGTGA
ATAATCGCGGACGGCTCGGCCAATGGAATATTTGTTGCATCATCATCAAGGGGGTA
TGAATTCCAAAGAACTTGTTGATTGAAATTCCCAAGCAAAATTCTGTGAAATGAAAA
ATTTATTGAGACCATTGGGCAAAAAAAAAAAAAAATAAAAAAAAAAAAAA
SEQ ID NO:210 All LPZ-165 GGTGCGATCCGACTGTGATATGTGACTGGTGAACGAGAGATCCTTCTTATGAATTA
ATCTGGTATCTTTATGCGAAAGCTTCTAGGGTTGCTACATGCTTCCATTCTAATATC
AGTCTCTGTGATATCAGAGGCCTTCAAATATTGAACAGTTTTCTTTAGAATTCCAAA
CTGGGAATTTTTATTGTATAGCCATGTTTTCACGGATTGTCTGCAAGAAGGCTCTTT
GGCAAAAAAAAAAAA
SEQ ID NO:211 M,L LPZ-166 TTTTTTTATTTTTTTTTTTTCCAACGAGATCACTGTCATTGTTCAATAACTATATGCCA
AAGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATAAAAATTCCCAGT
TTGGAATTCTAAAGAAAACTGTTCAATATTTGAAGGCCTCTGATATCCCAGAGACTG
ATATTAGAATGGAAATTCATACAAATGAGGAGAGCATGTAGCAACACTAGAAGCTTT
GGCATAAAGACACCAGATAAATTCATAAGAACTAAATCCATAAGAAGGATCTCTCGT
TCACCAGTCACATATCATACTCGGATCGCACC
SEQ ID NO:212 Middle LPZ-167 GGTGCGATCCGACTGTGATATGTGGCTGGTGAACGAGAGATCCTTCTTATGAATA
ATCTGGTATCTTTATGCGAAAGCTTTTAGGGTTGCTACATGCTCTCCTCTTTTGTAT
GAATTTCCATTCTAATATCAGTCTCTGTGATATCAGAGGCCTTCAAATATTGAACAG
TTTTATTTAGAATCCAAACTGGGAATTTTATTGTATAGCAATGTTTTCACGGATTGTC
TGCAAGAAGGCTCTTTGGAAAAAAAAAAAATAAAAAAAAAAAA
SEQ ID NO:213 Middle LPZ-169 TCCCAAAGGCAATTATACATGGATCGCACC
SEQ ID NO:214 All LPZ-170 GGTGCGATCCCCACTGCAGAAAGATGAGCCAGTACCCTGAAATTTTGCTGTTGTCC
ATGCCTGGGTCACGGAGGAAAGAACGGCACGGTGCAATATGATTTTGCTACATACA
AGTTCCAAGAGTGGATGCAGACAGTGCTGGCCATGGCTGATTATTTGCAGGTGACT
AATGCTCTTTTGGTTATCCTTACCATCATCATCTTCCTGCCATTCTTTTGTACCTCGG
TATGGAGACGAACACCCACTTTTCAAAGTTTGCAGAGGAAGCATGTATTCATAACA
GGAGGATCAAGCGGCATTGGCCTTGAGATTGCCAAAGAGGCTCTTCACAGGGTT
CTTACGTGACACTGGCGTCAAGAAATCTTTCTAAACTTCGTAGGGCTGTTTGAAGAA
ATCATCCAAGAAGTGGAGTGCGACGGAGACAAGATTAATATCAAGGTAATATACCC
TGCAAAATGTTGTCTGGAATACAATCCAAAACCAATTTAGCAATTAACCCATTGGCA
AAAAAAAAAAA
SEQ ID NO:215 All LPZ-171 GGTGCGATCCAAGTGCGGTATTCTTCCTTTGGCAGTTCTCTGAACTGTTGAGAGAA
TTTGAGTAGGATAACGACATAATTACTATGCTCACAAGCCCAGACAACACGAATAG
ACTCCCTTCCGTGCGTCGCCTTCCAGAGGACGCAGCAGCTAAAATCTCGGCCTGA
CTCACCACATATATATTTAATAGCTTGTATATGCCATATGAACTGTTAGCATGATCTC
CCTCTAACTGCGAATTGTGTTGCTGTAAACTAATCCCAAAGGATGTTTACTCTGTTG
CTTTTCCAACTGCTGATGGATTTCGCTCATACAATGACCCGAGAGCACCATAAACC
ACCCAGCGTTGTGGCCTATGACCCATAGCTTTTTGTTCGCACAGCAATTGAAGACC
GGCTACAGGAGATGACTAATGCACTTCCGAGAAGGTTTCACCGCGAATGACAGGG
AAGGACAAGGCAGAGCAGCAGGCCAAGACAGCTTTAGTCGCAGAAGTTCAAGCAG
ATCTAGATTCATAGTAAATGGAAGTTCTACACTAGTTACAAATTTAAAAACGTACCTG
CATGGACTACACGGTTTATTTACGAGTGCCACTTGTCTCATTGTTTTCCATCAGATG
TCTGCTGGATTGTGGTAGTGTGTTCTACCGTATCGGTGCGGGTTTTGTATATTGTG
CGTCGACAGAGTGACAGGTGGTGATTTTACTGGCAATTAAAAAAAAAAAACAAAAAAAAA
A
SEQ ID NO:216 Late LPZ-172 GGTGCGATCCTAGTACAGGCGTTTGGAACAGAGTGGAGAATATGTGGAGTATTGG
GGGATGCCCCCGGTCGTGTGTTGCTGCGTTTGGGAATTTGTATTTCTTCCATAGGC
AACAAGTGATGTGTTATAATAGTAAAGAGAATGTTTGGGAAGTGGTGGCATCTCTTC
CTGGAGACATGAATATTGTTACTTTGCGCAACAGTGTGGTGTGACAAGATATTTGT
GAGCGGTTGTGCTTGCAGTGGCGGCGATCAGGTGTGTTACATGCTGGACAAATCT
TGGGCGTGGGCTCCTATTGAGAGGTCACATGAGTTTGAGGGTTTTGCTCAGTCTG
CAATAACTGTAGAGATATGAGCAAATTCTGTTGGGTTCACTTAATTTTGGGATTATT
ATAGTGCAGAGGGGAGCCGGGAAGTTTCAGTGTACAGTGATGGGCACCACATGTT
GCCAGCATTGGGGGTGCCCTGTGAATATGATTTCTATAAGTCCGGATTTTAAATATC
TAGGCCATCTATCTCATCCAGCCTCTGATTGTGTCTGTACTAAATATATCCTGTATA
TTCGTGATCCCTGGTTTTGAAGTGAGCAAGTTTTAGTGGAAGAGGATTTTTATTAAA
TATATATAAAGTTTCTGTATTCAGGGTTTTGGCAAAAAAAAAAAAAA
SEQ ID NO:217 Middle LPZ-173 GGTGCAATCCGCCATAAGAGAGGCATACAGGAAAAAGAAGTACCTGCCTCTTGATT
TGCGTCCCAAGAAGACTCGTGCTATCAGGTGACGCCTTACCAAGCATCAGGCATC
TTGAAGACTGAGAGACAGAAAAAGAAAGAGATGTATTTCCAATGAGAAAGTATGC
AGTCAAGGTGTAAAGCCATAGGATTGAGCTTTCATGCAATTTTTTTGTTACTTGCG
GGATGATATTGCCTATTATATTTCCGTCCACGTTTTTGGCAAATTCCGATTTGCATC
AGAATTCAAGTTATGATAGGTGTTCTTCGCTTTGAGCAGTTGATATTGTTTATCTT
TATTTCTCTTGAATTGCGAACATATTCTAATGCAATGAGTGGATTATTATATTGTGGC
AAAAAAAAAAAAAAAAAAAAAAAA
SEQ ID NO:218 Middle LPZ-174 GCGGACGCCTCAGGATAGCGTTAGGGTTGCCTTAGGATAGCGTTAGCTCTGCCTT
CTAAGGTTGCCGTCTTATCCTCCAGCGTCTAGGGCTTCCACTCCTAGGATTTCTCT
TCCACTAAAACCCAAGACAAGTGGAGAGAAATCAAGATAGAAGTGTGTGTGAAATG
ACTCTTAAGTCATCTCCTTTTAGACTAAAACATTGAGCACATGTGGGGTTTATTTGG
TTGCTGGCCGTCGTT
SEQ ID NO:219 Middle LPZ-175 GGTGCGATCCTGAAACAACATATTCCCGATGGCTCTTCCGAAGGAACCATTGCTCT
ACTGTGTGGCCCTCCCCCCATGATCCAAGATGCCTGCCTACCTAACCTGGCCAAAA
TGAATTATGACATTCAGAATTCGTGTTTTCAGTTCTAATTACACCCTTCTGGTTAATC
AAATTGGGACATCCCCTCCCACATCCTGTTATTAATTAAGCCATAGTCTAGTGTATA
AAATCTGTTGATGTGTACAGCATCAAGTTAATTTCCTCCTTTTCTGTCAAAAAAAAAA
AAAAATAAAAAAAAAAAA
SEQ ID NO:220 Late LPZ-177 GGTGCGATCCGATCCTAAGCGGGTGCATATATATAATGACAAGCTGTAGTAACTAA
CTCTTGTCATGAGGCCATTGCTAACATAGCCTGTCCAATGCACATAGCAGTCAAAA
AAAGCAAATAGCCGCCATGTTCCCATACACGAAGTAAGTACCCTCCCTATTGAGTC
ACCTTACCCGCCGAGAGAGATCCCAATTCCATGTATTCGGTTAAGTAAGCCCTGCC
AGCTATGTCCCACCCATGAAAGAAAGTACTGATCCGAGTGGATCGCACC
SEQ ID NO:221 Late LPZ-179 GGTGCGATCCAAACTGTGGTATCGGTGGAGAGATTAAGCAATTTATTGGAGTAGC
AAGTACGCTGAATTAAGGGGGTCCATATTCAAGCAAAGGTTCCTTTGGATGACTAT
GTGTTCTGGAAGTGTTTATGGATCAATCATCTCATAAATTTTGGTAATATATAACAGA
AGATTATGGCATCCAGTTAGGATGGTAGTTTCATTGAGGTATAGTAAAAACTACACT
AAGTCTTGTGTTGCCACCCACTTTTGAGAGAGGTCAGGAGGTCTCTTTGTGAATCA
TTGATAACTTTATGAGTGGTACCTAATGAAATATTTGCATCTTGAATATATACTCAAT
TGATCTTACTTGTGGATCGCACC
SEQ ID NO:222 Late LPZ-181 CAATCTGTCTGCAATTGATATTATTGCATCCAGTAAACCAGATACACATTCACCACA
ACATTAGAGACTCTAGAAGTTCCTTTGGCGACAGGCAAAACTCATGATTACAGATAA
TTGGAGTTTCCTCTAACCAGAGTCAAACGATCTAAAGGGATTTGTCTAGTCCTCCAT
TCCCTCATTCAATGAGGCGATGGCTTATGCCGTGACAACAGTTTCTATAGTTGCAT
CCGCTCCTGTTGATCCCACAACATTTTTGGTGTTCTCTGCATCTTCTTCCTCCCATA
TCTCTGGCAGGGCTTGTCTAATGTTGTGAATACTTGCAAGGGCAAAATCTGCTCCC
TCTGTTCGGATCGCACC
SEQ ID NO:223 Late LPZ-182 GGTGCGATCCTCTCAGTTACGAGCTCAATTTCGACCAGGGGTCTCGGCAAATTGA
GGATCATGAGAAGCAGGGTATGCCCTTGAATGCCCTGAAGCCAGGGGAGTCTCAG
GGCAATCACGAATGAAACCTGACAAACCCTAAGAAAACCCCTAGAGCGTGCCCTGC
AGAAAGGGAATTCTTTTTGAGGCCGGCGGTCTTTCTGTCGTCTTCTCGCAGCCGTA
SEQ ID NO:224 Late LPZ-186 GGTGCGATCCAGCAAGAGAACGAAAAAGGTATGAGAATCTATGAAATATTTGTACA
TCACTGTATTCATATGAGGGCCTTTTTTTACAATGCGGTAGGGTTGTTTGGAGAAT
AGAACCTGATTAAAATGTAGATGGATTCAAGCTTTTAGTGAAATGAGGCTCGGAAC
GCAAGTATGCTGTCCACTTTGAGACTCATTCTTCTATAGTATCTGAAGCCAAAGCC
SEQ ID NO:225 Middle LPZ-189 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG
ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTCACAACTCTGCTGCACCATATATTTTCATATAGCTGAAAAACTTAGCCAT
CCTTATATTGCAGGATTTCCGCATTCTAAAACAGGAAAACTTTCCTATTCACAAAAG
TTATATTCACAACTCTGCAACTGATATGAGTGCCACTGCACCATATATTTTCATAGC
TGAAAAGCTTAGCCAGCCTTATATGCAGATTTTCTGTTTTCTGAAACAGGAATTAC
AGGATCCATCACTGTACTCCTTTGCCTTCCTTGCCCGTTCATCATCCAAACTACTAT
ACGGATCGCACCA
SEQ ID NO:226 Late LPZ-194 GGTGCGATCCTGCGAGAGCCGAGGGTTCATTTTCCTTTCGACAACGACGTTCAGT
GGCGACCAGAGTTTCCCAATCACTTCAGCGATTCTATTCCTTCGTTGTAATAAAGCT
TAAGGAATCCATGCTTTATTCCTTGGAAGGTTTGAATATTTATATTTGTTGGCATTAA
TGCTATATACATCTATACTAATTTTGGGTTGTTCTAAACTTGTTTTGAATAACTTAAA
SEQ ID NO:227 All LPZ-195 GGTGCGATCCATGGCAAAGAGCTCGTTCAAGCACGATCATCCTCCAGAGAGAAGA
CAAGCTGAAGCTTCTCGGATTCGAGAAAAGTATCCGGACAGGATTCCGGTTATTGT
GGAGAAGGCTGAGAGAAGTGAGATACCTGATATTGATAAAAAGAAATATTTAGTCC
CAGCAGATTTGACTGTTGGGCAATTTGTTTATGTTGTCCGAAAAAAAAAAAA
SEQ ID NO:228 Middle LPZ-196 GGTGCGATCCCCTGTATTCTTGAAAGGGTTATAACGGAAGATAGCATTTTGCTCAG
ATTGTAGACAGTCTGCATGATTTGTCAATACTACTATTTCGCATTATTTGTTAATACT
ACTAATCCTTGTACTCATCTAGACTATTTAATTATTAAATTCTACAGTTTCTTTCTCCT
AGATGGCAAACAATATGAATAAAATGCCAATAGTTTTGGAACTACTCCATTAAGAGC
TTTAGATGATTATCATTCATCATTTGCCTGTTTTGAATCGTAAATGAATGTGTCACGG
TCTTCTTTTCTGTTAGTCTCTATGCTTTCATCAGAAGAGTCTAAGCCAGTTACTGGA
AGCTATTTGTCATCTCTTTAAACATTGTTTCCGTGCCAAAAAAAAAAAAAAAAAAAAA
AA
SEQ ID NO:229 Late LPZ-197 GGCAGAACTTCCAAAGTCTAGTATTTGATTAACTAATATGATGAAGACACTCAGTCT
ATAACATGACGCCAGAAATCAGACCATATGCATGATAACTAGCACGATTAAAATACA
ATTCGCAACCTTTAATACACTAAAAACGTTTACTGTATAGTCCACTCAGAACATTTC
GATAGTATTGTCAGATCGACTTATTTAGCTCATATTCAGCAATCTGAACTGTACGAT
GCGGCTCATTCAAGGGCATTTGGGTTTGCCCTTGGCATTCTTCATATCCCGATAGC
AAGGACACGCGTTCTTGTTGCCATATGTCCCTGGGGGATCGCACC
SEQ ID NO:230 Early LPZ-198 GGTGCGATCCACATTGGCCAGGCCGGTATTCAGGTCGGCAATGCCTGTTGGGAGC
TTTACTGTCTCGAGCACGACATTCAGCCTGATGGACAAATGCCAAGTGACAAGACC
GTTGGCGGTGGAGATGATGCATTCAACACATTTTTCAGTGAGACAGGTGCCGGTAA
GCATGTTCCTCGT181GCCGTGTTTCTGGATCTGGAGCCAACTGTCATTGATGAAGT
TCGAACCGGCACATATCGGCAGCTTTTTCACCCAGAGCAGCTGATCAGTGGCAAA
GAAGATGCCGCGAACAACTTTGCTCGTGGCCATTATACCATTGGTAAGGAAATTGT
GGATCTGTGCTTGGATCGCAGC
SEQ ID NO:231 Late LPZ-199 GGTGCGATCCCAGCATTGGATGCATTTCTAGCACAAAGCCATCTTGACTAAAATAG
CACTGCGGGCAACTGCAGTCCATAACTTTCAGAGCATTGTTGCTGCCTCAATTGTA
TACCAATCCATATTCTAAAAATTAGACCTGGAAACCAGTCAGAAATTTAATGTTTTCT
TGCAGAAAATGCCCTTTTAGAAAAAGGAGAGAATAACTGCATTCAAGTTCTAACTCC
CAGACATAGCCTGGCAACGTCATTCATCAGTTCGGATCGCACC
SEQ ID NO:232 E,L LPZ-201 GGTGCGATCCAGAAAACAGCACAAGCAATCTGTAAGACCAATATTATTATCATCTCT
CACTGCTCGTGAACAAAATGCTGGTTCATAGCCATCACGAAGGCTAAGGCTACTAT
CCAGCCAAACTGATCTOCAACAATAATTTCATAAGCTTAAATAAATAGTCCATCCAG
TGGATGGAGCCAGAAAGCCATAGAAACTTCAAATACTTGTGGTATCAATCTCTCCTC
TGTTAAGGGAGGTATCAGATCAGAAGCACTAATCAAATGCATACATAAATGCAGTA
GACTGCAATAAAACAAAATCTGCAGATAGCAACTGAGCGCTTAACGAACGGAAAAG
AGTTTAACTTGATCTATCACAGGATCGCACC
SEQ ID NO:233 Late LPZ-202 GAAAATGGGAGCCTCAAATATTCAAAGCCTCATCTCAAGAGTCTCAGATTCGGATT
CATTTCATTTGGTTCGTAATAAAATAATGCATCAAATAGTTATTATCCACAAAAATGG
GAGAATTATTACAATCTGTCTTCTCAACATAAAGTCATAGCATAGCATAGAACCACA
CCACAGTCGTCATCATTTGTTTTGTTCACCACCGAAGGGGCTCTTTACAGCGTCCA
TGAAGCCCTGTGTAGCACCCTTCGCCTTGTCCCCCGCCTGTTGGAAGAAAGAGCC
AGTTTGTTCTTTCCCCTCTTGGGCTTTTCCCGTGATGGATCGCACC
SEQ ID NO:234 Late LPZ-203 GGTGCGATCCTATTATAGAACCATGACTCTTGTCGATGGGGCATAAACTTCTCATTC
TTAGGCGTGCCTACTGTGACTCTTGCCGATGTGGCATAAACTGCTTATTCTTAGTT
GTGCCTTCTGTGCAGAACTTGTTGAGTCGGTGGATTACACTGAC
SEQ ID NO:235 Late LPZ-204 GGTGCGATCCATTAACTAGATTAACGATAACATTCCTCTGCATCCAATCCAATGCTC
ATCTAAATCTACTTCTACTTAGATCTCTGCCTCATCTTTCTCCACCTCCTCATCCATT
CTGAAATATTAATTTCTGCATAGATTTTGTTAGGGTCTAGTAATCATTTTCATGAATT
TAAATCTGTTCTAGTCTCTTATTATTATGCTGCTTATGCTAGCATCAGAACCTGTGTA
TAATTCATTCATGTATATATTGGATTACACAAATTATACGGATGCCAGAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
SEQ ID NO:236 Late LPZ-205 CTTGAAGCTGATATGTTTGAACCCGAAATTTTGTTACCCAACTCCAGTGTACATTGT
GTCACTGTCAAAGAGAACATGAGAGCTGCATGCAAGCTTTTGCATGATAGATAGAT
TACTGATCACCGAACATTTCTTACTCTACTTTCCTCTCCTATCCCCAGTGATTTTTG
GGCATTTTCTATACCCTTCGGATCGCACC
SEQ ID NO:237 Late LPZ-206 CTCATGAACAGCAATATGATGCATTCCTCTTATACACATTTCATATATGTCACCCTT
GCCGTCATGGCTACTCTAAGAAGAGCAAAACAGACCCATTGAATCTTTACACGCGC
TTGTTTATATGAATACAAATAATTTAGGCGTTTCTTTACACGCCCTTGTTTACATTAA
TACAAGTGATTTAGGCGTTGTTACCAGAATAGTGCCACGGATCGCACC
SEQ ID NO:238 All LPZ-207 GGTGCGATCCCAAGATAGAAAAGGGAACTATGGTCTCGAGGAGTGTCAGGTGCTA
CAGATCACAATATACATAAGGGTCTGATAGTAGTACTCGGCCCAATGTTTGAGGGC
TCTAACTAAGGAGGATCAACCGTACCCTTAGCCGTAAAACCCGACTACCCTATCGT
ACGGGCGAGTAATCTCTCTGAGTGTTGTTCTCGGTGTATCGTAGCAGCAACACGG
CTGACGGTTTATCTATGGTGAGGTTTCAAAGGAGCTAGGGGGCTTCCAATATACCC
AGAGGGTACTTGGAAGACAGTTTATACGCGGTTCTGTCTAATGCGCTACTACTCGA
AGGGGTACCCACAGGGGTACAAGAGAGTGCAACAAGCATGACCACCCCTTGTAT
TTCTTGCATGTATGCCTCCCCAAATCCGCAGGTTTATGCGCTCATTGACAGATTCC
GTGGTTTAAAGATGCCGGAACATGTCTCTAGCCAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
SEQ ID NO:239 E,L LPZ-208 GGTGCGATCCTCCTAACCTGCAATGTCCTTCCTGCAATTATCAACAGA
AATTAGGTTTATTTTTCTTTTTGTCTTTTCTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTAAGTAAACGACCATTTCAAACGCCATTCAAATGCTATGAATTAATGTT
GAATTAATGTTAGCATTAAGTCTTTTAACATTTTATGTAAGGCATATATATCGTTCCA
ACTACTCTTACAATACACCTGCGGTGTACTCCTGCCACCGCATGTACCACCGTTAC
ATGTACGCCTGCCAGCACATCTAACAGGTGCCAACTCCTTTGAACTCATCGTCGCC
ATTTTTGTATGCATATTTGAACTCATCGTCGCCATTTTGGTATCTTCACATATGGCC
AGTCCAGGATCGCACC
SEQ ID NO:240 Late LPZ-210 GGTGCGATCCAAGGAGTGGGCGTGCAATGCGTCGAAGATAGCCACCACTGCAGG
GGCGTGGCATGCTGCCGTGCTTCCCACAGGGAGATCAACACCTGCACCTCCGCCT
CCTTCCGCGGTTACCACGAG
SEQ ID NO:241 Middle LPZ-211 GGTGCGATCCAGCCACAGAAAGATTGGTTTACTCGATAATTGAACGGTAGACTTTG
TGCAGGTTTAGATTGTGTACATGCTGATCAGTATTGTCTACACCATTTTCAATCTTG
TTTAGTTCTATGGTAATTTATGTAACAAATTCAGCGATGTTGGGGAAATTGGTCACA
TCAGCTTTGTGCCTATATATTCAAGTAAATCAGGGGATCCATTAATACTGCTTTT
AATAATTGGGGCAAAGTTGTGGGATGACTGCTTCAGCGGAATACGTGCTTTTCATA
GTGCTGTATGACATTTTGTTGAATATGAATTTCTTTGTGATACAGTTGCGCGAAAA
AAAAAAAA
SEQ ID NO:242 Middle LPZ-212 GGTGCGATCCATGCCAAGAGGGTGACCATCATGCCCAAGGACATCAGCTCGCTC
GCCGCATCCGTGGAGAGAGGGCATAAACAGTCAGTCAGATCCAATGGTGTGTTTT
CACACCACCATATGTTTCTTTTACTAAATTTGTTAGGTCCCTTCGGTGGGTCTTTTC
TTTCCCCCGATTTTAGTATTTTGTTGTTCTTCTGAGTTTCATCATTGCAAGTACAAGA
TGCAGAATTGATGGTTATTGGGACTTGGAGACTGGTTATTGCTATGTAGAGTATTTA
TATTAGACAGGTTTCACTTGAAGATATAAAATTG
SEQ ID NO:243 Late LPZ-213 GGTGCGATCCTCATGTGTATAACCGAAGTTTGCGGGATTCAGATGGTCAGTATCT
TAAATGTCCAACTTTCGGTACGAATGGGGTGCGTTCTGAAACGTGCCACGAAAGAG
GTGTTCAGGATCTGTCTGAGGCATCTTTCCGGTATTTTCCACTTCCATGGTATGAG
AAACTTTCGTCTTGTTGCAG
SEQ ID NO:244 Late LPZ-214 AGGAGACACAACTTTACGAAAAAGTTCAATCTGGAGTCTTCTAAGTTTTTCAGACTC
TCTAAATATGAAAAGCGCCGAGTTTCTCCTATACTGGACTCGTTAAAATTTTACAGT
AAAGGACCTGTTCTATTACAAACAGGAACGGACCGCTCCTCCTTAGGGATCGCACC
SEQ ID NO:245 Late LPZ-215 GGTGCGATCCAGCAAGAGAACGAAAAAGATATGAAGAATCTATGAAATATTTGTAC
ATCACTGTATTCATATGAGGGCCTTTTTTTACAATGCGGTAGGGTTGTTTGGAGAAT
TAGAACCTGATTAAAATGTAGATGGATTCAAGCTTTTAGTGAAATGAGGCT
SEQ ID NO:246 Late LPZ-216 CTCAACATAAAGTCATAGCATAGCACCACACCACAGTCGTCATCATTTGTTTTGTTC
ACCACCGAAGGGGCTCTTTACAGCGTCCTTGAAGCCCTGTATAGCACCCTTCGCCT
TGTCCCCCGCCTGTTGGAAGAAAGAGCCAGTTTGTTCTTTCCCCTCTTGGGCTTTT
CCCGTGATGGATCGCACC
SEQ ID NO:247 Middle LPZ-217 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG
ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTCGGGACCAAATATTTTTCAATACAACGCCATGTGACATTTTTGTGCTTCTTGT
TTTTGATACATACATTCCAAAAACTGAACACTCGATGGATACGGTGATGATGCAGCT
ACAGCCATTGCATTACAGATGTTATTAAATTAAATCAATTTATTATGTCATCACACCA
ACCCAAACAATAGCGCTATTATGTCATAGAATGGTTGCAGTTACAAGATCTGCAAA
CAGATCAATGAATCATCATGCCCCTCTATATCTCTTGTCAAACATCAAGATAAACCT
AATTTTAGGACTGGACTTCCTCAATCATATCACAATGGCAAACTCAGCCTCATGTCC
SEQ ID NO:248 Late LPZ-219 GGTGCGATCCTGGACTGGCCATATGTGAAGATAACAAAAATGGCGACGATGAGTTC
AAATATGCATAGAATAAGCGTTCTGTAATTGGAACGGCCATAGGAGTTGGCACCTG
TTAGATGTGCTGGCAGGCGTACATGTAAACGGTGGTACATGCGGTGGCAGGAGTAC
ACCGCAGGTGTATTGTAAGAGTAGTTGGAACGATATATATGCCTTAACATAAAATGT
TTAAGACTTAATGCTAACATTAATCAACATTAATTCATAG
SEQ ID NO:249 E,L LPZ-220 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG
ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTTTTTTTTTTTTTGTGAAGTGACAAAATCTA
AACCAAAGATTAAAAGGCTTTGGCTTCAGATACTATAGAAGAATGAGTCTCAAAGTG
GACAGCATACTTGCGTTCCGAGCCTCATTTCACTAAAAGCTTGAATCCATCTACATT
TTAATCAGGTTCTAATTCTCCAAACAACCCTACCGCATTGTAAAAAAAGGCCCTCAT
ATGAATACAGTGATGTACAAATATTTCATAGATTCTCATATCTTTTTCGTTCTCTTGC
TGGATCGCACC
SEQ ID NO:250 Late LPZ-221 GGTGCGATCCCAACCAGGTGTCCATGCAATATATGGTGAGCATCAAGTTTGAGGTG
GTTGATTGAAAGTTACAAATTGGTGACATCTGAAGTCTCATTCAGTTATGTTTTTGT
TATAAAAACCATAACCAATTTTGTATATAAGATCCATAATCAATTTTGGCCAA
SEQ ID NO:251 Late LPZ-222 GTTTTCAAGAAGAGCCTGACGGTTTCCTCGGCGGGATGACGGAAACAGGAAGCGG
CCGGCCGGTTCCGGACCCTCCGCAGGCGGAGCATAGCATTTTGCCGGAACCACC
GCATGTCGTGCACCCAACATCCGCGTCTGACCAGCGGAGGCACATGCACCCAACC
CTCCCGGTTCCATGCACCTCGGGCAGCGCGGCCACCCGCCGGCCATCGGCTTAT
CCATCATGGATCGCACC
SEQ ID NO:252 Late LPZ-223 TGGGCGAATCATATGGCTTGCATTTTCATTGTAACATGTATACGTTAAGGATTATCA
TAATGCCTCCAAAACCTTGTATCTTCGTCCTTGCCACAATACATCCAGGATAACTAA
TGGAAGCTTGACATGTCTTCACCAGTAATAATATATCAACTATAATACATGCCATTC
TTTATCAGTTTTGAACAAAATAATCGATTTGCATTCTTGACAAAGAACCTCGCGCAT
AAAAACAAATAAATTCTCATAATGCCTCCCAAACCTTGTAGTCTGGGCCCTCAGTCG
CCACAATCCATTTAAGAGGAATTTGGGGGTTGATAGTGCCCAGGTCCAATCTTCAT
GAAAATTCGTTCATCAATCTTTGCTGCATACACATCTCTCTCTGCTTTCACTATCTG
GGATCGCACC
SEQ ID NO:253 Late LPZ-224 CCACTATAATGAACATTGATATTACAAATATAATATACATAATATTACAATTCAAATC
ATTGACAATGAGCAGGCACTACTTGCAGTGCTTTGGAATTCAGACTTCTGATTTGC
ATTAATTCTTGTAGACGCTTTTCTGGGAGGGCAGGTTTTCCGCTTCAGAGAAAACC
ACGTACAAAACGATATTAAATAAAAATAGACACATACAAAAAATACTTCATTTTTTGC
TCTTTCCATTTGGTTTCTTCCTCTATCTCCATTTTGGAGGGCTTAAATGACTCAAAT
TTAAAAGTCAACAACAGAGTGCAGCACATTCTATTAGCTTTGCTGTAAATATCTGAT
TGGATCGCACC
SEQ ID NO:254 Middle LPZ-225 GGTGCGATCCGCATTAAGAGAAGCATACAAGAAAAAGAAGTACCTGCCTCTTGATT
TGCGTCCCAAGAAGACTCGTGCTATCAGGCGACGCCTTACCAAGCATCAGGCATC
ATTGAAGACTGAGAGACAGAAAAAGAAAGAGATGTATTTTCCAATGAGAAAGTATG
CAGCCAAGGTGTAAAGCACAGGATTTGAGCTTTCATGCAATTTTTTTGTTACTCGCG
GGATGATATTGCCTATTATATTTCCGTCCAAGTTTTTGGCTAAATTCCTATTTGCATCA
GAATTCAAGTTATGATAGGTGTTCTTTCGTTTTTGAGCAGTTGATATTGTTTATCTTT
TATTTCTATTATTAATCTTCTAAGTTGGATCGCAC
SEQ ID NO:255 Late LPZ-226 AAACAGACAAATATAGAAATATGCATACATAAGTCCCTGCAGAATTGTTTTCCGCAA
TGAATTCTGGTTTATGGCAACATTACCTACTTAGTACTAACCCTAAGATTATTTTCAG
CTCTGATAAGTGGCATACGTGTATCAATCTTGCATGAGTCTATCCCTGTTTTAATCT
TTTGTTGGGATCGCACC
SEQ ID NO:256 Late LPZ-227 GTGGAAGCTTCATTGTAAAACACTACTGGTTTTGAGAGAACAAAATATATACGCTAG
CCGAGTGGATTATAACAAAATATAGGCTTTATTTCTATTGGATCGCACC
SEQ ID NO:257 Late LPZ-228 GGTGCGATCCCATACATTAACATAGCCATCACAGCCCCCAGTGGCAAAAGTACCAT
AGCTGCAAAACATTATAAAACTAACATTCCTACAAGGAAATAAAATACAACTAAAAA
AGCAAGCAATAGGCATTAGGGGAGGGAGAAGCTAAAACTATTAAGCAACTTACATG
GGATGAAAGGCAATTGCGTTTACTGGATAAACAGTATCTCTGCCAGCCTCTGACTT
GCGATGACATTTAAAGGCATATTTTTTAAGCTTGACCAGCTTCAGATACATCATAAT
ACTCCATAGCCATGCGAGCTTCCACAGAACTAAGGGGCAAAACCTGTCCATTGG
ATCGCATCA
SEQ ID NO:258 Late LPZ-231 GGTGCGATCCAACTGAGAAGGGTGTTGGTGGAAAGATGACACCAAGTGGGTTCT
CTATTCTCCAGAGGATGCAAGAAAAATTCTGAGAGCAAAGAAGAATGGGGACTCAA
ATATTACGTTGGGTTCTGTTAAATCTGCCAAGTACCCTTCAGGAAAGCTTTATGCCA
TAGACCTGGTGGCCATGAAGCAAACCAATGTAAACACTGGCTTCTCCAGAGATATC
AAAATCATCAATTCTTGCCCTACTGATGATCAGGAAGATGTAGAGTCTGATGAAGAA
GATGAATTATTCACATTCTCTCGTCCTGTCAAAGTTGAAGTGATTAACCAGAGCAGG
AAACCTGATAAGATTGTCAAGATGGTTCCTTCTGTCACTGTAGACCTTGAGAAATTG
ACTTCTCAATACCTCCTGGAGGATGAGTGCAATTTGGTTCTAAAGCTTCCCAGGGC
TGCAGCTGCCCAATCGGATCGCACC
SEQ ID NO:259 Middle LPZ-233 GGTGCGATCCAGCTAATCAAACTTAATGGAGAGCCCTCCCAGGAAGAGTAAATGG
TAGTCACTTGAAGCCCTACACGGGTGGGCTGGCGGTCTGACTAACTGACCAAAAC
ATAGTCTTCGCGACCCAACAAGCCAGACAGAGGTGTGGGACTATAAGCACAAGTAC
TAGAAGCTAGCATCAAAGTAGAGAATTAAGTTAGATACAGATGATTCAGAAGCA
ATGGAGCAGATCCAGACCACGGTAGCATGGTGAGTTACGAACCTTCACGCCACAC
CAACGCAATTGGTTAAGACTTCGCACTAGGATCGCACC
SEQ ID NO:260 Late LPZ-234 GGTGCATCCATAGTTCCTTTGCTAAGCGACTACTCTATCTCTTTTGACATTCTCC
AAATATTGGGTCTTTCAGTTCCTTCAAATGCTAGAATCATATCAACATGGGATTTAG
TGAGGCCGCAATACTAACCAGGGCATTAAAATAATACATTTCATTGATCCTATTCCC
AAAACATTTCCCGCTATCGTACGTTGACTCAGCATATTTAGAGCAATTCTCTTACA
AACCTTAAGAAGGTTGTTCATGATAGTCTTTCCGTCTGCAATATTGGATCGCACC
SEQ ID NO:261 Late LPZ-235 GGTGCGATCCCACCCAAGAGTTAAATTCACTTCTCCGCCTTTCTGAGGAAGAGCAC
TCTTTGGATGATATGAAAAGTGGTCCACTCTTAACCGTATTCGGAACCCTGTTC
CGCGGACGGTCGTATGGCGTAACCGGCGCAGACATTTTATCTCCTCACACAATATC
AACATTCAAGTCCCCGCTGTTCCCCGTTGCCTTTCTCTGCTCCCGACCGTTAAACA
AGAACGACCACAAGAATGAACAACACCGCAACCGAAACCTGACCCTCCACGTTGTC
TTCGGTTCGGATCGCACC
SEQ ID NO:262 Late LPZ-237 GCGGACGCCTGGCAAAAACAGAGGGTATGCTCAAGCCTTACAGAAATTGAAAAATA
AGAGAACGTATGACCATCAATCTCAATCTCAAGAAAAGAAGTTGCAATACGACTCCA
ACACTTTTGAAAGTTGGAGGTTTGCTCTTTCTAGCGTTGCAGACATGGTTGGTTTTG
AGCTGGAAGCGTGTAACGGGCACTTTACAGTTGCGGGAATTGGAGATTGAGGACC
CCCTCTCAAACGTCGATAGGGAGGCTAAGCATCTATAGAGGATTGTGATTGGTCCT
TTTCCGCTACATGGAAAGTTTGTCAAACTCAGAAAATTACCAGAAGAATTCTGTCGT
CTTCTCGCAGCCGT
SEQ ID NO:263 Late LPZ-239 GACGTTGTAAAACGACGGCCAGTGTAAAGAGCAGCCCCGATGCGCCGAAGCTCGC
GAGGGAAAAGCTGCAGAAGATGGGACCGATGACCAAGAATGAGATCATCATGAGC
GGCACGCTACTGGTCACGGTGGGTCTTTGGATATTTGGGGGTAATGCTGAACGTGG
ATGCTGTTACTGCAGCGATCCTTGGTTTGTCTGTCCTACTCTGCACAGGCGTCCGC
SEQ ID NO:264 Late LPZ-240 TACGGCTGCGAGAAGACGACAGAAGCAGAACCTGCCAATATAGGATCAATTGAATG
TTGTGGGATTGCTGCATGCCCACCTTTCCCAGTTATTACTGCCTTGAAGAACCCAC
AGCCAGCGAGTAAGGGCCCGGGTTTCGAACCAATCACAGATGTAGGATAATCGCT
TGAAACATGCATAGCGAATATGCCTTCCACATTTTCCAGTGCTCCCTCCTCTATCAT
TCTTTTTGATCCTGCACCTGATTCCTCTGCAGGCTGGAAGAGTAATATGACAGTTCC
CTGTAACAAATGCTGACGTTGTTGCAAAATCTTTGCACCACCAAGAAGCATGGTAA
CATGTGCATCATGTCCACAGGCGTCCGC
SEQ ID NO:265 Middle LPZ-241 TACGGCTGCGAGAAGACGACAGAAAAGAGGCAAACCGAGCTCGACACCTCCACTC
AGAGCATTTGCAAAAATCCACAACAAATCTGGAGCCAAGGTCTTTCCCTCATTGAAA
ACATTTATCGGACACATCAATGTCTGTAGTCTTTCCCATGGTCCATCCAGAGTAATC
ACGGGAAGAACAATGCACTTCAGTCAGAATTTTTGATGACAGCTATCAGCTCCTG
ATCCTTTGAACCAGGTATATAATAATCTTGACCTGACTCCTGTTTCAACAGTGTAGA
GGTTCTGTCAACCTCAAGCAATGAATCGGCAGAACTTCCATTTGCTGTTTTGTCAAT
ACAGGCATTGTTTTTACCAAGACTGTGACGCATCTTCTGTCCTTGTCTATACAGTGC
AGTTTGTTCAAGCATAGACTTATGTGCTAGAACATGTCTTCCTTTTAAATTGTAAGA
GAAATGTAGGGGTTGACTGCTTTTACTGAGGCGTCCGC
SEQ ID NO:266 Middle LPZ-242 ACGGCTGCAGAAGACGACAGAACCCTGGCTGACTACAACATTCAAAAGGAGTCTAC
CCTGCATCTGGTGCTCCGTCTAAGAGGAGGCATGCAGATTTTTGTTAAAACCCTTA
CAGGCAAAACAATTACTCTGGAAGTGGAAAGCTCGGACACTATTGACAATGTAAAA
GCTAAGATCCAGGACAAGGAGGGAATCCCACCTGACCAGCAGAGGTTGATCTTTG
CCGGAAAGCAGCTAGAAGATGGTCGTACTCTGGCCGATTACAACATTCAGAAGGA
GTCGACCCTTCACCTGGTGCTCCGTCTCCGTGGTGGCTTTTAGGTTGGCTGTTGT
GTGTCAATGTAGTCTGGTGATGTTCAGTGGTTTTCCTGCTTAATCCTTTTTATGTAT
GCATGTGTTTGTTGTGTTTGTGTTTTGTCTCTATGTTTTTTCTACTTGGTTTGTCGGT
CGGTTGAAGCCCGGCTGGTGTCCTGGTAGGCGTCCGC
SEQ ID NO:267 Middle LPZ-243 GCGGAGGCCTGGACAAACACAGAAGGCGAAGTAAAAGCCAGTCTTACTTTTCATGT
AAATACTATCAAACTGCATGGCCGTTCCGCTGGTTGGCAATACCACACCTGCGCCG
GTAGTGCCAATGAACACTGCACCGGCAGCTCTTTCAGAAGTTGCAGAGGACTTACC
ATTTTAATTTTCACGGCATCCCGTCAAACGGCGGGATGCTTTTAATTTTTTAATCAA
AAAAAATATTAATTATGGCACACAATATTGTTTTCAACGAACAGACAGGCAAACACA
GTTTCTTTAGTGTAAAAGAAAAAGCATGGCATGGTTTGGGGCAAATTGTACAGGAC
TATCCCAACAGTAAAGAAGCATTGCAATTTGCAGGGCTTGATTTTGAAGTTTGCAAA
AGGCCCAATATTCACAGGCTTGATAATGGTAATGAGATTATTTCTACCAGTTCATTC
TATACTTACCGTCCTGATACCAACGCCATATTAGGCGTCCGC
SEQ ID NO:268 Late LPZ-244 GCGGACGCCTGAACATAGGAGCATTCTTAAGCATATCAGGTATAACCATAAACCTG
ACTTTGCTGCCCCGAATAAAGACATGCTCCAATTGGGATACTTTTCCATCCTTGGC
GTGTNTGTGATGCCCTCGAGCTGGCAATTCCAGTTATCTTCGCATTCGATCATGCT
ACCCCTGTACAGCTCGCCACTTTTGAGTTCAACTGTCACAACATGCCCGGCTGCTT
CATGGAGCAACTTCACAGGAATCCCCAAACTTCTGCTCATTTTTTTGTCACTGCTCA
AAAACCCTAAACCCCAGATAAAACCCTCGGTTCTGTGCCTTTTATCCCCGGGTGGC
TTATTGTTGCAGTAGTTGGCAACGGCTAGACTTACTCACATTTTGATTTCAATCTTT
CTAAGTTTGCCCTTTTGGGTTTTCCTCACAGTAGATCCTATTTTATGTATTTTCTCGT
CTTCTCGGCAGCCGTA
SEQ ID NO:269 Late LPZ-246 GCGGACGCCTGCAGGAATCGGCCGATTTGCAGTTCGAGGCATAAGCGCATCGAG
GTCGCGTTCGATGTAGCAATTAAGCGCGCATGAACCGCCGCTAAGCAAGCCAGTC
CCAATCAAAGCACATGCAAAGCGGATGCAATCAAATCTTCCGTTGTAAGCAAGCAC
AAATCCAACTGCACATGAGATCACCACCATGAATGCAATTCGAGTGCGAGCTAAAT
CCCAAAACGCTGCGAGTGTCCCCTGAAGGCGATTCGTATGTAATATTTGACCGCTG
CTCAACACAAGCAGTACTCCAAACACCAGTGCTTCCGCCGTCAATTCTGTCGTCTT
CTCGCAGCCGTA
SEQ ID NO:270 Late LPZ-247 CTGCGAGAAGACGACAGAACACAGACACAAAATTTGGAAACTACAGAAAAGACCAT
GTCATGAAATCTTCATAATTGGGCTTCAGATGCAGAGGGGGTCGGTTTTGGATTAA
GCAATGGCTGAAGTGCTTTGACAACAATACTCATGTTAGGACGAAAATCTGCTTCAT
ACTGCACACACAATGCCGCAACAGCAGCCATCTTTGCAACAGCCTTTGGAGGATAT
TCACTCTTCAACTTGGGATCAACACACTGCTTTACTTTGTCTTCACTCAATCTTGGA
GTTGCCCAAGTAACAAGGCTTTGTTGTCCCCTAGGCATTGTATGGTCCACAGGCGT
CCGC
SEQ ID NO:271 Late LPZ-248 TACGGCTGCGAGAAGACGACAGAAAGAGACAGGCTTGGACTTCGTGGCCTTCTTC
CACCACGCATTATTTCTTTTCAGCAGCAATGTGATCGTTTCATGGTTTCTTTTAGAT
CCCTGGAGCATAACACTCGAGATGGTTCAGCTGACTTAACAGCTCTGGCAAAATGG
CGTATTCTTAACAGATTGCATGACAGAAATGAAACACTATACTACAAGGTTCTTATA
GATCACATTGAAGAGTTTGCTCCAATAATCTACACTCCAACTGTAGGATTGGTTTGT
CAGAATTATGGTGGGCTGTCAGGCGTCCGC
SEQ ID NO:272 Early LPZ-249 GCGGACGCCTCAATAGTATGGAAGGGCAGCTGCACTACTCAGCATGAGTGGAG
GCCTAAAAGTTTTGTTAATCTTTCTGGTGAGGTGGACACCAAAGCCCTTCACAACA
GTGCAAAGGTGGGGCTATCTCTGGTTTTGAAGCCTTGAAGGATATGCACTATTTGG
TACAGATTTAAGCGAAGGTCTGTGCCAAATTTTTATTGGAATTTTTGAGTTTTTCCTT
TCAGAATAATTATTTCAATGCCTGTGTTTTCTGTCGTCTCTCGCAGCCGTA
SEQ ID NO:273 Late LPZ-250 GCGGACGCCTTTTGCCCAATTAACATCCCTGCATCTGCGCATTAAAAATTGATTGC
AGACCTGAGGTTTAAGTGGAAGCTTCTTCCACCATCTCTCCCCTGTTTAAGGAAGA
CCCGAAACCCTAGCCACTGTCTCCTCTGTGACTTAAAATTCCAGTTCACCAACCTTA
ACTCTGCGTCCGTTAAAATTCTGGGCAAACTGCACTGCCAATTGGTCATCATATCCT
CTGAATTTGGCAAAGAAAACATAGGTCATTCTGTCGTCTTCTCGCAGCCGTA
SEQ ID NO:274 ND LPZ-251 GCGGACGCCTCGTCAATCCATGGTTGTAAACATGCCTTCAAAACTGTTTCCTTATGT
CGCACAATGTCTACATGTTCCTTGAGCGATTTTTCCTGCTGCATTGCGAGCCTCTG
TGTAAGTCCCACTATCTGCGCTGTCCCTTTTACTTCATAATACTTCTGTCGTCTTCT
CGCAGCCGTA
SEQ ID NO:275 Late LPZ-255 TACGGCTGCGAGAAGACGACAGAAAAAACTGTATACGAGTAGGCAGCGAGTCCTG
GCAGTATGGGAGATTGAACTCCAATTACATTTAGTTACAAGTAGCATCAACAGTGAC
TGAGCCAAGAGCTCTACACAGAAAAATAAAATAAAAACTGTATATATTTACAGGAGA
AACCCCTATGGCCTCAGGGCCTGAATAAATCAATCGCAGCGGTGGTCGATGTGGC
CTTTTCAGGGCTGCAAATCTTGCAAGGGGAAGCCATCATCCTTGTTCCGTATCCTT
TTTGAGGGATAGCGAGCCACGCAGCCAAGATTTGAAGCGATTGAATACTTTGGGGT
GTCGAGAACGCACCAGAACAATGCCACTCGAGAAATACTACTGTGATTACTGTGAC
AAACAATTCCAGGATACTCCCTCCGCTAGAAAGCGACATCTACAAGGCGTCCGC
SEQ ID NO:276 Late LPZ-256 GCGGACGCCTGTACCGTATTGGAATTCTAAACCCTTCCTTGGTATAGGGTTTTCGC
CACCCTTGCGTTCATTTGGTTTTGTATTACGTCCGATTCCTCCGTCTGCGAGCTCTC
TGCAACTTGGCAATTTCATTGTGATTTTATCCTATGATGCTTCGTATTTGTTTGAAGC
TCGTCCTCCTAGTTCTCTGTGATACCAGTTGGTAGTCTGCAAGTTTCGATGTGGGT
TCTTTTAGCTGGTCTGGGGTTTTGTTGCTCTGAGTATGTTGAGCTGCATGCTCGTG
GCGGTCTTCACGGCTCCATTTGTTCGGAATCTGTTGTGGAAGTGTCTCGGTCATCT
GTGGAACTGTGGAAACCTGGTAAGATTTGTTTATCTGCTTGTGTCTAAACTGTTCTT
GAGTTTTCTGTCGTCTTCTCGCAGCCGTA
SEQ ID NO:277 Late LPZ-257 GCGGACGCCTGCTGTTGAAGAAGGATGAAGTCATTGTCTGCGGCCCTGTTCAGCA
TGATTTCGGCATTCTTAATCTGGTCAACCAGTCAGAAGGTGGCGCTGAAGGTGACG
AAGAGGCAACCTGGGTAGCTGCACTGGAAACTCAAGCTGCAAGGGGCACCGACCC
TCAGACTTCGCGCGATAACTTCTCCCTCTGGGTAAGTCGATGCCAAGGTCCTTGT
TCTGGGTTCTTCTCTCTGTTTCGCATGTTGTTCTTCTCTCTGTTTCATTTGTTTTTCT
TCTGTCGTCTCTCGC
SEQ ID NO:278 Late LPZ-258 GCGGACGCCTGCACATACAAAGAACGACAAAAACAAAAGCATAAAATCCAATAGAT
GCAACTATATATCAAGTCAGAAATGATATAACTCATCATTATTACAAAGAACAATAAG
AGTGGAACCATAATAATAGTCGTCTATTATTGATAAATAAAGAAGAATACAACCATA
GTTCTGTCGTCTTCTCGCAGCCGTA
SEQ ID NO:279 Late LPZ-260 GCGGACGCCTGTATAACATGCACCAAGAGACCCAATCAAAGCACATGCAATCTGTA
TATATAGCAGAATAACAGCCAGGGATTGCACTCTATCGTAATCGCGAAACCACGCA
CTAATATGTGCCCATGCTGATGATGCACACAGCATGTTCTGTCGTCTTCTCGCAGC
CGTA
SEQ ID NO:280 Late LPZ-261 GCGGACGCCTGAACTGTATAGAGTTGAAACTTGAGGGAAGGCTTGCTGCCACCAA
AGCCTCCCTCCTCTTTCCTTGGCGGTTCGTCACCTCCTTTCGCGTCAGAGCCCCAA
TTCCCCTCCTGCGCACACCAGCAAACTGCATCGAATGTTTTTTCCACCATTCTGTAA
ATTCCCTCGGAGTTACCTTGGGGCAGAAGCCGCATTGAAGAGCATTGAATGCTATT
CATTATCCCACCGTAAACTACCATTGCAACCTGCCTGTGTATCGACCCGCTGTCCT
CTACGCGTGGCTGGCACATGGCGTCGTTAATTGCATGTTGACACCCGTATCCGGG
TGTGCTTGTGTGCTCGTCTGCATATCATGTTTTAGGATCTCATAGAAGGTGGACCA
TTCTGTCGTCTTCT
SEQ ID NO:281 Late LPZ-264 GCGGACGCCTCTTACAATGTCTCTAAAGATTGGAAAGATTGTCTTGTCTGCAACC
ATAACTTCCGCGTGCTTTCTTATTAATGCAACCCACTGTGATCCTTTCCGCCATTTA
TCCTTTCGAATGGTTGGAGCCATTTTTGGGTTGTACCGACTAGCTTTTGGGTCTAC
AAAGCTGTCTACAAAACTCTTTGGAGATGACATTACATAATCATATGTATAGCTGAA
GTTGTACAAAGGTACACAACTATCTGAAACCAAAATGAATCTCTCGTTAGCTGGATC
CTCGAGTGCTTTCCTAAGTAGAATACGCTCCGCTTCTATCATACTGGCTTCTCCCC
AAGTACCTGTATGCTATCACTAAGCTGCCAGCCGTAACAAAATGTACATTCTGTCGT
CTTCTCGCAGCCGTA
SEQ ID NO:282 E,M LPZ-265 GCGGACGCCTTGCTAGGAGAGCTCTACGCCATTATTTGAACGATTGAGCCGAAGTT
TCACCGTTTAAGGCATTTGTGTCCCAGAGGTTATTGGAGATTAGCAGCTTGGATTT
GGCTGCTTCGCTCAGCGCCGTGATTCAGCTTTTGATTGATTCTCTCCAGTTTCAT
CCTGTAACGACAATGGCAATGAAGACCTACACATTGCAGTGGCAGCTGCGTACGC
TGTAGTCCTGATGTTCGCTCTCTTTGGCATCGCAAAGGCTGCTGATGCACCGTCTC
CCAGCCCCGTTACTGGCGCGGGTTCCATGGACTTCGTTCCTTCTGTCGTCTTCTCG
CAGCCGTA
SEQ ID NO:283 Middle LPZ-266 GCGGACGCCTTATCAGCTGGGGGCATTCATAGGTATGGAAATTCAGATCAACTTCA
GTGGACAGTATGTGGATTTAGGCGACCTGTGACAGTTCACGATATCTATTCATTTCT
ATCCAGAGACAGATTCCCATACTCACCTCCGTCCTTCCCATATATTTTCTGGAAGGC
ATCATGTCCTCCCAAATTTACTCATTTTGCCTGGCCGTCGTTTTACAA
SEQ ID NO:284 Late LPZ-268 GCGGACGCCTGTTGCCACAGAAGAATGAATAATGCTTCAAATTTGAGACCTCTTC
GGAGGAAAATCCTTGTTCTTACTGCCTAACCACTCATGATGATCTGCGTCACGCTG
ATTATGAGCTGCAATTTAAATTATTTCAGATGAAACATTCCCATATTGAGCTTGCAG
CAAGTTGCAGACCCTTCAATTTCAGTTCTGTCGTCTTCTCGCAGCCGTA
SEQ ID NO:285 Middle LPZ-269 GACGTTGTAAAACGACGGCCAGGATTAAGGTTCATGAGCTCCGCAACAAGAGC
TCAG
SEQ ID NO:286 Late LPZ-270 GCGGACGCCTCTAGGAGCCGGCGGAATTCCTGTGAGCTCGAATTTGCCGAGCAG
GTTATTGTCCTTCGTCCGCGCTCGCTCACCTTCATATACTTGAATTAGAACCCCAG
GCTGATTATCTGAGTAAGTTGAGAAAATCTGCTCCTTCTTGGTTGGAATGGTGGTG
TTCCTCGGTATTAATACTGTCATTACACCTCCCGCTGTCTCCAACCCCAGACTTAAT
GGCGTGACATCTAGCAACAGCAGGTCCTGCACCTCTCGTTGCCTTCGCCGCTGA
GAATGGCAGCCTGCACAGCTGCACCATATGCCACGGCTTCGTCTGGGTAATGCT
CTTACAAAGCTCTTTGCCATTGAAGAAATCTTGGAGCAATTGTTGTACTTTGGGGAT
ACGAGTCGAACCCCCGACCAAGACGACATCATCTATTTGGCTCTTGTCCATCTTAG
CATCTTCGCATACATTTCTCCACAGGCTCCATACTTCTCCTGAAAAGATCCATGTTG
AGTTCCTCGAAGCGAGCTCGCGTAATTTGTGGCGTAAAAATCAATTCCTTCATATAG
AGAATCAATCTCAATCGTTGTCTGTGTAGTAGAAGACAGCGTTCTTTTGCCCTCTC
ACATGCTGTTCTCAGCCTGCGAAGAGCTCTGGCATTCCCGCTGATGTCTTTTCTGT
GCTTTCTTTTGAATTCCTGCACAAAGTGATTCACCATTCTGTCGTCTTCTCGCAGCC
GTA
SE Q ID NO:287 Late LPZ-271 TAGCCATCGCCATTCTATAATCTTAGGATCCTTGCTGAACGATAAGCCCATAAAAT
TGATGCACTGCCTCGCTATCCCTGGCCGTCGTTTTACAACGTC
SEQ ID NO:288 Middle LPZ-272 GACGTTGTAAAACGACGGCCAGGAAATTACAGCTACCTCTAACTGGTTTGACGGCG
TTGCATCTATGAGCCGCAAGGGTTCGAATCCTCTGCGGGCCAGATCTGCGATGG
AACCCTGGGCGAGTGCAATGATGATGAAGAAGAGTTTGCGATGGATTCTGAAGCG
CACGGGAGGCTTCTGAGGAGGATCCGTTACTATATCAGCTACGGAGCATTGGCTG
CTAATCGCGTTCCTTGCCGACCTCGGTCTGGGAGGTCTTATTACACTCGGAATTGT
TACGGCGCAACAGGCCCCGTCAGACCTTACCACAGAAGCTGCACTGCTATCACTC
GTTGCAGGCGTCCGC
SEQ I D NO:289 Middle LPZ-273 GCGGACGCCTGGGAAGCAATGGATGGGTGGCTAGACGCCATCCGTCTGTGTATA
CTATTTTTGCACGCGGAAAGAGTGATGTCCTGGCCGTCGTTTTACAACGTC
SEQ ID NO:290 Late LPZ-274 GACGTTGTAAAACGACGGCCAGATTCAAAAGAAAAAATCCTCACTTCTTGGCTCCG
TTTGCGCTCCCGCCGAAGCTCCTCTGCAACCCCTCTGCAGCGTACACTGCATCCC
GCTCGCGGTGCTGGCTCACCTCGCAGGTCCGCTGACGGTAAATGGTTTCCAATAA
AGCTATTTGTCCTCTACCCAAAATCCATCTAGCATTCGTTGTGGATTGACATTCTGC
CATTTCTCTGCTTTTCTGGTTGATATGCAAAGATTGAAAGCCCAATTGCAAGCAGTG
GTCGTGGATTCACTATAAGGCGTCCGC
SEQ ID NO:291 Late LPZ-275 GACGTTGTAAACGACGGCCAGGAATAAAACAAAGCATCACTGCAAAATTTCAAAC
GTGGTAATAACGGCTAGCCAGCTCGACGTGAAGGCAGTGGGGGCCTTGAGGTTGC
CTTTTGGCGTTCAAAATTGGCTAGACTACCATAACATAAATATTGATTTCTCAGTGA
CATCACTGGTTTGGAGTCATCCACAGCCTGTGCACCAGTACGGCAATTGCCTTTTA
CATGAAGCCATCCTTTCACTTTTACTTTTGAGATTCTCAGAACTGAGGGGCTAGGC
GTCCGC
SEQ ID NO:292 Middle LPZ-276 GACGTTGTAAAACGACGGCCAGCACCTTCCTAGTCCCCTGTCCATTCTCCTGAAA
TAGGAGCAGTTTGACCCAGTCCAGTTTTCAGAATTGAGAATATGAAACAAAGAACC
AAGCATATGAGAGAACATACAAAGACTTTGTATAAACTACTTTTCACAGGATCTCAA
CAGCCCTCTGCTGAGATCCATTTGATACAAGGCCCCTTGCATCTCCACCCTCTCCC
TTATCACCTCCACTAGAAAGATGATGGAAAGCAGACACATGGAAATGTTGCTGCAG
GCGTCCGC
SEQ ID NO:293 Middle LPZ-277 GACGTTGTAAAACGACGGCCAGTTAGGTTGTATATTGATTGATGACTCTTTGACTCC
ATTTATGAAAACATCTTTGTTCTCGAGATTTAATCAGTATTAAGCTTTCAGAGTGAAG
TTCAGTTTGATCTGCATAAACCTGATCCACCATATCTACATCACATCTAAAATTACTA
AAATGTGAGGAGATGGAATTTGTTTCTTGAGAATCCCTATTCCTCATCGACACTGTT
TACTGGATCAGATCCAATCAAACTCTTGAGAAGTAATCTCTGGAAAGAAATTAAAAA
GTCTTTACCTGAATTATCTCGATATCAGAAGCAGAAATTATGATACATAGACTTCTTA
ATAATGAAGAGTCATTTTGCCAACGTTGTCTTTGCCACCCCACCAATCCCCATGATC
CCAAAGATCTGAGGTTTCCATCTCTATGTGGCTGTGATAACACTGGATTTTTCAAAA
ATCTTCTACTTTCGCATCCAAACCTTTTTGGGATATTT
SEQ ID NO:294 Late LPZ-278 GACGTTGTAAAACGACGGCCAGGGGGATGGGAGATACAGAAAGATTCCGGATAAA
AGGGAGCAATGAACGGCTGGTTAAAGCGTAGTCCACCACACTAGCCCCACCTCCA
TGAGGCCTACACGTGAAGAAGCAGGATCTGGGAAGCGCGAGAGGCCGTCAAGA
TTATCAGCTCATGTGATTCGCCCAACTGCAAAAGATGTCTACCGTAGGCTGTGATG
GGGCCCAAGGCGTCCGC
SEQ ID NO:295 Late LPZ-279 GCGGACGCCTATCAGATGGGTGAGTTGACCGACATTTATCGTCCGATAAATGTTTG
AGGCTGATGTCATGGCAATCCACGTGTCTGCACCATATTTCATCGGAGCCCCTCGT
CGGAATATTCCATCGCCGGAGAGCTGGCGCGATAGGTTTCAGGCGGCCGGTTTCT
GGTTTGCAGCTGTGGCTTCCCGCGCGCCTTAACTGTTGGCCCGCGCGCACAGGG
GAAATTACAAATTTCAACATATCCAATACCATCATATAACCCAACAACACTAGCAACA
GATCCTGTTCTGTGCCATCGTCCAACTCTGA
SEQ ID NO:296 Late LPZ-280 GCGGACGCCTTAATTCGACTACAAAGATACTGAAGCCAATGATGACAGGTTGTGCC
ACTTTCCCAGCTGATAAAGACAGCTCTGAAATTGATAGAGCCAGAACTCCAGCTGC
AATGCTCCCCAGAGCCTGGTTGAAGCGCTTGCTAAAGGTGGCACTTTATAGACCGA
CCCAAAACCTCCCTGGCCGTCGTTTTACAACGTC
SEQ ID NO:297 Early LPZ-281 GCGGACGCCTACTGGAAACCCGGTCCACCGAAGGCTGAAATTGTCCTGCTTTGTA
TACCGAATGGCAGGAAGGTTGTCGAGCATCAGGTTCACCTGGTAAAGATTATCGAT
CCTATGCTTCAATACCTTCAGCTGCTCTGCCCCAAGGACAGTAGTATTGCACAGGT
AAATTCAGATTCATTGACATTCATCCGGAAGCGATATGGTGAGTTCTCGATCCTGT
CCCCCATGAGGAGCTCCCCAAGATTTTCTGCCATGTCCTTCACACCATCCAAGGGC
TTGCAGAAGGGCAGGCTGTAATAGCTGTAGGGAAGCTCTGTCTCGACTGAGGTAA
GGGAATTGACGTTCACCCATAAATCTGACCCCTGGGAGAATATGATGTGAGGAATA
CAGTGCCCAGTAAATATAACTCCGCATTATACGTTTGTGTGTGCCTTCCCCAATATT
GCCCCAACATAATCAAAACCCACAATCCCAAATCCTGGACCGTCGTTTTTACAACTG
TC
SEQ ID NO:298 Early LPZ-282 GCGGACGCCTTGTCAGGACCAAATGTGTAAGAAACACCTCTGTCATTCGAGCCCC
TCCTTGAATTGCATTGCAGGGGTCTGACCAAAGAAGATCACATTAACAACCCTGTAT
CTGGCACATCTGTAGGTCGAGGTATATTCTTTATTTGTTCCAAATTGGTCAGTTCAG
GCGAAAGACCACCATGCATGCATAGGATCTTTTCATCTATAAGTGCAGCAACAGGC
AGGCAGTTGAAACAGTCTGTAAAAAGTTTCCATAGTCTTACATTGAATCTGCGCTTG
CACTCATCATAGAAACCATATATGCGATTTATTGAGGCACATTCATGATTTCCCCTC
AGAAGGAAAAAGTTCTCTGGGTATTTAATTTTGTAAGCAAGGAGGAGGCATATTGT
CTCTAGGCTTTGTTTGCCCCGGTCCACATAATCTCCCAAGAAATAAGTAATTTGATT
CTGGTGGGAAGCCACCATATTCAAAAAGCCTTAGACAGATCAGAATACCGGCCTGT
CGTTTTACAACGTC
SEQ ID NO:299 Early LPZ-283 GACGTTGTAAAACGACGGCCAGGAGACGGGAATACCTATTTTTGGGAGGATTATTG
GGCTCGGGAATCAGCATATTGATGTGGCTGCAACTCGCATCCTCGATCTTTGGTGG
TTCTTCGGCGATTTACACATTTGAGATCTACTTCGGTCTGCTAGTTTTCCTTGGGTA
TATTATATTTGACACACAGATGATCATCGAGAAAGCGGACCATGGAGACTATGATTA
TTTAAAACATTCACTGGACCTCTTTATTGACTTCGTTGCTGTATTTGTTCGCCTGAT
GGTCATAATGGCAAAGAATGCAGACAGTAAATCCAGGGAAGGGAAAAAGAAGAGA
AGGGCTTGAACTATGTGAGATACAAAAATATCGAGAATAGAAGGGCTTGAACTAGG
GCTTGAAAGCGTCCGC
SEQ ID NO:300 Middle LPZ-284 GCGGACGCCTATCAGACAAGGGTTGTTGACCGAACTTTATCCTCTGAAAAGTGCTT
GAAGCTGATGTCATGGCAATCCACGTGTCTGCACCATATTTCATCGGAGCCCCTCA
CACGGAAACAACCTTAAGCCAAAAGGTGGTGCGATGACTTACCGGCCGTTTATGGT
TTGCTTCGGTGGTTTTCTGTTGGGTGGTTTCCCGCGCGCGTTAACTGCTGGCCGT
CGTTTTACAACGTC
SEQ ID NO:301 Late LPZ-286 GACGTTGTAAAACGACGGCCAAGAGGGGGAAACTCCCAAAACACTTTTCCATTTTT
CTTCTTTTATTAAACTTCAAAGTATTTTCCAACAGAGTTACAAGGGGCCAACCATGT
CCAAATCCATGCATTTACCAAGTACAAAGAATGGTAGTCCTTGGCTTGACCTATCG
ACTAGCCAAAAGTGCCAAGTCCACAACTAGGGTGTGCCCAACCTAAGGTGACACC
TTGCCTAGAAAAAACCCCAAACTTGGCACCACAAATAACACAGAAACACAACTCTTG
ACCTCTGCCAGAAACCAGGCTCTCTTGGGAAAGCCACACCTCTCTCTGTGATATGT
CTTATCTCCAATTTCCCTTTTTGTGATGCACTCCCTTGCTTGTGGTTCTGCGATATC
ACACAAACTTACATTTCTGCGATTTTTGTTTCTTGCTTCTCCAAATCATGCGATCTTA
TTTTTAACCCTTGAGACCCTTCACACTTTCCATCCATGACGTCACTTCATCGTTTTA
GCCAATTCGTCATTTGGGCATGTTGGGCGTTGGGTCTACCCGTATTCCGGTCGTAC
AGGCCAAATTGACCATTTTGGTCCAGGTGGGTGCACCCATTCCTGGAGGGCGTTC
GGC
SEQ ID NO:302 Late LPZ-287 GCGGACGCCTCCACAGAGCTCACACATACAATATACTATGATGCCTCCAGAACTAT
GGCACTCTGTATGCCGCTTCAATATGGATTAGCCCACACTGCGCCATCCAATTAGG
CGAATCAACCTTATAGCACCATCCACAACCTCCAGCGCTCTCTTTTTCACGCTAGAT
TGGCCAACTACAGGCTTTACAACACTACTCATATACAACTCAACTCGGCTCCTCTGC
TCACCACTAAATCACACAGGCTCCAATCGCTAGACAGAGCCACTACACAGGCACTA
ATAGCCACTACACAGGCACTAATCTTGGCGTCCTCCACCAGGTTCCAACAACAACC
CCAAATTGCATATGCACTCCACAGTGAGCACCAACTAGGTCCACACAATAGGCCAC
ACCAACAACACTCCAAGGACCCTAGATCCTGCCTCACCCAGACACCACTAGGCCTT
CCTCACAGCTCACCTAAGTGAGCCAACAACTGGCTGGGCACACAGCTCCCAACTAT
ATGAGCACACAGCCCAACTACAGCTCCAGCACACGCACAGCTACACGCACAATGC
CTTCTCAAGTTCACAGCCACACCATAACGCAGCACAGTTCTTACAAACATATCTCTC
CAGGCGTCCGC
SEQ ID NO:303 Middle LPZ-288 GACGTTGTAAAACGACGGCCAGGATAATGGACACGAGAAACCTTTGGATGTGCCT
CTAAAGTGCGGGCAATCCTTAAAGCTGTTGAATTTGTGCTGTACACGAAGGTGC
AGGGTCTTTATGCCACGAAGAATCAAGTACGCTGCATTTGGACTTAATACACCTCC
CAAGACATTGTGCAAAGCACGTACTGTGCCAATAACCTTGTTTGAACCACTCAAACT
GCCTGCAAGAACATCATTATGACCTGCAATATATTTAGTTACCGAATGCAATACAAT
ATCTGCGCCGAGTGCTAACGCTTTCTGGTTAACAGGCGTCCGC
SEQ ID NO:304 Middle LPZ-289 GACGTTGTAAAACGACGGCCAGTCATTATTGACAATAATCCTTTCAGCTTTTTACTG
CAACCTTTAAACGGTATACCTTGCGTTTCTTTCACTGGAGCACACTCAGATGATAAT
CAGCTTTTACAGGTGCTCTTACCTCTGTTGAAGCATCTTGCCACTCAGGAGGACGT
GCGCCCTGTGTTGTATGAAAGATTTTACATGCCCGCATGGTTTGAAAAGCGTGGCA
TTCCAGCATCTGAGTGGCCCTTGTGACTTGGTTTTGATTTTGGATACTCTTTGTCAT
TTTGGGTCAAGGTAAAGGTGTACGTATCCAAGTGATGCAAGCGTCCGC
SEQ ID NO:305 Middle LPZ-290 GCGGACGCCTGATAGCACGAGTCTTCTGGGACGCAAATCAAGAGGCAGGTACTT
CTTTTTCTTGTATGCTTCTCTTAATGCGGATCGCTGGCTCTGAGAAATCACAGTCAG
AACCTGAGCTATTGATAGCCTCACGACCTTGATTTTAGAGAGTTTGTTGGGCGCTC
CTCCAGTGACCTTGCAACTCTGAGCAAGGCAAGCTCAGCCTGAGCTCCTTGACC
TGGCTTAACAGCTCGGATTTGCCCTTGTGGCGGACTCAAGGACCTTTAACCTGGG
CGTTCGT
SEQ ID NO:306 Late LPZ-293 GCGGACGCCTGGTGTCGCTGGGCCAGTTCAAGTATTTTAGCAACAGTGTTCACACT
TATTCCCTGTGATATTCTTGACTCACACAACCACCTAACTGACGCAGACCATATCG
ATCTGCTGCTGTAAGCAAATGTTCGATCATTGTCTCAGGTGTCAAAAAGCAAGGGG
ATGGATCAGAAAGCTCTTCTAAATCTGCATGCTCCTCTAAATCTGGAAGGGTATCTT
TGTAAATAAAGTGTAACATAGCCTTAAACACCTCTGGCCGTCGTT
SEQ ID NO:307 Late LPZ-294 GACGTTGTAAAACGACGGCCAGAGGTGTTTAAGGCTATGTTACACTTTATTTACAAA
GATACCCTTCCAGATTTAAAGGAGCATGCAAATTTAAGAAAAACTTTCCTGATTCAA
CCCCCTGCCTTTTGGCACCCTGAAGATGGTTCAACAATTTGCTAACGGAACCAATT
CAAAAGGGCCGCCTCCATTTAAGGTGTTGTGTTAGTCCAGAATATCACAAGGAATA
AGTGTTAACACCGGTGCCAAAATACCTGAACTGGACCAACGACACCAAGCGTTCGC
C
SEQ ID NO:308 Middle LPZ-295 GCGGACGCCTTGTAATCCAGGGCCTTGAATATTGTAAGAGAAGATCGAGAAATAAT
AGTTTTCTTATTATCAGGAATCACAGCTTGAAGAAGGCAGACCATGGACTCCCACT
GGCTTCGTGATATTGAGTCCCCAACAAACATTAGTCGTTTTCCCCTCAATCTCCACA
GCAAGTCTCTGGCATTGAATCTGCGAAAGGAACACCCGAGTGGCTTCCACCTCCAT
TTCTCGTAATCAGAATCTGGCCGTCGTTTAACAA
SEQ ID NO:309 Late LPZ-297 GACGTTGTAAAACGACGGCCAGCAGAAGACCAGTGCAGTATGCTGCAGCATAGTT
TGTAAGCCCTACTTCGAGTCCATAACGAGGCAACTCCCTAGAATAAGCAGCCGACA
TAACAACATCTCCCGCAAGAGTTGCATAAATGATCTGTGCCACCACATCCTTGTTG
TGAATCTAACGACCAATCGGTATTTGGGTGTGTTGTACTTGTTCTTATCTTGGTTAA
TCAGGCGTCCGC
SEQ ID NO:310 Late LPZ-299 GACGTTGTAAAACGACGGCCAGCATCCATTGCAGAAATTTTGGGGGCTATATTTAG
CAACAGATATCACAGCTGTAAGTCAAAGTTGGACCCTTCTTCTTCGACATCTTTTC
CAGCTGTGCAATAAACTGAACACTGTCCTTTTGGATAAGCTCCTCAACATATTTAG
AAAGTTCAACATCCAAGACATTGCGGTACTCCTCAACATATATGGATGCAAGTTCAT
CATCTGCAGCTGGTCTCACCGCTGTACAAACTGTTTAACATGGTTGACAGTTGCA
AGTTGAGCAGTCCGTGGATCCAAATAATGAGTTCCGTCAAGCTCACTGAACTCAGT
CACAATCACCTGGCCACTTTGATTGGGCATCTCGAGGGATATCATGTGAGACTTGT
TGTGGATGGGGAAAGCGTCCGC
SEQ ID NO:311 Early LPZ-300 GCGGACGCCTGCATAAACATCGCTACCCTGGGGATGATTAATAATAGTACCAGGGT
TAGGATTTTCTTCATCTTGAGCGATATCATCATACATAAAGACCACAATGTTTTCCTC
TTTCAAACCGCCTTTCCTCAGAATTTGGTAGGCATGGCAGATATCAGCCTGATGCC
TGTAGTTCCAATAACCGGAAGAACCAGCCAACAGAATAGCCCACTGAGTACCGATC
GTATCACTATCATCAACGATATGATCGGTGGGCATTTTCAGTACTGAATCCCAACCC
CTTCTGGCCGTCGTTTTACAACGTC
SEQ ID NO:312 Middle LPZ-301 GCGGACGCCTAGACTGGGCATACCAACTACCTTCCTCATGCCAGGCCATGGGCCA
CCTACCTGGTACTTAGGCATAACACCTTACTTACGAGCATGCCAGGCTCAGTCAGA
TAGGCATGCATCCCACCCACCTAGCTATGACCCAATCCTTATAAACACTAGATATTC
TCCCTGGCCGTCGTT
SEQ ID NO:313 Late LPZ-303 GCGGACGCCTAGACAATCATACTGAAGATCTGTAAGCCATGACAAGACGAATAA
AACGAAGCACGGCGCAACCAGCGTGAATATTGACGCCTTAATTTCATTCAACTGGG
TTGCGGATTCTTTATTCCTCAACAAGTGTTCGATAGCTTCACATACGCAAGGCCCCT
TTTACTCTCACCTTCATGGTTTAATGCTGTAACCGTCGAAGGTTGATGAAAGGACTT
GGATGATGATGTTGCCAAAAAAAAAAAAA
SEQ ID NO:314 Middle LPZ-304 GCGGACGCCTGCTCAACACCTGTATAGTCATTTCTTGTTTCCTTTTCTCAATTTTC
TCTTTCGAATGACCGCATTGAAATTCAGGCTGCCCAACGCGTTTTTGTTTTCACAAT
TAATTTTTGAATCATACGCGAAGATCATGATGAGAATGGTTGTGGAAAAAAACTGTT
TGTAAATATTTAG
SEQ ID NO:315 Middle LPZ-306 ATATCACATTACCATTCAAAAAATAAACATTTTACAAAATACAATTCCATAACAATTTT
CTTCCCTGTTCCAACCTCCACAAAAGTAAATGATCGTATAAGAAATTAACTACCAAC
AAAAATCCCAAAGTTAAAGGAAGACATCCCCAAAAAAGATGTAACTTTCAAAACCGG
ATGACTTCACTCCTGCCATTGCACCTAGTCATTTACTTCTCAGAGGAGTTTGGCCCT
TTCTTCTTTCCAAAAGTAACCACTGCGGTAAGAAACCGGCGGTTGTATTGCATTCG
CTTGTAGGCGCGGCCTCTAGGCTTCTTCTTCTGTCTTGTTTGGCCACCTTAGGGTC
CGC
SEQ ID NO:316 Middle LPZ-307 GCGGACGCCTTGGTACAATGGACTTGCAAAAATAAAATGAGTTCTCATTGTGGGT
GAGATGCGGATATTTTATGCATAGGCACTTCATGGAGATGTGGTTATAAACGCCA
TCTTAATATCTGTACCTATTACTTTCAAAATATGAAGGCAAGATGGAAAGCTACTCAT
CTGTTGTGAAGTCAGAATGTTGGTAGCGGTTGGGCTCTGAAAGTAAGAAACTTTTT
GATTGGTTTAATTAAATGAGGGAATTTGCCTGGTTTCCCTCTTCCTTCCGAAAAAAA
ATTTATTTA
SEQ ID NO:317 Late LPZ-308 GACGTTGTAAAACGACGGCCAGACAATATTGGAAGGGAGAAAGGCGCCAGCAGGG
TTGAGGGGAAGAAATGCATAATGACATATATAATGAGATCTATTTGTATACGATATT
ACGGGTACGATCGATGATTCGAGCTACGATCCCATACGACGCTAAAGCGTAATTAC
ATATATAATAGATGCATTTCAGAATGACTTATCTATTTCATTACGCGATATTATATAC
GTAATTACGTATATAATTGCAGAGATCTCACCGACCAACCAAATAGTCTTTCATTTC
ATCCCAGGCGTCCGC
SEQ ID NO:318 Late LPZ-309 GCGGACGCCTGTATCACTAGAGGTGAATACTCAGCAAGCAAAACTGAAGGATATTA
TTGAAAAAGCTGTCAAGGCTAAATTGGGTGTCAATTCCCCATTGATCATGCATGGTT
CTACACTTTTGTTTGAGTCCGGTGATGACATGAGGAAGATGTTGCTGCACATTAT
GCACAAAACTTAGAGAAGACGTTAGCAGAATTTCCAGTTCCAATCACAAATGGTGTT
ATTCTTACAGTAGAGGACTACCAGCAAGAGTTCTTATGCAGTATTAATATTAAGCAC
AGAGATGACTTTGATGAGGAGTCAGGTGGCATTGTACTGTCTGGAGGCGTCCGC
SEQ ID NO:319 Late LPZ-310 GCGGACGCCTCCTTGTAGATACGATACATGAGTCTAAGATCAAAATCATACAAGAA
GAGCTTCATTTCCGGGCCTCACCTTTTCTACAAGCTCCTTTTTGGCTGGTGGAAAGC
CAAACACTCTGTATCGGAAACACTCCTGCCTAGTTTCAGAATTACACATAAAAATCA
AGCCGGCAAACCTATCTTTGCCACTGCCATCTCATTGTTTGCGTCCTGGCCGTCG
TTTTACAACGTC
SEQ ID NO:320 Late LPZ-311 GCGGACGCCTTACTAAAACGACGGCCAGATGTGTAATGGGGAAAATGTGTCATGAT
AGTTGGGTACAAATAACGAGCCACCTGCTCTATGTTTTCGAAGTTTTCTGTTGGATT
TGTCCGGGTGAGAGAGCGTTCGTTCGTTGCGCGAGAGGGGCAAAATGCTGAGCG
TGGGGAATTGCCATTGCCGCCCCTGGAAGTGCCGCACGAACGCGATCACATTTAA
ATCACCATTTACTTCATCATCACCATGGTTAAATGCAGTCCCTGCTCCTCAAACAG
GACTTCAGATCCTTCAAGCTCGAAATCTCCGCCTCTGCTTCCTCGAAGACAAGAC
TCTGTGAGGAGGAAGCGCAGCAGCTGAGCTTAGCGGATCTGCTGAAGCCCGGTG
GCCTCGCCCCCGATGGGTTCTCGTACAAGGAGAACTTTACCATACGCTGCTATGAA
GTCCGAGTTAAACCGCACTGCCACCATTGAGGCGTCCGC
SEQ ID NO:321 Middle LPZ-312 GACGTTGTAAAACGACGGCCAGCAACCAAATAAACCCCACATGTGCTCAATGTTTT
AGTATAAAAGGAGATGACTTAAGAGTCATTTCACACACACTTCTATCTTGATTTCTC
CCACTTGTCTTGGGTTTTAGTGGAAGAGAAATCTAGGAGTGGAAGCCCTAGACGTT
GGAGGATAAGAAGGCAACCCTAGAAGGCAGAGCTAACGCTATCCTAAGGCAACCC
TAACGCTATCCTAAGGCGTCCGC
SEQ ID NO:322 Late LPZ-314 GCGGACGCCTGCTCAGCACCTGTTATAGTCATTTCTTTTTTCCTTTTTCTCATTTTTG
TCTTTCGAATGACCGCAATGAAATTCAGGCTGCCCAACGCGTTTTGTTTTCACAAT
TAATTTTTGAATCATACGCGAAGATCATGATGAGAATGGTTGTGGAAAAAAACTGTT
TGTAAATATTTAGGTGACCAACAATTTTCATGATTGCAATCTAAAGTTGATAATTGAT
TTATCGGGTCGACATTTGTAATTATTAACACGGAAAATCTGAGGCTTACAATTTTTG
GATTGTAAATATTTAGGTGACGAACAATTTTCATGATTGCAATCTAAAGTTGACAATT
GAGTTATCGTGTCGACATTTGTAATTATTAACACACAAAATCTATGAGGCGTCCGC
SEQ ID NO:323 Late LPZ-315 GCGGACGCCTCATCAATCCATGGTTGTACACGCGCCTTCAAAGCGGCTCCTTATG
TCGCGCAGCGTCTACTTGTTCCTTGAGCGCTTTTCCCTGCTACATCCGCGCGAGCC
TCTGTGCAAGGGCCACTGTCTGCGCGGTCCCTTTAACTTCGTCGTACTTCTGCTGC
AGCTCACGTGTCTCTATTTCTAAGTGCTATATATTTGGGTCCTCCTGCATAGTAGTG
AACTTCGAACGACTCCTCAAATAGCCAGGTGTAGTCTTTCATTGCACTATTGATCTC
CACTATTCCTGCTATAATGGCGCTAACATGCTGTTCCTTCACCTTTGGCGGAGTG
AAGGCTGCGCCTCTGGAGCTCGGTTATTTGAAGCTGAACCTTGGGCATATCTTC
CTTCACCTCGTGCATCCCCTGCTTCGAGTTTCTGGATGCACGCCTCCACTGGGTCT
TCTGCTGGGATGGGCAACTCTAAGACCAACTGGTATGCGTCGC
SEQ ID NO:324 Middle LPZ-318 GCGGACGCCTTCTTCAATCCATCAGGCCTGATTAATGTATTGACCTTCTTTGTCTGA
ATGTCATACATTTTTTTCACTGCATCCTTGATCTTCTTCTTGTCTTGCTTTCTATCCT
TTCTCTTGCTTTCTATCCTTTCTCTGGC
SEQ ID NO:325 Late LPZ-320 GACGTTGTAAAACGACGGCCAGCAAAATTGATATAAAGAATAGACACATCGACTCA
AATGAAGTGACTCAACAGTTCATAATTCATGTCAGCTTGAATGCATGGACATACAC
CCATAAATAGGCAGTTGGGGTCACCCAAAAGAACATAGAAACATCTCGCATCTCTC
TGAAGAAACTCGGATGGGTACAGGTCTGTGACTTCGCATATTTTGAAGGAGCACTC
TCTTGGATAAGTACAATATAGGTACCATCTCGGACTCGCCTGAAATCTCGCAAAGA
AGTCTCATTCTCCTCCTTGTTACAGGCGTCCGC
SEQ ID NO:326 Late LPZ-321 GACGTTGTAAAACGACGGCCAGAAGCATCAATAAACAAAATGACAGATTAACAAGT
TCTCTCTTAATCTTAAGAGAATACATCAACATCCAAGTAAAGTCATAACACATTTACA
AAATGGTGCCACGGTATCCATTCTCTGTAACAAGGTTTTTCTGAAAATAGTTTTCCT
CTTATCTATGTAACTCTTCATAGGGATGCCTGTGTCAACGTGCCATATTCCCAAATT
TGGCCACAATCAAACCTTCCTCATTAGAAGAAACAATCTCTGGTCTAGCTCAAAATT
GGCAAAATTTCCAGCATCTCCCTTTAACATCATTAGAAGGCGTCCGC
SEQ ID NO:327 Early LPS-097 GGGAGATGCTAATTTGAAGCCCTTCTCTGAAGGTGGACAATTCCAGCAGCAGTGGT
CTAAAGCCCCAATATGGCTATAGAAATTCTTCTGGGGGTTGCACCTATGGAAGAGG
GTCGGAGAGGACGAAGCTGTGGATCGCTCTTACCATCTGTGCGGAAGGTGGTAGC
AGAATTCATTGGAACGTTCTTCCTCATATTTGTAGGATGCGGATCTGTCGTTGTTGA
TAAGATAAGCAACGGTTCCATAACTCATCTTGGTGTGTCGCTTGTATGGGGAATGG
CGGCCATGATTGTAATTTATTCCATAGGCCATATTTCTGGAGCTCATTTGAATCCTG
CAGTGACGTTGGCCCTTGCGGCTGTGAAGAGATTTCCATGGGTTCAGGTTCCAGG
CTACATAGTAGCTCAAGTATTTGGATCGATATCTGCTGGGTTTCTCCTACGTTTCAT
GTTTGGAGAAGTGGCATTCATGGGAGCCACAGTCCTTCAGGCTCAGAAATGCAGT
CTTTCGCTTTGGAAATTATTACTACGTCATTGTTGGTGTTTGTGGTTTCTGCAGTCG
CCACTGATACAAAAGCGGTGGGTGAATTGGGAGGTTCAGCAATTGGAGCGACCAT
CGCAATGAATGTAGGCATATCCGGACCAATCTCAGGAGCTTCAATGAATCCAGCAA
GGACAATAGGATCCGCAGTGGCTGGCAACAAATATACAAGCATTTGGGTTTACATG
GTTGGGCCTGTAATCGGTGCGCTAATGGGTGCAATGAGTTATAACATGATTAGAGA
GACAAAAATGTCCGAAAGGGAGATTATGAAGAGTGGGTCATTTGTTAAGGACATGG
GCTCCAGCGAATCAACAGCATAACAACTTAGAGATTTNTTGCATTCCCGAGACGGT
ATCCAGTGATAGTGGAGAGTAGTCATAATAAGATTTGTGAAAATGTTTGTGTAGATT
AATGTGTAAAATTCAATCCATCAACCATGAAGCGAACTGCATTCCGTTTTTAAATGT
TTATTGGATTTGAATTAATAAACAGCTTATACGTGAAAATCCCTACTTTATGTACGGA
SEQ ID NO:328 Early LPS-098 ACTATAGGGCACGCGTGGTCGACGGCCCGAGCTGGTATCCGATGAAGCTAGATTC
AATGGTTCAAGTCCTATGAAAGCTAGATTGGAGAATTGCAAAGAAATCTAATCTCCG
TTAGTTGTCCCAACCACTGACTCGCACCCAATCAGAGTATATTAAAGTTAAAGATTA
TATAAAGGTAAATTGAACATTTATAAAATCTTAAATGTATTTTTAGAGTTAAACATTAT
ATAGAATATTTAATGTAGTATAGATATAATAAAATATTAAAAATTAATTTCTCTTTACT
ATCAAGTGAATAAAAATAAAAAATAAATGTAAGACAATATAATAAAAGACTTGTTTTT
AGTGCATTTTTTGGACTCTTCGTTATTGTGTGGTATTGTGTTATTTAAACTGATCTTT
TTACTGTATATATGGATGGGTTACCCATCAAACTTGTGATTTCAATAAATTCCTCCC
GGATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAAC
TCACGAAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCA
TCTTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTT
ACATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTT
CAAACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGGGGGGATTTCTCACG
GCTTAACNTTCATGGANCCGATTACCTTNCTANCCAACCAAGGGTTTTAACCTGG
CAAATNCCAAACCAATTACCAGCTTNACAAATCAACCGAGCCGCCCNACCGGGATC
ATTTTGGTCAAGTCTCGAAAACNGGCATTGGGTATATGGNATATGGAATTGGAATT
GGATCAATGGTAACCTTGGGANAAGCTTAANTTGGAAANCCCTTTTTTTTGANGGG
GGCCAANTTCCCGNNCCCCCGG
SEQ ID NO:329 Early LPS-099 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGG
CGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCTCT
CCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGGC
TTTAGACCACTGGTGCTGGAATTGTCCACCTTCAGAGAAGGGCTTCAAATTAGCAT
CTCCAAGTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTCGAGACT
GACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTCA
GTTAAAGCCTTGTTGGTAGGAGGTAATCGGTCATGAATGTTAGCCGTGAGAATCCT
CACAGCAAAAGATGCGTTGGAGCTCGTTGATTCTTTAGTTTGAACGGTCATACCTTT
ATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAATTTAGG
TGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTATC
TAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTAAAA
TTTTTTTCGTGAGTTTTTATGGTCTAATTTCTCTAAAATCCGGGAGGAATTTATTGAA
ATCACAAGTTTGATGGGTAACCCATCCATATATACAGTAAAAAGATCAGTTTACCAG
CCCGGGCCGTCGACCACGCGTGCCCTATAGTAATCGAATCCCGCGGCCGCCATG
GCGGCCGGGAGCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGTCGTATTAC
AATTCACTGGCCGCGTTTACACGTCGTGACTGGGAAACCCTGCGTTACCACTTAAT
CGCTTGAGCACATCCCCTTTTCCAGTGNGTAAAACGAAAAGGCCCCNCCATCGCCT
TTCAAAAATTGGCAACTGAANGGGAAGGACCCCCT
SEQ ID NO:330 Early LPS-100 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAG
GCGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCC
CTCCGACCCTCTTCCATAGGTATAAAACCCAGAATTTGGTGAGCAGGAAGAATTTC
CATAGCCATATTGAGGCTTTACACCACTGCTGCTCGAATTGTCCACCTTCAGAGAA
GGGCTTCAAATTAGCATCTCCAAGTTACATGGATCTATTCTATTCATATATTTATAAC
AATGCTGCTTCGAGACTGACAAAATTATTTGTTGGCGCTTGTTCATCGTTAGCTGTA
ATGGTTTGGATTGTTCAGTGTAGGACCAGCCCGGGCCGTCGACCACGCGTGCCCT
ATAGTAATCGAATTCCCGCGGCCGCCATGGCGGCCGGGAGCATGCGACGTCGGG
CCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGT
CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCC
TTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAG
TTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGG
CGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC
CCGCTCCTTTCGCTTTCTTCCTTCCTTTCTGGCCACGTTCGCCGGCTTTCCCCGTC
AAGCTCTAAATCGGGGGCTTCCTTTAGGGTTCCGATTTAATGCTTTACGGCACCCT
CGACCCCAAAAAAACTTGATTAGGGGTGATGGGTCACGTAGTGGGCCATCGCCCT
TGATAGACGGTTTTTCGCCCTTTGACGNTGGAAGTCCACGTTTNTTTAATAGNGGG
ACTCTTGGTTCAAAATGGGACAACACTTCAAACCTTTTTTGGGGNTATTTTTTTGA
TTATNAAGGGATTTTTGCCGNNTTTNGGGCCTTTTGG
SEQ ID NO:331 Early LPS-101 ACTATAGGGCACGCGTGGTCGACGGCCCCGGCTGGTTTCAATAAATTCCTCCCGG
ATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAACTC
ACGAAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCATC
TTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTTAC
ATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTTCA
AACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGAGGATTCTCACGGCTA
ACATTCATGACCGATTACCTCCTACCAACAAGGCTTTAACTGAACAATCCAAACAAT
TACAGCTAACAATCAACGAGCGCCAACGGATCATTTTGTCAGTCTCGAAGCAGCAT
TGTATATGTATATGAATAGAATAGATCAATGTAACTTGGAGATGCTAATTGAAGC
CCTTCTCTGAAGGTGGACAATTCCAGCACCAGTGGTCTAAAGCCTCAATATGGCTA
TAGAAATTCTTCTGGGGGTTGCACCTATGGAAGAGGGTCGGAGAGGACGAAGCTG
TGGATGCTCTTACCATCT
SEQ ID NO:332 Early LPS-102 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAG
GCGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCT
TCCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGG
CTTTAGACCACTGGTGCTGGAATGTCCACCTTCAGAGAAGGGCTTCAAATTAGCA
TCTCCAAGTTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTTCGAGAC
TGACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTC
AGTTAAGGCCTTGTTGGTAGGAGGTAATCGGTCATGAATGTTAGCCGTGAGAATCC
TCACAGCAAAAGATGCGTCGGAGCTCGTTGATTCTTTAGTTTGAACGGTCATACCT
TTATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAATTTA
GGTGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTT
ATCTAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTA
AAATTTTTTCGTGAGTTTTTATGGTCTAATTTCTCTAAAATCCGGGAGGAATTTATT
GAAATCACAAGTTTGATGGGTAACCCATCCATATATACAGTAAAAAGATCAGTTTAA
ATAACACAATACCACACAATAACGAAGAGTCCAAAAAATGCACTATTTACAAGTCTT
TTATTATATTGGCTTACATTTATTTTTTACTTTTATTCACTTGGATAGTAAAAGAGAAA
TTAATTTTTAATATTTTATTATATCTATACTACATTAAATATTCTATATAATGTTAACTC
TAAAAAACATTTAAGATTTATATATGGTCAATTACCCTTATATAATCTTTAACTTTAAA
TCCCTGATGGGGGCCAATAANGGTNGGGAAACTAACGGAAN
SEQ ID NO:333 Early LPS-103 ACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGTTTCAATAAATTCCTCCCGG
ATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAACTC
ACGAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCATC
TTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTTAC
ATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTTCA
AACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGAGGATTCTCACGGCTA
ACATCATGACCGATTACCTCCTACCAACAAGGCTTTAACTGAACAATCCAAACAAT
TACAGCTAACAATCAACGGGCGCCAACGGATCATTTTGTCAGCCTCGAAGCAGCAT
TGTTATATGTATATGAATAGAATAGATCAATGTAACTTGGAGATGCTAATTTGAAGC
CCTTCTCTGAAGGTGGACAATTCCAGCACCAGTGGTCTAAAGCCTCAATATGGCTA
TAGAAATTCTTCTGGGGGTGCACCTATGGAAGAGGGTCGGAGAGGACGAAGCTG
TGGATCGCTCTTACCATCT
SEQ ID NO:334 Early LPS-104 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGG
CGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCTCT
CCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGGC
TTTAGACCACTGGTGCTGGAATTGTCCACCTTCAGAGAAGGGCTTCAAATTAGCAT
CTCCAAGTTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTTCGAGACT
GACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTCA
GTTAAGGCCTTGTTGGTAGGAGGTAATCGGTCATGAACTGTTAGCCGTGAGAATCCT
CACAGCAAAAGATGCGTTGGAGCTCGTTGACTCTTTAGTTTGAACGGTCATACCTT
TATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAGTTTAG
GTGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTTA
TCTAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTAA
AATTTTTTTCGTGAGTTTTTATGGTCTAATTCTCTAAAATCCGAGAGGAATTTATTG
AAACCAGCCCGGGCCGTCGACCACGCGTGCCCTATAGTAATCGAATTCCCGCGGC
CGCCATGGCGGCCGGGAGCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGT
CGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGCG
TACCCACTTAATCGCCTTGGAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGA
AGAGGCCCGGACCCGATCGGCCCTTTCCAACAAATTGCGCAACCCTGAATNGGGA
AATGGGCCCCCCCCTNTTACCGGNGCAATTAAACCCCGGGGGGGNGNGGGGGTT
CCCCCCCCCGTGGACCT

TABLE II
Clone SE1-SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9
LPS001 0 249.4 1400.9 827.6 1683.8 2019.4 189.2 4303.9
LPS003 701.2 555.9 2815.2 2445.1 3249.9 3094.7 227.1 3111.6
LPS004 466.1 335.5 2652 2701 2644 2329.6 218.5 2332.4
LPS006 753.1 332.7 3287.3 2964.5 2832.2 2688.9 182.1 1591.9
LPS007 685.2 226 2010.2 1911.3 2600.4 1730.1 181.5 2737.7
LPS008 652.8 274.8 2415 2219.3 2607.1 2294.9 155.7 1292.1
LPS010 558.3 356.1 2667.6 2881.1 2584.3 1573.4 161.7 1041
LPS011 3536.1 424.7 4021.5 3793.8 3590 3182 160.5 1471.7
LPS012 809 408.4 2206.7 2187.1 2282.2 2422.5 462.4 1483.2
LPS013 1211.1 391.6 2294.7 2652.6 2005.4 2167.8 166.8 1570.5
LPS014 2191.9 432.5 2651.8 3013.5 3341.2 3586.7 178.8 3527.1
LPS015 1197.9 306 5651.4 14828.6 20242.8 21558.2 1427.2 34472.3
LPS019 1830.2 334.5 3329 3954.4 4347.5 4658.2 312.1 4743.1
LPS020 675.2 327.8 2258.3 2284.7 2542.7 2321.4 171.9 1609.8
LPS023 451.3 337.5 1401.9 1106.8 1766.2 1842.6 109.6 1365.2
LPS024 4585.8 444.5 3006.3 3431.1 3548.8 3759 157.3 4062.3
LPS025 5102.3 397.1 4322.9 4699.6 5067 4973.2 262.4 5240.4
LPS026 1568.7 285.9 1809.9 1830.4 2829.9 2381.7 164.9 1404.9
LPS027 5499.9 458.4 4853.9 5218.6 2598.4 1756.6 457.9 2375.3
LPS028 4812.9 314.9 2368.8 2616.5 3113.3 3292.4 557 4146
LPS029 4464.6 251.2 2334.4 2058.1 2930.3 3219.3 472 3814.4
LPS030 1142.2 352.5 2519.8 2460.9 2499.8 2634.5 378.3 2147.8
LPS031 1067.7 481.6 3510.8 2799.2 3568.2 3257.2 287.9 2209.7
LPS032 1120.2 332.3 3153.1 3032.4 1769.2 1816.7 146.6 2689.9
LPS036 1498.2 1072.9 4633.6 5524.2 5465.1 6350.7 918 14058.5
LPS037 1890.3 320.9 3719.1 3618.9 4138 4518.1 513.4 5087.5
LPS038 2899.5 310.3 4530 4226.1 4491.6 3969 268.4 4245.3
LPS040 527.4 238.1 1433.4 1611.2 1984.5 1506.5 143.9 1988.7
LPS041 506.1 265.5 1958.9 2843.2 2065.3 2016.2 147.4 2781.7
LPS042 1432.1 1140.3 4379 4973.3 4525.4 4340.8 319.6 3009.6
LPS043 696.9 776.2 3933.1 4894.3 3512.2 3664.7 340.6 3098.4
LPS044 57.8 275.1 3365 4261.2 4773.5 4979.9 974.4 10645.5
LPS045 536.1 211.1 1559.5 1415 1498.5 1584.8 562.1 1912.3
LPS046 796.3 231.7 1023.9 306.4 1417.8 1328.2 83.8 946.4
LPS047 5029.9 518.2 3632.5 4262.1 4755.5 4087.9 386.3 4933.8
LPS050 6333.5 2620.8 5271.4 5242.1 5586.4 5560.1 980.1 11444
LPS051 1378 224.4 2328.8 2221.8 2260.5 2715.1 123.7 3670.4
LPS052 1526.4 267.5 2046 1856.2 2186.5 2416.3 99.3 2010.1
LPS053 4438.3 361.6 4087.6 3959.9 4786.5 3666.8 379.6 4256.7
LPS054 1992.9 269.9 2734.2 2388.1 3143.8 2337.7 177.6 2803.9
LPS055 4587.8 334.4 3488.6 3474 4018.3 3101.6 196.2 4309.4
LPS056 5960.7 1333.7 5338.8 5670.3 5674.4 5533.5 446.4 5593
LPS057 2219.9 301.9 2397.3 2356.1 2218.1 2085.6 184.4 2657.8
LPS058 4070.4 299.9 3485.4 3721.3 4113.8 4142.2 239.8 4945.6
LPS059 8729.3 279.2 3885.7 3636 2720.4 3346.7 165.7 3734
LPS060 4580.2 323.7 3027.8 4713.4 4929.1 5047.5 161 4704.8
LPS061 2831.9 366.8 2392 2327.7 2546.5 1991.8 177.9 3036.7
LPS062 1674.1 353 2711.2 2526.1 1847 1830.3 124.5 3584.2
LPS063 5514.4 419.8 5238.9 5020.3 5417.4 5041 250.1 4812.6
LPS064 7417 3166 5229.5 7497.4 7933.1 10261 1088.3 16829.6
LPS065 5634.9 343.5 5527.8 5099.4 7833.4 5356.6 237.5 4696.7
LPS066 1015.9 244.5 1702.6 1650.5 2895.1 2437.2 128 2514.1
LPS067 2796.8 240.4 3931.5 4810.3 5407.8 5418.3 202.5 9403.8
LPS069 533.4 189.9 1635.8 1816.4 2114.2 1646.8 119.8 3208.8
LPS070 2516.9 240.6 1909.5 2519.6 2156.7 1777.4 186.4 4362.1
LPS071 592.8 196.4 1789.2 2189.2 1981.1 1304.5 127.6 3430
LPS072 444.2 217.6 1422.9 1509 2065.3 2289.9 122.7 2678.8
LPS073 4362.8 273.1 3094.9 3348.1 3771.8 4075.3 137.7 4259.6
LPS074 32072.9 6816.3 33531 25258.9 38176.4 32687.7 14607.1 37529.6
LPS075 7013.9 472.7 4759.7 4933.9 5452.2 5408.7 409.4 5397.1
LPS076 4236.1 362.6 3131.9 2882 3368.5 3354.6 119.5 3141.9
LPS077 2958.7 276.6 4380.4 4862.5 4475.1 4958.7 218.9 4426
LPS078 23685.3 2642.5 35458.6 25869.6 42378.9 33047.1 25402.2 37189.8
LPS079 4794.3 547.8 4628.6 4821.8 5257.2 5277 829.5 5449.7
LPS080 30454 10527 33713.7 23785.4 32590.9 32210.7 16224.4 37659.2
LPS081 30405.9 28677 35358.3 25873 22338.1 31715.3 36436.4 36650.5
LPS083 5040.1 460.8 3251.7 3487.3 2688.9 2565.9 190.5 2979.7
LPS084 2031 298.9 2843.7 2718.4 2352.2 2165.5 164.9 3398
LPS086 3571.7 320.1 2715.8 2648 1989 2528.4 143.9 2969.7
LPS087 3302.3 337.4 4873.1 5695.8 5407.2 5450.6 670.8 18404.9
LPS088 826.8 302.1 2389.2 2871.1 3180.8 2635.2 138.6 3141.5
LPS089 796.4 321.2 1987.7 2640.6 3299.1 2285.1 143.7 3176.6
LPS090 4031 235.9 3867.3 4064.4 4503.3 4798.4 341.7 4697.7
LPS091 2423.3 196.5 2836.8 3101.3 4049.1 4172 295.2 4612.2
LPS092 2914.9 208.5 4005.3 3138.4 3911.6 4036.1 270.4 4842.9
LPS093 793 195.5 1619.2 1331.6 1909.3 1843 147.1 2772
LPS094 1374 221 2205.5 2028.5 2240.9 2632.2 163.3 2849.1
LPS095 728.7 174.1 2022.6 2112.1 2335.8 1264.6 117.5 2957
LPS096 333.3 168.5 1531.9 1393.4 1893.3 869.1 118.3 1691.1
LPZ001 2008.6 185.4 2535.9 2937.9 3472 1981.8 118.9 2421.7
LPZ002 3529.3 384.6 4579.3 4474.6 3236.7 3855.8 313.8 3237.5
LPZ003 4076.8 275.4 2651.2 2966.7 2829.2 4177.4 378.5 4369.7
LPZ004 5595 687.4 5468.2 5615.9 5243.6 5699.6 601.6 5889.9
LPZ005 5680.5 3353 34994.7 26121.9 42555.1 33144.5 16193.7 37798.2
LPZ006 1199.8 299.4 3013.7 3099.8 3517.3 3397.1 140.6 3370.8
LPZ007 1159.1 462.2 3292.7 2992.5 3121.4 2936.7 235.5 3238.6
LPZ008 1874.3 237.7 3110.8 3236.7 2516.5 3182.2 325.3 4330.1
LPZ009 3331.1 296.3 2348.5 3414 2478.2 3309.5 348 5658.1
LPZ010 3216.3 1186.8 4977.3 5024.7 4564.4 4992.4 442.6 4454.5
LPZ011 4613.4 910.9 4510.7 4515.7 3729 4357.3 371.4 4695.9
LPZ012 1531.5 469.5 2915.3 2611.1 2012.3 3481.4 270.3 3804.3
LPZ013 3495.1 268.8 2125.9 2584.7 3194.7 3787.4 125.1 4929.6
LPZ015 2040 257.6 1971.1 2966.7 2191.1 3056.7 227.1 4156.6
LPZ016 5307 2761.1 8451.7 17219.7 22792.7 15567.3 1073.6 35074.1
LPZ017 2476.4 354.3 3175.5 4330.8 4496.2 4061 273.2 5328.9
LPZ018 3929.4 417.5 12420.2 14916.1 18116 17637.5 2541.6 31981
LPZ019 5404.2 427.3 32190.3 24710.4 42102.7 32342.6 19528 36969.5
LPZ020 576.9 142.9 1451.4 1505.4 3534.8 2679.8 210.9 3046.2
LPZ022 1408.2 155.2 2406.7 2845.7 3042.5 3074.8 189.9 3829.2
LPZ023 562.1 152.8 2096.7 1710 2045.5 2078.9 200.8 2874.3
LP2024 496.7 158.1 1681.3 1264.7 2102.9 1857.1 132.1 1818.4
LPZ025 5431.3 464.1 13492.2 9726.2 11911.5 13462.8 1262.5 11780.6
LPZ026 1663.2 139.7 2464.8 2760.1 3113 2219.4 159.1 3183.5
LPZ028 5029 190.7 5367.2 5339.8 5483.9 5205.5 482.3 5565.9
LPZ029 961.3 119.2 1805.4 1989.6 2298.5 1998.4 126 2576.9
LPZ030 1457.4 177 2444.7 2687.5 1966.4 1857.2 178.5 3312.8
LPZ031 3092.8 361.7 3564 3925.3 4627.8 5171.4 506.7 5920.5
LPZ032 1906.5 156.8 5542.3 24342 42917.8 33386.1 30058 37998.6
LPZ033 12934.5 354.7 5280.1 7301.2 5638.9 9238.7 375.4 15843.5
LPZ034 1307.4 177.5 1737 2208.4 3213.1 1984.1 150.2 3228.3
LPZ035 556.5 201.9 880.2 1280.1 1654.5 915.1 74.1 1422.1
LPZ037 1356.8 269.7 2072 3110.5 2912.8 2488.2 211 4119.3
LPZ038 4027.9 426.9 5639.9 5872.3 5476.8 5614.6 796.8 5583.3
LPZ039 5059.1 550.6 3807.9 4393.8 3825.6 3889.8 342.2 5164.2
LPZ040 1226.1 236.5 1566.4 1889 1679.1 2263.6 140.6 3331.1
LPZ041 944.2 219.3 1629 543.1 1148.2 1416 90.2 2524.6
LPZ042 570.6 206.1 1129.5 806.5 1448.8 1423.1 75.1 2013.8
LPZ043 1190.2 236.7 1878.8 1024.4 2834.6 2767.4 241.7 3236.2
LPZ045 5315.3 465.7 4933.2 5580.2 5151.1 5205.1 557.3 10754.3
LPZ047 859.5 285.2 1606.2 2099.3 2059.4 1992.6 68.3 3054.8
LPZ049 3232.7 108 1278.6 2834.2 3657.8 3944 244.2 5459.6
LPZ051 3048.1 146.9 2373.2 2067.3 2745 2383.2 179.1 2837.6
LPZ053 2580.3 135.6 2625.8 2088.7 2468.5 2297.2 156.8 3001.4
LPZ054 1838.1 159.5 2657.8 2759.7 2658.1 2224.7 170.4 3444.2
LPZ055 2181.8 151.1 2381.2 2262.7 3228.3 2983.9 139.3 2673.9
LPZ056 4028.3 219.5 2884.6 3416.6 3779.6 3789.9 208 4518
LPZ057 1470 121 1676.5 1629.6 1702.7 1703 112.2 2272.1
LPZ058 1923.3 122.5 2453.5 2169 3127.3 2465.4 160.6 3319.6
LPZ059 1760.4 113.8 2180.6 1832.4 1997.2 1530.8 174.4 3366.6
LPZ060 3296.4 139.3 2571.1 2250.2 2721 2976.9 221.3 3896.5
LPZ061 2495.6 182.8 2663.9 2235 3265.9 4227.1 498.1 4915.1
LPZ062 1992.7 194.9 3296.7 3975.8 3861.5 5642.6 497.6 5606.2
LPZ063 2167.1 145.9 2733 1843.9 3066.6 4961 305.6 4773.2
LPZ065 5641.2 251.7 13690.3 9269.2 8562.8 13254 986.3 9554
LPZ066 6307.3 652.4 12630.8 6968.4 4918.9 5062.2 400.7 5456.8
LPZ067 10838 1548.1 16986 11776.8 5633.2 7054 1014 15262.2
LPZ069 1481.9 209.6 2239.8 1480.9 2496.7 2542.4 250.5 3717.2
LPZ070 1932.5 263.8 1895.1 2221 1555.9 1570.4 145.5 3471.3
LPZ071 3672.6 378.6 4185.5 3050.5 4166.8 4246.2 553.7 5333.4
LPZ072 744.5 210 1210 676.7 1420.2 1393.4 95.8 1997.1
LPZ073 1997.9 235.9 2275.1 2141.7 2613.2 1989.9 170 3489.4
LPZ074 1375.9 237.4 1899.1 1787.3 2472.9 1623.7 125.6 2435
LPZ075 831.4 247.9 1536.4 1773.1 1886.9 920 80.6 1053.5
LPZ076 345.7 251.8 854.8 564.6 1747.1 526.2 55.9 1058.3
LPZ077 2466.3 102.2 949.4 820.9 3093.9 3179.6 202.9 3314.8
LPZ078 3102.1 197.1 3654.2 3261 4204.3 4433.6 400.8 5559
LPZ079 1584.4 108.3 2389.2 2243.3 2624.8 2677.1 208.3 3675.6
LPZ080 12206.5 2043.1 25021.4 8579.5 11707.8 8717.6 1172 18663.9
LPZ081 1368.7 103.6 1902.8 1349.9 2166.1 1597.7 103.5 2709.6
LPZ082 2601.3 140.3 3264.3 2853.9 2799.6 1742.3 251.1 4288.2
LPZ083 1311.9 76.7 1622.4 1071.1 1733.9 1878 104 2007.7
LPZ084 9974.7 801.3 14255.3 8399.1 5763.9 8852.9 542.2 5714.3
LPZ085 4609.8 158.4 3923.3 3729.7 4082.8 3867.3 219.3 4075.1
LPZ086 10874.1 987.4 19189.5 8284.6 5646 9109.8 1116.4 14988
LPZ089 3505.8 211.6 4010 3430.6 3762.1 3770.8 224.3 5341.2
LPZ090 5780.9 581.8 13217.4 6303.4 4694.8 4779.9 425.2 5408.9
LPZ091 5316.1 148.4 2263.4 2139.8 2382.2 4067.2 256.8 14732.6
LPZ092 5448.7 209.4 3631.6 4152.7 2934.1 3403.7 174.9 4943.6
LPZ093 1169 159.4 2097.9 1187.4 2050.8 2350.7 109.4 2605
LPZ094 1245.5 139.7 1547.5 1650.5 1875.2 2009.9 80.2 2376.9
LPZ095 711.2 177.9 900.9 1253.3 1013.8 1395.3 48 1586.1
LPZ096 2122.2 249.7 2929.3 3271.3 2132.9 2224 232.8 4443.8
LPZ099 4306.4 211.2 2603.1 2144.4 3479.2 3488.5 138.1 4085
LPZ100 3373.5 297 3941.3 3149.6 3790.4 3857.5 443.8 5028.1
LPZ101 3007.7 272.4 3546.9 2291.3 4299 3232.1 306.1 4819.6
LPZ102 2092.7 324.7 3167.5 2109.3 3524.3 2829.4 279 4297.4
LPZ103 3602.1 285.7 2923.3 3112.9 2812.9 1318.3 87.9 1739
LPZ106 1359.7 305.1 2680.3 2391.6 2838.5 2097 173.7 3009.6
LPZ107 28560.8 4989.5 20821.7 17880.4 39173.1 27035.1 11973.3 36123.4
LPZ108 4136.8 179.4 4259.8 4978.2 5553.2 4862 837.2 5597.5
LPZ109 3708.3 202.4 3842 3510.4 4638.4 4453.7 469.5 5107.4
LPZ110 4557.2 291.4 5020.6 4801 4487.4 4481.1 552.3 5484.2
LPZ111 1625.6 130.9 2242.1 1982.7 2740.6 2455.4 164.6 3722.3
LPZ112 2887.4 195.8 3813.2 3759.4 3984.8 4167.1 409.7 5461.8
LPZ114 5029.5 213.4 5016.7 4678.8 5036.9 5168.1 302.1 4316
LPZ115 24434.4 2637.1 27958 23684.2 41104.3 30920.9 2153.9 36902.6
LPZ116 8682.9 235.7 5647.3 5316.6 5805.6 9313.7 466.6 16018.9
LPZ117 30879 4843.7 36277.1 24358 24673.1 20545.7 4669.9 5652.6
LPZ118 4023.6 171.1 3743.5 4568.2 3845.4 3783.9 254.3 4782.5
LPZ119 2580.4 114.1 2507.2 3114.1 2544.6 1963.8 127.6 3195.4
LPZ120 1998.8 157 1987.2 1503.1 2331.8 1805.1 131.5 3522.3
LPZ122 2041.4 119.6 2145.6 2430.9 1998.6 2171.8 101.3 2677
LPZ124 2795.6 185.4 2980.4 2672.5 2495.2 3459.4 173.1 3081.5
LPZ126 2559.7 181.8 2560.1 2349.8 3500.6 2362.1 224.9 3646.9
LPZ127 1993.5 169.1 3161 3180.8 3382.5 3321.3 180.6 4058.4
LPZ128 2866.7 263.2 3556.8 3597.4 3545.7 3813.8 306.7 4071.3
LPZ131 1993.5 171.7 1983.9 2069.6 2565 2607.2 80.3 2527.8
LPZ133 2446.7 290.4 3218.6 2847.2 3830.1 2889.5 245 4252.4
LPZ136 1952.3 281.1 2956.9 1870.6 3167.6 2680.6 215.9 4291.6
LPZ137 2833.8 281.9 3264.4 2350.2 3874.4 3532.8 420.8 4935.3
LPZ138 2932.9 1791 5211.5 4502.1 5409.9 4832.8 543.1 4741.3
LPZ140 2284.7 337.4 3680.2 2810.9 3196.1 3191.2 271 4613.6
LPZ141 4726.2 368.5 4792.5 4412.5 5368.1 5466.3 722.1 4956.4
LPZ143 25290.6 2692.2 35967.9 25679.9 43668.3 32612.1 25456.9 36344.4
LPZ144 2620.9 286.6 3948.7 3394.6 4505.7 4142.8 488.7 4776.7
LPZ145 3472.5 171 3949 3194.2 3430.5 3539.9 327.9 4487.2
LPZ146 2612.8 127.3 2482.4 2080 3000.8 2979.1 135.1 3391.3
LPZ147 2447 106.3 2855.1 2237.7 3134.2 2841.8 261.6 4388.1
LPZ148 2036.8 77.7 2559 1932.3 4296.1 4699 359.6 3982.3
LPZ149 5720.7 267.4 5377.3 5408.2 10999.7 5717.7 1078.9 13033.2
LPZ150 5861.7 772 35541.7 26314.8 44633 33238 13126 37853.6
LPZ151 5550.3 3499.3 9012.8 8380.4 11968.1 5716.5 715.8 5536.9
LPZ152 4746.6 352.8 5169.3 5647.7 5384 5394.2 408.5 5382.1
LPZ153 21881.2 2773.2 14738.2 15979.5 16996.8 15756.8 2388.5 30812.9
LPZ154 4869.8 265.9 3244.3 3497 3948.6 3703.3 303.8 4119.1
LPZ155 3904.2 1596.3 5078.5 5482 4631.7 5314.1 553.4 4112.9
LPZ157 4726.5 1732.8 5427.1 5369.5 5213.3 5705.9 756.4 5462.2
LPZ158 15297.4 3817.1 17993.9 17405.3 25168.8 22056.6 2337.4 22375.3
LPZ162 5725.8 4204.8 10380.1 11364 17948.2 14250.8 1934.6 10535.5
LPZ165 5615.2 666.7 5274.6 5486.6 5560.3 5310.9 637.1 5405.9
LPZ166 5889.1 2603 9503.5 10943.7 13743.3 14080.4 1772.5 5772.8
LPZ167 5347.2 1948 5708.9 6769.6 5742.3 5347.9 370 5279.7
LPZ169 3043.8 267.4 1976.6 2851 3451 2451.2 189.8 3420
LPZ170 3507.3 301.5 3532.3 3391.4 4481.4 3398.7 130.2 5604.2
LPZ171 3762.3 780.7 4554.8 4311.7 4936.4 4511.3 398.6 5030.5
LPZ172 5098.2 947.4 5550 6287.9 5135.4 5323.9 1242.5 8539
LPZ173 22580.5 3313.9 35486.9 24974.9 42874 31828.8 26531.8 36066.9
LPZ174 4115.7 221 5241.5 4262.4 5765.8 5554.9 872.5 4815.2
LPZ175 4388.3 1360.6 5563.7 5504.9 5165.3 5182.9 583.2 4602.3
LPZ177 1371.6 94.5 2119.4 2218.6 2730.7 2431.7 143.2 2893.2
LPZ179 3643 195.1 4409.9 4898 5458.3 5319.8 797.9 5677.7
LPZ181 5573.3 215.9 4799.6 5272.2 5825.3 5554.4 1573.5 13689.7
LPZ182 4118.9 107.6 3491.5 3182.1 4617.5 4543.6 478.1 5527.8
LPZ186 5792.2 325.5 4965.1 5182.6 12373.6 11191.4 1804.9 37336.4
LPZ189 33820.3 5188.5 30941.4 24955 43453.2 33115.2 17929.3 38055.6
LPZ194 2807 151.1 2915.9 2955.1 3306.8 3120.2 142.9 4101.6
LPZ195 5345.7 532.7 5597 5628.7 5540.4 5491 545.7 5756.7
LPZ196 4805.1 3512.9 5183.2 6968.6 5465.4 5052.4 786.4 5694.5
LPZ197 7268.6 153.8 5398.9 5673.5 13582.6 15111.9 3499.6 34684.8
LPZ198 7208.3 210.6 5800.8 8043 5439.2 5183.6 409.3 5042.7
LPZ199 3058.3 186.1 2749.6 2667 3713.6 3704.3 243.4 3917
LPZ201 7175.3 236.7 4827.6 5029.9 5523.4 5802.2 1981.9 14614.5
LPZ202 3603.3 1113.9 35531.5 26035.1 44762.8 33837.3 63521.8 38225.4
LPZ203 4325.4 424.4 5517 5387.3 9934.8 5662.1 2104.8 9370.7
LPZ204 32355.9 34690 36443.6 26004.3 44546.1 33680.5 55702.6 37890.3
LPZ205 4904.1 519.6 5162.4 5398.7 5427.6 5325.6 281.4 5770.2
LPZ206 3504.4 319.8 3124.8 4561.7 4192.2 3899.9 255.7 5489.9
LPZ207 32035 24978.7 34825 23371.8 42639.9 32686.4 30672.2 37674.8
LPZ208 25174.6 3118.6 14244.4 13906.3 16694.7 21111.9 2190.1 34542.4
LPZ210 3885.1 422.3 3895.8 4551.5 4205.7 5108.7 258.6 5514.3
LPZ211 2569 176.7 3689.2 2943.5 4001.9 3860.9 250.2 3113.1
LPZ212 5988.8 1244.3 32684.4 11154.1 19853.4 13654 618.3 10736
LPZ213 3406.9 106.8 3964.1 3876.6 4236.4 4294.4 274.2 4874.6
LPZ214 1668.3 55.3 2136.3 2394.8 2390 2269.3 105.8 3436.2
LPZ215 5019.8 139.3 5020.1 5024.8 11013.9 13747.1 1991.7 36930.6
LPZ216 3336.8 1085.4 35895.6 26245.3 44980.1 33834.4 64482.7 38238.1
LPZ217 23512.1 26363.3 36065.8 24685.4 43193.4 31422.4 21462.1 35990.6
LPZ219 4011 256.9 3193.5 3326.3 4509.5 5258.5 455.2 5841.9
LPZ220 8696.5 2383.3 5064.7 5171.3 4923.7 5340 951.7 17530.6
LPZ221 1221.4 83.1 1201.8 707.6 1556.5 2083.9 182.1 3948.8
LPZ222 1885 146.1 2834.7 2253.2 2557.7 3382 196.7 4225.1
LP2223 1048.5 121.2 2339.6 2642.1 2663.8 3573.5 383.5 4579.2
LPZ224 3190.6 118.8 3049.8 2833.2 4373.8 5139.9 858.6 5285.7
LPZ225 25428.2 4079.7 35724.5 25423.6 43300.5 32574.8 38888.3 37219.9
LPZ226 1044.9 130.4 1776.9 1210.8 2757.7 3388.5 326.6 3520.3
LPZ227 1078.3 133 1461.7 973.5 7032.1 9452.8 2043.5 4705.3
LPZ228 3961.6 213.5 3373 4050.7 5575.6 10714.4 2428.6 5928.9
LPZ231 3475.2 230 4096.3 3841.1 5009.3 5690.3 959.9 5514.3
LPZ233 2404 218.2 2170.9 1531.4 4362.7 4198.1 673.7 3350.1
LPZ234 1688.3 312.3 1887.6 1486.5 4228.6 4715.6 724.8 3170.1
LPZ235 2661.6 199.9 2422.2 1852.6 3078.9 2886.6 98.2 3143.5
LPZ237 3174.5 324.2 3032.5 2988.2 3931.1 4587.9 314.4 4588.3
LPZ239 4061.3 309.3 3175.1 2932.1 4131.7 3892.6 122.3 5083.5
LPZ240 3799 316 3730.6 3314.6 3379.8 3538.8 212.4 4784.5
LPZ241 2559.2 62.1 2610.4 1794.5 4165.6 3754.4 134.8 2915.1
LPZ242 29360.5 3262.9 35254.6 25196.9 43028.8 31468.2 7308.4 36768.4
LPZ243 3405.3 88.8 3015.7 2683.4 3678.7 2990.6 121 4001.4
LPZ244 4856.9 483.6 4842.2 5235.3 5317.6 5432.1 205.4 5712.9
LPZ246 1274.8 65.9 2301.7 1922.8 4332.2 4628.8 672.1 4232.4
LPZ247 3894 69.8 2522.8 3389.9 4451.4 4937.1 939.3 5522.8
LPZ248 3016.7 268.6 2883.2 3805.2 3791.7 3777.6 487.1 4585.6
LPZ249 5224.1 138.3 3524.5 4091.2 3022.4 3393.2 149.9 4101
LPZ250 1060.6 46.5 1400.9 1246.9 1419.5 1411.2 118.8 2908.4
LPZ251 1336.8 248.5 1354.6 1049.3 657.6 924.3 70.3 2064
LPZ255 3787.8 171.8 4801.8 5076.3 4608.1 4965 340 5636.6
LPZ256 536.6 61.6 865.5 971.6 1130.8 1327.7 82.7 936.9
LPZ257 844.5 112.6 1507.4 1537.8 2337.9 2745.8 341.5 1610.7
LPZ258 2588.5 142.3 3443.1 2902.2 4576 4976.4 1182.9 3619.6
LPZ260 837.7 113.7 1677.9 944.3 1217.6 1286.6 170 2928.2
LPZ261 981.3 132.1 1499.6 743.4 1590.8 1953 67.2 1652.1
LPZ264 4559.3 231.3 4348.5 2856.3 4869.2 5179.7 412.3 4698.3
LPZ265 21063 2793.9 26928.5 12365.5 13816.5 12134.4 691.6 17954.8
LPZ266 1642.4 130 1767.5 1463 1633.8 1410.5 59.4 1444.5
LPZ268 2451 114.2 2803.3 2495.4 3126.5 3433.7 79 4261.3
LPZ269 15670.7 3660.5 35782.4 21720 40375.2 31597.3 2024 35213.6
LPZ270 3541.2 240.8 3803 3132.4 4827.8 5213.6 79.9 5473
LPZ271 5590.7 677.2 5465.4 5197.1 5703.4 5615.2 309.2 5732.7
LPZ272 27369.6 3445.9 35824.6 22832.6 40684.8 27398.4 1732.9 37016
LPZ273 1107.3 46.1 456.7 336.3 1879.3 1654.1 65.4 971.9
LPZ274 3936.2 114.5 3192.3 3024.1 4983.3 4907 293.9 4933.5
LPZ275 2567.2 42.9 1760.4 2091.8 3656.5 3800.5 77 2585.4
LPZ276 560.9 32.9 1075.4 1878.9 1889.9 1766.2 66.8 1294
LPZ277 423.7 34.6 1199.1 1169.8 1376.8 1383.9 91.9 1123.7
LPZ278 323 39.7 937 382.9 770.1 935.2 66 1403.4
LPZ279 965.9 70.7 1907.5 1368.2 1783.7 1603.9 133.2 2438.8
LPZ280 390.7 19.6 175.4 42.3 464.9 631.5 29.9 2074.9
LPZ281 84.3 8.2 0 0 0 0 9.7 0
LPZ282 1849.7 28.4 315.1 34.2 664.3 1097.3 21.5 1229.5
LPZ283 10678.6 329.2 5134.7 5311.1 4772.3 8591.1 226 9633.6
LPZ284 996.1 39.8 236 147.2 2349.5 981.1 26 719.7
LPZ286 563.8 77.1 1031.1 945.9 1347.4 1601 81.2 1303.6
LPZ287 1045.7 123 2057 1475 1730.9 3003.6 149.9 2493.5
LPZ288 1201.7 116.2 1797 1448.8 1648.3 670.4 80.6 3700.4
LPZ289 1922.3 113.3 2515.4 3395.3 3460.7 3369.4 70.8 2183.8
LP2290 14629.5 3945.8 34659 24047.3 40474.8 27786.2 1348.2 27566.4
LPZ293 4364.8 385.4 4664.2 3170.9 4321.6 4789.8 74.6 5095.8
LPZ294 564.7 171.4 1257.5 705.2 1357.7 1610.2 18.6 2027.6
LPZ295 823.1 97.3 2102.7 1056.2 2899.7 2698.3 39.4 2448.2
LPZ297 5273.4 169.1 5229 5074.4 5727.8 11512.9 423.2 10966.8
LPZ299 1564 161.1 1743.9 1752.3 2764.1 2660.5 63.5 2791.9
LPZ300 3068.3 205.4 2406.8 1881.8 2898.6 2758.4 0.2 2007.2
LPZ301 1979.7 233.1 3207.1 2109.3 4343.5 3713.8 40.4 2690.6
LPZ303 509 32.7 281.3 877.7 893.1 751.5 30.1 1373.8
LPZ304 2531.1 289.3 3809.4 3406.7 3674.8 3517.4 158 2652.7
LPZ306 22632.7 2861.2 34933.8 25435.6 40453.9 30906.9 1505.9 34032.8
LPZ307 2604.4 1395.2 4780.6 6945.3 4419.2 4416.9 232.6 4299.8
LPZ308 1093.9 60.5 2028.1 1751.6 1770.8 1891.9 92.4 3245.8
LPZ309 286.1 26 480.4 378.4 589.6 731.4 38.4 1062.4
LPZ310 2284.1 129.5 1622.7 1091.7 1207.1 3089.4 101.2 3624.9
LPZ311 3309.9 43.6 2782.6 2956.3 2828.8 4446.7 95.8 5593.4
LPZ312 446.3 52.7 1577.7 1221.4 542.2 518 56.1 1952.6
LPZ314 378.6 26.9 333.9 355.8 682.2 701.2 61.7 732
LPZ315 3897.5 115.2 2611.9 3145.8 4296 5240.2 151.3 4499.3
LPZ318 9709.6 767.1 19964.9 15678.3 20611.8 19600.2 475 18079.9
LPZ320 1126.7 82.8 1215 1002.7 1502.5 1555.3 67.5 2964.4
LPZ321 2944.7 85.4 2590.7 2597.6 2550.3 2962.7 72.1 5481.4
Clone ZE1 ZE2 ZE3 ZE4 ZE5 ZE6 ZE7 ZE8 ZE9.1
LPS001 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9
LPS003 600.3 363.9 0 243.7 1565.3 2624.5 1942.7 242 1892.5
LPS004 522.3 254 0 74.6 907 2638.8 1933.6 274.9 4209.2
LPS006 444.6 161.2 0 174.6 793.6 2651.4 1991.5 206.5 598.8
LPS007 528.9 136.3 0 244.9 1623.3 1202.1 2044.7 245.1 213.9
LPS008 534.5 215 0 281 1231.2 783.4 1760.3 178.5 832.4
LPS010 469 183.6 1.3 240.1 947.7 591.6 2208.3 161.2 482.6
LPS011 468.7 93.3 0 142.3 1544 1021.5 2334 254.6 1223.7
LPS012 511 278 17.7 197.2 2129.6 68.9 1362.7 478.9 960.4
LPS013 478.2 407.1 192.1 235.6 2470.6 9 1163.9 885.7 1109.4
LPS014 579.7 369.1 0 272.7 2799.6