US20050113844A1 - System for packaging and handling an implant and method of use - Google Patents

System for packaging and handling an implant and method of use Download PDF

Info

Publication number
US20050113844A1
US20050113844A1 US10/999,093 US99909304A US2005113844A1 US 20050113844 A1 US20050113844 A1 US 20050113844A1 US 99909304 A US99909304 A US 99909304A US 2005113844 A1 US2005113844 A1 US 2005113844A1
Authority
US
United States
Prior art keywords
implant
applicator
tool
storage
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/999,093
Inventor
Alok Nigam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Revision Optics Inc
Original Assignee
Intralens Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intralens Vision Inc filed Critical Intralens Vision Inc
Priority to US10/999,093 priority Critical patent/US20050113844A1/en
Publication of US20050113844A1 publication Critical patent/US20050113844A1/en
Assigned to REVISION OPTICS, INC. reassignment REVISION OPTICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTRALENS VISION, INC.
Assigned to ANAMED, INC. reassignment ANAMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIGAM, ALOK
Assigned to INTRALENS VISION, INC. reassignment INTRALENS VISION, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ANAMED, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0095Packages or dispensers for prostheses or other implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/148Implantation instruments specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery

Definitions

  • the present invention relates to a system for packaging, handling and applying implants. Additionally, this invention relates to a method for introducing a corneal implant to the corneal surface.
  • Corneal implants are especially susceptible to the above described problem. Corneal implants are used to correct visual disorders such as Myopia or near-sightedness, Hyperopia or far-sightedness, Presbyopia or difficulty in accommodating a change in focus, and Astigmatism. To correct these disorders, the implant is introduced into the body of the cornea in known ways, such as after a flap is formed and an under surface of the cornea is exposed. The implant, changes the shape of the cornea and alters its refractive power. These implants are generally made of various types of hydrogels, but can include other polymers, tissue implants, or the like. In the past, storing the corneal implant required free-floating the implant in a volume of storage fluid contained within a storage container.
  • a corneal implant To retrieve the implant, one had to first locate the implant within the fluid, and then remove the implant using a filter device or sequestering tool.
  • locating the implant is complicated by both the size and transparency of the implant.
  • a corneal implant generally has a diameter of about 4.0 to 7.0 mm and a center that is normally fabricated having a thickness ranging from 25 to 50 microns. Due this minuscule size, physically grasping the implant from the storage fluid using tweezers, or the like, is simply not practical.
  • the present invention relates to an implant packaging and handling system which includes a storage bottle having an opening to receive a volume of implant storage fluid, and an implant holding tool designed to retain the implant in fluid communication with the implant storage fluid.
  • a storage bottle stopper holds the implant holding tool, so that a portion of the implant holding tool is immersed within the storage fluid upon placement of the stopper into the bottle, placing the implant in fluid communication with the storage fluid.
  • the implant holding tool includes a retaining member detachably mounted to an implant applicator tool. Together they define an enclosure for retaining the implant in a secure, known storage position.
  • the implant applicator tool has an arcuate-shaped applicator surface with a plurality of openings.
  • the arcuate shaped surface is contoured to correspond to the curvature of the cornea surface, which aids in the proper implantation of the implant to the cornea surface.
  • the applicator surface has one or more recessed surfaces designed to hold and center the implant on the applicator surface.
  • One or more recessed grooves are also provided to allow fluid to flow between the implant and the applicator surface.
  • the openings have numerous advantages.
  • the openings provide continuous fluid communication between a retained implant and the implant storage fluid. Upon removal from storage, the openings enable the user to unfold and orient the implant by gently passing fluid through the openings so as to float the implant into a desired central position on the applicator tool surface. Once so positioned, the user is then able to aspirate the fluid/from between the implant and the applicator tool, thereby resting the implant firmly against the applicator tool surface.
  • the applicator tool also includes a central opening providing the user with a reference point for centering the applicator surface, and thus, the implant onto the surface of the cornea.
  • the present invention also relates to a method of implanting a corneal implant using the implant packaging and handling system.
  • the initial step includes surgically preparing the cornea surface for implantation.
  • the implant and implant holding tool are retrieved from the storage bottle, and the retaining member removed so as to provide an applicator tool together with implant.
  • the applicator can then be attached to a handle for ease of use.
  • the implant is then properly aligned on the applicator tool and deposited onto the surgically prepared cornea surface. Finally, the cornea is restored.
  • FIG. 1 is a partial sectional view of the implant packaging and handling system of the present invention
  • FIG. 2 is a schematic representation of the implant applicator tool fastened to a retaining member, providing the implant storage tool of the present invention
  • FIG. 3 is a schematic representation of the implant applicator tool of the present invention.
  • FIG. 4 is a schematic representation of the retaining member adapted to form an implant retaining enclosure when fastened to the implant applicator tool of FIG. 3 ;
  • FIG. 5 is a bottom view of a stopper used to seal the storage bottle of the present invention, showing the implant storage tool engagement slot in an open position;
  • FIG. 6 is a cross-sectional view through the stopper of FIG. 5 taken on line 10 - 10 ;
  • FIG. 7 is a partial sectional view of the bottle stopper positioned within the storage bottle, showing the implant storage tool engagement slot in a closed position;
  • FIG. 8 is a cross-section at view through the stopper and storage bottle of FIG. 7 taken on line 20 - 20 ;
  • FIG. 9 is a schematic illustration of the implant applicator tool secured to a handle
  • FIG. 10 is a side view of the implant applicator tool secured to a handle, showing the curved surface of the implant applicator tool, which corresponds with the contour of the cornea surface;
  • FIG. 11 is a schematic representation of an implant applicator tool having a central opening for aligning the applicator tool with the visual or pupillary axis of the eye;
  • FIG. 12 is a schematic representation of an implant applicator tool having a recessed surface defining a central opening and adjacent alignment slot;
  • FIG. 13 is a schematic representation of a retaining member adapted to engage with the applicator tools shown in FIGS. 9 and 12 ;
  • FIGS. 14 a , 14 b , 14 c , 14 d and 14 e are cross-sectional views of a human eye illustrating the method of introducing an implant to the cornea surface using the implant applicator tool of the present invention.
  • FIGS. 1 through 14 e of the drawings show an implant packaging and handling system 10 of the present invention.
  • the preferred system 10 includes a cylindrical storage bottle 11 for holding implant storage fluid (not indicated).
  • the bottle 11 is sealed by a stopper 12 having an upper cap portion 14 and a plug portion 13 , which is adapted to detachably couple to an implant storage tool 15 .
  • a protective safety seal 17 provides tamper resistance and maintains the stopper 12 in sealed relation to the bottle 11 .
  • FIGS. 2 through 4 show a retaining member 16 and implant applicator tool 19 , which together define the implant storage tool 15 .
  • the retaining member 16 is adapted to detachably engage the implant applicator tool 19 , thereby defining an enclosure 41 operable to retain the implant.
  • Both the retaining member 16 and the applicator tool 19 include a plurality of openings 18 and 22 , respectively, which allow storage fluid to communicate into the implant retaining enclosure 41 .
  • the implant retaining enclosure 41 is located on the end of storage tool 15 that is distal to the stopper 12 such that the enclosure 41 is immersed in implant storage fluid when the storage tool 15 is inserted into the bottle 11 .
  • the enclosure 41 of storage tool 15 holds the implant in the storage fluid, while also providing a user with ready access to the implant.
  • the user simply removes the stopper 12 , thereby removing the storage tool 15 from the bottle 11 , and detaches the retaining member 16 from the applicator 19 to access the implant.
  • applicator tool 19 has a handle attachment arm 20 connected through a body portion 21 to an implant applicator member 45 .
  • the body portion 21 is preferably shaped to provide a broad handling surface.
  • FIGS. 2 and 3 show a body portion 21 having a broad elliptical shape, which allows a user to more easily manipulate the applicator tool 19 .
  • the implant applicator member 45 includes an applicator surface 42 having a plurality of openings 22 to provide fluid communication between the applicator surface 42 and an implant resting thereon. Openings 22 further allow the user to release the implant from the applicator surface 42 . More particularly, the user can impart force upon the implant by passing through the opening 22 either a flow of fluid or a cantilever so as to forcibly separate the implant from the applicator member surface 42 (as is shown in FIG. 14 ).
  • the applicator surface 42 has a central opening 23 to help the user align the applicator surface 42 along the visual or optical axis of the eye.
  • the centrally positioned opening 23 defines a circular opening having a diameter greater than the diameter of the surrounding openings 22 . In this way, the user is provided with a central point of reference, which enables the user to align the applicator surface 42 with the optical axis of the eye, and thus, properly position the implant.
  • the applicator tool 19 may include an applicator alignment notch 24 positioned integral to the surface 42 of the applicator member 45 .
  • FIGS. 3 and 12 show the notch 24 extending inwardly towards the centrally positioned alignment opening 23 .
  • the notch 24 is used to align the implant on the cornea surface 39 , as well as release the implant from the applicator surface 42 .
  • the notch 24 is dimensioned to allow a cantilever, or like instrument, to pass through the notch, thereby allowing the user to impart force against an implant held on the applicator surface 42 .
  • the user lifts the application tool 19 away from the cornea surface while simultaneously imparting downward force on the implant through the notch 24 so as to release the implant.
  • notch positionings can be incorporated into the applicator member 45 without departing from the scope of the present invention.
  • the retaining member 16 has an outer surface 44 defining a plurality of openings 18 that provide fluid communication to an implant retained by the enclosure 41 .
  • FIG. 4 shows a retaining member 16 disengaged from the applicator tool 19 shown in FIG. 3 .
  • the retaining member 16 is provided with attachment tabs 26 a - c adapted to insert into corresponding attachment slots 25 a - c integral to the applicator tool 19 .
  • the retaining member 16 is attached to the applicator tool 19 by simply inserting the tabs 26 a - c into the respective corresponding slots 25 a - c , and then positioning the bottom surfaces 28 of retaining member side walls 43 against the applicator surface 42 .
  • at least one side wall 43 has an overlapping flexible portion 27 adapted to bend about the distal edge of the applicator surface 42 , thereby securely clamping the retaining member 16 to the applicator tool 19 .
  • the user merely unclamps the flexible portion 27 by bending it away from the applicator tool 19 , and lifting the member 16 so as to disengage tabs 26 a - c from slots 25 a - c.
  • FIGS. 9, 11 , 12 and 13 an alternative attachment tab 26 and attachment slot 25 can also be used with the present invention.
  • FIG. 12 shows an applicator tool 19 having four separate attachment slots 25
  • FIG. 3 shows an applicator tool 19 having three separate attachment slots 25 a - c .
  • attachment slots 25 and tabs 26 can be incorporated into the applicator tool 19 and retaining member 16 without deviating from the scope of the present invention.
  • a preferred embodiment of system 10 includes a bottle stopper 12 adapted to receive and securely hold the handle attachment arm 20 of the applicator tool 19 .
  • the stopper 12 preferably includes an upper cap portion 14 and a plug portion 13 dimensioned to insertably seal the bottle 11 .
  • FIG. 5 shows the stopper plug portion 13 , which is not inserted into a storage bottle opening 46 (shown in FIG. 8 ).
  • FIG. 7 shows the plug 13 inserted into the storage bottle opening 46 .
  • plug portion 13 when removed from bottle opening 46 , adopts an elliptical shape by distending in an outwardly direction along line the 10 - 10 .
  • stopper 12 inserting stopper 12 into bottle opening 46 causes the outer diameter of plug portion 13 to conform to the inner diameter of the inner bottle surface 34 . In this way, the plug portion 13 becomes inwardly compressed along line 30 - 30 .
  • FIGS. 6 and 8 cross-section views are shown of stopper plug portion 13 in an out-of-bottle elliptical shape and an in-bottle compressed circular shape, respectively. The utility of this embodiment is described in more detail below.
  • An engagement slot 32 is located integral to plug portion 13 in an orientation perpendicular to line 10 - 10 . As illustrated in FIGS. 5 through 8 , the engagement slot 32 opens or closes in response to either the removal or insertion of the plug portion 13 from the bottle opening 46 , respectively. Referring to FIGS. 5 and 6 , the engagement slot 32 is shown in an open position. More particularly, when the user removes the stopper 12 from bottle opening 46 , the plug portion 13 adopts an unrestrained elliptical shape by distending outwardly along the line 10 - 10 for opening slot 32 . In this way, the engagement arm 20 of the applicator tool 19 , which is held by the engagement the slot 32 , is easily separated from slot 32 once the stopper 12 is removed from the storage bottle 11 .
  • FIGS. 7 and 8 show the engagement slot 32 adopting a closed conformation upon insertion of the stopper 12 into the bottle opening 46 .
  • insertion of the stopper 12 into the bottle 11 causes the outer surface 47 of the plug portion 13 to conform to the inner diameter of the bottle opening surface 34 , which imparts force in the direction of the line 30 - 30 .
  • the slot 32 is forced into a tight, closed conformation.
  • the engagement arm 20 of the applicator tool 19 is held by a slot 32 in a secure position when the stopper 12 is inserted into the bottle 11 .
  • the stopper 12 is preferably made of silicone rubber, or other elastomeric material.
  • FIGS. 9 and 10 show an applicator tool 19 attached to a handle 30 .
  • the applicator tool attachment arm 20 detachably mounts to the handle 30 through a handle fastener 31 . It will be understood by those skilled in the art that numerous types of handles and handle fasteners are available that can be used with the applicator tool 19 without departing from the scope of the present invention.
  • the implant applicator member 45 has a curved applicator surface 42 , which corresponds to the curvature of the cornea implant site. This curved surface allows the user to position the curved applicator surface 42 evenly across the cornea surface, enabling the implant to be more evenly deposited onto the cornea surface.
  • each applicator member 45 is shown having a recessed applicator surface 29 .
  • the recessed surface 29 is preferably circular, thereby allowing a substantially circular implant to be centrally positioned on the applicator member 45 .
  • the central opening 23 which is centered relative to the perimeter of the circular recess 29 , provides the user with a reference point for alignment of the applicator member 45 with the pupil diameter. In this way, the implant can be properly aligned on the cornea surface.
  • FIG. 11 shows an applicator tool 19 having an applicator surface 42 with recessed grooves 29 to allow fluid to flow between the applicator surface 42 and an implant supported on the surface 42 .
  • FIG. 11 shows an applicator tool 19 having an applicator surface 42 with recessed grooves 29 to allow fluid to flow between the applicator surface 42 and an implant supported on the surface 42 .
  • alternatively dimensioned recesses and grooves can be formed in the applicator surface 42 without departing from the scope of the present invention.
  • the implant may come to rest in various folded and bunched conformations. Once the retaining member 16 is removed, the user can manipulate the implant into its desired conformation by gently passing a volume of fluid through the openings 22 and 23 .
  • the implant will overlap a small volume of fluid, thereby allowing the user to floatingly realign the implant on the applicator surface 42 .
  • the fluid can be removed by simply touching the underside of the applicator member 45 with a cotton swab, or like absorbent material.
  • FIGS. 12 and 13 show an alternative embodiment of an applicator tool 19 and a retaining member 16 , respectively.
  • the retaining member 16 includes four attachment tabs 26 that detachably insert into four corresponding applicator tool attachment slots 25 .
  • the tool 19 and the retaining member 18 include fluid communication openings 22 and 18 , respectively. It should be understood that various combinations of tabs, slots, alignment and openings can be incorporated into the tool 19 and the member 16 without deviating from the scope of the present invention.
  • FIGS. 14 a through 14 e illustrate the steps of the claimed method of implanting an implant to an exposed surface of the cornea using the system of the present invention.
  • the first step shown in FIG. 14 a , involves the surgical preparation of a portion of the outer surface of the cornea 38 of the eye to form a corneal flap 37 , which remains attached to the cornea 38 by way of a hinge 36 .
  • This surgical step is commonly known in the art as a lamellar dissectomy, and is typically performed using a keratome (not shown).
  • the flap is cut deeply enough to dissect the Bowman's membrane portion of the cornea 38 .
  • Surgically preparing a corneal flap of 100 to 200 microns, typically 160 to 180 microns, operates to eliminate tension caused by the Bowman's membrane. This step reduces the possibility of implant extrusion due to pressure generated within the cornea 38 , which may be caused by the implant. As illustrated, it is preferable to leave the corneal flap 37 attached by way of a hinge 36 , thereby allowing the flap 37 to be replaced in the same orientation as before the cut.
  • the surgeon deposits the implant 40 onto the surface 39 using the applicator 19 .
  • the surgeon first removes the protective seal 17 from around the bottle opening.
  • the implant holding tool 15 is then removed from within the bottle 11 by removing the stopper 12 , which holds the storage tool 15 .
  • the storage tool 15 is easily separated from the stopper 12 by holding the tool 15 about the body portion 21 and disengaging the tool 15 from the now opened slot 32 .
  • the tool arm 20 can be attached to a handle 30 , and the retaining member 16 removed. Removing the member 16 presents the implant 40 to the surgeon for implantation.
  • the surgeon is able, therefore, to retrieve an implant 40 from a storage bottle 11 without having to use, at the risk of damaging or losing the implant, a grasping tool, such as tweezers or surgical forceps.
  • the surgeon then properly aligns the implant 40 on the applicator surface 42 by preferably passing liquid through the openings 22 .
  • the surgeon may gently guide the implant 40 to its proper alignment on the surface 42 using a cannula 35 , or other similar device.
  • the implant 40 is positioned on the applicator surface 42 by drawing off the fluid located intermediate to the implant 40 and the applicator surface 42 . This can be done by placing a cotton swab, or other absorbent material, against the underside of applicator member 45 , which draws off the fluid through openings 22 .
  • the corneal flap 37 is pulled away from the cornea implantation surface 39 .
  • the implant 40 is then positioned over the cornea implantation surface 39 by holding the applicator tool 19 in a generally horizontal position over the surface 39 with the implant 40 facing the surface 39 .
  • the applicator member 45 has an arcuate shaped applicator surface 42 , which matches the curved shaped of the cornea surface 39 .
  • the applicator member 45 can be evenly placed over the cornea surface 39 , reducing trauma to the surface 39 .
  • the implant 40 is evenly adhered to the surface 39 , reducing the need for any manipulation of the implant 40 on the surface 39 , which could traumatize the eye as is described above.
  • the implant 40 is deposited onto the surface 39 by gently lifting the applicator tool 19 away from the surface 39 . As shown, the implant 40 remains adhered to the surface 39 .
  • the use of a cannula 35 operable to pass a volume of fluid flow through opening 22 can be used to ensure proper deposition of the implant 40 onto surface 39 .
  • the corneal flap 37 is replaced.

Abstract

A system designed to store an implant together with the tools necessary to implant the stored implant, and a method of using said system. Such system includes an implant storage tool adapted to retain the implant within a storage container. The implant storage tool is operable to provide an implant applicator.

Description

  • This application is a Continuation of application Ser. No. 10/290,721, filed on Nov. 8, 2002, which is a division of application Ser. No. 09/660,371 filed on Sep. 12, 2000, now U.S. Pat. No. 6,543,610.
  • FIELD OF THE INVENTION
  • The present invention relates to a system for packaging, handling and applying implants. Additionally, this invention relates to a method for introducing a corneal implant to the corneal surface.
  • BACKGROUND OF THE INVENTION
  • Current methods and devices used to store small, delicate, and normally transparent implants entail free-floating the implant in a volume of storage fluid contained within a storage bottle or other container. This manner of storage is oftentimes used to preserve retinal transplants, brain tissue transplants, corneal implants, tissue biopsies and any other delicate biological specimen. Free-floating storage, however, subjects a stored specimen or implant to fluid agitation, which can severely and irreparably damage the integrity of the stored material. In addition, isolating transparent specimens from the storage fluid is difficult to achieve.
  • Corneal implants are especially susceptible to the above described problem. Corneal implants are used to correct visual disorders such as Myopia or near-sightedness, Hyperopia or far-sightedness, Presbyopia or difficulty in accommodating a change in focus, and Astigmatism. To correct these disorders, the implant is introduced into the body of the cornea in known ways, such as after a flap is formed and an under surface of the cornea is exposed. The implant, changes the shape of the cornea and alters its refractive power. These implants are generally made of various types of hydrogels, but can include other polymers, tissue implants, or the like. In the past, storing the corneal implant required free-floating the implant in a volume of storage fluid contained within a storage container. To retrieve the implant, one had to first locate the implant within the fluid, and then remove the implant using a filter device or sequestering tool. In the case of a corneal implant, locating the implant is complicated by both the size and transparency of the implant. For instance, a corneal implant generally has a diameter of about 4.0 to 7.0 mm and a center that is normally fabricated having a thickness ranging from 25 to 50 microns. Due this minuscule size, physically grasping the implant from the storage fluid using tweezers, or the like, is simply not practical.
  • Successful isolation of a corneal implant, or other specimen, generally requires the use of a sieve to separate the implant from the fluid. Isolating the implant in this manner, however, subjects the implant to mechanical forces, which could lead to a loss of the implant. If not damaged, the transparent implant must still be located on the sieve surface and retrieved. The implant must therefore be grasped using tweezers, forceps, or the like. Imparting such force upon the implant, however, can also damage the implant. Using force imparting tools to hold the implant is therefore not desirable. Current isolation techniques are therefore difficult, time-consuming and create additional steps, which can also lead to implant contamination. Thus, it is desired to have an implant storage and handling system, which allows the user to rapidly and successfully retrieve the implant for prompt implantation.
  • Current devices used to deposit an implant onto the cornea surface generally deposit the corneal implant onto the cornea surface in a bunched or folded conformation. Aligning the implant in planar relation to the cornea surface requires the surgeon to manipulate or tease the implant so as to remove any folds or bends in the implant. Problematically, the step of unfolding the implant on the cornea surface can cause serious trauma to the cornea surface. This trauma can lead to the formation of edema, or other deleterious responses that lead to rejection or displacement of the implant.
  • Thus, there is believed to be a demonstrated need for a unitary packaging and handling system that provides the desired storage capabilities, easy retrieval of the specimen from that storage, and tools that are operable to retrieve and utilize the specimen without causing damage to the specimen or an implantation site. There is also an additional need for a more effective method for implanting a corneal implant onto a cornea surface.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an implant packaging and handling system which includes a storage bottle having an opening to receive a volume of implant storage fluid, and an implant holding tool designed to retain the implant in fluid communication with the implant storage fluid. A storage bottle stopper holds the implant holding tool, so that a portion of the implant holding tool is immersed within the storage fluid upon placement of the stopper into the bottle, placing the implant in fluid communication with the storage fluid. The implant holding tool includes a retaining member detachably mounted to an implant applicator tool. Together they define an enclosure for retaining the implant in a secure, known storage position.
  • The implant applicator tool has an arcuate-shaped applicator surface with a plurality of openings. The arcuate shaped surface is contoured to correspond to the curvature of the cornea surface, which aids in the proper implantation of the implant to the cornea surface. In one embodiment, the applicator surface has one or more recessed surfaces designed to hold and center the implant on the applicator surface. One or more recessed grooves are also provided to allow fluid to flow between the implant and the applicator surface.
  • The openings have numerous advantages. The openings provide continuous fluid communication between a retained implant and the implant storage fluid. Upon removal from storage, the openings enable the user to unfold and orient the implant by gently passing fluid through the openings so as to float the implant into a desired central position on the applicator tool surface. Once so positioned, the user is then able to aspirate the fluid/from between the implant and the applicator tool, thereby resting the implant firmly against the applicator tool surface. The applicator tool also includes a central opening providing the user with a reference point for centering the applicator surface, and thus, the implant onto the surface of the cornea.
  • The present invention also relates to a method of implanting a corneal implant using the implant packaging and handling system. The initial step includes surgically preparing the cornea surface for implantation. Next, the implant and implant holding tool are retrieved from the storage bottle, and the retaining member removed so as to provide an applicator tool together with implant. The applicator can then be attached to a handle for ease of use. The implant is then properly aligned on the applicator tool and deposited onto the surgically prepared cornea surface. Finally, the cornea is restored.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A better understanding of the invention can be obtained from the detailed description of exemplary embodiments set forth below, when considered in conjunction with the appended drawings, in which:
  • FIG. 1 is a partial sectional view of the implant packaging and handling system of the present invention;
  • FIG. 2 is a schematic representation of the implant applicator tool fastened to a retaining member, providing the implant storage tool of the present invention;
  • FIG. 3 is a schematic representation of the implant applicator tool of the present invention;
  • FIG. 4 is a schematic representation of the retaining member adapted to form an implant retaining enclosure when fastened to the implant applicator tool of FIG. 3;
  • FIG. 5 is a bottom view of a stopper used to seal the storage bottle of the present invention, showing the implant storage tool engagement slot in an open position;
  • FIG. 6 is a cross-sectional view through the stopper of FIG. 5 taken on line 10-10;
  • FIG. 7 is a partial sectional view of the bottle stopper positioned within the storage bottle, showing the implant storage tool engagement slot in a closed position;
  • FIG. 8 is a cross-section at view through the stopper and storage bottle of FIG. 7 taken on line 20-20;
  • FIG. 9 is a schematic illustration of the implant applicator tool secured to a handle;
  • FIG. 10 is a side view of the implant applicator tool secured to a handle, showing the curved surface of the implant applicator tool, which corresponds with the contour of the cornea surface;
  • FIG. 11 is a schematic representation of an implant applicator tool having a central opening for aligning the applicator tool with the visual or pupillary axis of the eye;
  • FIG. 12 is a schematic representation of an implant applicator tool having a recessed surface defining a central opening and adjacent alignment slot;
  • FIG. 13 is a schematic representation of a retaining member adapted to engage with the applicator tools shown in FIGS. 9 and 12;
  • FIGS. 14 a, 14 b, 14 c, 14 d and 14 e are cross-sectional views of a human eye illustrating the method of introducing an implant to the cornea surface using the implant applicator tool of the present invention.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • FIGS. 1 through 14 e of the drawings show an implant packaging and handling system 10 of the present invention. As illustrated in FIG. 1, the preferred system 10 includes a cylindrical storage bottle 11 for holding implant storage fluid (not indicated). The bottle 11 is sealed by a stopper 12 having an upper cap portion 14 and a plug portion 13, which is adapted to detachably couple to an implant storage tool 15. A protective safety seal 17 provides tamper resistance and maintains the stopper 12 in sealed relation to the bottle 11.
  • FIGS. 2 through 4 show a retaining member 16 and implant applicator tool 19, which together define the implant storage tool 15. As illustrated, the retaining member 16 is adapted to detachably engage the implant applicator tool 19, thereby defining an enclosure 41 operable to retain the implant. Both the retaining member 16 and the applicator tool 19 include a plurality of openings 18 and 22, respectively, which allow storage fluid to communicate into the implant retaining enclosure 41. As shown in FIG. 1, the implant retaining enclosure 41 is located on the end of storage tool 15 that is distal to the stopper 12 such that the enclosure 41 is immersed in implant storage fluid when the storage tool 15 is inserted into the bottle 11. When the implant is stored, the enclosure 41 of storage tool 15 holds the implant in the storage fluid, while also providing a user with ready access to the implant. The user simply removes the stopper 12, thereby removing the storage tool 15 from the bottle 11, and detaches the retaining member 16 from the applicator 19 to access the implant.
  • As illustrated in FIG. 3, applicator tool 19 has a handle attachment arm 20 connected through a body portion 21 to an implant applicator member 45. The body portion 21 is preferably shaped to provide a broad handling surface. For instance, FIGS. 2 and 3 show a body portion 21 having a broad elliptical shape, which allows a user to more easily manipulate the applicator tool 19. As shown, the implant applicator member 45 includes an applicator surface 42 having a plurality of openings 22 to provide fluid communication between the applicator surface 42 and an implant resting thereon. Openings 22 further allow the user to release the implant from the applicator surface 42. More particularly, the user can impart force upon the implant by passing through the opening 22 either a flow of fluid or a cantilever so as to forcibly separate the implant from the applicator member surface 42 (as is shown in FIG. 14).
  • In a preferred embodiment, the applicator surface 42 has a central opening 23 to help the user align the applicator surface 42 along the visual or optical axis of the eye. As shown, the centrally positioned opening 23 defines a circular opening having a diameter greater than the diameter of the surrounding openings 22. In this way, the user is provided with a central point of reference, which enables the user to align the applicator surface 42 with the optical axis of the eye, and thus, properly position the implant.
  • In another embodiment, the applicator tool 19 may include an applicator alignment notch 24 positioned integral to the surface 42 of the applicator member 45. For instance, FIGS. 3 and 12 show the notch 24 extending inwardly towards the centrally positioned alignment opening 23. In this embodiment, the notch 24 is used to align the implant on the cornea surface 39, as well as release the implant from the applicator surface 42. Specifically, the notch 24 is dimensioned to allow a cantilever, or like instrument, to pass through the notch, thereby allowing the user to impart force against an implant held on the applicator surface 42. Specifically, the user lifts the application tool 19 away from the cornea surface while simultaneously imparting downward force on the implant through the notch 24 so as to release the implant. One skilled in the art will understand that various notch positionings can be incorporated into the applicator member 45 without departing from the scope of the present invention.
  • As shown in FIG. 2, the retaining member 16 has an outer surface 44 defining a plurality of openings 18 that provide fluid communication to an implant retained by the enclosure 41. FIG. 4 shows a retaining member 16 disengaged from the applicator tool 19 shown in FIG. 3. To secure the retaining member 16 to the applicator tool 19, the retaining member 16 is provided with attachment tabs 26 a-c adapted to insert into corresponding attachment slots 25 a-c integral to the applicator tool 19. In use, the retaining member 16 is attached to the applicator tool 19 by simply inserting the tabs 26 a-c into the respective corresponding slots 25 a-c, and then positioning the bottom surfaces 28 of retaining member side walls 43 against the applicator surface 42. In a preferred embodiment, at least one side wall 43 has an overlapping flexible portion 27 adapted to bend about the distal edge of the applicator surface 42, thereby securely clamping the retaining member 16 to the applicator tool 19. To remove the retaining member 16, the user merely unclamps the flexible portion 27 by bending it away from the applicator tool 19, and lifting the member 16 so as to disengage tabs 26 a-c from slots 25 a-c.
  • As illustrated in FIGS. 9, 11, 12 and 13, an alternative attachment tab 26 and attachment slot 25 can also be used with the present invention. For instance, FIG. 12 shows an applicator tool 19 having four separate attachment slots 25, while in comparison FIG. 3 shows an applicator tool 19 having three separate attachment slots 25 a-c. It will be understood by those skilled in the art that various embodiments for attachment slots 25 and tabs 26 can be incorporated into the applicator tool 19 and retaining member 16 without deviating from the scope of the present invention.
  • As illustrated in FIGS. 5 through 8, a preferred embodiment of system 10 includes a bottle stopper 12 adapted to receive and securely hold the handle attachment arm 20 of the applicator tool 19. The stopper 12 preferably includes an upper cap portion 14 and a plug portion 13 dimensioned to insertably seal the bottle 11. FIG. 5 shows the stopper plug portion 13, which is not inserted into a storage bottle opening 46 (shown in FIG. 8). In comparison to FIG. 5, FIG. 7 shows the plug 13 inserted into the storage bottle opening 46. As illustrated by FIGS. 5 and 7, plug portion 13, when removed from bottle opening 46, adopts an elliptical shape by distending in an outwardly direction along line the 10-10. Likewise, inserting stopper 12 into bottle opening 46 causes the outer diameter of plug portion 13 to conform to the inner diameter of the inner bottle surface 34. In this way, the plug portion 13 becomes inwardly compressed along line 30-30. Referring to FIGS. 6 and 8, cross-section views are shown of stopper plug portion 13 in an out-of-bottle elliptical shape and an in-bottle compressed circular shape, respectively. The utility of this embodiment is described in more detail below.
  • An engagement slot 32 is located integral to plug portion 13 in an orientation perpendicular to line 10-10. As illustrated in FIGS. 5 through 8, the engagement slot 32 opens or closes in response to either the removal or insertion of the plug portion 13 from the bottle opening 46, respectively. Referring to FIGS. 5 and 6, the engagement slot 32 is shown in an open position. More particularly, when the user removes the stopper 12 from bottle opening 46, the plug portion 13 adopts an unrestrained elliptical shape by distending outwardly along the line 10-10 for opening slot 32. In this way, the engagement arm 20 of the applicator tool 19, which is held by the engagement the slot 32, is easily separated from slot 32 once the stopper 12 is removed from the storage bottle 11. By way of comparison, FIGS. 7 and 8 show the engagement slot 32 adopting a closed conformation upon insertion of the stopper 12 into the bottle opening 46. As shown in FIG. 7, insertion of the stopper 12 into the bottle 11 causes the outer surface 47 of the plug portion 13 to conform to the inner diameter of the bottle opening surface 34, which imparts force in the direction of the line 30-30. In this way, the slot 32 is forced into a tight, closed conformation. Thus, the engagement arm 20 of the applicator tool 19 is held by a slot 32 in a secure position when the stopper 12 is inserted into the bottle 11. The stopper 12 is preferably made of silicone rubber, or other elastomeric material.
  • FIGS. 9 and 10 show an applicator tool 19 attached to a handle 30. The applicator tool attachment arm 20 detachably mounts to the handle 30 through a handle fastener 31. It will be understood by those skilled in the art that numerous types of handles and handle fasteners are available that can be used with the applicator tool 19 without departing from the scope of the present invention.
  • As illustrated by FIG. 10, the implant applicator member 45 has a curved applicator surface 42, which corresponds to the curvature of the cornea implant site. This curved surface allows the user to position the curved applicator surface 42 evenly across the cornea surface, enabling the implant to be more evenly deposited onto the cornea surface. Referring to FIGS. 9 and 12, each applicator member 45 is shown having a recessed applicator surface 29. As shown, the recessed surface 29 is preferably circular, thereby allowing a substantially circular implant to be centrally positioned on the applicator member 45. In addition, the central opening 23 which is centered relative to the perimeter of the circular recess 29, provides the user with a reference point for alignment of the applicator member 45 with the pupil diameter. In this way, the implant can be properly aligned on the cornea surface.
  • FIG. 11 shows an applicator tool 19 having an applicator surface 42 with recessed grooves 29 to allow fluid to flow between the applicator surface 42 and an implant supported on the surface 42. It should be understood by one skilled in the art that alternatively dimensioned recesses and grooves can be formed in the applicator surface 42 without departing from the scope of the present invention. It is advantageous to provide fluid flow between the surface 42 and the implant to enable the user to more easily manipulate the implant while it is on the applicator surface 42. During storage, for example, the implant may come to rest in various folded and bunched conformations. Once the retaining member 16 is removed, the user can manipulate the implant into its desired conformation by gently passing a volume of fluid through the openings 22 and 23. More particularly, the implant will overlap a small volume of fluid, thereby allowing the user to floatingly realign the implant on the applicator surface 42. After the implant is aligned, the fluid can be removed by simply touching the underside of the applicator member 45 with a cotton swab, or like absorbent material.
  • FIGS. 12 and 13 show an alternative embodiment of an applicator tool 19 and a retaining member 16, respectively. In this embodiment, the retaining member 16 includes four attachment tabs 26 that detachably insert into four corresponding applicator tool attachment slots 25. As shown, the tool 19 and the retaining member 18 include fluid communication openings 22 and 18, respectively. It should be understood that various combinations of tabs, slots, alignment and openings can be incorporated into the tool 19 and the member 16 without deviating from the scope of the present invention.
  • FIGS. 14 a through 14 e illustrate the steps of the claimed method of implanting an implant to an exposed surface of the cornea using the system of the present invention. The first step, shown in FIG. 14 a, involves the surgical preparation of a portion of the outer surface of the cornea 38 of the eye to form a corneal flap 37, which remains attached to the cornea 38 by way of a hinge 36. This surgical step is commonly known in the art as a lamellar dissectomy, and is typically performed using a keratome (not shown). In a preferred embodiment, the flap is cut deeply enough to dissect the Bowman's membrane portion of the cornea 38. Surgically preparing a corneal flap of 100 to 200 microns, typically 160 to 180 microns, operates to eliminate tension caused by the Bowman's membrane. This step reduces the possibility of implant extrusion due to pressure generated within the cornea 38, which may be caused by the implant. As illustrated, it is preferable to leave the corneal flap 37 attached by way of a hinge 36, thereby allowing the flap 37 to be replaced in the same orientation as before the cut.
  • After the surface 39 is prepared, the surgeon deposits the implant 40 onto the surface 39 using the applicator 19. To retrieve the applicator tool 19, the surgeon first removes the protective seal 17 from around the bottle opening. The implant holding tool 15 is then removed from within the bottle 11 by removing the stopper 12, which holds the storage tool 15. The storage tool 15 is easily separated from the stopper 12 by holding the tool 15 about the body portion 21 and disengaging the tool 15 from the now opened slot 32. Next, the tool arm 20 can be attached to a handle 30, and the retaining member 16 removed. Removing the member 16 presents the implant 40 to the surgeon for implantation. The surgeon is able, therefore, to retrieve an implant 40 from a storage bottle 11 without having to use, at the risk of damaging or losing the implant, a grasping tool, such as tweezers or surgical forceps.
  • The surgeon then properly aligns the implant 40 on the applicator surface 42 by preferably passing liquid through the openings 22. At this step, the surgeon may gently guide the implant 40 to its proper alignment on the surface 42 using a cannula 35, or other similar device. The implant 40 is positioned on the applicator surface 42 by drawing off the fluid located intermediate to the implant 40 and the applicator surface 42. This can be done by placing a cotton swab, or other absorbent material, against the underside of applicator member 45, which draws off the fluid through openings 22.
  • As shown in FIG. 14 b, the corneal flap 37 is pulled away from the cornea implantation surface 39. The implant 40 is then positioned over the cornea implantation surface 39 by holding the applicator tool 19 in a generally horizontal position over the surface 39 with the implant 40 facing the surface 39. As shown, the applicator member 45 has an arcuate shaped applicator surface 42, which matches the curved shaped of the cornea surface 39. In this way, as illustrated in FIG. 14 c, the applicator member 45 can be evenly placed over the cornea surface 39, reducing trauma to the surface 39. Specifically, the implant 40 is evenly adhered to the surface 39, reducing the need for any manipulation of the implant 40 on the surface 39, which could traumatize the eye as is described above.
  • Referring to FIG. 14 d, the implant 40 is deposited onto the surface 39 by gently lifting the applicator tool 19 away from the surface 39. As shown, the implant 40 remains adhered to the surface 39. The use of a cannula 35 operable to pass a volume of fluid flow through opening 22, however, can be used to ensure proper deposition of the implant 40 onto surface 39. As shown in FIG. 14 e, once the implant is deposited onto the surface 39, the corneal flap 37 is replaced.
  • Various embodiments of the of the present invention have been described herein. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention as disclosed and claimed.

Claims (10)

1. A method of implanting a corneal implant, said method comprising the steps of:
separating a layer of corneal tissue to form an anterior internal surface and a posterior internal surface;
providing an implant applicator tool having a first end and a second end, said first end being adapted for holding a corneal implant, said second end adapted for handling the implant applicator tool, said first end having a retaining member detachably mounted to said first end;
removing said retaining member from said first end; and
depositing the implant on the posterior internal surface with the implant applicator tool.
2. The method of claim 1, wherein the first end has an applicator surface which is concave.
3. The method of claim 2, wherein the concave implant applicator surface has a radius of curvature that is greater than the radius of curvature of at least a portion of an implant surface.
4. The method of claim 2, wherein the applicator surface is a smooth or polished surface.
5. The method of claim 1, wherein at least a portion of the applicator surface is recessed.
6. The method of claim 1, wherein the applicator surface has at least one opening therethrough.
7. The method of claim 1, further including:
removing said implant applicator tool from a vessel having an opening, said vessel having a volume of fluid stored therein.
8. The method of claim 6, wherein the implant applicator tool is connected to a vessel stopper contoured to seal said vessel opening.
9. The method of claim 6 or 7, further comprising the step of:
placing the implant applicator is the vessel so as to maintain the implant in fluid communication with the storage fluid contained therein.
10. The method of claim 1, wherein the depositing step comprises:
depositing the implant without using a separate device to place the implant on the posterior internal surface.
US10/999,093 2000-09-12 2004-11-29 System for packaging and handling an implant and method of use Abandoned US20050113844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/999,093 US20050113844A1 (en) 2000-09-12 2004-11-29 System for packaging and handling an implant and method of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/660,371 US6543610B1 (en) 2000-09-12 2000-09-12 System for packaging and handling an implant and method of use
US10/290,721 US6824178B2 (en) 2000-09-12 2002-11-08 System for packaging and handling an implant and method of use
US10/999,093 US20050113844A1 (en) 2000-09-12 2004-11-29 System for packaging and handling an implant and method of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/290,721 Continuation US6824178B2 (en) 2000-09-12 2002-11-08 System for packaging and handling an implant and method of use

Publications (1)

Publication Number Publication Date
US20050113844A1 true US20050113844A1 (en) 2005-05-26

Family

ID=24649265

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/660,371 Expired - Lifetime US6543610B1 (en) 2000-09-12 2000-09-12 System for packaging and handling an implant and method of use
US09/843,547 Expired - Lifetime US6581993B2 (en) 2000-09-12 2001-04-26 System for packaging and handling an implant and method of use
US10/290,721 Expired - Lifetime US6824178B2 (en) 2000-09-12 2002-11-08 System for packaging and handling an implant and method of use
US10/999,093 Abandoned US20050113844A1 (en) 2000-09-12 2004-11-29 System for packaging and handling an implant and method of use

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/660,371 Expired - Lifetime US6543610B1 (en) 2000-09-12 2000-09-12 System for packaging and handling an implant and method of use
US09/843,547 Expired - Lifetime US6581993B2 (en) 2000-09-12 2001-04-26 System for packaging and handling an implant and method of use
US10/290,721 Expired - Lifetime US6824178B2 (en) 2000-09-12 2002-11-08 System for packaging and handling an implant and method of use

Country Status (6)

Country Link
US (4) US6543610B1 (en)
EP (1) EP1322197A1 (en)
AU (2) AU2001292640B2 (en)
CA (1) CA2421973A1 (en)
ES (1) ES2585881T3 (en)
WO (1) WO2002021966A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776086B2 (en) 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US8162953B2 (en) 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
WO2013059813A1 (en) 2011-10-21 2013-04-25 Revision Optics, Inc. Corneal implant storage and delivery devices
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US8900296B2 (en) 2007-04-20 2014-12-02 Revision Optics, Inc. Corneal inlay design and methods of correcting vision
US9005280B2 (en) 2000-09-12 2015-04-14 Revision Optics, Inc. System for packaging and handling an implant and method of use
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
CN107249514A (en) * 2014-08-19 2017-10-13 修正光学公司 Cornea implant storage, packaging and conveying device
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
US10583041B2 (en) 2015-03-12 2020-03-10 RVO 2.0 Inc. Methods of correcting vision
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
CN112451207A (en) * 2020-12-10 2021-03-09 微智医疗器械有限公司 Ophthalmic surgical instrument for implanting flexible electrodes

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052516A2 (en) 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
JP4067307B2 (en) * 2000-04-27 2008-03-26 株式会社荏原製作所 Rotation holding device
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US6543610B1 (en) * 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US7987510B2 (en) * 2001-03-28 2011-07-26 Rovi Solutions Corporation Self-protecting digital content
FR2835423B1 (en) * 2002-02-04 2004-11-05 Guy Boucher DEVICE FOR HANDLING HUMAN HUMAN BEFORE TRANSPLANT
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US20050046794A1 (en) 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20050103649A1 (en) * 2003-11-17 2005-05-19 Emil Vulcu Contact lens handling and inserting device and storage container
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9526609B2 (en) * 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7824442B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
EP2526895B1 (en) * 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7748389B2 (en) * 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7329279B2 (en) * 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20080262610A1 (en) * 2007-04-20 2008-10-23 Alan Lang Biomechanical design of intracorneal inlays
US7699168B2 (en) * 2004-10-29 2010-04-20 Medtronic, Inc. Heart valve storage and shipping retainer
US20060102496A1 (en) * 2004-11-12 2006-05-18 Bruce Christy Contact lens case having a lid with soft gripping surface
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7712606B2 (en) * 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20070129797A1 (en) * 2005-12-01 2007-06-07 Revision Optics, Inc. Intracorneal inlays
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070255401A1 (en) * 2006-05-01 2007-11-01 Revision Optics, Inc. Design of Inlays With Intrinsic Diopter Power
US8372437B2 (en) 2006-08-17 2013-02-12 Mimedx Group, Inc. Placental tissue grafts
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20090057167A1 (en) * 2007-08-30 2009-03-05 Rathert Brian D Intraocular Lens Packaging
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
JP5607639B2 (en) * 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
AU2010282311B2 (en) 2009-08-13 2015-08-13 Acufocus, Inc. Masked intraocular implants and lenses
IN2012DN02153A (en) 2009-08-13 2015-08-07 Acufocus Inc
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
US8869982B2 (en) 2009-12-18 2014-10-28 Edwards Lifesciences Corporation Prosthetic heart valve packaging and deployment system
US8966867B2 (en) 2009-12-29 2015-03-03 Howmedica Osteonics Corp. Implant package
US20110172675A1 (en) * 2010-01-12 2011-07-14 Acufocus, Inc. Ocular inlay delivery system and method of use
US8454687B2 (en) 2010-02-11 2013-06-04 Presbitech, Inc. Lens inserter apparatus and method
AU2013203599B2 (en) * 2010-02-12 2016-05-19 Presbibio, Llc Lens holder apparatus and system and method
US8869975B2 (en) * 2010-02-12 2014-10-28 Presbibio, Llc Lens holder apparatus and system and method
US8679404B2 (en) 2010-03-05 2014-03-25 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9498317B2 (en) 2010-12-16 2016-11-22 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
EP2564798B1 (en) 2011-08-31 2018-10-10 Stryker European Holdings I, LLC Implant container and implant container system
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
EP2785296B1 (en) 2011-12-02 2018-06-20 AcuFocus, Inc. Ocular mask having selective spectral transmission
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
KR20160145151A (en) * 2014-04-16 2016-12-19 리비젼 옵틱스, 인크. Corneal inlay delivery devices and methods
US20150297344A1 (en) * 2014-04-21 2015-10-22 Arvind Saini Irrigating intraocular lens rotators and related methods
USD755517S1 (en) * 2014-10-15 2016-05-10 Ronnie Shugar Contact lens case
US9943403B2 (en) 2014-11-19 2018-04-17 Acufocus, Inc. Fracturable mask for treating presbyopia
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10350047B2 (en) 2015-09-02 2019-07-16 Edwards Lifesciences Corporation Method and system for packaging and preparing a prosthetic heart valve and associated delivery system
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
EP3359987B1 (en) 2015-10-05 2024-02-28 AcuFocus, Inc. Methods of molding intraocular lenses
EP3384342B1 (en) 2015-11-24 2021-08-25 AcuFocus, Inc. Toric small aperture intraocular lens with extended depth of focus
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10660683B2 (en) 2016-05-27 2020-05-26 In2Bones Usa, Llc Method for sterile packaging of K-wire and cap
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
US10631968B2 (en) 2017-03-06 2020-04-28 Edwards Lifesciences Corporation Humidity-management packaging systems and methods
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11690706B2 (en) 2017-12-13 2023-07-04 Allotex, Inc. Corneal implant systems and methods
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
WO2019217471A1 (en) 2018-05-09 2019-11-14 Acufocus, Inc. Intraocular implant with removable optic
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
EP4181824A1 (en) * 2020-07-17 2023-05-24 Corneagen Medical tools for corneal tissue delivery
US20220142150A1 (en) * 2020-11-10 2022-05-12 Axogen Corporation Packaging system for a medical product
DE102021208333B3 (en) 2021-08-02 2022-10-06 Carl Zeiss Meditec Ag Container device with an ophthalmic injector having an intraocular lens

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091328A (en) * 1961-03-02 1963-05-28 Priscilla A Leonardos Contact lens remover and carrier
US3168100A (en) * 1962-12-07 1965-02-02 Alvido R Rich Contact lens dipper assembly
US3379200A (en) * 1965-10-24 1968-04-23 Ruth M. Pennell Lens containtr
US3879076A (en) * 1973-12-27 1975-04-22 Robert O Barnett Method and apparatus for applying and removing a soft contact lens
US3950315A (en) * 1971-06-11 1976-04-13 E. I. Du Pont De Nemours And Company Contact lens having an optimum combination of properties
US4065816A (en) * 1975-05-22 1978-01-03 Philip Nicholas Sawyer Surgical method of using a sterile packaged prosthesis
US4071272A (en) * 1976-09-27 1978-01-31 Drdlik Frank J Contact lens applicator
US4093291A (en) * 1977-08-17 1978-06-06 Schurgin Herbert L Contact lens application and removal instrument
US4136406A (en) * 1977-07-20 1979-01-30 Norris John W Intraocular lens with attached disposable instrument
US4184491A (en) * 1977-08-31 1980-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Intra-ocular pressure normalization technique and equipment
US4194814A (en) * 1977-11-10 1980-03-25 Bausch & Lomb Incorporated Transparent opthalmic lens having engraved surface indicia
US4257521A (en) * 1979-11-16 1981-03-24 Stanley Poler Packaging means for an intraocular lens
US4326306A (en) * 1980-12-16 1982-04-27 Lynell Medical Technology, Inc. Intraocular lens and manipulating tool therefor
US4423809A (en) * 1982-02-05 1984-01-03 Staar Surgical Company, Inc. Packaging system for intraocular lens structures
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4490860A (en) * 1982-01-18 1985-01-01 Ioptex Inc. Intraocular lens apparatus and method for implantation of same
US4504982A (en) * 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
US4565198A (en) * 1983-12-27 1986-01-21 Barnes-Hind, Inc. Method for altering the curvature of the cornea
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4640595A (en) * 1984-05-02 1987-02-03 David Volk Aspheric contact lens
US4646720A (en) * 1985-03-12 1987-03-03 Peyman Gholam A Optical assembly permanently attached to the cornea
US4655774A (en) * 1986-01-03 1987-04-07 Choyce D Peter Intra-corneal implant for correction of aniridia
US4721124A (en) * 1983-12-01 1988-01-26 Barry Tuerkheimer Optometric soft and rigid contact lens cleaning and storage system
US4726367A (en) * 1985-08-19 1988-02-23 Shoemaker David W Surgical instrument for implanting an intraocular lens
US4798609A (en) * 1987-08-24 1989-01-17 Grendahl Dennis T Radially segmented zone of focus artificial lens
US4806382A (en) * 1987-04-10 1989-02-21 University Of Florida Ocular implants and methods for their manufacture
US4897981A (en) * 1986-12-24 1990-02-06 Alcon Laboratories, Inc. Method of packaging intraocular lenses and contact lenses
US4911715A (en) * 1989-06-05 1990-03-27 Kelman Charles D Overlapping two piece intraocular lens
US4919130A (en) * 1986-11-07 1990-04-24 Nestle S.A. Tool for inserting compressible intraocular lenses into the eye and method
US5092837A (en) * 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5098444A (en) * 1990-03-16 1992-03-24 Feaster Fred T Epiphakic intraocular lens and process of implantation
US5108428A (en) * 1988-03-02 1992-04-28 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5180362A (en) * 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5181053A (en) * 1990-05-10 1993-01-19 Contact Lens Corporation Of America Multi-focal contact lens
US5188125A (en) * 1982-01-04 1993-02-23 Keravision, Inc. Method for corneal curvature adjustment
US5190552A (en) * 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5192317A (en) * 1988-07-26 1993-03-09 Irvin Kalb Multi focal intra-ocular lens
US5196026A (en) * 1991-09-16 1993-03-23 Chiron Ophthalmics, Inc. Method of implanting corneal inlay lenses smaller than the optic zone
US5282851A (en) * 1987-07-07 1994-02-01 Jacob Labarre Jean Intraocular prostheses
US5300116A (en) * 1992-08-05 1994-04-05 Lions Eye Institute Of Western Australia Keratoprosthesis
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5385582A (en) * 1991-02-11 1995-01-31 Ommaya; Ayub K. Spinal fluid driven artificial organ
US5391201A (en) * 1992-10-02 1995-02-21 Chiron Intraoptics, Inc. Method of using a corneal ring inlay
US5397300A (en) * 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5405384A (en) * 1992-09-03 1995-04-11 Keravision, Inc. Astigmatic correcting intrastromal corneal ring
US5489301A (en) * 1993-09-03 1996-02-06 Barber; John C. Corneal prosthesis
US5493350A (en) * 1993-03-31 1996-02-20 Seidner; Leonard Multipocal contact lens and method for preparing
US5502518A (en) * 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US5512220A (en) * 1991-07-10 1996-04-30 Johnson & Johnson Vision Products, Inc. Method of making a clear axis, segmented multifocal ophthalmic lens
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5598234A (en) * 1992-11-23 1997-01-28 Innotech, Inc. Method of manufacturing toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses
US5616148A (en) * 1992-09-30 1997-04-01 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US5620450A (en) * 1992-09-30 1997-04-15 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US5715031A (en) * 1995-05-04 1998-02-03 Johnson & Johnson Vision Products, Inc. Concentric aspheric multifocal lens designs
US5716633A (en) * 1986-10-16 1998-02-10 Cbs Lens, A California General Partnership Collagen-hydrogel for promoting epithelial cell growth and regeneration of the stroma and artificial lens using the same
US5722971A (en) * 1995-10-20 1998-03-03 Peyman; Gholam A. Intrastromal corneal modification
US5722948A (en) * 1996-02-14 1998-03-03 Gross; Fredric J. Covering for an ocular device
US5728155A (en) * 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5732990A (en) * 1996-06-06 1998-03-31 Yavitz; Edward Q. Contact lens applicator
US5855604A (en) * 1996-12-09 1999-01-05 Microoptix, Llc Method and apparatus for adjusting corneal curvature using a solid filled corneal ring
US5860984A (en) * 1992-09-30 1999-01-19 Staar Surgical Company, Inc. Spring biased deformable intraocular injecting apparatus
US5872613A (en) * 1992-11-23 1999-02-16 Innotech, Inc. Method of manufacturing contact lenses
US5873889A (en) * 1997-08-08 1999-02-23 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
US5876439A (en) * 1996-12-09 1999-03-02 Micooptix, Llc Method and appartus for adjusting corneal curvature using a fluid-filled corneal ring
US5888243A (en) * 1992-08-07 1999-03-30 Keravision, Inc. Hybrid intrastromal corneal ring
US6010510A (en) * 1998-06-02 2000-01-04 Alcon Laboratories, Inc. Plunger
US6024448A (en) * 1998-03-31 2000-02-15 Johnson & Johnson Vision Products, Inc. Contact lenses bearing identifying marks
US6033395A (en) * 1997-11-03 2000-03-07 Peyman; Gholam A. System and method for modifying a live cornea via laser ablation and mechanical erosion
US6036714A (en) * 1995-07-13 2000-03-14 Origin Medsystems, Inc. Tissue separation method
US6050999A (en) * 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US6171324B1 (en) * 1998-09-30 2001-01-09 Becton, Dickinson And Company Marker for corneal incision
US6175754B1 (en) * 1995-06-07 2001-01-16 Keravision, Inc. Method and apparatus for measuring corneal incisions
US6183513B1 (en) * 1998-06-05 2001-02-06 Bausch & Lomb Surgical, Inc. Intraocular lens packaging system, method of producing, and method of using
USRE37071E1 (en) * 1997-12-22 2001-02-27 Canadian Contact Lens Laboratories Ltd. Marked contact lens bearing optical marking element
US6197058B1 (en) * 1999-03-22 2001-03-06 Valdemar Portney Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US6197019B1 (en) * 1994-04-25 2001-03-06 Gholam A. Peyman Universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US6197057B1 (en) * 1998-10-27 2001-03-06 Gholam A. Peyman Lens conversion system for teledioptic or difractive configurations
US6203538B1 (en) * 1995-11-03 2001-03-20 Gholam A. Peyman Intrastromal corneal modification
US6203549B1 (en) * 1997-12-29 2001-03-20 Duckworth & Kent Limited Injectors for intraocular lenses
US6206919B1 (en) * 1998-01-14 2001-03-27 Joseph Y. Lee Method and apparatus to correct refractive errors using adjustable corneal arcuate segments
US6210005B1 (en) * 1999-02-04 2001-04-03 Valdemar Portney Multifocal ophthalmic lens with reduced halo size
US6214015B1 (en) * 1993-03-09 2001-04-10 Bausch & Lomb Surgical, Inc. Apparatus and method for preparing an intraocular lens for insertion
US6217571B1 (en) * 1995-10-20 2001-04-17 Gholam A. Peyman Intrastromal corneal modification
US6221067B1 (en) * 1995-10-20 2001-04-24 Gholam A. Peyman Corneal modification via implantation
US20020010510A1 (en) * 1998-11-04 2002-01-24 Thomas A. Silvestrini Variable modulus corneal implant and fabrication methods
US6361560B1 (en) * 1998-12-23 2002-03-26 Anamed, Inc. Corneal implant and method of manufacture
US6364483B1 (en) * 2000-02-22 2002-04-02 Holo Or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
US6371960B2 (en) * 1998-05-19 2002-04-16 Bausch & Lomb Surgical, Inc. Device for inserting a flexible intraocular lens
US6511178B1 (en) * 1999-07-19 2003-01-28 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses and processes for their production
US6527389B2 (en) * 1987-06-01 2003-03-04 Advanced Medical Optics, Inc. Multifocal ophthalmic lens
US6543610B1 (en) * 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US20030069637A1 (en) * 1999-04-26 2003-04-10 Lynch Mary G. Stent device and method for treating glaucoma
US6712848B1 (en) * 1992-09-30 2004-03-30 Staar Surgical Company, Inc. Deformable intraocular lens injecting apparatus with transverse hinged lens cartridge
US20070027538A1 (en) * 2005-07-28 2007-02-01 Visioncare Ophthalmic Technologies Inc. Compressed haptics
US20070049267A1 (en) * 2005-08-15 2007-03-01 Incode Telecom Group, Inc. Embedded wireless location validation benchmarking systems and methods
US8668735B2 (en) * 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343657A (en) * 1966-09-02 1967-09-26 Reuben F Speshyock Contact lens conditioning facility
US3770113A (en) 1972-03-03 1973-11-06 Mcd Corp Contact lens holder
US4039827A (en) 1976-08-26 1977-08-02 American Optical Corporation Method for marking intraocular lenses
US4392569A (en) * 1979-06-06 1983-07-12 Shoup Leo E Soft contact lens asepticizing case
US4545478A (en) 1982-07-08 1985-10-08 Fred Waldman Hard contact lens suction cups and method for their production
US4844242A (en) * 1987-09-02 1989-07-04 The Johns Hopkins University Cornea retainer
US5071276A (en) * 1991-01-04 1991-12-10 Abbott Laboratories Contact lens cleaning system
US5941583A (en) 1997-10-07 1999-08-24 Raimondi; Kent Contact lens insertion and manipulation assembly and method
US6398277B1 (en) * 2001-03-15 2002-06-04 Mcdonald Marguerite B. Contact lens insertion device

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091328A (en) * 1961-03-02 1963-05-28 Priscilla A Leonardos Contact lens remover and carrier
US3168100A (en) * 1962-12-07 1965-02-02 Alvido R Rich Contact lens dipper assembly
US3379200A (en) * 1965-10-24 1968-04-23 Ruth M. Pennell Lens containtr
US3950315A (en) * 1971-06-11 1976-04-13 E. I. Du Pont De Nemours And Company Contact lens having an optimum combination of properties
US3879076A (en) * 1973-12-27 1975-04-22 Robert O Barnett Method and apparatus for applying and removing a soft contact lens
US4065816A (en) * 1975-05-22 1978-01-03 Philip Nicholas Sawyer Surgical method of using a sterile packaged prosthesis
US4071272A (en) * 1976-09-27 1978-01-31 Drdlik Frank J Contact lens applicator
US4136406A (en) * 1977-07-20 1979-01-30 Norris John W Intraocular lens with attached disposable instrument
US4093291A (en) * 1977-08-17 1978-06-06 Schurgin Herbert L Contact lens application and removal instrument
US4184491A (en) * 1977-08-31 1980-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Intra-ocular pressure normalization technique and equipment
US4194814A (en) * 1977-11-10 1980-03-25 Bausch & Lomb Incorporated Transparent opthalmic lens having engraved surface indicia
US4257521A (en) * 1979-11-16 1981-03-24 Stanley Poler Packaging means for an intraocular lens
US4326306A (en) * 1980-12-16 1982-04-27 Lynell Medical Technology, Inc. Intraocular lens and manipulating tool therefor
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US5188125A (en) * 1982-01-04 1993-02-23 Keravision, Inc. Method for corneal curvature adjustment
US4490860A (en) * 1982-01-18 1985-01-01 Ioptex Inc. Intraocular lens apparatus and method for implantation of same
US4423809A (en) * 1982-02-05 1984-01-03 Staar Surgical Company, Inc. Packaging system for intraocular lens structures
US4504982A (en) * 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4721124A (en) * 1983-12-01 1988-01-26 Barry Tuerkheimer Optometric soft and rigid contact lens cleaning and storage system
US4565198A (en) * 1983-12-27 1986-01-21 Barnes-Hind, Inc. Method for altering the curvature of the cornea
US4640595A (en) * 1984-05-02 1987-02-03 David Volk Aspheric contact lens
US4646720A (en) * 1985-03-12 1987-03-03 Peyman Gholam A Optical assembly permanently attached to the cornea
US4726367A (en) * 1985-08-19 1988-02-23 Shoemaker David W Surgical instrument for implanting an intraocular lens
US4655774A (en) * 1986-01-03 1987-04-07 Choyce D Peter Intra-corneal implant for correction of aniridia
US5716633A (en) * 1986-10-16 1998-02-10 Cbs Lens, A California General Partnership Collagen-hydrogel for promoting epithelial cell growth and regeneration of the stroma and artificial lens using the same
US4919130A (en) * 1986-11-07 1990-04-24 Nestle S.A. Tool for inserting compressible intraocular lenses into the eye and method
US4897981A (en) * 1986-12-24 1990-02-06 Alcon Laboratories, Inc. Method of packaging intraocular lenses and contact lenses
US4806382A (en) * 1987-04-10 1989-02-21 University Of Florida Ocular implants and methods for their manufacture
US6527389B2 (en) * 1987-06-01 2003-03-04 Advanced Medical Optics, Inc. Multifocal ophthalmic lens
US5282851A (en) * 1987-07-07 1994-02-01 Jacob Labarre Jean Intraocular prostheses
US4798609A (en) * 1987-08-24 1989-01-17 Grendahl Dennis T Radially segmented zone of focus artificial lens
US5108428A (en) * 1988-03-02 1992-04-28 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US5192317A (en) * 1988-07-26 1993-03-09 Irvin Kalb Multi focal intra-ocular lens
US4911715A (en) * 1989-06-05 1990-03-27 Kelman Charles D Overlapping two piece intraocular lens
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5092837A (en) * 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5098444A (en) * 1990-03-16 1992-03-24 Feaster Fred T Epiphakic intraocular lens and process of implantation
US5180362A (en) * 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5181053A (en) * 1990-05-10 1993-01-19 Contact Lens Corporation Of America Multi-focal contact lens
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5397300A (en) * 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5385582A (en) * 1991-02-11 1995-01-31 Ommaya; Ayub K. Spinal fluid driven artificial organ
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5512220A (en) * 1991-07-10 1996-04-30 Johnson & Johnson Vision Products, Inc. Method of making a clear axis, segmented multifocal ophthalmic lens
US5196026A (en) * 1991-09-16 1993-03-23 Chiron Ophthalmics, Inc. Method of implanting corneal inlay lenses smaller than the optic zone
US5190552A (en) * 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5300116A (en) * 1992-08-05 1994-04-05 Lions Eye Institute Of Western Australia Keratoprosthesis
US5888243A (en) * 1992-08-07 1999-03-30 Keravision, Inc. Hybrid intrastromal corneal ring
US6214044B1 (en) * 1992-08-07 2001-04-10 Keravision, Inc. Hybrid intrastromal corneal ring
US5405384A (en) * 1992-09-03 1995-04-11 Keravision, Inc. Astigmatic correcting intrastromal corneal ring
US5860984A (en) * 1992-09-30 1999-01-19 Staar Surgical Company, Inc. Spring biased deformable intraocular injecting apparatus
US5616148A (en) * 1992-09-30 1997-04-01 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US5620450A (en) * 1992-09-30 1997-04-15 Staar Surgical Company, Inc. Transverse hinged deformable intraocular lens injecting apparatus
US6712848B1 (en) * 1992-09-30 2004-03-30 Staar Surgical Company, Inc. Deformable intraocular lens injecting apparatus with transverse hinged lens cartridge
US5391201A (en) * 1992-10-02 1995-02-21 Chiron Intraoptics, Inc. Method of using a corneal ring inlay
US5598234A (en) * 1992-11-23 1997-01-28 Innotech, Inc. Method of manufacturing toric single vision, spherical or aspheric bifocal, multifocal or progressive contact lenses
US5872613A (en) * 1992-11-23 1999-02-16 Innotech, Inc. Method of manufacturing contact lenses
US6214015B1 (en) * 1993-03-09 2001-04-10 Bausch & Lomb Surgical, Inc. Apparatus and method for preparing an intraocular lens for insertion
US5493350A (en) * 1993-03-31 1996-02-20 Seidner; Leonard Multipocal contact lens and method for preparing
US5489301A (en) * 1993-09-03 1996-02-06 Barber; John C. Corneal prosthesis
US5502518A (en) * 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US6197019B1 (en) * 1994-04-25 2001-03-06 Gholam A. Peyman Universal implant blank for modifying corneal curvature and methods of modifying corneal curvature therewith
US5715031A (en) * 1995-05-04 1998-02-03 Johnson & Johnson Vision Products, Inc. Concentric aspheric multifocal lens designs
US6175754B1 (en) * 1995-06-07 2001-01-16 Keravision, Inc. Method and apparatus for measuring corneal incisions
US6203557B1 (en) * 1995-07-13 2001-03-20 Origin Medsystems Tissue separation cannula and method
US6506200B1 (en) * 1995-07-13 2003-01-14 Origin Medsystems, Inc. Tissue separation cannula and method
US6036714A (en) * 1995-07-13 2000-03-14 Origin Medsystems, Inc. Tissue separation method
US6221067B1 (en) * 1995-10-20 2001-04-24 Gholam A. Peyman Corneal modification via implantation
US6217571B1 (en) * 1995-10-20 2001-04-17 Gholam A. Peyman Intrastromal corneal modification
US5722971A (en) * 1995-10-20 1998-03-03 Peyman; Gholam A. Intrastromal corneal modification
US6203538B1 (en) * 1995-11-03 2001-03-20 Gholam A. Peyman Intrastromal corneal modification
US5728155A (en) * 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US5722948A (en) * 1996-02-14 1998-03-03 Gross; Fredric J. Covering for an ocular device
US5732990A (en) * 1996-06-06 1998-03-31 Yavitz; Edward Q. Contact lens applicator
US5876439A (en) * 1996-12-09 1999-03-02 Micooptix, Llc Method and appartus for adjusting corneal curvature using a fluid-filled corneal ring
US5855604A (en) * 1996-12-09 1999-01-05 Microoptix, Llc Method and apparatus for adjusting corneal curvature using a solid filled corneal ring
US5873889A (en) * 1997-08-08 1999-02-23 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
US6033395A (en) * 1997-11-03 2000-03-07 Peyman; Gholam A. System and method for modifying a live cornea via laser ablation and mechanical erosion
US6050999A (en) * 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
USRE37071E1 (en) * 1997-12-22 2001-02-27 Canadian Contact Lens Laboratories Ltd. Marked contact lens bearing optical marking element
US6203549B1 (en) * 1997-12-29 2001-03-20 Duckworth & Kent Limited Injectors for intraocular lenses
US6206919B1 (en) * 1998-01-14 2001-03-27 Joseph Y. Lee Method and apparatus to correct refractive errors using adjustable corneal arcuate segments
US6024448A (en) * 1998-03-31 2000-02-15 Johnson & Johnson Vision Products, Inc. Contact lenses bearing identifying marks
US6371960B2 (en) * 1998-05-19 2002-04-16 Bausch & Lomb Surgical, Inc. Device for inserting a flexible intraocular lens
US6010510A (en) * 1998-06-02 2000-01-04 Alcon Laboratories, Inc. Plunger
US6183513B1 (en) * 1998-06-05 2001-02-06 Bausch & Lomb Surgical, Inc. Intraocular lens packaging system, method of producing, and method of using
US6171324B1 (en) * 1998-09-30 2001-01-09 Becton, Dickinson And Company Marker for corneal incision
US6197057B1 (en) * 1998-10-27 2001-03-06 Gholam A. Peyman Lens conversion system for teledioptic or difractive configurations
US20020010510A1 (en) * 1998-11-04 2002-01-24 Thomas A. Silvestrini Variable modulus corneal implant and fabrication methods
US6361560B1 (en) * 1998-12-23 2002-03-26 Anamed, Inc. Corneal implant and method of manufacture
US6673112B2 (en) * 1998-12-23 2004-01-06 Anamed, Inc. Corneal implant and method of manufacture
US6210005B1 (en) * 1999-02-04 2001-04-03 Valdemar Portney Multifocal ophthalmic lens with reduced halo size
US6197058B1 (en) * 1999-03-22 2001-03-06 Valdemar Portney Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US20030069637A1 (en) * 1999-04-26 2003-04-10 Lynch Mary G. Stent device and method for treating glaucoma
US6511178B1 (en) * 1999-07-19 2003-01-28 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses and processes for their production
US6364483B1 (en) * 2000-02-22 2002-04-02 Holo Or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
US6543610B1 (en) * 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US8668735B2 (en) * 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US20070027538A1 (en) * 2005-07-28 2007-02-01 Visioncare Ophthalmic Technologies Inc. Compressed haptics
US20070049267A1 (en) * 2005-08-15 2007-03-01 Incode Telecom Group, Inc. Embedded wireless location validation benchmarking systems and methods

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005280B2 (en) 2000-09-12 2015-04-14 Revision Optics, Inc. System for packaging and handling an implant and method of use
US9889000B2 (en) 2000-09-12 2018-02-13 Revision Optics, Inc. Corneal implant applicators
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US7776086B2 (en) 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
US8162953B2 (en) 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
US8540727B2 (en) 2007-03-28 2013-09-24 Revision Optics, Inc. Insertion system for corneal implants
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9877823B2 (en) 2007-03-28 2018-01-30 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US8900296B2 (en) 2007-04-20 2014-12-02 Revision Optics, Inc. Corneal inlay design and methods of correcting vision
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
US20130281993A1 (en) * 2010-08-23 2013-10-24 Jon Dishler Methods and Devices for Forming Corneal Channels
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
RU2619654C2 (en) * 2011-10-21 2017-05-17 Ревижн Оптикс, Инк. Device for cornea implants storage and delivery
AU2012325705B2 (en) * 2011-10-21 2017-07-20 Revision Optics, Inc. Corneal implant storage and delivery devices
US9345569B2 (en) 2011-10-21 2016-05-24 Revision Optics, Inc. Corneal implant storage and delivery devices
US9987124B2 (en) 2011-10-21 2018-06-05 Revision Optics, Inc. Corneal implant storage and delivery devices
WO2013059813A1 (en) 2011-10-21 2013-04-25 Revision Optics, Inc. Corneal implant storage and delivery devices
CN107249514A (en) * 2014-08-19 2017-10-13 修正光学公司 Cornea implant storage, packaging and conveying device
US10583041B2 (en) 2015-03-12 2020-03-10 RVO 2.0 Inc. Methods of correcting vision
CN112451207A (en) * 2020-12-10 2021-03-09 微智医疗器械有限公司 Ophthalmic surgical instrument for implanting flexible electrodes

Also Published As

Publication number Publication date
US20020029981A1 (en) 2002-03-14
AU9264001A (en) 2002-03-26
EP1322197A1 (en) 2003-07-02
US6581993B2 (en) 2003-06-24
AU2001292640A2 (en) 2002-03-26
AU2001292640B2 (en) 2006-06-22
US20030070944A1 (en) 2003-04-17
US6824178B2 (en) 2004-11-30
US6543610B1 (en) 2003-04-08
CA2421973A1 (en) 2002-03-21
WO2002021966A1 (en) 2002-03-21
ES2585881T3 (en) 2016-10-10

Similar Documents

Publication Publication Date Title
US6824178B2 (en) System for packaging and handling an implant and method of use
US7128351B2 (en) System for packaging and handling an implant and method of use
AU2001292640A1 (en) System for packaging and handling an implant and method of use
AU2001289038A1 (en) System for packaging and handling an implant and method of use
CA2680070C (en) Insertion system for corneal implants
US20060235430A1 (en) Corneal implant injector assembly and methods of use
US20080243156A1 (en) Ophthalmic surgical instrument & surgical methods
US20030045930A1 (en) Apparatus and methods for packaging intrcorneal implants and facilitating placement thereof
WO1988001490A1 (en) Method and artificial intraocular lens device for the phakic treatment of myopia
US20130085567A1 (en) Method and apparatus for performing DMEK surgery
WO1982001646A1 (en) Intraocular lens forceps
AU2006202403A1 (en) System for packaging and handling an implant and method of use
EP0424970A1 (en) Container and dispenser for aneurysm clips
US4978353A (en) Method and means for protecting corneal endothelium and iris during IOL implantation

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTRALENS VISION, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ANAMED, INC.;REEL/FRAME:019122/0270

Effective date: 20050303

Owner name: REVISION OPTICS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:INTRALENS VISION, INC.;REEL/FRAME:019122/0362

Effective date: 20050818

Owner name: ANAMED, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIGAM, ALOK;REEL/FRAME:019123/0807

Effective date: 20041201

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION