US20050116377A1 - Composite wood and manufacturing method thereof - Google Patents

Composite wood and manufacturing method thereof Download PDF

Info

Publication number
US20050116377A1
US20050116377A1 US11/028,648 US2864805A US2005116377A1 US 20050116377 A1 US20050116377 A1 US 20050116377A1 US 2864805 A US2864805 A US 2864805A US 2005116377 A1 US2005116377 A1 US 2005116377A1
Authority
US
United States
Prior art keywords
wood
binder resin
wood pieces
pieces
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/028,648
Inventor
Katuyuki Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Almighty Co Ltd
Original Assignee
Katuyuki Hasegawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katuyuki Hasegawa filed Critical Katuyuki Hasegawa
Priority to US11/028,648 priority Critical patent/US20050116377A1/en
Publication of US20050116377A1 publication Critical patent/US20050116377A1/en
Assigned to ALMIGHTY CO., LTD. reassignment ALMIGHTY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASEGAWA, KATUYUKI
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31982Wood or paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31986Regenerated or modified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31989Of wood

Definitions

  • the present invention relates to a composite wood and a manufacturing method thereof.
  • the present invention relates to a composite wood which has excellent characteristics similar to wood such as workability, excellent characteristics similar to synthetic resin such as water resistance and predetermined mechanical strength, and a manufacturing method thereof.
  • polyolefin-based thermoplastic resins such as polyethylene or polypropylene exhibit lipophilic properties and inferior wettability with respect to hydrophilic wood, pulp, paper, sawdust or the like. For this reason, these materials cannot be successfully mixed together. Even if these materials are forcibly mixed, the binding force between them is weak. Thus, it is difficult to manufacture a composite wood.
  • thermoplastic resin such as a phenol resin or an epoxy resin
  • the wood powder must be dried so as to have a predetermined amount of water content, e.g., 10% or less of the water content in order to ensure mechanical characteristics of composite wood.
  • a predetermined amount of water content e.g. 10% or less of the water content in order to ensure mechanical characteristics of composite wood.
  • the amount of the wood powder is about the same as an amount of synthetic resin in volume ratio.
  • the composite material actually exhibits characteristics similar to a synthetic resin. Nailing, cutting by a saw, and adhesion using a water soluble adhesive are difficult. Further, applications for products which can be applied to the composite material are restricted.
  • an object of the present invention is to provide a manufacturing method of composite wood which has excellent characteristics similar to wood such as workability, excellent characteristics similar to synthetic resin such as water resistance and a predetermined mechanical strength.
  • a composite wood of the present invention which is manufactured by binding a plurality of wood pieces together by a binder resin, wherein each of the plurality of wood pieces has a three-dimensional configuration that a plurality of small cavities substantially remain in three directions, the entire three dimensional configuration or most of the three-dimensional configuration of each of the plurality of wood pieces is surrounded by the binder resin with the small cavities adjacent to a surface side being deformed so as to be collapsed, the binder resin enters into the small cavities at the surface side of each of the plurality of wood pieces so that the plurality of wood pieces are bound to the binder resin.
  • a plurality of wood pieces each of which has a configuration such that a plurality of small cavities substantially remain are bound together by a binder resin after being strongly pressed together.
  • Each of the surfaces of a plurality of wood pieces is deformed by pressing the binder resin such that small cavities at the surface are collapsed. Further, the binder resin enters into such small cavities at the surface.
  • the wood pieces are strongly bound to the binder resin.
  • the wood piece having good hydrophilic properties can be strongly bound to the binder resin.
  • the binder resin has lipophilic properties and can be a material such as an olefin-based resin. Accordingly, even if the wood pieces are exposed at the surface of the composite wood, the wood pieces are not easily peeled. Thus, a high quality product using the composite wood can be insured.
  • the composite wood exhibits characteristics similar to wood. Nailing for the composite wood can be easily performed, and the composite wood can be planed by a planer. Because the characteristics of the composite wood do not have an orientation, the composite wood can be cut by a saw at any portion thereof in any direction. Further, as the wood pieces are exposed at the surface of the composite wood, adhesion by a water soluble adhesive can be performed utilizing such wood pieces.
  • the amount of the wood piece can be freely set.
  • the composite wood exhibits high mechanical strength such as tensile strength and flexural strength.
  • the composite wood exhibits, in addition to the aforementioned heat insulating properties and water resistance, characteristics similar to wood, characteristics similar to synthetic resin and high mechanical strength. Consequently, the composite wood can be utilized for any application including construction material such as a form, core material for furniture such as a pole or a wall, material for transportation such as a pallet and an outdoor product such as a bench.
  • the composite wood includes a plurality of wood pieces that are dispersed in a synthetic resin and therefore, the fumigation or the thermal treatment for exterminating harmful insects is not required. Further, even if the material for transportation, such as a pallet, is manufactured by using the composite wood, cost increases due to extermination of harmful insects do not occur.
  • Each of the wood pieces is surrounded by a binder resin and the wood pieces are isolated from each other.
  • harmful insects such as pine bark beetles are attached to wood pieces at the surface of the composite wood during its usage, the harmful insects do not enter into the composite wood.
  • fine split portions are formed at fiber direction end portions of the wood piece. Because of such fine split portions, the wood piece can be even further strongly bound to the binder resin.
  • a plurality of fine split portions are formed at a part of the surface of the wood piece and a binder resin enters between a plurality of fine split portions.
  • a plurality of fine split portions are deformed in a direction of being close together, so that a plurality of wood pieces and the binder resin are even further strongly bound together.
  • the wood piece refers to a wood piece which has a three-dimensional configuration where a plurality of small cavities substantially remain in three directions.
  • the wood piece refers to a wood piece of 2 mm or larger when measured by a comb tooth of a crushing machine.
  • a wood powder refers to a wood powder of 2 mm or smaller when measured by a comb tooth of a crushing machine or a milling machine.
  • a sliced thin piece of wood refers to as a sliced piece which has a planar configuration where a plurality of small cavities substantially remain only in two directions of three directions.
  • the wood pieces are distinguished from the wood powder.
  • the small cavities in the wood powder and in the sliced thin pieces of wood do not maintain their three dimensional shape.
  • the wood pieces have a three-dimensional configuration having a plurality of small cavities that maintain their three dimensional shape.
  • a small cavity in the wood pieces mainly refers to a cell cavity formed by a cell wall.
  • the small cavity may include a conduit cavity or a capillary cavity.
  • the wood piece is distinguished from the wood powder and the sliced thin piece of wood from such a point of view.
  • a plurality of wood pieces may have a unique size. Nevertheless, a plurality of wood pieces with various sizes are preferably used in order to omit a selection step.
  • the wood powder of 2 mm or smaller when measured by a comb tooth of a crushing machine and sliced thin pieces of wood with a three-dimensional configuration having a plurality of small cavities that substantially remain only in two of the three directions may be dispersed between a plurality of wood pieces.
  • the amount of wood pieces may be freely set relative to the amount of the binder resin.
  • the amount of wood pieces is preferably one to five times larger than the amount of the binder resin in a volume ratio.
  • the binder resin may be any resin and for example, widely available polypropylene, polyethylene, polyvinyl chloride and other thermoplastic resins may be used.
  • the wood pieces may be obtained from new wood. In view of effectively utilizing wood resources, however, wood pieces made of discarded wood are preferably used.
  • New resin may be used for the thermoplastic resin.
  • a resin made of discarded plastic is preferably used.
  • the composite wood of the present invention which has been used for an application may be discarded as in conventional cases. If a used composite wood is heated, the thermoplastic resin is softened and melted, and the composite wood returns to the condition it was when the wood pieces and the thermoplastic resin were kneaded. Thus, the composite wood of the present invention has excellent recycling properties and can be reused again.
  • Crushed pieces of used composite wood or parts of them may be partially or entirely used again as a plurality of wood pieces and combined with a thermoplastic resin.
  • a plurality of wood pieces each of which has a three-dimensional configuration having a plurality of small cavities which substantially remain in three directions, are entirely dispersed and bound together by a binder resin. They are then air cooled and strongly pressed in at least one direction of three directions so that each of the plurality of wood pieces with small cavities is surrounded by the binder resin.
  • the small cavities are adjacent to a surface of the three-dimensional configuration or most of the three-dimensional configuration of each of the plurality of wood pieces.
  • the small cavities are deformed so as to be collapsed when pressed and the binder resin enters into the small cavities. Therefore, the plurality of wood pieces and the binder resin are bound together.
  • the manufacturing method comprises the steps of: heating the wood pieces such that a water content of the wood pieces is evaporated, melting the binder resin and kneading the melted binder resin and the plurality of wood pieces, pressing a kneaded material of the wood pieces and the binder resin in one to three directions, and cooling the kneaded material while maintaining a strongly pressed state or repeating the strong pressing and cooling such that the binder resin is cured.
  • a plurality of wood pieces are kneaded with a binder resin.
  • Each of the wood pieces has a three-dimensional configuration where a plurality of small cavities substantially remain. Then, a resultant kneaded material is strongly pressed in one, two or three directions, and cooled in this state. Thus, the binder resin is cured.
  • Each of the plurality of wood pieces is surrounded by the binder resin in a state that small cavities at a surface are deformed so as to be collapsed.
  • the binder resin enters into the small cavities adjacent to the surface of each of the wood pieces.
  • a plurality of wood pieces is strongly bound to the binder resin.
  • a composite wood can be manufactured, which has good heat insulating properties, water resistance, characteristics similar to wood, characteristics similar to synthetic resin, high mechanical strength including high tensile strength and flexural strength.
  • Strong pressing of the kneaded material of the wood pieces and the binder resin in three directions refers to a case of charging the kneaded material into a mold with its one surface being open and strongly pressing the mold by a pressure plate from a direction of the open surface. Strong pressing is distinguished from ordinary die molding in that a pressure which is equal to or larger than the clamping force is applied.
  • Strong pressing of the kneaded material in a direction refers to the case of extruding the kneaded material in a plate shape from a kneading machine (the kneaded material may be moved from the kneading machine to an extruder and then extruded) and strongly pressing the plate-shaped kneaded material by rollers.
  • Strong pressing in two directions refers to the case of pressing by a longitudinal roller and a transverse roller (instead of the longitudinal roller, die portions may be provided at opposite sides of the transverse roller and the kneaded material may be pressed by the die portions provided at the opposite sides with strong pressure of the transverse roller so as to obtain strong pressure from a transverse direction).
  • a water content of the wood pieces may be evaporated by other heat sources prior to kneading with a melted binder.
  • the wood pieces may be heated by heat from the binder resin when a melted resin and a plurality of wood pieces are kneaded in order to evaporate the water content of the wood pieces. Consequently, a step for drying the wood pieces is not separately required and a manufacturing process can be simplified.
  • a recycled composite wood is crushed into pieces such that the three-dimensional configuration of each of the pieces remains, for example, each of the pieces has a side dimension of 25 to 35 mm. Then, the pieces are heated by an appropriate heat source such that the thermoplastic resin is melted. If it is necessary, a thermoplastic resin is added and a resultant material may be used as a kneaded material of the wood pieces and thermoplastic resin or a part of the same.
  • thermoplastic resin An appropriate ratio of wood pieces to thermoplastic resin needs to be maintained when used composite wood is recycled.
  • FIG. 1 is a schematic perspective view showing a pallet using a composite wood manufactured by a preferred embodiment of the present invention.
  • FIG. 2 is a partially cross-sectional view of the composite wood.
  • FIGS. 3A through 3F are photomicrographs of the composite wood.
  • FIG. 4 is a photomicrograph of wood powder.
  • FIG. 5 is a schematic view conceptually showing a manufacturing method of the first embodiment.
  • FIG. 6 is a process drawing showing a manufacturing process of the first embodiment.
  • FIG. 7 is a schematic view conceptually showing a manufacturing method of a second embodiment.
  • FIG. 8 is a schematic view conceptually showing a manufacturing method of a third embodiment.
  • FIGS. 1 through 6 show a preferred embodiment of composite wood relating to the present invention.
  • the preferred embodiment shows an example of applying the present invention to a pallet for transportation.
  • a pallet 10 is manufactured such that a plurality of boards 12 are arranged, passed across between two squared timbers 11 so as to nip the squared timbers and be fixed to the squared timbers 11 by nails.
  • a composite wood of this embodiment is used as the material for the squared timber 11 and the board 12 .
  • the composite wood is manufactured such that a large number of wood pieces 20 are substantially wholly dispersed and bound together by a binder resin 21 while being strongly pressed in three directions.
  • the wood pieces 20 are made of discarded wood or thinned wood.
  • the wood pieces 20 include cell walls.
  • the wood pieces 20 have a dimension of 2 mm or larger when measured by a comb tooth of a crushing machine, i.e., a dimension so as to have a three-dimensional configuration having cell walls with a plurality of small cavities therein, the plurality of small cavities substantially remain in three directions.
  • An appropriate amount of wood powder 22 with a size of 2 mm or smaller is dispersed between the wood pieces 20 .
  • the wood pieces may be equal to or larger than 2 mm and may be appropriately selected depending on the material for the wood pieces, the crushing method or the application of the composite wood. Alternatively, sliced thin wood pieces may be dispersed instead of the wood powder or together with the wood powder.
  • thermoplastic resin made of discarded plastic (or new plastic) such as polypropylene, polyethylene or polyvinyl chloride is used for the binder resin 21 .
  • a plurality of types of resins with close melting points may be mixed.
  • a single thermoplastic resin is preferably used.
  • An amount of wood pieces 20 is one time to five times, e.g., 4.5 times larger in volume ratio than that of the binder resin 21 .
  • the amount of the wood pieces 20 is appropriately selected depending on the application for the composite wood. In this case, the amount may be less than an amount of the binder resin 21 or may be five times larger than the amount of the binder resin 21 .
  • the amount of the wood pieces 20 is equal to or less than that of the binder resin 21 .
  • the amount of the wood pieces 20 is twice or more than that of the binder resin 21 .
  • the amount of the wood pieces 20 may be appropriately selected depending on the application.
  • each of a plurality of wood pieces 20 embedded within the binder resin 21 adjacent to the surface is surrounded by the binder resin 21 with small cavities at the surface being deformed in a direction of being collapsed. Further, the binder resin 21 enters into the small cavities at the surface of the wood pieces 20 .
  • the entered binder resin acts as an anchor, so that the wood pieces 20 are strongly bound to the binder resin 21 .
  • each of the plurality of wood pieces 20 exposed at a surface of the binder resin 21 is, as shown in FIGS. 3C, 3D and 3 E, surrounded by the binder resin 21 with small cavities at the surface being deformed in a direction of collapsed. Further, the binder resin 21 enters into the small cavities which are adjacent to the surface (resin side) of each of the plurality of wood pieces 20 , so that the wood pieces 20 are strongly bound to the binder resin 21 . On the other hand, the small cavities are exposed at the surface of each of the wood pieces 20 on the opposite side of the resin, and thus a water soluble adhesive can easily enter into the small cavities.
  • the binder resin 21 enters between a plurality of fine split portions and the plurality of fine split portions are deformed in a direction of being closer to each other.
  • the wood pieces 20 are further strongly bound to the binder resin 21 .
  • FIG. 4 shows a three-dimensional configuration of wood powder for reference. Referring to the wood powder, it can be seen that small cavities hardly remain.
  • discarded wood or thinned wood is crushed into chips of 2 mm or larger measured by a comb tooth of a crushing machine and then a material that contains a large amount of wood pieces 20 mixed with a small amount of wood powder 22 is prepared.
  • a binder resin 21 made of discarded plastic, e.g., polypropylene, polyethylene or polyvinyl chloride is crushed by a crushing machine into chips with an appropriate size.
  • a single binder resin may be used or a plurality of types of binder resins may be mixed.
  • a heater of a kneading machine 30 is operated and an interior of the kneading machine 30 is increased to a melting temperature of the binder resin 21 , e.g., a range of 100° C. to 300° C. Then, crushed chips of the binder resin 21 are charged into the kneading machine 30 and melted while being stirred.
  • the binder resin chips may be charged at a time or may be charged at several times (step S 10 in FIG. 6 ).
  • a heating temperature of the heater may be lower than a melting temperature of the binder resin 21 .
  • binder resin 21 When the binder resin 21 is thoroughly melted, prepared wood pieces 20 and wood powder 22 are charged into the kneading machine 30 at a particular time or several times. Then, the mixture is kneaded such that the melted binder resin 21 reliably coats the surfaces of the wood pieces 20 and the wood powder 22 (step S 11 in FIG. 6 ).
  • the temperature of the melted resin may decrease.
  • the wood pieces 20 and the wood powder 22 are preferably heated in advance to an appropriate temperature by a heater or the like.
  • the binder resin 21 is heated for a long period of time in a melted condition, the original characteristics of the resin may deteriorate.
  • the binder resin 21 is preferably thoroughly melted and then kneaded in a short period of time.
  • the time required for melting and kneading is preferably in the range of 5 to 30 minutes.
  • the wood pieces 20 and the wood powder 22 are heated to 100° C.-300° C. by the heat generated from the melted resin.
  • the water content contained in the wood pieces 20 and the wood powder 22 is evaporated and diffused from an opening in the kneading machine 30 .
  • the water content of the wood pieces 20 and the wood powder 22 is significantly decreased.
  • the kneading machine 30 is a sealed type, the kneading machine 30 must be opened for a certain period of time such that vapor is diffused.
  • molding drag 31 is set under the kneading machine 30 and the kneaded material within the kneading machine 30 is charged into the drag 31 (step S 12 in FIG. 6 ).
  • the drag 31 is moved to a press machine 32 by rails 35 .
  • the kneaded material within the drag 31 is strongly pressed from upward by a cope 34 which is set in the press machine 32 to a pressure which is larger than a pressure at a time of clamping of the resin in an ordinary molding, cooled in a pressed condition and cured (step S 13 in FIG. 6 ).
  • the drag 31 and the cope 34 are provided with a water cooling jacket. Then, the kneaded material is preferably cooled by water in a state of being strongly pressed.
  • the press machine 32 is structured such that the cope 34 is moved downward by a plurality of hydraulic cylinders or air cylinders and each of the cylinders applies a surface pressure of 19.6 ⁇ 10 ⁇ 5 Pa (20 kgf/cm 2 ).
  • the surface pressure may be appropriately set to around 58.8 ⁇ 10 ⁇ 5 Pa (60 kgf/cm 2 ) depending on the applications or materials for the composite wood.
  • a surface pressure larger than 58.8 ⁇ 10 ⁇ 5 Pa (60 kgf/cm 2 ) may be applied if desired.
  • the cope 34 is moved upward, the drag 31 is moved to a stripping machine 33 and a block or board shaped composite wood 40 with a predetermined dimension within the drag 31 is taken by utilizing a vacuum (step S 114 in FIG. 6 ).
  • the drag 31 is returned to the kneading machine 30 .
  • the block or board shaped composite wood 40 is cut by a saw into a board with a predetermined thickness or a squared timber with a predetermined dimension. By nailing these boards and squared timbers, the pallet 10 made of composite wood shown in FIG. 1 can be manufactured.
  • the recycled pallet 10 is crushed by a crushing machine or a milling machine into chips of around 30 mm measured by a comb tooth.
  • the crushed chips are charged into the kneading machine 30 , wood pieces and a binder resin are also charged therein if necessary and the binder resin is melted by a heater of the kneading machine 30 .
  • a kneaded material made of wood pieces, wood powder and binder resin is obtained.
  • a new block or board shaped composite wood can be manufactured.
  • the composite wood of this embodiment because a large number of wood pieces 20 are surrounded by the binder resin 21 and isolated with each other, thermal insulating efficiency is high. Further, even if water permeates into the wood pieces 20 which are exposed at a surface of the composite wood, the water content remains at the wood pieces 20 and does not permeate into the inner wood pieces 20 . Thus, the composite wood has, as a whole, a superior water resistance.
  • an average water absorption of water with an ordinary temperature with respect to natural wood is 1.5 to 2.7%.
  • the average water absorption of the water with the ordinary temperature with respect to the composite wood of this embodiment is equal to or less than 0.6%.
  • An average water absorption of boiling water with respect to the composite wood of this embodiment is equal to or less than 2.3%.
  • the composite wood of this embodiment hardly absorbs water and variation in dimension caused by water absorption does not occur.
  • nails can be easily entered into the composite wood and the composite wood can be planed by a planar. Any portions of the composite wood can be cut by a saw in any directions. Further, the composite wood can be adhered by a water soluble adhesive.
  • the composite wood exhibits higher mechanical strength such as higher tensile strength and higher flexural strength than ordinary wood.
  • FIG. 7 shows a second embodiment.
  • a biaxial heating and extruding machine 50 is provided (uniaxial pressing and extruding machine may be used).
  • the chips of the binder resin are charged into an opening of the biaxial heating and extruding machine 50 , the chips of the binder resin are heated by a built-in heater and conveyed forward while being kneaded by two screws. For this reason, a temperature of the resin binder is further increased. As a result, thoroughly melted binder is outputted from an exit.
  • wood pieces and wood powder are charged into the kneading machine 30 at one time or at several times.
  • the wood pieces and the wood powder are heated by a heater of the kneading machine 30 such that the water content thereof is thoroughly evaporated.
  • chips of the binder resin are charged into the biaxial heating and extruding machine 50 and the binder resin is sufficiently melted.
  • the melted binder resin is charged into the kneading machine 30 and kneaded so as to reliably coat surfaces of the wood piece and the wood powder.
  • a kneaded material is charged into the drag 31 , strongly pressed from upward by the cope 34 set at the press machine 32 and then cooled. When the kneaded material is cured, it is taken out.
  • FIG. 8 shows a third embodiment.
  • a biaxial heating and extruding machine 60 is provided in front of the kneading machine 30 (A uniaxial heating and extruding machine may be used).
  • a die 70 is mounted to an extruding opening of the biaxial heating and extruding machine 60 .
  • a plurality of receiving plates 71 are provided in front of the die 70 along a longitudinal direction.
  • a plurality pairs of transverse rollers 80 are provided between adjacent receiving plates 71 .
  • a cutter 90 is provided in front of the last transverse roller 80 .
  • chips of the binder resin are charged into the kneading machine 30 and melted. Then, the wood pieces and the wood powder are charged therein at a time or a several times such that the binder resin, the wood pieces and the wood powder are kneaded. At this time, the wood pieces and the wood powder are heated by heat from melted binder resin such that a water content thereof is thoroughly evaporated.
  • the resultant kneaded material is charged from the kneading machine 30 into an opening of the biaxial heating and extruding machine 60 .
  • the kneaded material is conveyed forward while being kneaded by the biaxial heating and extruding machine 60 and extruded from the die 70 in a plate shape.
  • the kneaded material receives a large pressure from its surrounding in the biaxial heating and extruding machine 60 and the die 70 .
  • Small cavities of several wood pieces of a plurality of wood pieces at surface sides are deformed so as to be collapsed, so that the binder resin enters into the small cavities.
  • the kneaded material When the kneaded material is extruded from the die 70 in a plate shape, the kneaded material is conveyed forward on the receiving plates 71 . At this time, a cooling air is successively blown for the kneaded material, so that a temperature of the kneaded material is gradually decreased.
  • the plate shaped kneaded material conveyed forward on the receiving plates 71 is repeatedly and strongly pressed by a plurality of transverse rollers 80 in a vertical direction.
  • a pressure of the transverse rollers 80 is set so as to be the same as in the first embodiment.
  • the last transverse roller 80 may include a heater so as to have a function of smoothing a surface of the plate shaped composite wood.
  • the composite wood of this embodiment is extruded from the die 70 and then conveyed forward while pressed in a vertical direction, a plurality of wood pieces are bound together by the binder resin while being aligned in a conveying direction. Accordingly, it is confirmed that the composite wood exhibits high resistance with respect to bending along the conveying direction.
  • the present invention is not limited to the above-described manufacturing methods and other method may be adapted.
  • a mold corresponding to a shape of product may be used and the product may be molded.
  • pressing may be performed from two directions of three directions, i.e., vertical, transverse and height directions.
  • the composite wood is not limited to a pallet.
  • the composite wood can be used for other products such as construction materials such as a plywood, construction materials such as a pole, and durable consumer goods such as a core material for furniture and a bench.

Abstract

A manufacturing method of composite wood that arbitrary amount of wood can be used, nailing is possible and a product with arbitrary configuration is easily manufactured is provided. A melted binder resin and a plurality of wood pieces are kneaded. Then, a resultant kneaded material of the wood pieces and the binder resin is strongly pressed. The binder resin is cooled while the kneaded material is strongly pressed. Alternatively, strong pressing and cooling are repeated for the kneaded material. As a result, the binder resin is cured. A resultant composite wood is cut into a board with a predetermined thickness or a bar with a predetermined dimension and assembled into a desired product. A water content of the wood pieces may be evaporated by heat from the binder resin or may be evaporated by heating the wood pieces.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 10/256,211 filed on Sep. 27, 2002, which is scheduled to issue on Jan. 11, 2005 as U.S. Pat. No. 6,841,239. This application is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a composite wood and a manufacturing method thereof. In particular, the present invention relates to a composite wood which has excellent characteristics similar to wood such as workability, excellent characteristics similar to synthetic resin such as water resistance and predetermined mechanical strength, and a manufacturing method thereof.
  • 2. Discussion of the Related Art
  • Recently, environmental issues have been attracting attention. Especially, global warming due to carbon dioxide has being realized. Forest destruction caused by cutting trees has become a serious problem. In general, a cut tree is dried and lumbered. Then, the lumbered tree is worked in a shape or a configuration depending on various applications. In this way, lumber is obtained. Nevertheless, in most cases, the lumber is finally incinerated and is not effectively utilized.
  • On the other hand, generally available polyolefin-based thermoplastic resins such as polyethylene or polypropylene exhibit lipophilic properties and inferior wettability with respect to hydrophilic wood, pulp, paper, sawdust or the like. For this reason, these materials cannot be successfully mixed together. Even if these materials are forcibly mixed, the binding force between them is weak. Thus, it is difficult to manufacture a composite wood.
  • Various methods of manufacturing composite material such as fiber board, particle board, wood block or the like by using wood material and a thermoplastic resin such as a phenol resin or an epoxy resin have been proposed. Nevertheless, as these methods use the thermoplastic resin, costs are increased.
  • There has been proposed a method of crushing discarded wood, thinned wood or wood waste into wood powder, kneading the wood powder and melted polyolefin-based discarded plastic, extruding the kneaded material and forming the same. In this way, a product is manufactured and resources can be effectively utilized.
      • Japanese Examined Patent Publication No. S59(1984)-1304
      • Japanese Unexamined Patent Publication No. S58(1983)-217552
      • Japanese Examined Patent Publication No. S59(1984)-2455
      • Japanese Unexamined Patent Publication No. S59(1984)-217744
      • Japanese Examined Patent Publication No. H3(1991)-64553
      • Japanese Unexamined Patent Publication No. S61(1986)-155436
      • Japanese Unexamined Patent Publication No. H10(1998)-71636
  • In accordance with the above-described method using the wood powder, the wood powder must be dried so as to have a predetermined amount of water content, e.g., 10% or less of the water content in order to ensure mechanical characteristics of composite wood. Thus, the manufacturing process is complicated.
  • If an amount of the wood powder is increased, the wood powder cannot be successfully kneaded with a melted resin. Actually, the amount of the wood powder is about the same as an amount of synthetic resin in volume ratio.
  • Although the wood powder is used for composite material, the composite material actually exhibits characteristics similar to a synthetic resin. Nailing, cutting by a saw, and adhesion using a water soluble adhesive are difficult. Further, applications for products which can be applied to the composite material are restricted.
  • SUMMARY OF THE INVENTION
  • In view of the aforementioned drawbacks, an object of the present invention is to provide a manufacturing method of composite wood which has excellent characteristics similar to wood such as workability, excellent characteristics similar to synthetic resin such as water resistance and a predetermined mechanical strength.
  • In accordance with a composite wood of the present invention which is manufactured by binding a plurality of wood pieces together by a binder resin, wherein each of the plurality of wood pieces has a three-dimensional configuration that a plurality of small cavities substantially remain in three directions, the entire three dimensional configuration or most of the three-dimensional configuration of each of the plurality of wood pieces is surrounded by the binder resin with the small cavities adjacent to a surface side being deformed so as to be collapsed, the binder resin enters into the small cavities at the surface side of each of the plurality of wood pieces so that the plurality of wood pieces are bound to the binder resin.
  • In accordance with an aspect of the present invention, a plurality of wood pieces each of which has a configuration such that a plurality of small cavities substantially remain are bound together by a binder resin after being strongly pressed together.
  • Since a plurality of wood pieces are surrounded by the binder resin and isolated from each other, heat insulating efficiency is high. Further, even if water enters into the wood pieces exposed at a surface, the water remains adjacent to the wood pieces and does not enter into other wood pieces. Thus, a composite wood exhibits excellent water resistance.
  • Each of the surfaces of a plurality of wood pieces is deformed by pressing the binder resin such that small cavities at the surface are collapsed. Further, the binder resin enters into such small cavities at the surface. Thus, the wood pieces are strongly bound to the binder resin. For example, the wood piece having good hydrophilic properties can be strongly bound to the binder resin. The binder resin has lipophilic properties and can be a material such as an olefin-based resin. Accordingly, even if the wood pieces are exposed at the surface of the composite wood, the wood pieces are not easily peeled. Thus, a high quality product using the composite wood can be insured.
  • Moreover, as a plurality of wood pieces are dispersed and bound together by the binder resin, the composite wood exhibits characteristics similar to wood. Nailing for the composite wood can be easily performed, and the composite wood can be planed by a planer. Because the characteristics of the composite wood do not have an orientation, the composite wood can be cut by a saw at any portion thereof in any direction. Further, as the wood pieces are exposed at the surface of the composite wood, adhesion by a water soluble adhesive can be performed utilizing such wood pieces.
  • The amount of the wood piece can be freely set. Thus, if the amount of the wood piece is large and the wood pieces are bound by the binder resin while dispersed, the composite wood exhibits high mechanical strength such as tensile strength and flexural strength. As a result, the composite wood exhibits, in addition to the aforementioned heat insulating properties and water resistance, characteristics similar to wood, characteristics similar to synthetic resin and high mechanical strength. Consequently, the composite wood can be utilized for any application including construction material such as a form, core material for furniture such as a pole or a wall, material for transportation such as a pallet and an outdoor product such as a bench.
  • For example, if natural wood is used for the material for transportation such as a pallet, fumigation or thermal treatment for exterminating harmful insects such as pine bark beetles is required in order to prevent damage to the forest in the receiving country. As a result, manufacturing costs are increased. In accordance with the present invention, the composite wood includes a plurality of wood pieces that are dispersed in a synthetic resin and therefore, the fumigation or the thermal treatment for exterminating harmful insects is not required. Further, even if the material for transportation, such as a pallet, is manufactured by using the composite wood, cost increases due to extermination of harmful insects do not occur.
  • Each of the wood pieces is surrounded by a binder resin and the wood pieces are isolated from each other. Thus, even if harmful insects such as pine bark beetles are attached to wood pieces at the surface of the composite wood during its usage, the harmful insects do not enter into the composite wood.
  • If the wood piece is crushed by a crushing machine, fine split portions are formed at fiber direction end portions of the wood piece. Because of such fine split portions, the wood piece can be even further strongly bound to the binder resin.
  • A plurality of fine split portions are formed at a part of the surface of the wood piece and a binder resin enters between a plurality of fine split portions. A plurality of fine split portions are deformed in a direction of being close together, so that a plurality of wood pieces and the binder resin are even further strongly bound together.
  • The wood piece refers to a wood piece which has a three-dimensional configuration where a plurality of small cavities substantially remain in three directions. In accordance with the present invention, the wood piece refers to a wood piece of 2 mm or larger when measured by a comb tooth of a crushing machine. A wood powder refers to a wood powder of 2 mm or smaller when measured by a comb tooth of a crushing machine or a milling machine. Further, a sliced thin piece of wood refers to as a sliced piece which has a planar configuration where a plurality of small cavities substantially remain only in two directions of three directions.
  • The wood pieces are distinguished from the wood powder. The small cavities in the wood powder and in the sliced thin pieces of wood do not maintain their three dimensional shape. The wood pieces have a three-dimensional configuration having a plurality of small cavities that maintain their three dimensional shape. A small cavity in the wood pieces mainly refers to a cell cavity formed by a cell wall. The small cavity may include a conduit cavity or a capillary cavity. The wood piece is distinguished from the wood powder and the sliced thin piece of wood from such a point of view.
  • When discarded wood is crushed, wood pieces and wood powders with various sizes are usually generated. Accordingly, a plurality of wood pieces may have a unique size. Nevertheless, a plurality of wood pieces with various sizes are preferably used in order to omit a selection step.
  • The wood powder of 2 mm or smaller when measured by a comb tooth of a crushing machine and sliced thin pieces of wood with a three-dimensional configuration having a plurality of small cavities that substantially remain only in two of the three directions may be dispersed between a plurality of wood pieces.
  • As described above, a high binding strength of the binder resin and the wood pieces can be ensured. Thus, the amount of wood pieces may be freely set relative to the amount of the binder resin. In actuality, the amount of wood pieces is preferably one to five times larger than the amount of the binder resin in a volume ratio.
  • The binder resin may be any resin and for example, widely available polypropylene, polyethylene, polyvinyl chloride and other thermoplastic resins may be used.
  • The wood pieces may be obtained from new wood. In view of effectively utilizing wood resources, however, wood pieces made of discarded wood are preferably used.
  • New resin may be used for the thermoplastic resin. In view of effectively utilizing resources, however, a resin made of discarded plastic is preferably used.
  • The composite wood of the present invention which has been used for an application may be discarded as in conventional cases. If a used composite wood is heated, the thermoplastic resin is softened and melted, and the composite wood returns to the condition it was when the wood pieces and the thermoplastic resin were kneaded. Thus, the composite wood of the present invention has excellent recycling properties and can be reused again.
  • Crushed pieces of used composite wood or parts of them may be partially or entirely used again as a plurality of wood pieces and combined with a thermoplastic resin.
  • In accordance with a manufacturing method for making composite wood according to the present invention, a plurality of wood pieces, each of which has a three-dimensional configuration having a plurality of small cavities which substantially remain in three directions, are entirely dispersed and bound together by a binder resin. They are then air cooled and strongly pressed in at least one direction of three directions so that each of the plurality of wood pieces with small cavities is surrounded by the binder resin. The small cavities are adjacent to a surface of the three-dimensional configuration or most of the three-dimensional configuration of each of the plurality of wood pieces. The small cavities are deformed so as to be collapsed when pressed and the binder resin enters into the small cavities. Therefore, the plurality of wood pieces and the binder resin are bound together. The manufacturing method comprises the steps of: heating the wood pieces such that a water content of the wood pieces is evaporated, melting the binder resin and kneading the melted binder resin and the plurality of wood pieces, pressing a kneaded material of the wood pieces and the binder resin in one to three directions, and cooling the kneaded material while maintaining a strongly pressed state or repeating the strong pressing and cooling such that the binder resin is cured.
  • In accordance with an aspect of the present invention, a plurality of wood pieces are kneaded with a binder resin. Each of the wood pieces has a three-dimensional configuration where a plurality of small cavities substantially remain. Then, a resultant kneaded material is strongly pressed in one, two or three directions, and cooled in this state. Thus, the binder resin is cured.
  • Each of the plurality of wood pieces is surrounded by the binder resin in a state that small cavities at a surface are deformed so as to be collapsed. The binder resin enters into the small cavities adjacent to the surface of each of the wood pieces. Thus, a plurality of wood pieces is strongly bound to the binder resin. As a result, a composite wood can be manufactured, which has good heat insulating properties, water resistance, characteristics similar to wood, characteristics similar to synthetic resin, high mechanical strength including high tensile strength and flexural strength.
  • Strong pressing of the kneaded material of the wood pieces and the binder resin in three directions refers to a case of charging the kneaded material into a mold with its one surface being open and strongly pressing the mold by a pressure plate from a direction of the open surface. Strong pressing is distinguished from ordinary die molding in that a pressure which is equal to or larger than the clamping force is applied.
  • Strong pressing of the kneaded material in a direction refers to the case of extruding the kneaded material in a plate shape from a kneading machine (the kneaded material may be moved from the kneading machine to an extruder and then extruded) and strongly pressing the plate-shaped kneaded material by rollers. Strong pressing in two directions refers to the case of pressing by a longitudinal roller and a transverse roller (instead of the longitudinal roller, die portions may be provided at opposite sides of the transverse roller and the kneaded material may be pressed by the die portions provided at the opposite sides with strong pressure of the transverse roller so as to obtain strong pressure from a transverse direction).
  • When the kneaded material is pressed in three directions, a molding die or a pressure plate is cooled by water and the kneaded material is cooled in a state of being strongly pressed. Nevertheless, when the kneaded material is pressed in two directions or one direction, the method which is utilized in a case of pressing in three directions cannot be used. Then, various methods for cases of pressing in two directions or one direction are studied and experiments are repeated. As a result, it was found that the same results can be obtained by using a method of repeating strong pressing and cooling.
  • A water content of the wood pieces may be evaporated by other heat sources prior to kneading with a melted binder. Alternatively, the wood pieces may be heated by heat from the binder resin when a melted resin and a plurality of wood pieces are kneaded in order to evaporate the water content of the wood pieces. Consequently, a step for drying the wood pieces is not separately required and a manufacturing process can be simplified.
  • When a used composite wood is reused, a recycled composite wood is crushed into pieces such that the three-dimensional configuration of each of the pieces remains, for example, each of the pieces has a side dimension of 25 to 35 mm. Then, the pieces are heated by an appropriate heat source such that the thermoplastic resin is melted. If it is necessary, a thermoplastic resin is added and a resultant material may be used as a kneaded material of the wood pieces and thermoplastic resin or a part of the same.
  • An appropriate ratio of wood pieces to thermoplastic resin needs to be maintained when used composite wood is recycled.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective view showing a pallet using a composite wood manufactured by a preferred embodiment of the present invention.
  • FIG. 2 is a partially cross-sectional view of the composite wood.
  • FIGS. 3A through 3F are photomicrographs of the composite wood.
  • FIG. 4 is a photomicrograph of wood powder.
  • FIG. 5 is a schematic view conceptually showing a manufacturing method of the first embodiment.
  • FIG. 6 is a process drawing showing a manufacturing process of the first embodiment.
  • FIG. 7 is a schematic view conceptually showing a manufacturing method of a second embodiment.
  • FIG. 8 is a schematic view conceptually showing a manufacturing method of a third embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, the present invention will be described in detail on a basis of embodiments shown in the drawings. FIGS. 1 through 6 show a preferred embodiment of composite wood relating to the present invention. The preferred embodiment shows an example of applying the present invention to a pallet for transportation. Referring to the drawings, a pallet 10 is manufactured such that a plurality of boards 12 are arranged, passed across between two squared timbers 11 so as to nip the squared timbers and be fixed to the squared timbers 11 by nails.
  • A composite wood of this embodiment is used as the material for the squared timber 11 and the board 12. As shown in FIG. 2, the composite wood is manufactured such that a large number of wood pieces 20 are substantially wholly dispersed and bound together by a binder resin 21 while being strongly pressed in three directions.
  • The wood pieces 20 are made of discarded wood or thinned wood. The wood pieces 20 include cell walls. The wood pieces 20 have a dimension of 2 mm or larger when measured by a comb tooth of a crushing machine, i.e., a dimension so as to have a three-dimensional configuration having cell walls with a plurality of small cavities therein, the plurality of small cavities substantially remain in three directions. An appropriate amount of wood powder 22 with a size of 2 mm or smaller is dispersed between the wood pieces 20. The wood pieces may be equal to or larger than 2 mm and may be appropriately selected depending on the material for the wood pieces, the crushing method or the application of the composite wood. Alternatively, sliced thin wood pieces may be dispersed instead of the wood powder or together with the wood powder.
  • A thermoplastic resin made of discarded plastic (or new plastic) such as polypropylene, polyethylene or polyvinyl chloride is used for the binder resin 21. A plurality of types of resins with close melting points may be mixed. In view of the deterioration of resins due to a difference between the melting points and their variation of characteristics, a single thermoplastic resin is preferably used.
  • An amount of wood pieces 20 is one time to five times, e.g., 4.5 times larger in volume ratio than that of the binder resin 21. The amount of the wood pieces 20 is appropriately selected depending on the application for the composite wood. In this case, the amount may be less than an amount of the binder resin 21 or may be five times larger than the amount of the binder resin 21. For example, when the characteristics of the binder resin 21 are mainly utilized, the amount of the wood pieces 20 is equal to or less than that of the binder resin 21. When the characteristics of the wood pieces are mainly utilized, the amount of the wood pieces 20 is twice or more than that of the binder resin 21. The amount of the wood pieces 20 may be appropriately selected depending on the application.
  • As shown in FIGS. 3A and 3B, each of a plurality of wood pieces 20 embedded within the binder resin 21 adjacent to the surface, is surrounded by the binder resin 21 with small cavities at the surface being deformed in a direction of being collapsed. Further, the binder resin 21 enters into the small cavities at the surface of the wood pieces 20. The entered binder resin acts as an anchor, so that the wood pieces 20 are strongly bound to the binder resin 21.
  • Most of the surface (resin side portion) of each of the plurality of wood pieces 20 exposed at a surface of the binder resin 21 is, as shown in FIGS. 3C, 3D and 3E, surrounded by the binder resin 21 with small cavities at the surface being deformed in a direction of collapsed. Further, the binder resin 21 enters into the small cavities which are adjacent to the surface (resin side) of each of the plurality of wood pieces 20, so that the wood pieces 20 are strongly bound to the binder resin 21. On the other hand, the small cavities are exposed at the surface of each of the wood pieces 20 on the opposite side of the resin, and thus a water soluble adhesive can easily enter into the small cavities.
  • When fine split portions are formed at fiber direction end portions of the wood pieces 20, as shown in FIG. 3F, the binder resin 21 enters between a plurality of fine split portions and the plurality of fine split portions are deformed in a direction of being closer to each other. Thus, the wood pieces 20 are further strongly bound to the binder resin 21.
  • FIG. 4 shows a three-dimensional configuration of wood powder for reference. Referring to the wood powder, it can be seen that small cavities hardly remain.
  • Next, a manufacturing method will be described with reference to FIGS. 5 and 6. In order to manufacture a composite wood of this embodiment, discarded wood or thinned wood is crushed into chips of 2 mm or larger measured by a comb tooth of a crushing machine and then a material that contains a large amount of wood pieces 20 mixed with a small amount of wood powder 22 is prepared. A binder resin 21 made of discarded plastic, e.g., polypropylene, polyethylene or polyvinyl chloride is crushed by a crushing machine into chips with an appropriate size. A single binder resin may be used or a plurality of types of binder resins may be mixed.
  • A heater of a kneading machine 30 is operated and an interior of the kneading machine 30 is increased to a melting temperature of the binder resin 21, e.g., a range of 100° C. to 300° C. Then, crushed chips of the binder resin 21 are charged into the kneading machine 30 and melted while being stirred. The binder resin chips may be charged at a time or may be charged at several times (step S10 in FIG. 6).
  • If heat is generated during melting of the binder resin 21 because of stirring of the melted resin by rotation of stirring blades, a heating temperature of the heater may be lower than a melting temperature of the binder resin 21.
  • When the binder resin 21 is thoroughly melted, prepared wood pieces 20 and wood powder 22 are charged into the kneading machine 30 at a particular time or several times. Then, the mixture is kneaded such that the melted binder resin 21 reliably coats the surfaces of the wood pieces 20 and the wood powder 22 (step S11 in FIG. 6).
  • If a large amount of wood pieces 20 and wood powder 22 is charged at a time, the temperature of the melted resin may decrease. Thus, the wood pieces 20 and the wood powder 22 are preferably heated in advance to an appropriate temperature by a heater or the like.
  • If the binder resin 21 is heated for a long period of time in a melted condition, the original characteristics of the resin may deteriorate. Thus, the binder resin 21 is preferably thoroughly melted and then kneaded in a short period of time. In accordance with the experiments of the present inventors, it was found that the time required for melting and kneading is preferably in the range of 5 to 30 minutes.
  • At the time of kneading, the wood pieces 20 and the wood powder 22 are heated to 100° C.-300° C. by the heat generated from the melted resin. Thus the water content contained in the wood pieces 20 and the wood powder 22 is evaporated and diffused from an opening in the kneading machine 30. Thus, the water content of the wood pieces 20 and the wood powder 22 is significantly decreased. When the kneading machine 30 is a sealed type, the kneading machine 30 must be opened for a certain period of time such that vapor is diffused.
  • As the wood pieces 20 and the wood powder 22 are heated by heat from the melted resin, harmful insects and their eggs contained in the wood pieces 20 and the wood powder 22 can be killed.
  • When the wood pieces 20, the wood powder 22 and the melted binder resin 21 are kneaded thoroughly, molding drag 31 is set under the kneading machine 30 and the kneaded material within the kneading machine 30 is charged into the drag 31 (step S12 in FIG. 6).
  • The drag 31 is moved to a press machine 32 by rails 35. The kneaded material within the drag 31 is strongly pressed from upward by a cope 34 which is set in the press machine 32 to a pressure which is larger than a pressure at a time of clamping of the resin in an ordinary molding, cooled in a pressed condition and cured (step S13 in FIG. 6). When cooling is performed, the drag 31 and the cope 34 are provided with a water cooling jacket. Then, the kneaded material is preferably cooled by water in a state of being strongly pressed.
  • The press machine 32 is structured such that the cope 34 is moved downward by a plurality of hydraulic cylinders or air cylinders and each of the cylinders applies a surface pressure of 19.6×10−5 Pa (20 kgf/cm2). The surface pressure may be appropriately set to around 58.8×10−5 Pa (60 kgf/cm2) depending on the applications or materials for the composite wood. A surface pressure larger than 58.8×10−5 Pa (60 kgf/cm2) may be applied if desired.
  • When a predetermined period of time elapses and the kneaded material is sufficiently cured, the cope 34 is moved upward, the drag 31 is moved to a stripping machine 33 and a block or board shaped composite wood 40 with a predetermined dimension within the drag 31 is taken by utilizing a vacuum (step S114 in FIG. 6). The drag 31 is returned to the kneading machine 30.
  • The block or board shaped composite wood 40 is cut by a saw into a board with a predetermined thickness or a squared timber with a predetermined dimension. By nailing these boards and squared timbers, the pallet 10 made of composite wood shown in FIG. 1 can be manufactured.
  • When the used pallet 10 or another product made of the composite wood is recycled and reused, the recycled pallet 10 is crushed by a crushing machine or a milling machine into chips of around 30 mm measured by a comb tooth. The crushed chips are charged into the kneading machine 30, wood pieces and a binder resin are also charged therein if necessary and the binder resin is melted by a heater of the kneading machine 30. As a result, a kneaded material made of wood pieces, wood powder and binder resin is obtained. Then, as described above, a new block or board shaped composite wood can be manufactured.
  • In accordance with the composite wood of this embodiment, because a large number of wood pieces 20 are surrounded by the binder resin 21 and isolated with each other, thermal insulating efficiency is high. Further, even if water permeates into the wood pieces 20 which are exposed at a surface of the composite wood, the water content remains at the wood pieces 20 and does not permeate into the inner wood pieces 20. Thus, the composite wood has, as a whole, a superior water resistance.
  • In accordance with a water absorption test for water with an ordinary temperature and boiling water performed by the present inventors, an average water absorption of water with an ordinary temperature with respect to natural wood is 1.5 to 2.7%. On the other hand, the average water absorption of the water with the ordinary temperature with respect to the composite wood of this embodiment is equal to or less than 0.6%. An average water absorption of boiling water with respect to the composite wood of this embodiment is equal to or less than 2.3%. Compared to the natural wood, the composite wood of this embodiment hardly absorbs water and variation in dimension caused by water absorption does not occur.
  • In accordance with the present inventors' research of characteristics similar to wood, the following points are confirmed. Namely, nails can be easily entered into the composite wood and the composite wood can be planed by a planar. Any portions of the composite wood can be cut by a saw in any directions. Further, the composite wood can be adhered by a water soluble adhesive.
  • In accordance with research about a mechanical strength of the composite wood by the present inventors, it is confirmed that the composite wood exhibits higher mechanical strength such as higher tensile strength and higher flexural strength than ordinary wood.
  • FIG. 7 shows a second embodiment. Referring to FIG. 7, the same portions as those of FIG. 5 are denoted by the same reference numerals. In accordance with the second embodiment, a biaxial heating and extruding machine 50 is provided (uniaxial pressing and extruding machine may be used). When the chips of the binder resin are charged into an opening of the biaxial heating and extruding machine 50, the chips of the binder resin are heated by a built-in heater and conveyed forward while being kneaded by two screws. For this reason, a temperature of the resin binder is further increased. As a result, thoroughly melted binder is outputted from an exit.
  • When a composite wood is manufactured by using a system of this embodiment, wood pieces and wood powder are charged into the kneading machine 30 at one time or at several times. The wood pieces and the wood powder are heated by a heater of the kneading machine 30 such that the water content thereof is thoroughly evaporated. On the other hand, chips of the binder resin are charged into the biaxial heating and extruding machine 50 and the binder resin is sufficiently melted. Then, the melted binder resin is charged into the kneading machine 30 and kneaded so as to reliably coat surfaces of the wood piece and the wood powder. Thereafter, as in the first embodiment, a kneaded material is charged into the drag 31, strongly pressed from upward by the cope 34 set at the press machine 32 and then cooled. When the kneaded material is cured, it is taken out.
  • FIG. 8 shows a third embodiment. Referring to FIG. 8, the same portions as those of FIGS. 5 and 7 are denoted by the same reference numerals. A biaxial heating and extruding machine 60 is provided in front of the kneading machine 30 (A uniaxial heating and extruding machine may be used). A die 70 is mounted to an extruding opening of the biaxial heating and extruding machine 60. A plurality of receiving plates 71 are provided in front of the die 70 along a longitudinal direction. A plurality pairs of transverse rollers 80 are provided between adjacent receiving plates 71. A cutter 90 is provided in front of the last transverse roller 80.
  • When a composite wood is manufactured by using a system of this embodiment, chips of the binder resin are charged into the kneading machine 30 and melted. Then, the wood pieces and the wood powder are charged therein at a time or a several times such that the binder resin, the wood pieces and the wood powder are kneaded. At this time, the wood pieces and the wood powder are heated by heat from melted binder resin such that a water content thereof is thoroughly evaporated.
  • When a kneaded material is thoroughly kneaded, the resultant kneaded material is charged from the kneading machine 30 into an opening of the biaxial heating and extruding machine 60. The kneaded material is conveyed forward while being kneaded by the biaxial heating and extruding machine 60 and extruded from the die 70 in a plate shape. The kneaded material receives a large pressure from its surrounding in the biaxial heating and extruding machine 60 and the die 70. Small cavities of several wood pieces of a plurality of wood pieces at surface sides are deformed so as to be collapsed, so that the binder resin enters into the small cavities.
  • When the kneaded material is extruded from the die 70 in a plate shape, the kneaded material is conveyed forward on the receiving plates 71. At this time, a cooling air is successively blown for the kneaded material, so that a temperature of the kneaded material is gradually decreased. The plate shaped kneaded material conveyed forward on the receiving plates 71 is repeatedly and strongly pressed by a plurality of transverse rollers 80 in a vertical direction. Thus, the small cavities of wood pieces adjacent to the surface are deformed so as to be collapsed and the binder resin enters into the small cavities. A pressure of the transverse rollers 80 is set so as to be the same as in the first embodiment.
  • When the plate shaped kneaded material passes the last transverse roller 80, a temperature of the kneaded material is decreased to a predetermined temperature by action of the cooling air. In this way, the plate shaped kneaded material is thoroughly cured and finally cut by the cutter 90 so as to have a predetermined length. As a result, a plate shaped composite wood can be obtained. The last transverse roller 80 may include a heater so as to have a function of smoothing a surface of the plate shaped composite wood.
  • As the composite wood of this embodiment is extruded from the die 70 and then conveyed forward while pressed in a vertical direction, a plurality of wood pieces are bound together by the binder resin while being aligned in a conveying direction. Accordingly, it is confirmed that the composite wood exhibits high resistance with respect to bending along the conveying direction.
  • The present invention is not limited to the above-described manufacturing methods and other method may be adapted. For example, a mold corresponding to a shape of product may be used and the product may be molded. Alternatively, pressing may be performed from two directions of three directions, i.e., vertical, transverse and height directions.
  • An application for the composite wood is not limited to a pallet. The composite wood can be used for other products such as construction materials such as a plywood, construction materials such as a pole, and durable consumer goods such as a core material for furniture and a bench.

Claims (3)

1. A manufacturing method of composite wood that a plurality of wood pieces each of which has a three-dimensional configuration that a plurality of small cavities substantially remain in three vertical directions are entirely dispersed and bound together by a binder resin while being strongly pressed in at least one direction of three vertical directions, each of the plurality of wood pieces is surrounded by the binder resin with small cavities at a surface side of at least some of its three-dimensional configuration of each of the plurality of wood pieces being deformed so as to be collapsed and the binder resin enters into the small cavities at the surface side of each of the plurality of wood pieces, so that the plurality of wood pieces and the binder resin are bound together, the manufacturing method comprising the steps of:
heating the wood pieces such that a water content of the wood pieces is evaporated, melting the binder resin and kneading the melted binder resin and the plurality of wood pieces; and
pressing a kneaded material of the wood pieces and the binder resin in a predetermined direction, cooling the kneaded material while at least one of maintaining a pressed state and repeating said steps of pressing and cooling such that the binder resin is cured.
2. The manufacturing method of composite wood according to claim 1, wherein when the melted binder resin and the plurality of wood pieces are kneaded, the wood pieces are heated by heat from the wood pieces binder resin in order to evaporate a water content of the wood pieces.
3. The manufacturing method of composite wood according to claim 1, further comprising the step of crushing used composite wood into chips for use in said step of heating.
US11/028,648 2001-09-28 2005-01-05 Composite wood and manufacturing method thereof Abandoned US20050116377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/028,648 US20050116377A1 (en) 2001-09-28 2005-01-05 Composite wood and manufacturing method thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2001300442 2001-09-28
JP2001-300428 2001-09-28
JP2001300428 2001-09-28
JP2001-300442 2001-09-28
JP2002-90752 2002-03-28
JP2002090752 2002-03-28
JP2002090753 2002-03-28
JP2002-90753 2002-03-28
US10/256,211 US6841239B2 (en) 2001-09-28 2002-09-27 Composite wood and manufacturing method thereof
US11/028,648 US20050116377A1 (en) 2001-09-28 2005-01-05 Composite wood and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/256,211 Division US6841239B2 (en) 2001-09-28 2002-09-27 Composite wood and manufacturing method thereof

Publications (1)

Publication Number Publication Date
US20050116377A1 true US20050116377A1 (en) 2005-06-02

Family

ID=27482594

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/256,211 Expired - Fee Related US6841239B2 (en) 2001-09-28 2002-09-27 Composite wood and manufacturing method thereof
US11/028,648 Abandoned US20050116377A1 (en) 2001-09-28 2005-01-05 Composite wood and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/256,211 Expired - Fee Related US6841239B2 (en) 2001-09-28 2002-09-27 Composite wood and manufacturing method thereof

Country Status (6)

Country Link
US (2) US6841239B2 (en)
EP (1) EP1297933B1 (en)
KR (1) KR20030027830A (en)
CN (1) CN100406218C (en)
AT (1) ATE385882T1 (en)
DE (1) DE60224965T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045642B2 (en) 2011-11-30 2015-06-02 Faurecia Interieur Industrie Manufacturing a composite material comprising lignocellulosic fibers in a plastic matrix
US20150274357A1 (en) * 2014-04-01 2015-10-01 Oria Collapsibles, Llc Article, method and assembly line for creating a recyclable and extrudable pallet article with wood and plastic components

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406218C (en) * 2001-09-28 2008-07-30 全能株式会社 Composite timber and its prepn process
PT2101983T (en) 2006-11-15 2016-07-14 Rust & Mitschke Entex Mixture of plastic with wood particles
US9193106B2 (en) 2006-11-15 2015-11-24 Entex Rust & Mitschke Gmbh Blend of plastics with wood particles
DE102006054204A1 (en) * 2006-11-15 2008-05-21 Entex Rust & Mitschke Gmbh Production of mixtures from wood particles and/or other plant particles with plastic for the production of wood substitutes in an extruder, comprises liquefying the plastic before mixing with the wood and/or plant particles
DE102007049505A1 (en) 2007-10-15 2009-04-16 Novo-Tech Gmbh & Co. Kg Method for manufacturing concrete subsection, involves expending framework as reusable or permanent framework by formwork panel made of extruded, sprayed or pressed wood or plant or plastic mixtures
US20110203724A1 (en) * 2008-05-14 2011-08-25 Guardian Building Products Composite Wood Products and Methods for Manufacturing the Same
US20100015456A1 (en) * 2008-07-16 2010-01-21 Eastman Chemical Company Thermoplastic formulations for enhanced paintability toughness and melt process ability
DE102008058048A1 (en) 2008-11-18 2010-08-05 Entex Rust & Mitschke Gmbh Producing mixture of wood particles and/or plant particles, comprises providing particles into filling portion, providing plastic particles into plant portion and liquefying to plastic melt, mixing melt with wood particles and homogenizing
CN102225568B (en) * 2010-07-30 2013-11-06 梁明祥 Process for processing wood plastic environmentally-friendly board and special equipment thereof
FI124380B (en) * 2011-11-15 2014-07-31 Upm Kymmene Corp Composite product, method of manufacture of a composite product and its use, and final product
US8865261B2 (en) 2012-12-06 2014-10-21 Eastman Chemical Company Extrusion coating of elongated substrates
US9920526B2 (en) 2013-10-18 2018-03-20 Eastman Chemical Company Coated structural members having improved resistance to cracking
FI127576B (en) * 2017-03-02 2018-09-14 Sulapac Oy Novel materials for packaging
US11007697B1 (en) 2017-10-25 2021-05-18 Green Bay Decking, LLC Composite extruded products and systems for manufacturing the same
DE102019000610A1 (en) 2018-08-21 2020-02-27 Entex Rust & Mitschke Gmbh Mixture of plastic with wood particles
WO2024062415A1 (en) * 2022-09-23 2024-03-28 Imal S.R.L. Process for the manufacture of boards from reclaimed wooden material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779843A (en) * 1971-01-21 1973-12-18 H Knapp Continuous process for producing consolidated lignocellulosic material
US3852387A (en) * 1970-04-24 1974-12-03 James W White Double belt plastic sheet forming and take-off method
US3885901A (en) * 1973-04-04 1975-05-27 Siempelkamp Gmbh & Co Continuous prepress for fiberboard plant
US4334468A (en) * 1979-05-31 1982-06-15 Sandvik Conveyor Gmbh Double belt press
US5518677A (en) * 1993-02-12 1996-05-21 Andersen Corporation Advanced polymer/wood composite pellet process
US5851281A (en) * 1997-06-17 1998-12-22 K & H, Inc. Waste material composites and method of manufacture
JPH11277509A (en) * 1998-03-30 1999-10-12 Mitsubishi Motors Corp Production of board made of thermoplastic resin containing wooden material
JP2001113586A (en) * 1999-10-20 2001-04-24 Sekisui Chem Co Ltd Method of manufacturing thermoplastic resin molding
US6344101B1 (en) * 1998-08-13 2002-02-05 Maschinfabrik J. Dieffenbacher Gmbh & Co. Method for producing boards of wood-based materials with structured and smooth surfaces using a continuously operating embossing press
US6638612B2 (en) * 2000-09-18 2003-10-28 James D. Jones Thermoplastic composite wood material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591304B2 (en) 1975-08-23 1984-01-11 イデミツセキユカガク カブシキガイシヤ synthetic resin composition
JPS592455B2 (en) 1977-03-04 1984-01-18 住友化学工業株式会社 polypropylene molding material
JPS58217552A (en) 1982-06-12 1983-12-17 Kasai Kogyo Co Ltd Composite resin composition
JPS59217744A (en) 1983-05-25 1984-12-07 Kasai Kogyo Co Ltd Wood-filled composite resin composition
JPS61155436A (en) 1984-12-28 1986-07-15 Tokuyama Soda Co Ltd Composite resin composition
CN1043899A (en) * 1989-09-27 1990-07-18 庞亚民 Wood plastics and waste plastics compound artificial board
US5096046A (en) * 1990-03-14 1992-03-17 Advanced Environmental Recycling Technologies, Inc. System and process for making synthetic wood products from recycled materials
KR950005476A (en) * 1993-08-12 1995-03-20 이헌중 Preparation of substitute wood and plywood using waste PE resin and sawdust
CA2135267C (en) * 1994-02-10 2008-02-26 Sadao Nishibori Synthetic wood meal, method and apparatus for manufacturing the same; synthetic wood board including the synthetic wood meal, method and apparatus of extrusion molding therefor
US5633299A (en) * 1994-11-01 1997-05-27 Shell Oil Company Wood composite
US5635125A (en) * 1995-02-24 1997-06-03 Re-New Wood, Incorporated Method for forming simulated shake shingles
US5746958A (en) * 1995-03-30 1998-05-05 Trex Company, L.L.C. Method of producing a wood-thermoplastic composite material
KR960040589A (en) * 1995-05-12 1996-12-17 박동현 Manufacturing method of molded product using waste such as wood and plastic
US5851469A (en) * 1995-12-27 1998-12-22 Trex Company, L.L.C. Process for making a wood-thermoplastic composite
JP3602272B2 (en) 1996-08-30 2004-12-15 アイン・エンジニアリング株式会社 Synthetic wood
KR20010017505A (en) * 1999-08-12 2001-03-05 황택성 Manufacture method of artificial wood
KR100376557B1 (en) * 2000-05-16 2003-03-17 이문재 The manufacturing method of thermal pressurized resine product containing wood powder
CN100406218C (en) * 2001-09-28 2008-07-30 全能株式会社 Composite timber and its prepn process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852387A (en) * 1970-04-24 1974-12-03 James W White Double belt plastic sheet forming and take-off method
US3779843A (en) * 1971-01-21 1973-12-18 H Knapp Continuous process for producing consolidated lignocellulosic material
US3885901A (en) * 1973-04-04 1975-05-27 Siempelkamp Gmbh & Co Continuous prepress for fiberboard plant
US4334468A (en) * 1979-05-31 1982-06-15 Sandvik Conveyor Gmbh Double belt press
US5518677A (en) * 1993-02-12 1996-05-21 Andersen Corporation Advanced polymer/wood composite pellet process
US5851281A (en) * 1997-06-17 1998-12-22 K & H, Inc. Waste material composites and method of manufacture
JPH11277509A (en) * 1998-03-30 1999-10-12 Mitsubishi Motors Corp Production of board made of thermoplastic resin containing wooden material
US6344101B1 (en) * 1998-08-13 2002-02-05 Maschinfabrik J. Dieffenbacher Gmbh & Co. Method for producing boards of wood-based materials with structured and smooth surfaces using a continuously operating embossing press
JP2001113586A (en) * 1999-10-20 2001-04-24 Sekisui Chem Co Ltd Method of manufacturing thermoplastic resin molding
US6638612B2 (en) * 2000-09-18 2003-10-28 James D. Jones Thermoplastic composite wood material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045642B2 (en) 2011-11-30 2015-06-02 Faurecia Interieur Industrie Manufacturing a composite material comprising lignocellulosic fibers in a plastic matrix
US20150274357A1 (en) * 2014-04-01 2015-10-01 Oria Collapsibles, Llc Article, method and assembly line for creating a recyclable and extrudable pallet article with wood and plastic components

Also Published As

Publication number Publication date
DE60224965T2 (en) 2009-01-29
EP1297933A1 (en) 2003-04-02
DE60224965D1 (en) 2008-03-27
CN1432457A (en) 2003-07-30
KR20030027830A (en) 2003-04-07
ATE385882T1 (en) 2008-03-15
CN100406218C (en) 2008-07-30
US20030064238A1 (en) 2003-04-03
EP1297933B1 (en) 2008-02-13
US6841239B2 (en) 2005-01-11

Similar Documents

Publication Publication Date Title
US6841239B2 (en) Composite wood and manufacturing method thereof
AU668326B2 (en) Method for forming articles of reinforced composite material
US6024908A (en) Method of molding a thermostat polymer door skin, shelf stable thermostat molding composition, and door assembly using the door skins so formed
US4751131A (en) Waferboard lumber
US5441787A (en) Composite wood product and method for manufacturing same
EP1498241B1 (en) Method for manufacturing a shaped body and a shaped body
US20020011307A1 (en) Explosively-split fragments obtained by water-vapor explosion of wooden source materials, wooden material containing such fragments as its aggregate, their manufacturing methods and machines
KR0164926B1 (en) High-strength composite sheet and its manufacture
TW539607B (en) Loading and unloading pallet, forming material and method of producing it
JP3680172B2 (en) Composite wood and method for producing the same
US6895723B2 (en) Compressed wood waste structural I-beam
US7004215B2 (en) Compressed wood waste structural beams
CA1281528C (en) Waferboard lumber
JPH07195313A (en) Method and device for manufacture of split piece laminated wood
USRE34283E (en) Waferboard lumber
FI92566C (en) Product, method and apparatus for the manufacture of plate-like and strip-like products
JP2011020430A (en) Woody composite material and method for manufacturing the same
KR200170752Y1 (en) Synthetic timber exploitable heat plasticity waste plastic
US7713460B2 (en) Method and apparatus for manufacturing of plastic-based composite product
JPH11156819A (en) Manufacture of particle board
JP2913016B2 (en) Building material composed of wood and mortar, method of manufacturing the same and manufacturing apparatus
JP4012419B2 (en) Wood chip oriented laminate
US20200269525A1 (en) Hybrid bamboo carbon fiber material and associated methods
CA3161417A1 (en) Composite, recycled-plastic, wood-waste, fiberboard-alternative panel
JP2004322547A (en) Manufacturing method for wooden material piece laminated mat

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALMIGHTY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HASEGAWA, KATUYUKI;REEL/FRAME:020260/0058

Effective date: 20071101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION